KR20090025989A - Human mesenchymal stem cells improved tissue regeneration and production methods thereof - Google Patents

Human mesenchymal stem cells improved tissue regeneration and production methods thereof Download PDF

Info

Publication number
KR20090025989A
KR20090025989A KR1020070091236A KR20070091236A KR20090025989A KR 20090025989 A KR20090025989 A KR 20090025989A KR 1020070091236 A KR1020070091236 A KR 1020070091236A KR 20070091236 A KR20070091236 A KR 20070091236A KR 20090025989 A KR20090025989 A KR 20090025989A
Authority
KR
South Korea
Prior art keywords
stem cells
lzts2
mesenchymal stem
gene
leu
Prior art date
Application number
KR1020070091236A
Other languages
Korean (ko)
Other versions
KR100935639B1 (en
Inventor
정진섭
조현화
김회규
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020070091236A priority Critical patent/KR100935639B1/en
Publication of KR20090025989A publication Critical patent/KR20090025989A/en
Application granted granted Critical
Publication of KR100935639B1 publication Critical patent/KR100935639B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/65MicroRNA

Abstract

A mesenchyme stem cell is provided to improve reproductive ability and the damaged tissue regeneration ability of mesenchyme stem cell. A mesenchyme stem cell is manufactured by being processed by antisense RNA of lzts2 gene coding amino acid sequence of a sequence number 1. An expression of the lzts 2 gene of the mesenchyme stem cell is held back. The antisense RNA is siRNA having base sequence selected from a group consisting of sequence number 2, 4, 6, 8, 10. A double-strand siRNA oligonucleotide of the lzts2 gene has a base sequence of a sequence number 2.

Description

조직재생능이 향상된 중간엽 줄기세포 및 그의 제조방법 {human mesenchymal stem cells improved tissue regeneration and production methods thereof}Mesenchymal stem cells improved tissue regeneration and production methods

본 발명은 조직재생능이 향상된 중간엽 줄기세포 및 그의 제조방법에 관한 것으로, 더욱 구체적으로 lzts2 유전자의 안티센스 RNA로 처리되어 lzts 2 유전자의 발현이 억제된 중간엽 줄기세포 및 그 제조방법에 관한 것이다.The present invention relates to mesenchymal stem cells with improved tissue regeneration ability, and more particularly, to mesenchymal stem cells treated with antisense RNA of lzts2 gene and suppressed the expression of lzts 2 gene, and a method for producing the same.

허혈이란 (ischemia) 장기에 혈액을 공급하는 혈관이 막히게 되어 혈액공급이 장애를 받아 국부적으로 조직의 괴사가 일어난 상태이다. 허혈로 인해 심장 협심증, 심근경색 등의 허혈성 심장질환과 뇌경색, 다리의 족부궤양 같은 말초동맥질환이 발생한다. 이러한 허혈성 질환의 치료방법은 약물요법, 스탠트를 이용하여 좁은 혈관을 확장시켜주는 관상동맥 성형술, 심장의 경우 동맥 우회술을 시행하기도 한다. 하지만 이러한 치료방법은 혈관이 문제가 있는 경우에는 적절한 치료 방법으로서의 역할을 하지 못한다. 따라서 이러한 기존 치료방법의 한계를 극복하기 위해서 새로운 방법이 필요하며, 최근에 허혈성 질환의 손상된 조직을 재생시키기 위한 줄기세포 이용 연구가 활발히 진행되고 있다. Ischemia is a condition in which the blood vessels that supply blood to the organs are blocked and the blood supply is impaired, causing local necrosis. Ischemia causes ischemic heart disease such as angina, myocardial infarction, and peripheral artery disease such as cerebral infarction and foot ulceration of the leg. Treatment of these ischemic diseases is performed by drug therapy, coronary angioplasty using a stent to dilate narrow blood vessels, and arterial bypass surgery in the heart. However, this method of treatment does not serve as a proper treatment in the case of problems with blood vessels. Therefore, new methods are needed to overcome the limitations of the existing treatment methods, and recently, studies on using stem cells to regenerate damaged tissues of ischemic diseases have been actively conducted.

줄기세포는 미분화 상태에서 일정기간 동안 자신과 동일한 세포를 지속적으 로 만들어 낼 수 있는 성질과 적당한 조건하에서는 특정한 세포로 분화하는 성질을 가지고 있다. 줄기세포는 그 기원에 따라 배아 줄기세포(embryonic stem cell)와 성체 줄기세포(adult stem cell)로 구분될 수 있다. 사람 배아 줄기세포는 인간 생명체로 발생할 수 있는 배아로부터 만들어지기 때문에 많은 윤리적인 문제점을 가지고 있으나 성체 줄기세포에 비하여 세포증식 및 분화 능력이 우수한 것으로 알려져 있다. 성체 줄기세포는 골수, 혈액, 뇌, 피부 등에서 얻을 수 있어 윤리적인 문제가 적으나 배아 줄기세포에 비하여 한정된 분화능력(multipotency)을 가지고 있다. 성체 줄기세포 중 가장연구가 많이 진행된 것은 조혈 줄기세포(hematopoietic stem cell)이며 최근 중간엽 줄기세포(mesenchymal stem cell)에 대한 연구들도 활기를 띠고 있다. Stem cells have the property of continuously producing the same cells as themselves for a certain period of time in an undifferentiated state and differentiating into specific cells under suitable conditions. Stem cells can be divided into embryonic stem cells and adult stem cells, depending on their origin. Human embryonic stem cells have many ethical problems because they are made from embryos that can occur in human life, but they are known to have superior cell proliferation and differentiation capacity as adult stem cells. Adult stem cells can be obtained from bone marrow, blood, brain, skin, etc., so there are few ethical problems, but they have limited multipotency compared to embryonic stem cells. The most researched adult stem cells are hematopoietic stem cells, and recent studies on mesenchymal stem cells are also invigorating.

중간엽 줄기세포 중 가장 먼저 발견된 골수기질세포는 1968년 Fiedenstein등의 연구에 의해 처음으로 밝혀졌으며(Friedenstein et al, 1968) 혈액줄기세포의 분화환경을 조성할 뿐만 아니라 적절한 실험조건하에서 연골, 뼈, 지방조직 등 다양한 결체조직을 형성할 수 있다 (Owen, 1988). 생체 외에서 골수기질세포를 심장근육세포 (Makino et al, 1999), 간세포(Oh et al, 2001) 및 신경세포 (Woodbury et al, 2000; Deng et al, 2001)로 분화시키기 위한 실험들이 시도되었다. 골수기질세포를 포함한 중간엽 줄기세포는 다양한 손상장기의 세포치료, 유전자전달, 면역반응의 조절 등 다양한 목적에 이용될 수 있다(Tocci & Forte, 2003).The first bone marrow stromal cells found among mesenchymal stem cells were first identified by a study by Fiedenstein et al. (1968) (Friedenstein et al, 1968). And various connective tissues such as adipose tissue (Owen, 1988). Experiments have been attempted to differentiate bone marrow stromal cells into cardiomyocytes (Makino et al, 1999), hepatocytes (Oh et al, 2001) and neurons (Woodbury et al, 2000; Deng et al, 2001) in vitro. Mesenchymal stem cells, including myeloid matrix cells, can be used for a variety of purposes, including cell therapy of various organs of injury, gene transfer, and regulation of immune responses (Tocci & Forte, 2003).

내피전구세포를 포함한 골수세포의 투여가 심근경색환자의 증상을 호전시킴은 최근 대규모 임상시험을 통해서 보고 되었으며 (Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004 364(9429):141-148) 인체말초혈관질환 (Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002 360(9331):427-435)에도 효과가 있음이 보고 되었다.   Administration of bone marrow cells, including endothelial progenitor cells, has been reported in recent clinical trials (Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S). , Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.Lancet. 2004 364 (9429): 141- Peripheral vascular disease (Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators.Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial.Lancet. 2002 360 (9331): 427-435) This was reported.

실험동물에서는 후지허혈모델 (Kalka C, Isner JM, Asahara T, et al. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. PNAS. 97, 3422-3427; Madeddu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, Bonanno G, Patti M, Stassi G, Condorelli G, Peschle C. Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischemic limbs. FASEB J. 2004 18(14):1737-1739), 심장허혈 모델 (Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D, Patti M, Colonna L, Baiocchi M, Coppola S, Ma X, Condorelli G, Peschle C. Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells. FASEB J. 2004 18(12):1392-1394) 및 폐동맥고혈압모델 (Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H, Shimizu Y. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng. 2004 10(5-6):771-779)에서 내피전구세포를 이용한 혈관재생이 가능함이 보고 되었다. In experimental animals, Kaka C, Isner JM, Asahara T, et al. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization.PNAS. 97, 3422-3427; Madeddu P, Emanueli C, Pelosi E , Salis MB, Cerio AM, Bonanno G, Patti M, Stassi G, Condorelli G, Peschle C. Transplantation of low dose CD34 + KDR + cells promotes vascular and muscular regeneration in ischemic limbs.FASEB J. 2004 18 (14): 1737- 1739), cardiac ischemia model (Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D, Patti M, Colonna L, Baiocchi M, Coppola S, Ma X, Condorelli G, Peschle C. Heart infarct in NOD -SCID mice: therapeutic vasculogenesis by transplantation of human CD34 + cells and low dose CD34 + KDR + cells.FASEB J. 2004 18 (12): 1392-1394) and pulmonary arterial hypertension models (Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H, Shimizu Y. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs.Tissue Eng. 2004 10 (5-6): 771-7 79) reported the possibility of revascularization using endothelial progenitor cells.

중간엽 줄기세포가 뇌경색 (Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003 92(6):692-699), 심근경색 (Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004 287(6):H2670-267) 및 만성심장질환 (Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005 111(2):150-156), 에서 혈관생성을 촉진시킬 수 있음이 보고되었고, 지방조직에서 분리한 세포가 혈관재생을 촉진하고 내피세포로 분화할 수 있음을 보고하였다 (Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004 109(5):656-663). Mesenchymal stem cells undergo cerebral infarction (Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats.Circ Res. 2003 92 (6): 692-699), myocardial infarction (Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis.Am J Physiol Heart Circ Physiol. 2004 287 (6): H2670-267) and chronic heart disease (Silva GV, Litovsky S, Assad. JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC.Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model.Circulation. 2005 111 (2): 150-156), It has been reported that it can promote sex and that cells isolated from adipose tissue can promote blood vessel regeneration and differentiate into endothelial cells (Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004 109 (5): 656-663).

그러나 체내의 손상된 조직 내로 이식된 줄기세포는 손상된 조직재생으로의 세포분화가 이루어져야 하는데 이러한 줄기세포만을 이용한 치료효과는 탁월한 결과를 얻기 힘들다. 그래서 줄기세포의 유전자 변형을 유도하여 줄기세포의 기능을 조절하여 세포재생치료기능을 향상시키는 기술이 필수적이다. However, stem cells transplanted into damaged tissues in the body should be differentiated into damaged tissue regeneration. The therapeutic effect using these stem cells alone is difficult to obtain excellent results. Therefore, it is essential to improve stem cell function by inducing genetic modification of stem cells to improve cell regeneration treatment.

LZTS2 (lucine zipper tumor suppressor 2)는 human tumors chromosome 8p21-22로부터 cloning되어졌고, human tumors에서 거의 발현되지 않는 유전자로 이전 연구에 의하면 LZTS2의 과 발현이 tumors cell의 증식을 억제하는 것으로 보고 되어져 있다(Cabeza-Arvelaiz, Y.; Thompson, T. C.; Sepulveda, J. L.; Chinault, A. C. : LAPSER1: a novel candidate tumor suppressor gene from 10q24.3. Oncogene 20: 6707-6717, 2001; Ishii, H., R. Baffa, S. I. Numata, Y. Murakumo, S. Rattan, H. Inoue, M. Mori, V. Fidanza, H. Alder, and C. M. Croce. 1999. The FEZ1 gene at chromosome 8p22 encodes a leucine-zipper protein, and its expression is altered in multiple human tumors. Proc. Natl. Acad. Sci. USA96:3928-3933).   LZTS2 (lucine zipper tumor suppressor 2) has been cloned from human tumors chromosome 8p21-22 and is rarely expressed in human tumors. Previous studies have shown that overexpression of LZTS2 inhibits tumor cell proliferation. Cabeza-Arvelaiz, Y .; Thompson, TC; Sepulveda, JL; Chinault, AC: LAPSER1: a novel candidate tumor suppressor gene from 10q24.3.Oncogene 20: 6707-6717, 2001; Ishii, H., R. Baffa, SI Numata, Y. Murakumo, S. Rattan, H. Inoue, M. Mori, V. Fidanza, H. Alder, and CM Croce. 1999.The FEZ1 gene at chromosome 8p22 encodes a leucine-zipper protein, and its expression is altered in multiple human tumors.Proc. Natl. Acad. Sci. USA 96: 3928-3933).

따라서, Small interfering RNA (siRNA) duplex oligo를 이용하여 lzts2 유 전자를 억제시킨 중간엽 줄기세포가 면역결핍 쥐의 하지허혈 동물 모델에서 손상된 조직세포 재생 촉진에 기여함을 확인하였고, 이러한 이식이 허혈질환을 가진 환자에 유망한 세포치료가 될 수 있는 기반을 제공할 것이다. 이에 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구 노력한 결과, lzts2 유전자의 이중가닥 siRNA로 처리되어 lzts 2 유전자의 발현이 억제된 중간엽 줄기세포를 생산하여 손상된 조직세포 재생 촉진에 기여함을 확인하고 본 발명을 완성하게 되었다. Therefore, it was confirmed that mesenchymal stem cells that inhibited the lzts2 gene using small interfering RNA (siRNA) duplex oligo contributed to the promotion of damaged tissue cell regeneration in the ischemic animal model of immunodeficient mice. It will provide a basis for promising cell therapy in patients with Accordingly, the present inventors have made diligent research efforts to overcome the problems of the prior arts, and thus treated with double-stranded siRNA of the lzts2 gene to produce mesenchymal stem cells with suppressed expression of the lzts 2 gene, thereby contributing to promoting damaged tissue cell regeneration. It was confirmed to complete the present invention.

따라서 본 발명의 주된 목적은 손상된 조직세포 재생 촉진에 기여하는 중간엽 줄기세포 및 그의 제조방법을 제공하는 데 있다. 본 발명의 주된 목적은 Small interfering RNA (siRNA) duplex oligo를 이용하여 lzts2 유전자를 억제시켜 중간엽 줄기세포의 증식을 촉진하고 손상된 조직세포 재생을 촉진하는데 있다.Therefore, the main object of the present invention is to provide a mesenchymal stem cell and a method for producing the same, which contribute to promoting damaged tissue cell regeneration. The main object of the present invention is to inhibit the lzts2 gene using Small interfering RNA (siRNA) duplex oligo to promote the proliferation of mesenchymal stem cells and to promote damaged tissue cell regeneration.

본 발명의 다른 목적은 조직재생능이 향상된 중간엽 줄기세포 및 그의 제조방법을 이용한 허혈성 질환의 치료용 세포치료제를 제공하는데 있다.Another object of the present invention to provide a cell therapy for the treatment of ischemic diseases using mesenchymal stem cells with improved tissue regeneration and a method for producing the same.

본 발명의 한 양태에 따르면, 본 발명은 서열번호 1의 아미노산 서열을 코딩하는 lzts2 유전자의 안티센스 RNA로 처리되어 lzts 2 유전자의 발현이 억제된 중간엽 줄기세포를 제공한다.According to an aspect of the present invention, the present invention provides mesenchymal stem cells which are treated with antisense RNA of the lzts2 gene encoding the amino acid sequence of SEQ ID NO: 1, and the expression of the lzts 2 gene is suppressed.

본 발명에 있어서, lzts2 유전자의 안티센스 RNA란 lzts2 유전자의 mRNA의 표적부위에 상보적인 서열을 가짐으로써 RNA 간섭현상(이하 "RNAi"로 약칭함)을 일으킬 수 있는 15 내지 30개의 뉴클레오티드를 갖는 RNA 분자를 의미한다. 상기 안티센스 RNA의 예로는 lzts2 유전자의 RNA 간섭(RNA interference)을 이용한 siRNA (short interfering RNA) 또는 shRNA (short hairpin RNA)를 들 수 있다. RNA 간섭은 많은 진핵생물에서 보존된 전사후 유전자 조절의 한 방법이다. RNAi는 세포에 존재하는 짧은 이중나선 RNA("dsRNA") 분자에 의해서 유도된다. "siRNA"라고도 불리우는 이러한 짧은 dsRNA 분자는 단일가닥으로 분리된 후 "RNA-유도 침묵 복합 체(RNA induced silencing, RISC)"에 결합하여 표적화된 mRNA를 절단하거나 번역을 저해한다. In the present invention, the antisense RNA of the lzts2 gene is an RNA molecule having 15 to 30 nucleotides capable of causing RNA interference (abbreviated as "RNAi") by having a sequence complementary to the target site of the mRNA of the lzts2 gene. Means. Examples of the antisense RNA include siRNA (short interfering RNA) or shRNA (short hairpin RNA) using RNA interference of the lzts2 gene. RNA interference is a method of post-transcriptional gene regulation conserved in many eukaryotes. RNAi is induced by short double-stranded RNA ("dsRNA") molecules present in cells. These short dsRNA molecules, also called “siRNAs”, are separated into single strands and then bind to “RNA induced silencing (RISC)” to cleave targeted mRNAs or inhibit translation.

그러므로, 본 발명은 lzts2 유전자의 mRNA를 표적화하는 약 17개의 뉴클레오티드 내지 약 25개의 뉴클레오티드로 이루어진 짧은 이중쇄 RNA를 포함하는 분리된 siRNA를 제공한다. 상기 siRNA는 센스 RNA 가닥과 상보적인 안티센스 RNA 가닥을 포함하고, 이들 두 가닥은 표준 왓슨-크릭 염기쌍 상호작용에 의해서 서로 결합(annealing)한다(이하 "염기쌍을 형성한(base-paired)"으로 표현함). 상기 센스가닥은 표적 mRNA 내의 표적서열에 동일한 핵산서열을 포함한다. 본 발명의 siRNA를 제조하는데 사용된 lzts2 mRNA 표적 서열은 서열번호 2,4,6,8,10에 상보적인 RNA서열이다.Therefore, the present invention provides an isolated siRNA comprising short double-stranded RNA consisting of about 17 nucleotides to about 25 nucleotides that target the mRNA of the lzts2 gene. The siRNA comprises antisense RNA strands complementary to the sense RNA strands, both of which are annealed to each other by standard Watson-Crick base pair interactions (hereinafter referred to as "base-paired"). ). The sense strand comprises a nucleic acid sequence identical to the target sequence in the target mRNA. The lzts2 mRNA target sequence used to prepare the siRNA of the present invention is an RNA sequence complementary to SEQ ID NO: 2,4,6,8,10.

본 발명의 siRNA의 센스 및 안티센스 가닥은 두개의 상보적이고 단일쇄(single-stranded)의 RNA 분자를 포함하거나, 두 개의 상보적 부분이 염기쌍을 형성하고 단일쇄의 "머리핀(hairpin)" 영역에 의해서 공유결합된 단일 분자를 포함할 수 있다. 상기 후자의 경우를 shRNA(short hairpin RNA)라고 부르며, 상기shRNA는 single strand로 약 50-70 nucleotide 길이이며, in vivo상에서 stem-loop 구조를 이루고 있다. 5-10 nucleotide의 loop 부위 양쪽으로 상보적으로 19-29 nucleotide의 긴 RNA가 염기쌍을 이루어 이중가닥의 stem을 형성한다. shRNA는 일반적으로 in vivo상에서 Pol III promoter에부터 상보적인 DNA sequence의 전사에 의해 합성된다. Pol-III로 유도된 전사는 well-defined start site에서 시작되어 4개 이상의 thymidine으로 이루고 있는 선상(-TTTT-)의 second residue에서 종결되 어 non-poly(A) transcript 생성한다. Pol III promoter는 모든 세포에서 활성되며 shRNA의 발현이 가능하다. 전사 후 shRNA는 Dicer에 의해 loop가 절단되고 siRNA처럼 RISC와 작용하게 된다.The sense and antisense strands of the siRNA of the present invention comprise two complementary single-stranded RNA molecules, or two complementary portions form base pairs and are defined by a single "hairpin" region of the single strand. It may comprise a single molecule covalently bonded. The latter case is called shRNA (short hairpin RNA), and the shRNA has a single strand of about 50-70 nucleotides in length and forms a stem-loop structure in vivo. Long RNAs of 19-29 nucleotides complementary to both loop regions of 5-10 nucleotides form base pairs to form double stranded stems. shRNAs are generally synthesized in vivo by transcription of complementary DNA sequences from Pol III promoters. Pol-III-induced transcription begins at the well-defined start site and terminates at the second residue of the linear (-TTTT-) consisting of four or more thymidines to produce non-poly (A) transcripts. Pol III promoter is active in all cells and can express shRNA. After transcription, shRNAs are cleaved by Dicer and interact with RISC like siRNAs.

본 발명의 siRNA는 본 발명이 속하는 분야에서 통상의 지식을 가지는 자에게 알려진 많은 기술을 이용하여 획득될 수 있다. 예를 들면, siRNA는 본 발명이 속하는 분야에서 알려진 방법을 이용하여 화학적으로 합성되거나 재조합 방법에 의해서 생산될 수 있다. 바람직하게는, 본 발명의 siRNA는 적절히 보호된 리보뉴클레오시드 포스포라미디트(ribonucleoside phosphoramidites)와 종래의 DNA/RNA 합성기를 이용하여 화학적으로 합성될 수 있다. siRNA는 상보적이고 분리된 두개의 RNA 분자 또는 두개의 상보적인 영역을 가지는 하나의 RNA 분자로서 합성될 수 있다. 다른 방법으로서, siRNA는 또한 적절한 프로모터를 이용하여 재조합 DNA 플라스미드로 부터 발현될 수 있다. 플라스미드로부터 본 발명의 siRNA를 발현시키는 데 적절한 프로모터는 예를 들면 U6 또는 H1 RNA pol Ⅲ 프로모터 서열 및 거대세포바이러스 프로모터를 포함한다. 또한 본 발명의 재조합 플라스미드는 특정 조직 또는 특정 세포내 환경에서 siRNA를 발현시키기 위해서 유도성 또는 조절가능한 프로모터를 포함할 수 있다.The siRNA of the present invention can be obtained using many techniques known to those of ordinary skill in the art. For example, siRNA can be chemically synthesized using a method known in the art, or produced by recombinant methods. Preferably, the siRNA of the invention can be chemically synthesized using appropriately protected ribonucleoside phosphoramidites and conventional DNA / RNA synthesizers. siRNA can be synthesized as two RNA molecules complementary and separated or as one RNA molecule with two complementary regions. Alternatively, siRNA can also be expressed from recombinant DNA plasmids using appropriate promoters. Suitable promoters for expressing siRNAs of the invention from plasmids include, for example, U6 or H1 RNA pol III promoter sequences and cytomegalovirus promoters. In addition, the recombinant plasmid of the present invention may include an inducible or controllable promoter for expressing siRNA in specific tissues or specific intracellular environments.

본 발명의 siRNA는 재조합 플라스미드로부터 상보적이고 분리된 두 개의 RNA 분자 또는 두개의 상보적인 영역을 가지는 하나의 RNA 분자로서 발현될 수 있다. 본 발명의 siRNA를 발현시키는 데 적절한 플라스미드의 선택, siRNA를 발현시키기 위한 핵산서열을 플라스미드 내로 삽입하는 방법, 및 재조합 플라스미드를 목적하 는 세포로 전달하는 방법은 본 발명이 속하는 분야의 기술 범위 내에 있다. The siRNA of the invention can be expressed as two RNA molecules that are complementary and separated from the recombinant plasmid or as one RNA molecule having two complementary regions. Selection of a plasmid suitable for expressing siRNA of the present invention, a method for inserting a nucleic acid sequence for expressing siRNA into a plasmid, and a method for delivering a recombinant plasmid to a cell of interest are within the skill of the art. .

본 발명의 중간엽 줄기세포에서, 상기 안티센스 RNA는 lzts2 유전자의 RNA 간섭(RNA interference)을 이용한 어떤 siRNA (short interfering RNA) 또는 shRNA (short hairpin RNA)도 포함되나 서열번호 2, 4, 6, 8, 10으로 이루어진 군에서 선택된 어느 하나의 siRNA인 것이 바람직하다. 상기 서열번호들은 각각 상보적인 서열과 함께 이중가닥 RNA를 구성할 수 있다.In the mesenchymal stem cells of the present invention, the antisense RNA includes any siRNA (short interfering RNA) or shRNA (short hairpin RNA) using RNA interference of the lzts2 gene, but SEQ ID NOs: 2, 4, 6, 8 , Is preferably any one siRNA selected from the group consisting of 10. The sequence numbers may each constitute a double stranded RNA with complementary sequences.

본 발명의 다른 양태에 따르면, 중간엽 줄기세포를 유효성분으로 포함하는 허혈성(ischemia) 질환의 치료용 세포치료제를 제공한다. 상기 허혈성 질환은 장기에 혈액을 공급하는 혈관이 막히게 되어 혈액공급이 장애를 받아 국부적으로 조직의 괴사가 일어난 어떤 질환도 포함하나, 바람직하게는 심장 협심증, 심근 경색, 뇌경색, 또는 족부궤양인 것을 특징으로 한다.According to another aspect of the present invention, there is provided a cell therapy agent for the treatment of ischemia diseases comprising mesenchymal stem cells as an active ingredient. The ischemic disease includes any disease in which blood vessels supplying organs are blocked and blood supply is impaired and local necrosis occurs. Preferably, the ischemia, myocardial infarction, cerebral infarction, or foot ulcer are characterized. It is done.

본 발명의 허혈성 질환의 치료효과를 입증하기 위하여, 실시예 5에서는 쥐의 대퇴동맥을 묶은 뒤 혈류를 차단하여 하지허혈을 유도하고 1일 뒤에 PBS, 중간엽 줄기세포와 lzts2 유전자 발현을 억제시킨 세포를 각각 이식하였다. 이식 후 7일과 14일에 혈류량을 측정한 결과 중간엽 줄기세포보다 lzts2 유전자 발현을 억제시킨 세포를 이식한 그룹에서 혈류량이 더 증가됨을 확인하였고(도6), 14일에 조직을 적출하여 염색(H&E)을 실시한 결과 조직학적인 면에서도 중간엽 줄기세포 단독 이식보다 lzts2 유전자 발현을 억제시킨 세포를 이식한 그룹에서 근육상해 회복을 향상시킴을 확인할 수 있었다. In order to demonstrate the therapeutic effect of the ischemic disease of the present invention, in Example 5, after binding the femoral artery of the rat, the blood flow was blocked to induce lower limb ischemia. Were implanted respectively. As a result of measuring blood flow at 7 and 14 days after transplantation, it was confirmed that blood flow was increased in the group transplanted with cells that suppressed lzts2 gene expression than mesenchymal stem cells (Fig. 6). H & E) confirmed that histologically improved muscle injury recovery in the group transplanted with cells that suppressed lzts2 gene expression, rather than transplantation of mesenchymal stem cells alone.

본 발명의 세포치료제는 당업계에 알려진 일반적인 세포치료제의 제형, 예컨 대, 주사제의 형태로 제조될 수 있으며, 외과 수술적으로 허혈질환 부위에 직접 이식하거나, 정맥에 투여된 후 허혈질환 부위로 이동할 수 있다.The cell therapy of the present invention may be prepared in the form of a general cell therapy known in the art, for example, in the form of injections, which may be surgically implanted directly into an ischemic disease site or transferred to an ischemic disease site after intravenous administration. Can be.

본 발명의 조성물에 포함된 중간엽 줄기세포는 질병의 유형, 투여경로, 환자의 나이 및 성, 및 질병의 정도에 따라 변할 수 있으나, 바람직하게는 평균 성인의 경우 104 내지 108 cells를 투여할 수 있다.The mesenchymal stem cells included in the composition of the present invention may vary depending on the type of disease, the route of administration, the age and sex of the patient, and the extent of the disease, but in the average adult, 10 4 to 10 8 cells are administered. can do.

본 발명의 다른 양태에 따르면, 서열번호 2 및 3의 염기서열을 갖는 것을 특징으로 하는 lzts2 유전자에 대한 이중가닥 siRNA 올리고뉴클레오티드를 제공한다.According to another aspect of the present invention, there is provided a double-stranded siRNA oligonucleotide for the lzts2 gene having the nucleotide sequences of SEQ ID NOs: 2 and 3.

본 발명의 다른 양태에 따르면, 중간엽 줄기세포를 준비하는 단계; 및 상기 중간엽 줄기세포에 서열번호 1의 아미노산 서열을 코딩하는 lzts2 유전자의 발현을 억제시키는 단계를 포함하는 증식능 및 손상된 조직재생능이 증가된 중간엽 줄기세포의 제조방법을 제공한다. According to another aspect of the invention, preparing a mesenchymal stem cell; And it provides a method for producing mesenchymal stem cells with increased proliferative capacity and damaged tissue regeneration capacity comprising the step of inhibiting the expression of the lzts2 gene encoding the amino acid sequence of SEQ ID NO: 1 to the mesenchymal stem cells.

본 발명의 중간엽 줄기세포의 제조방법에서, 상기 lzts2 유전자의 발현을 억제시키는 단계는 lzts2 유전자에 대한 안티센스 RNA를 사용하여 lzts2 유전자의 RNA 간섭(RNA interference)을 일으킬 수도 있다. 상기 안티센스 RNA의 예로는 siRNA (short interfering RNA) 또는 shRNA (short hairpin RNA)를 사용할 수 있으며, 상기 siRNA는 적절히 보호된 리보뉴클레오시드 포스포라미디트(ribonucleoside phosphoramidites)와 종래의 DNA/RNA 합성기를 이용하여 화학적으로 합성할 수 있다. In the method for producing mesenchymal stem cells of the present invention, the step of inhibiting the expression of the lzts2 gene may cause RNA interference of the lzts2 gene using antisense RNA for the lzts2 gene. Examples of the antisense RNA may include short interfering RNA (siRNA) or short hairpin RNA (shRNA), and the siRNA may include a properly protected ribonucleoside phosphoramidites and a conventional DNA / RNA synthesizer. It can be synthesized chemically.

또한 본 발명의 중간엽 줄기세포의 제조방법에서, 상기 안티센스 RNA는 lzts2 유전자의 mRNA와 상보적으로 결합하여 lzts2 유전자의 발현 억제를 유도할 수 있는 어떠한 안티센스 RNA도 포함하나, 바람직하게는 서열번호 2,4,6,8,10으로 이루어진 군에서 선택된 어느 하나의 염기서열을 갖는 siRNA인 것을 특징으로 한다. In addition, in the method for producing mesenchymal stem cells of the present invention, the antisense RNA includes any antisense RNA capable of inducing the inhibition of the expression of the lzts2 gene by binding complementarily with the mRNA of the lzts2 gene, preferably SEQ ID NO: 2 It is characterized in that the siRNA having any one base sequence selected from the group consisting of, 4,6,8,10.

본 발명의 중간엽 줄기세포의 제조방법에서, lzts2 유전자의 발현을 억제시키는 단계는 NF-κB 유전자를 과발현시키는 플라스미드, 예컨대 pCMVp65NF-κB (실시예 1 참조)로 트랜스펙션시킴으로써 수행될 수도 있다.In the method for producing mesenchymal stem cells of the present invention, the step of inhibiting the expression of the lzts2 gene may be carried out by transfection with a plasmid overexpressing the NF-κB gene, such as pCMVp65NF-κB (see Example 1).

이상 설명한 바와 같이, 본 발명에 따르면 지방조직에서 유래한 인체 중간엽 줄기세포에서 lzts2 유전자 발현을 억제시킴으로 세포 증식능을 향상 시켰고, 하지허혈 동물 모델 이식 실험에서도 lzts2 유전자 발현 억제된 중간엽 줄기세포가 손상된 조직세포 재생을 촉진함을 알 수 있다. 따라서 중간엽 줄기세포의 lzts2 유전자 발현을 조절하는 기전을 바탕으로 손상된 조직재생촉진에 유용한 중간엽 줄기세포 치료제 개발에 이용할 수 있다.As described above, according to the present invention, cell proliferation was improved by inhibiting the expression of lzts2 gene in human mesenchymal stem cells derived from adipose tissue. It can be seen that it promotes tissue cell regeneration. Therefore, based on the mechanism regulating the expression of lzts2 gene in mesenchymal stem cells, it can be used for the development of mesenchymal stem cell therapy useful for promoting damaged tissue regeneration.

실시예Example 1.  One. NFNF -- kBkB 억제제 및 과발현에 의한  By inhibitors and overexpression 중간엽Mesenchyme 줄기세포에서  In stem cells lzts2lzts2 유전자 발현 조절 Gene expression regulation

본 발명에서 사용된 중간엽 줄기세포는 인간 줄기 세포의 무동물혈청 배양 배지조성물 및 간세포로의 분화 유도 방법 (대한민국 등록특허 10-06276950000)에 의하여 제조된 중간엽 줄기세포를 사용하였다. 지방조직에서 유래된 중간엽 줄기세포들에 NF-kB의 핵 이동 억제제인 SN50 (50 or 100 mg/ml, inhibitor of NF-κB nuclear translocation), NF-kB decoy oligo deoxynucleotide, mutant NF-kB decoy oligo deoxynucleotide를 각각 주입하였고 또한 중간엽 줄기세포에 NF-kB 과발현을 위하여 p65 plasmid(pCMVp65 NF-κB)를 transfection 시킨 후 48시간 후 RNA를 뽑아 RT-PCR과 Real-Time PCR로 lzts2 유전자 발현을 확인하였다. NF-kB Decoy는 전사인자인 NF-kB에 대하여 높은 선택성을 갖는 유망한 저해물질이다. NF-κB의 서열 특이적 저해(Sequence-specific inhibition of NF-κB)를 위해 NF-κB sequence를 갖는 합성한 이중가닥 포스포로싸이오레이트 올리고 뉴클레오타이드(NF-kB Decoy; synthetic double-stranded phosphothiorate oligonucleotides containing a NF-κB consensus sequence)를 사용하였다. NF-kB Decoy는 생체 내에서 전사 인자와 결합하는 cis element인 미끼(decoy)로 작용하여 NF-kB의 활성을 저해시킨다. 발명에서는 NF-κB decoy와 mutated control로 각각 합성한 이중가닥 포스포로싸이오레이트 올리고 뉴클레오타이드를 사용하였는데 그 서열은 NF-κB decoy(5'-AGTTGAGGGGACTTTCCCAGGC-3'), mutated control (5'AGTTGAGGCGACTTTCCCAGGC-3')이다.Mesenchymal stem cells used in the present invention used mesenchymal stem cells prepared by the method of inducing differentiation of human stem cells into animal-free serum culture medium composition and hepatocytes (Korea Patent 10-06276950000). Mesenchymal stem cells derived from adipose tissue were SN50 (50 or 100 mg / ml, inhibitor of NF-κB nuclear translocation), NF-kB decoy oligo deoxynucleotide, mutant NF-kB decoy oligo Deoxynucleotides were injected to each other. Also, 48 hours after transfection of p65 plasmid (pCMVp65 NF-κB) for NF-kB overexpression in mesenchymal stem cells, RNA expression was confirmed by RT-PCR and Real-Time PCR. . NF-kB Decoy is a promising inhibitor with high selectivity for the transcription factor NF-kB. NF-kB Decoy; synthetic double-stranded phosphothiorate oligonucleotides containing NF-κB sequence for sequence-specific inhibition of NF-κB a NF-κB consensus sequence) was used. NF-kB Decoy inhibits NF-kB activity by acting as a decoy (decoy), a cis element that binds to transcription factors in vivo. example In the present invention, double-stranded phosphorothioate oligonucleotides synthesized by NF-κB decoy and mutated control were used, respectively. ')to be.

RT-PCR실험 시 primer의 서열은 lzts2 유전자의 경우 forward primer로 5'-CTGTGTCCTGGAAGGAAAGC-3'과 reverse primer로 5'-CTCCCACTTGGTCTCCTCAA-3'을 각각 사용하였다. 또한 Control로 사용된 GAPDH유전자의 경우 forward primer로 5’-TCCATGACAACTTTGGTATCG-3’, reverse primer로 5’-TGTAGCCAAATTCGTTGTCA-3’를 사 용하였다. 그 결과 NF-kB 억제제인 SN50와 NF-kB decoy 처리시 lzts2 유전자 발현이 증가되었고, p65 과다발현 시에는 lzts2 유전자 발현이 감소됨을 확인하였다 (도 1-A, B). In the RT-PCR experiment, 5'-CTGTGTCCTGGAAGGAAAGC-3 'was used as the forward primer and 5'-CTCCCACTTGGTCTCCTCAA-3' was used as the forward primer for the lzts2 gene. In the GAPDH gene used as a control, 5'-TCCATGACAACTTTGGTATCG-3 'was used as the forward primer and 5'-TGTAGCCAAATTCGTTGTCA-3' was used as the reverse primer. As a result, it was confirmed that lzts2 gene expression was increased upon treatment of NF-kB inhibitor SN50 and NF-kB decoy, and lzts2 gene expression was reduced upon p65 overexpression (FIGS. 1-A and B).

실시예Example 2.  2. NFNF -- kBkB 억제제 및 과다발현에 의한 β- Β- by inhibitors and overexpression catenincatenin /Of TcfTcf signalingsignaling 조절 control

지방조직과 골수에서 유래된 중간엽 줄기세포들에 NF-kB 억제제 및 과 발현에 의해 β-catenin/Tcf signaling이 어떻게 조절되는지를 확인하기 위해서 세포에 Tcf promoter를 포함하는 luciferase constructs plasmid (pTOP-flash)와 mutant plasmid (pFOP-flash)로 형질전환(transfection)한 후 NF-kB 억제제인 SN50 (50 or 100 mg/ml, inhibitor of NF-κB nuclear translocation), NF-kB decoy(10 mM, Sequence-specific inhibition of NF-kB, 5'-AGTTGAGGGGACTTTCCCAGGC-3') 와 mutant decoy (10 mM, 5'AGTTGAGGCGACTTTCCCAGGC-3') 그리고 NF-kB 과발현을 위한 p65 plasmid(pCMVp65 NF-κB)를 transfection시킨 후 48시간 후 luciferase assay를 실시하였다. 모든 일시적 형질전환(transient transtection) 실험에는 인비트로젠社에서 판매하는 Lipofectamine Plus Reagent가 사용되었다. pTOP-flash 플라스미드는 Tcf/Lef1 결합 DNA서열(enhancer)와 Thymidine kinase promoter 그리고 반딧불 Luciferase reporter 유전자로 이루어졌다. pFOP-flash 플라스미드의 경우 Tcf/Lef1 결합 DNA서열(enhancer)이 mutation된 것이다. pNF-κB-Luc plasmid(Clontech Laboratories, Inc. CA)는 NF-κB와 결합하는 DNA 서열(Enhancer을 갖는 플라스미드이다. p65 plasmid(pCMVp65 NF-κB)는 NF-kB 과발현을 위하여 사용된 플라스미드이다. 도 2에서 나타난 바와 같이 각각의 조건에서 형질전환한 48시간 후에 0.25 M Tris, 2 mM DTT, 2 Mm 1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid, 10% glycerol and 1% Triton X-100 buffer (lysis buffer)의 조건에서 세포를 처리하여 luciferase 효소 활성을 Luciferase Assay System(Promega corporation, Madison, WI)을 이용하여 측정하였다. 모든 실험은 4번 반복하여 실시되었다. 그 결과 SN50과 NF-kB decoy를 처리한 세포에서 luciferase activity가 감소하는 것으로 보아 β-catenin/Tcf signaling을 억제함을 확인할 수 있었고 (도2-A,B), p65로 NF-kB 과 발현시에는 β-catenin/Tcf signaling 증가함을 확인 할 수 있었다 (도2-B). To determine how β-catenin / Tcf signaling is regulated by NF-kB inhibitors and overexpression in adipose tissue and bone marrow-derived mesenchymal stem cells, luciferase constructs plasmid (pTOP-flash) containing Tcf promoter in cells. ) And mutant plasmid (pFOP-flash), and then N50-50B / 50 (50 or 100 mg / ml, inhibitor of NF-κB nuclear translocation), NF-kB decoy (10 mM, Sequence-) Specific inhibition of NF-kB, 5'-AGTTGAGGGGACTTTCCCAGGC-3 ') and mutant decoy (10 mM, 5'AGTTGAGGCGACTTTCCCAGGC-3') and p65 plasmid (pCMVp65 NF-κB) for NF-kB overexpression After luciferase assay was performed. All transient transtection experiments used Lipofectamine Plus Reagent sold by Invitrogen. The pTOP-flash plasmid consists of the Tcf / Lef1 binding DNA enhancer, the Thymidine kinase promoter, and the firefly Luciferase reporter gene. In the case of the pFOP-flash plasmid, the Tcf / Lef1 binding DNA sequence was mutated. pNF-κB-Luc plasmid (Clontech Laboratories, Inc. CA) is a plasmid with DNA sequence (Enhancer) that binds NF-κB. p65 plasmid (pCMVp65 NF-κB) is a plasmid used for NF-kB overexpression. As shown in FIG. 2, after 48 hours of transformation under each condition, 0.25 M Tris, 2 mM DTT, 2 Mm 1,2-diaminocyclohexane-N, N, N ', N'-tetraacetic acid, 10% glycerol and 1 Luciferase enzyme activity was measured using Luciferase Assay System (Promega corporation, Madison, WI) by treating cells in% Triton X-100 buffer (lysis buffer). Reduction of luciferase activity in SN50 and NF-kB decoy-treated cells inhibited β-catenin / Tcf signaling (Figs. 2-A, B). -catenin / Tcf signaling increased (Fig. 2-B).

실시예Example 3.  3. 중간엽Mesenchyme 줄기세포에서  In stem cells lzts2lzts2 유전자 발현 억제에 의한  By gene expression inhibition NFNF -κB -κB andand β- β- catenincatenin /Of TcfTcf signaling 조절 signaling regulation

지방조직에서 유래한 중간엽 줄기세포에 lzts2 유전자 발현을 억제하기 위해서 lzts2 유전자를 포함하는 Small interfering RNA (siRNA) duplex oligo를 제작한 후, siRNA duplex oligo와 oligofectamine (reagent, invitrogen)을 이용하여 세포에 처리하였다. 본 발명에서 사용된 siRNA duplex oligo는 서열번호 2 및 3, 4 및 5, 6 및 7, 8 및 9, 그리고 10 및 11로 이루어진 군에서 선택된 서로 상보적인 염기서열을 갖는 어느 한쌍의 이중가닥 siRNA를 사용하였다. 이중 서열번호 2 및 3으로 이루어진 이중가닥 siRNA는 본 발명을 위하여 신규하게 제작되어 사용된 것이며, 서열번호 4 내지 11로 이루어진 이중가닥 siRNA는 Dharmacon社에서 구입하 여 사용하였다(on-TARGET plus SMART pool, Dharmacon, Inc. CO). 또한 발명의 검증을 위해 non-targeting duplex oligo (on-TARGET plus siCONTROL, Dharmacon, Inc. CO ; DharmaFECT Transfection Reagent)를 negative control로 사용하였다. In order to suppress the expression of lzts2 gene in adipose tissue-derived mesenchymal stem cells, small interfering RNA (siRNA) duplex oligo containing lzts2 gene was prepared, and then siRNA duplex oligo and oligofectamine (reagent, invitrogen) Treated. SiRNA duplex oligo used in the present invention is a pair of double-stranded siRNA having a complementary base sequence selected from the group consisting of SEQ ID NO: 2 and 3, 4 and 5, 6 and 7, 8 and 9, and 10 and 11 Used. Double-stranded siRNA consisting of double SEQ ID NO: 2 and 3 is a novel production and use for the present invention, double stranded siRNA consisting of SEQ ID NO: 4 to 11 was purchased from Dharmacon Co. (on-TARGET plus SMART pool , Dharmacon, Inc. CO). In addition, non-targeting duplex oligo (on-TARGET plus siCONTROL, Dharmacon, Inc. CO; DharmaFECT Transfection Reagent) was used as a negative control for verification of the invention.

RT-PCR과 Real-Time PCR을 하여 lzts2 유전자 발현을 측정하였는데 RT-PCR실험 시 primer의 서열은 lzts2 유전자의 경우 forward primer로 5'-CTGTGTCCTGGAAGGAAAGC-3'과 reverse primer로 5'-CTCCCACTTGGTCTCCTCAA-3'을 각각 사용하였고 SYBR Green I 을 이용한 Real-Time PCR 실험(각각 사용된 프라이머 β-actin, 5’-CTGGTGCCTGGGGCG-3’, 5-AGCCTCGCCTTTGCCGA-3’; lzts2, 5’-AGAAGCGGCAATTGCAGGAC-3', 5’-CTCGCCTGATTTCTGGCACA-3')을 수행하였다. 그 결과, RT-PCR과 Real-Time PCR로 lzts2 유전자 발현이 억제됨을 확인하였다 (도 3-A, B). 또한 lzts2 유전자 발현 억제에 의한 NF-κB and β-catenin/Tcf signals 조절을 확인하기 위해서 siRNA로 lzts2 유전자 발현 억제 시킨 중간엽 줄기세포(slzts2)에 β-catenin/Tcf signal을 확인하기 위한 pTOP-flash 플라스미드와 pFOP-flash를 그리고 NF-κB signal을 확인하기 위해서 pNF-κB-Luc를 각각 transfection후 48시간 후에 luciferase activity를 측정하였다. 그 결과 lzts2 유전자 발현 억제가 NF-κB and β-catenin/Tcf signals 모두 증가시킴을 확인할 수 있었다 (도 3 -C). 위의 결과를 확인하기 위해서 지방조직에서 유래한 중간엽 줄기세포들에 lzts2 유전자 발현 억제시킨 후 48시간 후에 β-catenin과 p65단백질의 핵으로의 translocation을 western blot으로 확인하다. 지방조직에서 유래된 중간엽 줄기세포들에 lzts2 유전자 발현을 억제하고 48시간 후 트립신 처리후 5°C의 PBS용액에 서 wash한 후 pellet을 ice-cold lysis buffer (210 mM mannitol, 70 mM sucrose 5 mM Tris, pH 7.5, 1mM EDTA, protease inhibitors)로 처리하고 얼음에 15분 동안 보관하였다. 이후 핵은 원심분리기(10 minutes, 4°C, 14,000rpm)에 의해 분리하고 세포질 부분은 sample buffer에서 끓였다. 핵이 포함된 세포 펠렛(pellet)은 PBS로 세척하고 RIPA buffer (Santa Cruz Biotechnology, Inc. CA)에서 5분간 resuspension 시킨 후 다시 원심분리(10 minutes, 4°C, 14,000rpm)한 후 supernatant(nuclear fraction)을 sample buffer에서 끓였다. 핵과 세포질의 단백질을 10% SDS polyacrylamide gels로 분리하여 nitrocellulose membranes (Hybond-ECL, Amersham Pharmacia Biotech, Piscataway, NJ)에 electrotransfer하고 monoclonal antibodies (β-catenin, and actin; BD Biosciences Clontech, CA, NF-κBp65: Santa Cruz Biotechnology, Inc. CA)를 처리하였다. 이후 이차항체( anti-mouse and anti-rabbit peroxidase-conjugated secondary antibodies; Amersham Pharmacia Biotech, Piscataway, NJ) 처리와 enhanced chemiluminescence (ECL detection kit,Amersham Pharmacia Biotech, Piscataway, NJ)처리하여 현상한 결과에서 lzts2 유전자 발현 억제후 세포내에 존재하는 β-catenin과 p65단백질의 핵으로 translocation 증가됨을 확인할 수 있었다 (도3-D). β-catenin/Tcf pathway 에 의해 조절되어지는 β-TrCP이 IκB degradation시켜 NF-κB activation을 유도하는 것으로 알려져 있다. 그래서 lzts2 유전자 발현 억제로 인해 조절된 β-catenin이 β-TrCP과 IκB degradation에 어떤영향을 주는지 Real-Time PCR(β-TrCP의 프라이머서열, 5’-TAGCAGAGCAGTCCAACCCAGA-3’,5’- CTGTTGGTGAACAACTGTGTGGAG-3)과 western blot(IκB: Santa Cruz Biotechnology, Inc. CA)으로 확인하였다. 그 결과 lzts2 유전자 발현 억제가 β-TrCP 발현 증가(도4-A)와 IκB degradation을 유도하는 것을 확인하였다 (도 4-B). The lzts2 gene expression was measured by RT-PCR and Real-Time PCR. In the RT-PCR experiment, the primer sequence was 5'-CTGTGTCCTGGAAGGAAAGC-3 'and 5'-CTCCCACTTGGTCTCCTCAA-3' as the forward primer for the lzts2 gene. Real-Time PCR experiment using SYBR Green I (primers β-actin, 5'-CTGGTGCCTGGGGCG-3 ', 5-AGCCTCGCCTTTGCCGA-3', lzts2, 5'-AGAAGCGGCAATTGCAGGAC-3 ', 5', respectively) -CTCGCCTGATTTCTGGCACA-3 '). As a result, it was confirmed that lzts2 gene expression was inhibited by RT-PCR and Real-Time PCR (FIGS. 3-A and B). In addition, to confirm the regulation of NF-κB and β-catenin / Tcf signals by inhibition of lzts2 gene expression, pTOP-flash for identifying β-catenin / Tcf signals in mesenchymal stem cells (slzts2) that inhibited lzts2 gene expression with siRNA. To determine the plasmid, pFOP-flash, and NF-κB signal, luciferase activity was measured 48 hours after transfection with pNF-κB-Luc. As a result, it was confirmed that lzts2 gene expression inhibition increased both NF-κB and β-catenin / Tcf signals (FIG. 3 -C). To confirm the above results, Western blot confirmed the translocation of β-catenin and p65 protein to the nucleus 48 hours after lzts2 gene expression was inhibited in adipose tissue-derived mesenchymal stem cells. Inhibit lzts2 gene expression in adipose tissue-derived mesenchymal stem cells, and after 48 hours, trypsin-treated, wash in PBS solution at 5 ° C, and then pellet the ice-cold lysis buffer (210 mM mannitol, 70 mM sucrose 5). treated with mM Tris, pH 7.5, 1 mM EDTA, protease inhibitors) and stored on ice for 15 minutes. The nucleus was then separated by centrifuge (10 minutes, 4 ° C, 14,000rpm) and the cytosolic portion was boiled in the sample buffer. Cell pellets containing nuclei were washed with PBS, resuspensioned for 5 minutes in RIPA buffer (Santa Cruz Biotechnology, Inc. CA), centrifuged again (10 minutes, 4 ° C, 14,000 rpm), and then supernatant (nuclear). fractions) were boiled in the sample buffer. Nucleic and cytosolic proteins were separated by 10% SDS polyacrylamide gels, electrotransferred to nitrocellulose membranes (Hybond-ECL, Amersham Pharmacia Biotech, Piscataway, NJ) and monoclonal antibodies (β-catenin, and actin; BD Biosciences Clontech, CA, NF-κBp65 : Santa Cruz Biotechnology, Inc. CA). Subsequently, the lzts2 gene was developed by treatment with secondary antibodies (anti-mouse and anti-rabbit peroxidase-conjugated secondary antibodies; Amersham Pharmacia Biotech, Piscataway, NJ) and enhanced chemiluminescence (ECL detection kit, Amersham Pharmacia Biotech, Piscataway, NJ). After inhibition of expression, it was confirmed that translocation was increased to the nucleus of β-catenin and p65 protein present in the cells (Fig. 3-D). β-TrCP, which is regulated by the β-catenin / Tcf pathway, is known to induce NF-κB activation by IκB degradation. Therefore, the effect of β-catenin regulated by the inhibition of lzts2 gene expression affects β-TrCP and IκB degradation in real-time PCR (primary sequence of β-TrCP, 5'-TAGCAGAGCAGTCCAACCCAGA-3 ', 5'-CTGTTGGTGAACAACTGTGTGGAG-3 ) And western blot (IκB: Santa Cruz Biotechnology, Inc. CA). As a result, it was confirmed that lzts2 gene expression inhibition induced β-TrCP expression (Fig. 4-A) and IκB degradation (Fig. 4-B).

실시예Example 4.  4. lzts2lzts2 유전자 발현 억제에 의한  By gene expression inhibition 중간엽Mesenchyme 줄기세포의  Stem cell 증식능Proliferative capacity

lzts2 발현 억제에 의한 증식능력을 확인하기 위해 지방조직에서 유래한 중간엽 줄기세포와 lzts2 발현이 억제된 세포(slzts2)를 각각 6well plate에 20,000개의 세포를 깔고 NF-κB 억제제인 SN50과 NF-κB decoy를 넣고 배양한 후 48시간과 72시간이 각각 경과한 후에 세포를 회수하여 현미경하에 haemacytometer로 세포수를 측정하였다. 그 결과 lzts2 발현이 억제된 지방조직에서 유래한 중간엽 줄기세포에서 증식능이 향상됨을 확인하였다 (도 5-A). SN50과 NF-κB decoy를 처리한 control 세포는 증식능이 억제됨을 확인하였으나 lzts2 발현이 억제된 세포에서는 SN50과 NF-κB decoy에 의한 증식능 억제가 감소됨을 확인 할 수 있었다 (도 5-A, B).       In order to confirm the proliferative capacity of lzts2 expression inhibition, 20,000 cells were placed on 6well plate and mesenchymal stem cells derived from adipose tissue and lzts2 expression suppressed cells (slzts2), respectively, were placed on the NF-κB inhibitors SN50 and NF-κB. After incubation with decoy, the cells were recovered after 48 hours and 72 hours, respectively, and the number of cells was measured by haemacytometer under a microscope. As a result, it was confirmed that the proliferative capacity was improved in mesenchymal stem cells derived from adipose tissue in which lzts2 expression was suppressed (Fig. 5-A). The control cells treated with SN50 and NF-κB decoy were found to inhibit proliferative activity, but the inhibition of proliferative activity by SN50 and NF-κB decoy was reduced in cells with lzts2 expression inhibition (FIGS. 5-A and B). .

이러한 증식능 증가 효과를 확인하기 위해서 지방조직과 골수에서 유래된 중간엽 줄기세포들에서 lzts2 발현을 억제 시킨 후, SN50 48시간 처리 후 MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, FACS를 통한 Cell Cycle 분석과 Cyclin D1 expression을 Real Time PCR (forword primer 5'-TGATGCTGCGCACTTCATCTG, revers primer 5'-TCCAATCATCCCGAATGAGAGTC-3')로 측정하 였다. 105 -106의 세포를 phosphate-buffered saline으로 세척하고 4°C 0.5% Tween 20을 함유한 70% ethanol로 고정화하는 단계; RNase A (10 mg/ml)와 propidium iodide (50 μg/ml)를 함유한 propidium iodide solution 으로 세척하고 다시 녹이는 단계; 37°C에서 15분간 배양하거나 상온에서 30분간 배양하는 단계; flow cytometry (FACsort Becton Dickinson, CA)를 이용하여 분석하는 단계를 수행하여 Cell Cycle을 분석하였다. 또한 지방조직과 골수에서 유래된 중간엽 줄기세포(Human adipose tissue-derived mesnechymal stem cells (hASCs) and human bone marrow stromal cells (hBMSCs))를 6-well plate(density of 2,000/cm2)에 플레이팅하는 단계; 48시간 또는 72시간 후에 트립신 처리후 0.4% trypan blue(Sigma, St Louis, MO, USA)염료로 염색하는 단계; hemocytometer로 세포 수를 측정하는 단계를 수행하여 세포의 증식비율을 분석하였다. 세포증식은 MATT assay로 평가되었는데 세척한 배양세포에 0.5 mg/ml MTT를 포함하는 배양액을 각각의 well에 넣고 37°C에서 2시간 동안 배양한 후 supernatant를 제거한다. 살아있는 세포들로 형성된 포마잔 결정(formazan crystals)을 110 μl of dimethyl sulfoxide용매로 녹인후In order to confirm the effect of increasing proliferation, TTts2 expression was inhibited in mesenchymal stem cells derived from adipose tissue and bone marrow, and then MTT [3- (4,5-dimethylthiazol-2-yl) -2 after SN50 48 hours treatment. , 5-diphenyltetrazolium bromide] assay, Cell Cycle analysis by FACS and Cyclin D1 expression were measured by Real Time PCR (forword primer 5'-TGATGCTGCGCACTTCATCTG, revers primer 5'-TCCAATCATCCCGAATGAGAGTC-3 '). Washing 10 5 -10 6 cells with phosphate-buffered saline and immobilizing with 70% ethanol containing 4 ° C 0.5% Tween 20; Washing and re-dissolving with propidium iodide solution containing RNase A (10 mg / ml) and propidium iodide (50 μg / ml); Incubate at 37 ° C. for 15 minutes or at room temperature for 30 minutes; The cell cycle was analyzed by performing flow analysis (FACsort Becton Dickinson, CA). Human adipose tissue-derived mesnechymal stem cells (hASCs) and human bone marrow stromal cells (hBMSCs) from adipose tissue and bone marrow are also plated on 6-well plates (density of 2,000 / cm2). step; Staining with 0.4% trypan blue (Sigma, St Louis, MO, USA) dye after trypsin treatment after 48 or 72 hours; The proliferation rate of the cells was analyzed by performing a step of measuring the number of cells with a hemocytometer. Cell proliferation was evaluated by MATT assay, and the cultured cells containing 0.5 mg / ml MTT were added to each well, incubated at 37 ° C for 2 hours, and then supernatant was removed. Formazan crystals formed of living cells were dissolved in 110 μl of dimethyl sulfoxide solvent.

A 110 μl aliquot을 96-well plates에 옮겨 ELISA Reader (Bio-Tek instrument, Winooski, VT, USA)로 550nm에서 흡광도 조사를 했다. 그 결과 lzts2 발현이 억제된 지방조직과 골수에서 유래한 중간엽 줄기세포들에서 MTT가 증가하였고 cell cycle 의 S기와 G2/M기 세포가 우세하게 관찰되었으며 Cyclin D1 expression의 증가가 관찰되어 증식능이 향상됨을 확인할 수 있었다(도 5-C-E). SN50을 처리한 control 세포는 MTT와 S기와 G2/M기의 cell, Cyclin D1 expression이 감소하였으나 lzts2 발현을 억제 시킨 세포에서는 SN50에 의한 영향이 억제됨을 확인할 수 있었다 (도 5-C-E),A 110 μl aliquots were transferred to 96-well plates and absorbed at 550 nm with an ELISA Reader (Bio-Tek instrument, Winooski, VT, USA). As a result, MTT was increased in adipose tissue and bone marrow-derived mesenchymal stem cells that inhibited lzts2 expression, and S- and G2 / M-phase cells of the cell cycle were observed predominantly. It could be confirmed (Fig. 5-CE). The control cells treated with SN50 had decreased MTT, S and G2 / M cells, and Cyclin D1 expression, but the effect of SN50 was inhibited in cells that inhibited lzts2 expression (Fig. 5-C-E).

지방조직과 골수에서 유래된 중간엽 줄기세포에 lzts2 발현을 억제시킨 후 NF-kB 억제제인 SN50(50 or 100 mg/ml, inhibitor of NF-κB nuclear translocation)을 투여하여 β-catenin/Tcf signal조절을 확인해 보았다. 그 결과 lzts2 발현 억제는 β-catenin/Tcf signal을 증가시켰고 SN50을 처리한 control 세포는 β-catenin/Tcf signal이 억제됨을 확인하였으나 lzts2 발현이 억제된 세포에서는 SN50에 의한 β-catenin/Tcf signal억제가 감소됨을 확인 할 수 있었다 (도 5-F-I).   Inhibits lzts2 expression in adipose tissue and bone marrow-derived mesenchymal stem cells, and then controls β-catenin / Tcf signal by administering SN50 (50 or 100 mg / ml, inhibitor of NF-κB nuclear translocation), an NF-kB inhibitor I checked. As a result, inhibition of lzts2 expression increased β-catenin / Tcf signal, and it was confirmed that β-catenin / Tcf signal was inhibited in control cells treated with SN50, but β-catenin / Tcf signal inhibition by SN50 was inhibited in cells with lzts2 expression inhibited. It could be confirmed that it is reduced (Fig. 5-FI).

실시예Example 5.  5. 하지허혈Ischemia 동물 모델에  On animal models 중간엽Mesenchyme 줄기세포의 이식 Stem Cell Transplantation

면역결핍 쥐에 대퇴동맥을 묶음으로써 혈류를 차단하여 하지허혈을 유도한 후 1일 뒤에 PBS, 중간엽 줄기세포와 lzts2 유전자 발현을 억제시킨 세포를 각각 이식하였다. 이식 후 7일과 14일에 혈류량을 측정한 결과 중간엽 줄기세포보다 lzts2 유전자 발현을 억제시킨 세포를 이식한 그룹에서 혈류량이 더 증가됨을 확인하였고(도6), 14일에 조직을 적출하여 염색(H&E)을 실시한 결과 조직학적인 면에서도 중간엽 줄기세포 단독 이식보다 lzts2 유전자 발현을 억제시킨 세포를 이식한 그룹에서 근육상해 회복을 향상시킴을 확인할 수 있었다.(도7-A,B).   One day after induction of lower limb ischemia by blocking blood flow by binding the femoral artery to immunodeficient mice, PBS, mesenchymal stem cells and cells which inhibited lzts2 gene expression were transplanted. As a result of measuring blood flow at 7 and 14 days after transplantation, it was confirmed that blood flow was increased in the group transplanted with cells that suppressed lzts2 gene expression than mesenchymal stem cells (Fig. 6). H & E) showed that histologically improved muscle injury recovery in the group transplanted with the cells that suppressed the expression of lzts2 gene rather than the transplantation of mesenchymal stem cells alone (Fig. 7-A, B).

도 1은 지방조직에서 유래한 중간엽 줄기세포에서 NF-κB 억제제 및 과 발현에 의해 lzts2 유전자 발현이 조절됨을 나타낸 결과이다.1 is a result showing that lzts2 gene expression is regulated by NF-κB inhibitor and overexpression in mesenchymal stem cells derived from adipose tissue.

도 2는 중간엽 줄기세포들에서 NF-κB 억제제 및 과 발현에 의한 β-catenin/Tcf signaling 조절됨을 나타낸 결과이다.Figure 2 is a result showing the regulation of β-catenin / Tcf signaling by NF-κB inhibitor and overexpression in mesenchymal stem cells.

도 3은 중간엽 줄기세포에서 Small interfering RNA (siRNA) duplex oligo를 이용한 lzts2 유전자 발현 억제에 의한 NF-κB and β-catenin/Tcf signaling이 조절됨을 나타낸 결과이다.Figure 3 shows that NF-κB and β-catenin / Tcf signaling is regulated by the inhibition of lzts2 gene expression using Small interfering RNA (siRNA) duplex oligo in mesenchymal stem cells.

도 4는 지방조직에서 유래한 중간엽 줄기세포에서 Small interfering RNA (siRNA) duplex oligo를 이용한 lzts2 유전자 발현 억제에 의한 β-TrCP 발현과 IκB degradation을 조절함을 나타낸 결과이다.Figure 4 shows the results of controlling β-TrCP expression and IκB degradation by inhibiting lzts2 gene expression using Small interfering RNA (siRNA) duplex oligo in adipose tissue-derived mesenchymal stem cells.

도 5는 중간엽 줄기세포들에서 Small interfering RNA (siRNA) duplex oligo를 이용하여 lzts2 유전자를 억제시켰을 때 증식이 촉진됨을 나타낸 결과이다.Figure 5 shows that the proliferation is promoted when the lzts2 gene is inhibited by using small interfering RNA (siRNA) duplex oligo in mesenchymal stem cells.

도 6는 Small interfering RNA (siRNA) duplex oligo를 이용하여 lzts2 유전자를 억제시킨 중간엽 줄기세포를 면역결핍 쥐의 하지허혈 동물 모델에 이식하여 혈류량을 측정한 결과이다.Figure 6 is a result of measuring the blood flow by transplanting the mesenchymal stem cells suppressed lzts2 gene using small interfering RNA (siRNA) duplex oligo in the ischemic animal model of the immunodeficient mice.

도 7은 lzts2 기능이 억제된 중간엽 줄기세포의 이식시 면역결핍 쥐의 하지허혈 동물 생체 내에서 조직 재생 능을 나타낸 결과이다.Figure 7 is a result showing the tissue regeneration ability in the lower limb ischemia of the immunodeficient mice when transplanted mesenchymal stem cells lzts2 function is suppressed.

<110> Pusan Nationanl University The Industry-University Cooperation Foundation <120> human mesenchymal stem cells improved tissue regeneration and production methods thereof <160> 11 <170> KopatentIn 1.71 <210> 1 <211> 668 <212> PRT <213> Homo sapiens <400> 1 Met Ala Ile Val Gln Thr Leu Pro Val Pro Leu Glu Pro Ala Pro Glu 1 5 10 15 Ala Ala Thr Ala Pro Gln Ala Pro Val Met Gly Ser Val Ser Ser Leu 20 25 30 Ile Ser Gly Arg Pro Cys Pro Gly Gly Pro Ala Pro Pro Arg His His 35 40 45 Gly Pro Pro Gly Pro Thr Phe Phe Arg Gln Gln Asp Gly Leu Leu Arg 50 55 60 Gly Gly Tyr Glu Ala Gln Glu Pro Leu Cys Pro Ala Val Pro Pro Arg 65 70 75 80 Lys Ala Val Pro Val Thr Ser Phe Thr Tyr Ile Asn Glu Asp Phe Arg 85 90 95 Thr Glu Ser Pro Pro Ser Pro Ser Ser Asp Val Glu Asp Ala Arg Glu 100 105 110 Gln Arg Ala His Asn Ala His Leu Arg Gly Pro Pro Pro Lys Leu Ile 115 120 125 Pro Val Ser Gly Lys Leu Glu Lys Asn Met Glu Lys Ile Leu Ile Arg 130 135 140 Pro Thr Ala Phe Lys Pro Val Leu Pro Lys Pro Arg Gly Ala Pro Ser 145 150 155 160 Leu Pro Ser Phe Met Gly Pro Arg Ala Thr Gly Leu Ser Gly Ser Gln 165 170 175 Gly Ser Leu Thr Gln Leu Phe Gly Gly Pro Ala Ser Ser Ser Ser Ser 180 185 190 Ser Ser Ser Ser Ser Ala Ala Asp Lys Pro Leu Ala Phe Ser Gly Trp 195 200 205 Ala Ser Gly Cys Pro Ser Gly Thr Leu Ser Asp Ser Gly Arg Asn Ser 210 215 220 Leu Ser Ser Leu Pro Thr Tyr Ser Thr Gly Gly Ala Glu Pro Thr Thr 225 230 235 240 Ser Ser Pro Gly Gly His Leu Pro Ser His Gly Ser Gly Arg Gly Ala 245 250 255 Leu Pro Gly Pro Ala Arg Gly Val Pro Thr Gly Pro Ser His Ser Asp 260 265 270 Ser Gly Arg Ser Ser Ser Ser Lys Ser Thr Gly Ser Leu Gly Gly Arg 275 280 285 Val Ala Gly Gly Leu Leu Gly Ser Gly Thr Arg Ala Ser Pro Asp Ser 290 295 300 Ser Ser Cys Gly Glu Arg Ser Pro Pro Pro Pro Pro Pro Pro Pro Ser 305 310 315 320 Asp Glu Ala Leu Leu His Cys Val Leu Glu Gly Lys Leu Arg Asp Arg 325 330 335 Glu Ala Glu Leu Gln Gln Leu Arg Asp Ser Leu Asp Glu Asn Glu Ala 340 345 350 Thr Met Cys Gln Ala Tyr Glu Glu Arg Gln Arg His Trp Gln Arg Glu 355 360 365 Arg Glu Ala Leu Arg Glu Asp Cys Ala Ala Gln Ala Gln Arg Ala Gln 370 375 380 Arg Ala Gln Gln Leu Leu Gln Leu Val Phe Gln Leu Gln Gln Glu Lys 385 390 395 400 Arg Gln Leu Gln Asp Asp Phe Ala Gln Leu Leu Gln Glu Arg Glu Gln 405 410 415 Leu Glu Arg Arg Cys Ala Thr Leu Glu Arg Glu Gln Arg Glu Leu Gly 420 425 430 Pro Arg Leu Glu Glu Thr Lys Trp Glu Val Cys Gln Lys Ser Gly Glu 435 440 445 Ile Ser Leu Leu Lys Gln Gln Leu Lys Glu Ser Gln Ala Glu Leu Val 450 455 460 Gln Lys Gly Ser Glu Leu Val Ala Leu Arg Val Ala Leu Arg Glu Ala 465 470 475 480 Arg Ala Thr Leu Arg Val Ser Glu Gly Arg Ala Arg Gly Leu Gln Glu 485 490 495 Ala Ala Arg Ala Arg Glu Leu Glu Leu Glu Ala Cys Ser Gln Glu Leu 500 505 510 Gln Arg His Arg Gln Glu Ala Glu Gln Leu Arg Glu Lys Ala Gly Gln 515 520 525 Leu Asp Ala Glu Ala Ala Gly Leu Arg Glu Pro Pro Val Pro Pro Ala 530 535 540 Thr Ala Asp Pro Phe Leu Leu Ala Glu Ser Asp Glu Ala Lys Val Gln 545 550 555 560 Arg Ala Ala Ala Gly Val Gly Gly Ser Leu Arg Ala Gln Val Glu Arg 565 570 575 Leu Arg Val Glu Leu Gln Arg Glu Arg Arg Arg Gly Glu Glu Gln Arg 580 585 590 Asp Ser Phe Glu Gly Glu Arg Leu Ala Trp Gln Ala Glu Lys Glu Gln 595 600 605 Val Ile Arg Tyr Gln Lys Gln Leu Gln His Asn Tyr Ile Gln Met Tyr 610 615 620 Arg Arg Asn Arg Gln Leu Glu Gln Glu Leu Gln Gln Leu Ser Leu Glu 625 630 635 640 Leu Glu Ala Arg Glu Leu Ala Asp Leu Gly Leu Ala Glu Gln Ala Pro 645 650 655 Cys Ile Cys Leu Glu Glu Ile Thr Ala Thr Glu Ile 660 665 <210> 2 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of siRNA duplex oligo <400> 2 uuuccuucca ggacacagug cagca 25 <210> 3 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 3 ugcugcacug uguccuggaa ggaaa 25 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence sequence of siRNA oligo <400> 4 gggacagucu ggacgagaau u 21 <210> 5 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 5 uucucgucca gacugucccu u 21 <210> 6 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence of siRNA duplex oligo <400> 6 ggcaauugca ggacgacuuu u 21 <210> 7 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 7 aagucguccu gcaauugccu u 21 <210> 8 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence of siRNA duplex oligo <400> 8 aggagcaggu gauccgcuau u 21 <210> 9 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 9 uagcggauca ccugcuccuu u 21 <210> 10 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence of siRNA duplex oligo <400> 10 aggcauacga ggagcggcau u 21 <210> 11 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 11 ugccgcuccu cguaugccuu u 21 <110> Pusan Nationanl University The Industry-University Cooperation Foundation <120> human mesenchymal stem cells improved tissue regeneration and          production methods <160> 11 <170> KopatentIn 1.71 <210> 1 <211> 668 <212> PRT <213> Homo sapiens <400> 1 Met Ala Ile Val Gln Thr Leu Pro Val Pro Leu Glu Pro Ala Pro Glu   1 5 10 15 Ala Ala Thr Ala Pro Gln Ala Pro Val Met Gly Ser Val Ser Ser Leu              20 25 30 Ile Ser Gly Arg Pro Cys Pro Gly Gly Pro Ala Pro Pro Arg His His          35 40 45 Gly Pro Pro Gly Pro Thr Phe Phe Arg Gln Gln Asp Gly Leu Leu Arg      50 55 60 Gly Gly Tyr Glu Ala Gln Glu Pro Leu Cys Pro Ala Val Pro Pro Arg  65 70 75 80 Lys Ala Val Pro Val Thr Ser Phe Thr Tyr Ile Asn Glu Asp Phe Arg                  85 90 95 Thr Glu Ser Pro Pro Ser Pro Ser Ser Asp Val Glu Asp Ala Arg Glu             100 105 110 Gln Arg Ala His Asn Ala His Leu Arg Gly Pro Pro Pro Lys Leu Ile         115 120 125 Pro Val Ser Gly Lys Leu Glu Lys Asn Met Glu Lys Ile Leu Ile Arg     130 135 140 Pro Thr Ala Phe Lys Pro Val Leu Pro Lys Pro Arg Gly Ala Pro Ser 145 150 155 160 Leu Pro Ser Phe Met Gly Pro Arg Ala Thr Gly Leu Ser Gly Ser Gln                 165 170 175 Gly Ser Leu Thr Gln Leu Phe Gly Gly Pro Ala Ser Ser Ser Ser Ser             180 185 190 Ser Ser Ser Ser Ser Ala Ala Asp Lys Pro Leu Ala Phe Ser Gly Trp         195 200 205 Ala Ser Gly Cys Pro Ser Gly Thr Leu Ser Asp Ser Gly Arg Asn Ser     210 215 220 Leu Ser Ser Leu Pro Thr Tyr Ser Thr Gly Gly Ala Glu Pro Thr Thr 225 230 235 240 Ser Ser Pro Gly Gly His Leu Pro Ser His Gly Ser Gly Arg Gly Ala                 245 250 255 Leu Pro Gly Pro Ala Arg Gly Val Pro Thr Gly Pro Ser His Ser Asp             260 265 270 Ser Gly Arg Ser Ser Ser Ser Lys Ser Thr Gly Ser Leu Gly Gly Arg         275 280 285 Val Ala Gly Gly Leu Leu Gly Ser Gly Thr Arg Ala Ser Pro Asp Ser     290 295 300 Ser Ser Cys Gly Glu Arg Ser Pro Pro Pro Pro Pro Pro Ser 305 310 315 320 Asp Glu Ala Leu Leu His Cys Val Leu Glu Gly Lys Leu Arg Asp Arg                 325 330 335 Glu Ala Glu Leu Gln Gln Leu Arg Asp Ser Leu Asp Glu Asn Glu Ala             340 345 350 Thr Met Cys Gln Ala Tyr Glu Glu Arg Gln Arg His Trp Gln Arg Glu         355 360 365 Arg Glu Ala Leu Arg Glu Asp Cys Ala Ala Gln Ala Gln Arg Ala Gln     370 375 380 Arg Ala Gln Gln Leu Leu Gln Leu Val Phe Gln Leu Gln Gln Glu Lys 385 390 395 400 Arg Gln Leu Gln Asp Asp Phe Ala Gln Leu Leu Gln Glu Arg Glu Gln                 405 410 415 Leu Glu Arg Arg Cys Ala Thr Leu Glu Arg Glu Gln Arg Glu Leu Gly             420 425 430 Pro Arg Leu Glu Glu Thr Lys Trp Glu Val Cys Gln Lys Ser Gly Glu         435 440 445 Ile Ser Leu Leu Lys Gln Gln Leu Lys Glu Ser Gln Ala Glu Leu Val     450 455 460 Gln Lys Gly Ser Glu Leu Val Ala Leu Arg Val Ala Leu Arg Glu Ala 465 470 475 480 Arg Ala Thr Leu Arg Val Ser Glu Gly Arg Ala Arg Gly Leu Gln Glu                 485 490 495 Ala Ala Arg Ala Arg Glu Leu Glu Leu Glu Ala Cys Ser Gln Glu Leu             500 505 510 Gln Arg His Arg Gln Glu Ala Glu Gln Leu Arg Glu Lys Ala Gly Gln         515 520 525 Leu Asp Ala Glu Ala Ala Gly Leu Arg Glu Pro Pro Val Pro Pro Ala     530 535 540 Thr Ala Asp Pro Phe Leu Leu Ala Glu Ser Asp Glu Ala Lys Val Gln 545 550 555 560 Arg Ala Ala Ala Gly Val Gly Gly Ser Leu Arg Ala Gln Val Glu Arg                 565 570 575 Leu Arg Val Glu Leu Gln Arg Glu Arg Arg Arg Gly Glu Glu Gln Arg             580 585 590 Asp Ser Phe Glu Gly Glu Arg Leu Ala Trp Gln Ala Glu Lys Glu Gln         595 600 605 Val Ile Arg Tyr Gln Lys Gln Leu Gln His Asn Tyr Ile Gln Met Tyr     610 615 620 Arg Arg Asn Arg Gln Leu Glu Gln Glu Leu Gln Gln Leu Ser Leu Glu 625 630 635 640 Leu Glu Ala Arg Glu Leu Ala Asp Leu Gly Leu Ala Glu Gln Ala Pro                 645 650 655 Cys Ile Cys Leu Glu Glu Ile Thr Ala Thr Glu Ile             660 665 <210> 2 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of siRNA duplex oligo <400> 2 uuuccuucca ggacacagug cagca 25 <210> 3 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 3 ugcugcacug uguccuggaa ggaaa 25 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence sequence of siRNA oligo <400> 4 gggacagucu ggacgagaau u 21 <210> 5 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 5 uucucgucca gacugucccu u 21 <210> 6 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence of siRNA duplex oligo <400> 6 ggcaauugca ggacgacuuu u 21 <210> 7 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 7 aagucguccu gcaauugccu u 21 <210> 8 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence of siRNA duplex oligo <400> 8 aggagcaggu gauccgcuau u 21 <210> 9 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 9 uagcggauca ccugcuccuu u 21 <210> 10 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> sence of siRNA duplex oligo <400> 10 aggcauacga ggagcggcau u 21 <210> 11 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> anti-sence of siRNA duplex oligo <400> 11 ugccgcuccu cguaugccuu u 21  

Claims (8)

서열번호 1의 아미노산 서열을 코딩하는 lzts2 유전자의 안티센스 RNA로 처리되어 lzts 2 유전자의 발현이 억제된 중간엽 줄기세포.Mesenchymal stem cells treated with antisense RNA of the lzts2 gene encoding the amino acid sequence of SEQ ID NO: 1 to suppress the expression of the lzts 2 gene. 제 1항에 있어서, 상기 안티센스 RNA는 서열번호 2,4,6,8,10으로 이루어진 군에서 선택된 어느 하나의 염기서열을 갖는 siRNA인 것을 특징으로 하는 중간엽 줄기세포.The mesenchymal stem cell according to claim 1, wherein the antisense RNA is siRNA having any one nucleotide sequence selected from the group consisting of SEQ ID NOs: 2,4,6,8,10. 제 1항 또는 제 2항의 중간엽 줄기세포를 유효성분으로 포함하는 허혈성(ischemia) 질환의 치료용 세포치료제.Cell therapy for the treatment of ischemia diseases comprising the mesenchymal stem cells of claim 1 or 2 as an active ingredient. 제 3항에 있어서, 상기 허혈성 질환은 심장 협심증, 심근 경색, 뇌경색, 또는 족부궤양에서 선택되어지는 어느 하나인 것을 특징으로 하는 세포치료제 4. The cell therapeutic agent according to claim 3, wherein the ischemic disease is any one selected from cardiac angina, myocardial infarction, cerebral infarction, or foot ulcer. 서열번호 2의 염기서열을 갖는 것을 특징으로 하는 lzts2 유전자에 대한 이중가닥 siRNA 올리고뉴클레오티드.Double-stranded siRNA oligonucleotide for the lzts2 gene, characterized in that it has the nucleotide sequence of SEQ ID NO: 2. 중간엽 줄기세포를 준비하는 단계; 및 상기 중간엽 줄기세포에 서열번호 1의 아미노산 서열을 코딩하는 lzts2 유전자의 발현을 억제시키는 단계를 포함하는 증 식능 및 손상된 조직재생능이 증가된 중간엽 줄기세포의 제조방법.Preparing mesenchymal stem cells; And inhibiting the expression of the lzts2 gene encoding the amino acid sequence of SEQ ID NO: 1 in the mesenchymal stem cells. 제 6항에 있어서, 상기 lzts2 유전자의 발현을 억제시키는 단계는 lzts2의 안티센스 RNA를 처리하는 것을 특징으로하는 중간엽 줄기세포의 제조방법.The method of claim 6, wherein the inhibiting the expression of the lzts2 gene comprises treating antisense RNA of lzts2. 제 6항에 있어서, 상기 안티센스 RNA는 서열번호 2,4,6,8,10으로 이루어진 군에서 선택된 어느 하나의 염기서열을 갖는 siRNA인 것을 특징으로 하는 중간엽 줄기세포의 제조방법.The method of claim 6, wherein the antisense RNA is a method for producing mesenchymal stem cells, characterized in that the siRNA having any one base sequence selected from the group consisting of SEQ ID NO: 2,4,6,8,10.
KR1020070091236A 2007-09-07 2007-09-07 Human mesenchymal stem cells improved tissue regeneration and production methods thereof KR100935639B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070091236A KR100935639B1 (en) 2007-09-07 2007-09-07 Human mesenchymal stem cells improved tissue regeneration and production methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070091236A KR100935639B1 (en) 2007-09-07 2007-09-07 Human mesenchymal stem cells improved tissue regeneration and production methods thereof

Publications (2)

Publication Number Publication Date
KR20090025989A true KR20090025989A (en) 2009-03-11
KR100935639B1 KR100935639B1 (en) 2010-01-07

Family

ID=40694216

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070091236A KR100935639B1 (en) 2007-09-07 2007-09-07 Human mesenchymal stem cells improved tissue regeneration and production methods thereof

Country Status (1)

Country Link
KR (1) KR100935639B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042292A1 (en) * 2012-09-12 2014-03-20 연세대학교 산학협력단 Composition comprising protein kinase c activator for promoting stem cell adhesion, and method for promoting stem cell adhesion
CN111437289A (en) * 2019-08-02 2020-07-24 陕西佰傲干细胞再生医学有限公司 Application of mannose in enhancing immunoregulation capability of mesenchymal stem cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030103951A1 (en) 1997-07-14 2003-06-05 Osiris Therapeutics, Inc. Cardiac muscle regeneration using mesenchymal stem cells
KR100449141B1 (en) * 2001-04-19 2004-09-21 (주)라이프코드 Method for differentiating a mesenchymal stem cell into neural cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042292A1 (en) * 2012-09-12 2014-03-20 연세대학교 산학협력단 Composition comprising protein kinase c activator for promoting stem cell adhesion, and method for promoting stem cell adhesion
CN111437289A (en) * 2019-08-02 2020-07-24 陕西佰傲干细胞再生医学有限公司 Application of mannose in enhancing immunoregulation capability of mesenchymal stem cells

Also Published As

Publication number Publication date
KR100935639B1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
Deng et al. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects
Tamma et al. Extracorporeal shock waves stimulate osteoblast activities
DK2217062T3 (en) MULTI-TARGET READY RNAi therapeutics TO ARFRI WOUND HEALING OF SKIN
AU2011311344B2 (en) Short RNA molecules
Wu et al. Pressure and inflammatory stimulation induced increase of cadherin-11 is mediated by PI3K/Akt pathway in synovial fibroblasts from temporomandibular joint
CA2675967A1 (en) Nucleic acid constructs and methods for specific silencing of h19
KR100935639B1 (en) Human mesenchymal stem cells improved tissue regeneration and production methods thereof
Purvis et al. The role of microRNAs in cardiac stem cells
Tang et al. Cross talk between the Notch signaling and noncoding RNA on the fate of stem cells
Castania et al. The presence of the neuronal nitric oxide synthase isoform in the intervertebral disk
KR101209129B1 (en) Composition for proliferation, differentiation, and anti-aging of mesenchymal stem cell using miRNA control
Secco et al. Notch pathway activation enhances cardiosphere in vitro expansion
EP1652917A1 (en) Rna capable of inhibiting expression of klf5 gene
US20190367873A1 (en) Methods of generating oligodendrocytes and cell populations comprising same
EP3587575A1 (en) Mirna mir-218 and use thereof for stimulating mesenchymal stem cells
KR20210055574A (en) Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof
Wang et al. miR‑210 enhances mesenchymal stem cell‑modulated neural precursor cell migration
KR101613709B1 (en) Pharmaceutical Compositions for Inhibiting Invasion and Migration of Brain Cancer
WO2009147742A1 (en) Sirna of human osteopontin
JP2024021818A (en) Mesenchymal stem cells or their culture supernatants with improved anti-inflammatory and immunoregulatory abilities
JP6194517B2 (en) Neuronal differentiation promoter
KR101447227B1 (en) A pharmaceutical composition for inhibiting metastasis comprising siRNA of BC200 RNA
JP2007267658A (en) Method for producing myocardial cell and differentiation induction accelerator to myocardial cell
Qu et al. TGF-β1-induced LPP expression dependant on Rho kinase during differentiation and migration of bone marrow-derived smooth muscle progenitor cells
KR20200133681A (en) Asymmetric siRNA Inhibiting Expression of PD-1

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121204

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131204

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee