KR20090024396A - Manufacturing method for fine polymer particles using dimethylether - Google Patents

Manufacturing method for fine polymer particles using dimethylether Download PDF

Info

Publication number
KR20090024396A
KR20090024396A KR1020070089393A KR20070089393A KR20090024396A KR 20090024396 A KR20090024396 A KR 20090024396A KR 1020070089393 A KR1020070089393 A KR 1020070089393A KR 20070089393 A KR20070089393 A KR 20070089393A KR 20090024396 A KR20090024396 A KR 20090024396A
Authority
KR
South Korea
Prior art keywords
fine particles
dimethyl ether
poly
polymerization
polymer fine
Prior art date
Application number
KR1020070089393A
Other languages
Korean (ko)
Inventor
김화용
오경실
배원
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070089393A priority Critical patent/KR20090024396A/en
Publication of KR20090024396A publication Critical patent/KR20090024396A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F120/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/42Nitriles
    • C08F120/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents

Abstract

A method for synthesizing a polymer microparticle using DME(dimethyl ether) is provided to polymerize monomers to obtain a polymer microparticle in no need of a process of separating a solvent. A method for synthesizing a polymer microparticle using DME(dimethyl ether) comprises the following steps of: mixing a monomer, initiator, dispersing agent, and DME(demethyl ether) as a solvent in a reactor; polymerizing a polymer with above described materials at a temperature of 50-80 °C with a pressure of 20 bar or greater; and decompressing and removing the DME to obtain a pure polymer microparticle.

Description

디메틸에테르를 이용한 고분자 미립자의 합성 방법{Manufacturing Method For Fine Polymer Particles Using Dimethylether}Manufacturing Method For Fine Polymer Particles Using Dimethylether

본 발명은 고분자 미립자의 합성 방법에 관한 것으로, 보다 상세하게는 압축액체 영역의 디메틸에테르를 중합용매로 하여 분산중합매커니즘을 통해 화장품, 전자재료, DDS 등 여러 가지 산업분야에 이용가치가 높은 고분자미립자, 특히, 구형의 고분자미립자를 제조하는 기술에 관한 것이다.The present invention relates to a method for synthesizing polymer microparticles, and more particularly, polymer microparticles having high value for use in various industrial fields such as cosmetics, electronic materials, and DDS through a dispersion polymerization mechanism using dimethyl ether in a compressed liquid region as a polymerization solvent. In particular, the present invention relates to a technique for producing spherical polymer fine particles.

최근, 고분자미립자의 개발이 활발히 진행되고 있고, 산업상 다양한 용도에서 폭넓게 사용되고 있다. 그 중에서도, 입자 형상이 구형(sphere)이고 입도 분포가 좁은 고분자미립자는 그 가공성, 유동성, 표면 물성의 양호함 때문에 필터, 분리막, 분산제, 분체 도장, 수지 개질제, 코팅제 등의 용도로 사용되고 있다.In recent years, the development of polymer fine particles has been actively progressed, and has been widely used in various industrial applications. Among them, polymer particles having a spherical particle shape and a narrow particle size distribution have been used for applications such as filters, membranes, dispersants, powder coatings, resin modifiers, and coating agents because of their good processability, fluidity, and surface properties.

이러한 고분자미립자는 단위체적당 표면적이 커서 물리화학적으로 다른 재료에 비하여 매우 다른 특성을 나타낸다. 미립자화된 고분자를 만들기 위한 기존의 방법으로는 마이크로 에멀젼 중합이나 유화중합, 분산중합, 현탁중합 등이 있는데, 기존의 방법은 용매를 사용하여야 하고 중합한 후에는 용매를 제거해야하는 등의 문제점이 있어 환경친화적이지 못하고 분리공정에 많은 비용이 소요되며, 용매의 대부분이 가연성 유기 용매로서 발화 등으로 인한 공정 안전성이 우려되는 등 여러가지 문제점이 있다.These polymer fine particles have a very large surface area per unit volume and exhibit very different properties compared to other physical and chemical materials. Conventional methods for making micronized polymers include microemulsion polymerization, emulsion polymerization, dispersion polymerization, suspension polymerization, etc. The conventional method has a problem of using a solvent and removing the solvent after polymerization. It is not environmentally friendly and takes a lot of cost in the separation process, and most of the solvents are combustible organic solvents, and there are various problems such as process safety due to ignition.

상기 문제점을 해결하기 위하여, 물을 반응 용매로 하여 미립자를 제조하는 연구가 활발히 진행되고 있으나, 이 경우에도 의약용이나 화장품용 등 인체에 대한 자극이 적어야 하는 응용분야나 전자 및 정보소재와 같이 고순도를 요구하는 응용분야에서는 유화제의 제거나 잔류모노머의 제거 등을 위해 복잡한 분리공정을 거쳐야 하는 문제점이 있다.In order to solve the above problems, researches for producing fine particles using water as a reaction solvent are being actively conducted, but even in this case, high purity such as application fields or electronic and information materials, which should be less irritating to the human body, such as medicine or cosmetics In applications that require the use of complex separation processes for the removal of emulsifiers or residual monomers, there is a problem.

이를 해결하기 위하여, 상기 중합 방법 이외에 무독성이며 환경친화적이고 값싸고 불연성인 초임계 이산화탄소를 반응용매로 한 용액, 침전, 분산중합방법이 제안되었으며, 여러 그룹에서 연구를 진행하고 있다.In order to solve this problem, a solution, precipitation, and dispersion polymerization method using non-toxic, environmentally friendly, inexpensive and nonflammable supercritical carbon dioxide as a reaction solvent in addition to the above polymerization method have been proposed, and various groups have been researching.

상기 초임계 이산화탄소는 낮은 점도와 0에 가까운 표면장력과 함께, 기체와 같은 확산성과 침투력 및 액체와 같은 밀도와 용해력을 가지고 있다. 또한, 비교적 낮은 임계온도와 임계압력(31.1℃, 73.8bar)으로 인하여, 쉽게 초임계 상태에 도달할 수 있는 장점이 있어, 다양한 형태의 고분자 물질을 합성하기 위한 중합반응에 사용되는 초임계유체 중에서 가장 널리 연구되고 있다.The supercritical carbon dioxide has gas-like diffusivity and penetration and liquid-like density and solubility with low viscosity and near zero surface tension. In addition, due to the relatively low critical temperature and critical pressure (31.1 ℃, 73.8 bar), there is an advantage that can easily reach the supercritical state, among the supercritical fluids used in the polymerization reaction for synthesizing various types of polymer materials Most widely studied.

그러나 이러한 초임계 이산화탄소를 이용한 중합은 고압을 유지해야하기 때문에, 고압 용기의 제작이 필요하고 안전성에 문제가 발생할 가능성이 증가하게 된다. 또한 원하는 압력으로 가압하기 위하여 고압 펌프가 필수적이기 때문에, 중합 공정에 많은 에너지가 소비될 뿐만 아니라, 초임계 중합 장비 제작에 많은 비용이 소요되기 때문에, 경제적인 측면에서나 에너지적인 측면에서 매우 높은 초기투자비용이 요구된다.However, since the polymerization using the supercritical carbon dioxide has to maintain a high pressure, the production of a high pressure vessel is required and the possibility of safety problems increases. In addition, since a high pressure pump is necessary to pressurize to the desired pressure, not only a lot of energy is consumed in the polymerization process but also a lot of costs are required for the production of supercritical polymerization equipment. Cost is required.

또한, 초임계 이산화탄소는 극성의 모노머에 대한 용해도가 낮기 때문에 중합할 수 있는 모노머들이 극히 제한적이며, 고압의 반응기 및 고압펌프를 사용해야 하기 때문에 초기 투자비용이 많이 드는 단점이 있다.In addition, supercritical carbon dioxide has a disadvantage in that the monomers that can be polymerized are extremely limited because of low solubility in monomers of polarity, and the initial investment is expensive because a high pressure reactor and a high pressure pump must be used.

초임계 이산화탄소를 이용한 고분자 합성과 관련하여 미국 공개특허공보 제5618894호에서는 액체 이산화탄소와 초임계 이산화탄소를 이용한 불소계 고분자의 합성방법이 제시되어 있고, 또한, 대한민국 특허등록 제735840호에서는 고온고압의 초임계 이산화탄소를 고분자 합성용매로 사용하여 다공성 고분자를 제조하는 기술에 관하여 제시하고 있지만, 상기 초임계 이산화탄소를 이용한 방법들은 고압에서 공정이 이루어지기 때문에 장비제작 및 공정운영에 많은 비용이 드는 문제점이 있다.Regarding the synthesis of polymers using supercritical carbon dioxide, U.S. Patent Publication No. 5,884,94 discloses a method of synthesizing a fluorine-based polymer using liquid carbon dioxide and supercritical carbon dioxide. Also, Korean Patent Registration No. 735840 discloses a supercritical material of high temperature and high pressure. Although a technique for preparing a porous polymer using carbon dioxide as a polymer synthetic solvent has been proposed, the methods using the supercritical carbon dioxide have a problem in that the manufacturing of the equipment and the process operation are expensive because the process is performed at a high pressure.

본 발명은 초임계 이산화탄소를 사용한 고분자 합성방법에서의 장점인 고분자미립자의 합성 후 용매가 고분자미립자에 잔존하지 않고 증발하는 특징을 갖으면서도, 초임계 이산화탄소를 이용한 방법과는 달리 고온 고압의 극한 조건을 요구하지 않아 반응장치의 설계가 용이하고 비용이 적게드는 신규한 고분자미립자의 합성 방법을 제공하는 데 있다.The present invention is characterized in that the solvent evaporates after the synthesis of the polymer fine particles, which is an advantage in the method of synthesizing the polymer using supercritical carbon dioxide, does not remain in the polymer fine particles. There is a need to provide a novel method for synthesizing polymer particles that is easy and inexpensive to design a reactor because it is not required.

즉, 본 발명은 초임계가 아닌 압축액체영역의 용매를 사용함으로써 초임계 보다는 상대적으로 낮은 압력에서 중합이 가능하도록 하며, 복잡한 고압의 장비가 필요 없으며, 이에 따른 초기 투자 비용을 크게 감소시킬 수 있고, 별도의 분리 공정 없이 압력을 낮춤으로써 바로 고분자 입자를 회수하도록 하여, 소요되는 시간과 에너지를 크게 절감시킬 수 있도록 한 고분자미립자의 합성 방법을 제공하도록 하는 데 있다.That is, the present invention enables the polymerization at a relatively low pressure than the supercritical by using a solvent in the compressed liquid region rather than supercritical, does not require complicated high pressure equipment, thereby greatly reducing the initial investment costs To recover the polymer particles immediately by lowering the pressure without a separate separation process, it is to provide a method for synthesizing the polymer particles to significantly reduce the time and energy required.

또한, 본 발명의 다른 목적으로는, 초임계 이산화탄소를 중합용매로 사용하는 경우 극성 모노머에 대한 낮은 용해도 때문에 유기용매를 공용매로 첨가하기도 하는데, 이때 유기용매가 잔류할 위험이 있기 때문에 의약품이나 화장품으로 이용되는 고분자의 경우에는 문제가 될 수 있고, 만약 잔류용매를 제거한다 하더라도 추가적인 분리 공정이 필요하게 되므로, 압축액체 영역의 디메틸에테르를 중합용매로 사용하여 분산중합을 수행하여 극성의 모노머들에 대해서도 중합이 가능하도록 한 고분자미립자의 합성 방법을 제공하도록 하는 데 있다.In addition, in another object of the present invention, when the supercritical carbon dioxide is used as a polymerization solvent, an organic solvent may be added as a cosolvent because of low solubility in polar monomers. In the case of the polymer used as a problem, even if the residual solvent is removed, an additional separation process is required. Therefore, dispersion polymerization is performed using dimethyl ether in the compressed liquid region as a polymerization solvent to give polar monomers. Another object of the present invention is to provide a method for synthesizing polymer fine particles, which enables polymerization.

본 발명은 상기 목적을 달성하기 위하여, 모노머로부터 고분자미립자의 합성 방법에 있어서, 반응기 내부에 모노머, 개시제, 분산제와 함께, 중합용매로서 디메틸에테르를 혼합하여, 압력조건 20bar 이상, 온도조건 50 ℃ 내지 80℃에서 고분자미립자 중합을 완료 한 후, 감압하여 용매인 디메틸에테르를 기화 제거시킴으써 고분자미립자가 얻어지는 것을 특징으로 하는 디메틸에테르를 이용한 고분자미립자의 합성방법을 제공한다.In order to achieve the above object, the present invention provides a method for synthesizing polymer fine particles from monomers, in which a dimethyl ether is mixed as a polymerization solvent together with a monomer, an initiator and a dispersant in a reactor, and the pressure condition is 20 bar or more and the temperature condition is 50 ° C. or more. After completing the polymerization of the polymer fine particles at 80 ℃, by decompression to provide a method for synthesizing the polymer fine particles using dimethyl ether, characterized in that the polymer fine particles are obtained by evaporating the solvent dimethyl ether.

또한, 상기 모노머는 디메틸에테르에 용해되는 극성인 모노머인 것이 바람직하다.Moreover, it is preferable that the said monomer is a polar monomer melt | dissolved in dimethyl ether.

또한, 상기 합성방법에 의하여 제조되는 고분자미립자가 PVK(poly(N-vinylcarbazole)), PVCL(poly(N-vinyl caprolactam)), PVP(poly(N-vinyl pyrrolidone)), PHEMA(Poly(2-hydroxyethyl methacrylate)), PHPMA(poly(2-hydroxypropyl methacrylate)) , PGMA(poly (2-glycidyl methacrylate)), PAN(poly (acrylonitrile)) 중에서 선택되는 어느 하나인 것이 바람직하다.In addition, the polymer fine particles prepared by the above synthesis method PVK (poly (N-vinylcarbazole)), PVCL (poly (N-vinyl caprolactam)), PVP (poly (N-vinyl pyrrolidone)), PHEMA (Poly (2- hydroxyethyl methacrylate)), PHPMA (poly (2-hydroxypropyl methacrylate)), PGMA (poly (2-glycidyl methacrylate)), PAN (poly (acrylonitrile)) is preferably any one selected from.

또한, 상기 개시제는 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'- azobisisobutyronitrile(AIBN), dimethyl 2,2'-azobis(isobutyrate) 중에서 선택되는 어느 하나인 것이 바람직하다.In addition, the initiator is preferably any one selected from 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'- azobisisobutyronitrile (AIBN), dimethyl 2,2'-azobis (isobutyrate).

또한, 상기 방법에 의하여 제조되는 고분자미립자의 형태가 구형인 것을 특징으로 한다.In addition, the shape of the polymer fine particles produced by the method is characterized in that the sphere.

본 발명에 따른 고분자미립자의 합성 방법은 압축액체 상태의 디메틸에테르를 중합용매로 사용함으로써, 고분자미랍자의 중합이 완료된 후 대기압 수준으로 감압하면 디메틸에테르가 기화 제거됨으로써 일반적인 유기용매를 사용하는 중합에 비하여 용매의 분리과정이 필요없다.In the method for synthesizing the polymer fine particles according to the present invention, by using dimethyl ether in a compressed liquid state as a polymerization solvent, when the polymer fine polymer is polymerized and decompressed to atmospheric pressure, dimethyl ether is vaporized and removed, compared to a polymerization using a general organic solvent. No solvent separation is necessary.

또한, 이산화탄소 초임계를 이용하는 중합방법과 같은 고압 펌프 등의 복잡한 고압의 추가 설비 없이 장비를 제작할 수 있어 초기 투자비용을 감소시킬 수 있다. In addition, the equipment can be manufactured without additional high pressure additional equipment such as a high pressure pump such as a polymerization method using a carbon dioxide supercritical, thereby reducing the initial investment cost.

또한, 이산화탄소 초임계에서는 극성 모노머의 중합이 매우 어려웠으나, 본 발명에서는 용매로서 극성인 디메틸에테르를 사용하기 때문에 여러 가지 극성의 모노머들에 대해서도 중합이 가능하다.In addition, the polymerization of polar monomers was very difficult in carbon dioxide supercritical, but in the present invention, since polar dimethyl ether is used as a solvent, polymerization of various polar monomers is possible.

이하, 본 발명의 바람직한 실시예에 따른 고분자미립자의 합성방법을 더욱 상세히 설명한다. 특히, 본 발명에 의하여 제조되는 고분자미립자는 구형을 갖는 것을 특징으로 한다. Hereinafter, a method for synthesizing the polymer fine particles according to a preferred embodiment of the present invention in more detail. In particular, the polymer fine particles produced by the present invention is characterized by having a spherical shape.

전술한 바와 같이, 본 발명의 고분자미립자의 합성방법은 반응용매로써 압축액체상태의 디메틸에테르를 이용하여 분산중합을 통하여 고분자미립자를 합성하도록 하는 것을 특징으로 한다. As described above, the method for synthesizing the polymer fine particles of the present invention is characterized by synthesizing the polymer fine particles through dispersion polymerization using dimethyl ether in a compressed liquid state as a reaction solvent.

디메틸에테르는 가장 간단한 에테르 형태인 CH3OCH3의 분자구조로 이루어졌으며, 상온 상압 하에서 기체로 존재한다. 디메틸에테르는 주로 에어로졸의 추진제로 사용되거나, 연료용으로 사용하기 위한 연구가 활발히 진행되고 있다. 이러한 디메틸에테르는 지금까지 고분자 합성을 위한 용매로서 적용된 예를 찾아볼 수 없다. 이는 초임계유체와 같은 고압고온의 고분자합성반응과는 달리 유기용매를 사용한 고분자합성은 주로 상온 상압하에서 액체 상인 용매를 사용하여 고분자를 합성하기 때문이다. 본 발명은 디메틸에테르의 장점인 극성의 모노머를 잘 용해하며, 상온상압에서 기체로 존재하므로 고분자반응이 완료된 후, 반응기의 압력을 대기압 수준으로 감압하는 경우 별도의 분리공정 없이 반응 후 불필요하게 된 디메틸에테르가 기체로 증발하여 제거되는 장점에 착안하여 본 발명을 완성하게 되었다.Dimethyl ether consists of the molecular structure of CH 3 OCH 3 , which is the simplest ether form, and exists as a gas under normal temperature and pressure. Dimethyl ether is mainly used as a propellant for aerosols, or research is being actively conducted for use as a fuel. Such dimethyl ether has not been found to be applied as a solvent for polymer synthesis until now. This is because, unlike high-pressure, high-temperature polymer synthesis reactions such as supercritical fluid, polymer synthesis using an organic solvent mainly synthesizes the polymer using a solvent which is a liquid phase at normal temperature and pressure. The present invention dissolves the monomer of polarity, which is an advantage of dimethyl ether, and is present as a gas at room temperature and normal pressure. The present invention has been completed with the advantage that the ether is removed by evaporation with gas.

본 발명의 중합방법은 분산 중합방법을 사용한다. 하기의 실시예들에서 분산 중합은 내부 용량이 30 ㎖, 재질은 SUS 316으로 구성되는 반응기에서 이루어졌다. 상기 반응기 내부를 관찰할 수 있도록 지름 13 ㎜, 두께 13 ㎜의 강화유리를 이용한 투시창을 반응기 하부에 설치하고, 교반을 위해 테프론으로 코팅된 자석 교반 막대를 사용하였다.The polymerization method of the present invention uses a dispersion polymerization method. In the following examples, the dispersion polymerization was performed in a reactor composed of 30 ml of internal capacity and SUS 316. A viewing window using a tempered glass having a diameter of 13 mm and a thickness of 13 mm was installed at the bottom of the reactor to observe the inside of the reactor, and a magnetic stirring bar coated with Teflon was used for stirring.

먼저, 모노머, 개시제, 분산제 등의 반응물을 상기 반응기에 넣고 디메틸에테르를 반응기에 주입하였다. First, reactants such as monomers, initiators, and dispersants were placed in the reactor, and dimethyl ether was injected into the reactor.

여기서 상기 개시제는 2,2'-azobis(2,4-Dimethylvaleronitrile), 2,2'-azobisisobutyronitrile(AIBN), dimethyl 2,2'-Azobis(isobutyrate) 중에서 선택되는 1 종 이상을 사용하는 것이 바람직하고, 상기 분산제는 불소계 분산제인 poly(HDFDMA)와, poly(HDFDA), 개질된(modified) 실리콘계분산제인 monasil PCA, SS-5050K, KF-6017 중에서 사용하는 것이 바람직하지만, 본 발명의 권리범위는 구체적인 개시제 및 분산제의 종류에 한정되지 않는다. 통상의 고분자 합성용 개시제 및 분산제가 모두 사용 가능하다.Here, the initiator is preferably used at least one selected from 2,2'-azobis (2,4-Dimethylvaleronitrile), 2,2'-azobisisobutyronitrile (AIBN), dimethyl 2,2'-Azobis (isobutyrate) , The dispersant is preferably used among fluorine-based dispersant poly (HDFDMA) and poly (HDFDA), modified silicone dispersant monasil PCA, SS-5050K, KF-6017, but the scope of the present invention is specific It is not limited to the kind of initiator and a dispersing agent. Conventional polymer synthesis initiators and dispersants can be used.

디메틸에테르는 25℃에서 6bar로 압력을 가하면 용이하게 액화된다. 따라서 디메틸에테르의 주입방법은, 먼저 상기 반응기를 얼음물 등으로 냉각시키고, 디메 틸에테르를 실린더에 담아서 액화된 상태로 반응기에 주입하였다. 이때 디메틸에테르의 실린더의 주입 전, 후의 무게를 측정하여 반응기에 주입된 양을 측정할 수 있고, 매 실험마다 동일한 양을 주입할 수 있었다.Dimethyl ether is easily liquefied by applying pressure at 25 ° C. to 6 bar. Therefore, in the method of injecting dimethyl ether, the reactor is first cooled with ice water or the like, and then dimethyl ether is contained in a cylinder and injected into the reactor in a liquefied state. At this time, the amount injected into the reactor can be measured by measuring the weight before and after the injection of the cylinder of dimethyl ether, and the same amount can be injected for each experiment.

중합 반응은 항온수조에서 수행하여 중합 과정 중의 온도 변화가 최소화되도록 하였다. 중합온도까지 승온이 되면 자동적으로 설정된 압력으로 가압 되도록 하였다. 상기 반응기 내부의 교반은 항온 수조 내에서 사용 가능한 교반기가 이용되었다.The polymerization reaction was carried out in a constant temperature water bath to minimize the temperature change during the polymerization process. When the temperature rises to the polymerization temperature, the pressure is automatically set to the set pressure. Stirring inside the reactor was used a stirrer that can be used in a constant temperature water bath.

중합이 모두 종료된 후에 디메틸에테르는 상온 상압에서 기체상태이기 때문에 유리로 만든 글라스 트랩(glass traps) 두 개를 거쳐 대기 중으로 바로 배출되게 하였다. 트랩의 외부는 냉각시키고, 트랩의 내부에는 단량체를 잘 녹이는 메탄올을 채워서, 유해 물질이 대기 중으로 방출되는 것을 방지하였다. 디메틸에테르가 모두 배출된 후, 상기 반응기의 뚜껑을 열고 합성된 고분자미립자를 회수하였다.After completion of the polymerization, dimethyl ether was gaseous at room temperature and atmospheric pressure, and was then discharged directly into the atmosphere through two glass traps made of glass. The outside of the trap was cooled, and the inside of the trap was filled with methanol, which dissolves the monomer well, to prevent harmful substances from being released into the atmosphere. After all of the dimethyl ether was discharged, the lid of the reactor was opened to recover the synthesized polymer fine particles.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

실시예Example 1 내지 7 1 to 7

실시예 1로서 PVK(poly(N-vinylcarbazole)), 실시예 2로서 PVCL(poly(N-vinyl caprolactam)), 실시예 3으로서 PVP(poly(N-vinyl pyrrolidone)), 실시예 4로서 PHEMA(Poly(2-hydroxyethyl methacrylate)), 실시예 5로서 PHPMA(poly(2-hydroxypropyl methacrylate)) , 실시예 6으로서 PGMA(poly (2-glycidyl methacrylate)), 실시예 7로서 PAN(poly (acrylonitrile))의 분산중합을 수행하였다. 개시제(AIBN)의 양은 1 중량%, 용매로 DME의 양은 19 ± 0.5 중량%를 사용하였다. 중합 온도, 압력은 60℃, 20bar로 일정하게 유지하였고 24시간 동안 반응시켰다.Poly (N-vinylcarbazole) (PVK) as Example 1, poly (N-vinyl caprolactam) (PVCL) as Example 2, poly (N-vinyl pyrrolidone) (PVP) as Example 3, PHEMA (Example 4) Poly (2-hydroxyethyl methacrylate)), PHPMA (poly (2-hydroxypropyl methacrylate)) as Example 5, PGMA (poly (2-glycidyl methacrylate)) as Example 6, PAN (poly (acrylonitrile)) as Example 7 Dispersion polymerization was carried out. The amount of initiator (AIBN) was 1% by weight and the amount of DME was 19 ± 0.5% by weight of solvent. The polymerization temperature and pressure were kept constant at 60 ° C. and 20 bar and reacted for 24 hours.

각각의 고분자는 주사전자현미경(Scanning Electron Microscope: SEM) 분석을 하였고, 또 SEM 이미지를 이용하여 이미지분석기(image analyzer)로 입자의 크기를 측정하였다. 그 결과는 하기 표 1과 도 1 내지 도 7에 나타내었다.Each polymer was analyzed by Scanning Electron Microscope (SEM), and the size of the particles was measured by an image analyzer using an SEM image. The results are shown in Table 1 below and FIGS. 1 to 7.

[표 1]TABLE 1

Figure 112007064270077-PAT00001
Figure 112007064270077-PAT00001

실시예Example 8 내지 10 8 to 10

PHPMA를 개시제의 양에 따른 입자의 크기 변화와 분자량 변화를 살펴보았다. 중합 온도, 압력은 60℃, 20bar로 일정하게 유지하였고, 용매로 DME의 양은 19 ± 0.5 중량%를 사용하였다. 중합 후의 입자의 모양과 크기는 SEM 분석(도 8 내지 도 10 참조)과 이미지분석기(image analyzer)로, 분자량은 GPC(도 11 참조)를 통해 측정하였다. 그 결과는 하기 표 2와 같다. PHPMA was examined for changes in particle size and molecular weight depending on the amount of initiator. The polymerization temperature and pressure were kept constant at 60 ° C. and 20 bar, and the amount of DME was used as a solvent of 19 ± 0.5 wt%. The shape and size of the particles after polymerization were measured by SEM analysis (see FIGS. 8 to 10) and an image analyzer, and molecular weight was measured by GPC (see FIG. 11). The results are shown in Table 2 below.

[표 2]TABLE 2

Figure 112007064270077-PAT00002
Figure 112007064270077-PAT00002

실시예Example 11 및 12 11 and 12

PVK를 압력의 변화에 따른 입자의 변화를 살펴보았다. 실시예 11은 DME의 양을 19±0.5 중량% 사용하였으며, 실시예 12에서는 21.5 ± 0.5 중량% 사용하였다.PVK was examined for the change of particle with the change of pressure. In Example 11, the amount of DME was used 19 ± 0.5 wt%, and in Example 12, 21.5 ± 0.5 wt%.

각각의 고분자는 SEM 분석을 하였고, 또 SEM 이미지를 이용하여 이미지분석기(image analyzer)로 입자의 크기를 측정하였다. 그 결과는 하기 표 3과 도 12 및 13에 나타내었다.Each polymer was subjected to SEM analysis, and the size of the particles was measured by an image analyzer using an SEM image. The results are shown in Table 3 below and FIGS. 12 and 13.

하기 표3의 결과에서 보여지는 바와 같이 초임계 이산화탄소 상에서의 실험과 달리 디메틸 에테르에서의 중합은 모두 표 3 및 도 12 및 13에서 보여지는 바와 같이 210bar의 높은 압력에서나 20bar에서나 동일한 결과를 보이는 것을 알 수 있었다.Unlike the experiments on supercritical carbon dioxide as shown in the results of Table 3 below, the polymerization in dimethyl ether all showed the same results at 20 bar or at a high pressure of 210 bar as shown in Table 3 and FIGS. 12 and 13. Could.

[표 3]TABLE 3

Figure 112007064270077-PAT00003
Figure 112007064270077-PAT00003

상기 표 1, 표 2 및 표 3의 결과로부터 본 발명의 중합용매를 사용할 경우, 압력이 20 bar에서도 여러 가지 구형의 고분자미립자를 합성할 수 있으며, 개시제의 양을 변화시킴으로써 분자량을 조절할 수 있음을 확인할 수 있었다. 또한 개시제의 양의 변화 이외에도 여러 가지 중합조건, 즉 분산제의 양, 온도, 모노머의 양 등을 변화시킴으로써 입자 크기나 분자량 등을 변화시킬 수 있음을 확인하였다.  When using the polymerization solvent of the present invention from the results of Table 1, Table 2 and Table 3, it is possible to synthesize various spherical polymer fine particles even at a pressure of 20 bar, it is possible to control the molecular weight by changing the amount of initiator I could confirm it. In addition to the change in the amount of the initiator, it was confirmed that the particle size, molecular weight and the like can be changed by changing various polymerization conditions, that is, the amount of dispersant, the temperature, the amount of the monomer, and the like.

상기에서 살펴본 바와 같이, 본 발명에 따른 고분자미립자의 합성 방법은 압축액체 상태의 디메틸에테르를 중합용매로 사용하여 중합시키고, 중합이 종료된 후, 상기 디메틸에테르는 대기 중으로 바로 배출되도록 함으로써, 중합이 종료된 후 입자를 회수할 때 추가적인 분리과정이 필요하여 더 많이 시간과 노력이 요구되는 일반적인 유기용매를 사용하는 종래 중합에 비하여, 이러한 분리과정이 필요 없어, 에너지를 절감할 수 있게 되는 장점이 있다.As described above, in the method for synthesizing the polymer fine particles according to the present invention, polymerization is performed using dimethyl ether in a compressed liquid state as a polymerization solvent, and after the polymerization is completed, the dimethyl ether is immediately discharged into the atmosphere. Compared with the conventional polymerization using a conventional organic solvent, which requires an additional separation process to recover the particles after completion, this method does not require such a separation process, thereby saving energy. .

또한, 고압 펌프 등의 복잡한 고압의 추가 설비 없이 장비를 제작할 수 있어 초기 투자비용을 감소시킬 수 있도록 하고, 디메틸에테르가 극성이기 때문에 여러 가지 극성의 모노머들에 대해서도 중합할 수 있는 장점이 있다.In addition, it is possible to manufacture the equipment without additional high-pressure additional equipment such as a high pressure pump to reduce the initial investment cost, and because the dimethyl ether is polar, there is an advantage that can be polymerized for various polar monomers.

도 1 내지 도 7은 각각 실시예 1 내지 실시예7의 디메틸에테르상에서 중합된 PVK, PVCL, PVP, PHEMA, PHPMA, PGMA, PAN 의 SEM 분석 결과이다.1 to 7 are SEM results of PVK, PVCL, PVP, PHEMA, PHPMA, PGMA, and PAN polymerized on the dimethyl ether of Examples 1 to 7, respectively.

도 8 내지 도 10은 각각 실시예 8 내지 10의 개시제의 양의 변화에 따라 중합된 PHPMA의 SEM 분석 결과이다. 8 to 10 are SEM results of the polymerized PHPMA according to the change of the amount of the initiator of Examples 8 to 10, respectively.

도 11은 실시예 8 내지 10의 개시제의 양의 변화에 따른 GPC를 이용한 분자량 분석 결과이다. 11 is a molecular weight analysis using GPC according to the change of the amount of the initiator of Examples 8 to 10.

도 12 및 13은 각각 실시예 11 및 12의 압력의 변화에 따라 중합된 PVK의 SEM분석 결과이다. 12 and 13 are SEM results of PVK polymerized according to the change in pressure of Examples 11 and 12, respectively.

Claims (5)

모노머로부터 고분자미립자의 합성 방법에 있어서, 반응기 내부에 모노머, 개시제, 분산제와 함께, 중합용매로서 디메틸에테르를 혼합하여, 압력조건 20bar 이상, 온도조건 50℃ 내지 80℃에서 고분자미립자의 중합을 완료 한 후, 감압하여 용매인 디메틸에테르를 기화 제거시킴으써 순수한 고분자미립자가 얻어지는 것을 특징으로 하는 디메틸에테르를 이용한 고분자미립자의 합성방법.In the method for synthesizing polymer fine particles from monomers, dimethyl ether is mixed as a polymerization solvent with a monomer, an initiator and a dispersant in the reactor, and polymerization of the polymer fine particles is completed at a pressure condition of 20 bar or more and a temperature condition of 50 ° C. to 80 ° C. Thereafter, the reduced pressure is reduced to vaporize the solvent dimethyl ether to obtain pure polymer fine particles. 제 1 항에서, 상기 모노머는 디메틸에테르에 용해되는 극성인 모노머인 것을 특징으로 하는 디메틸에테르를 이용한 고분자미립자의 합성방법.[Claim 2] The method of claim 1, wherein the monomer is a polar monomer dissolved in dimethyl ether. 제 1 항에서, 상기 합성방법에 의하여 제조되는 고분자미립자가 PVK(poly(N-vinylcarbazole)), PVCL(poly(N-vinyl caprolactam)), PVP(poly(N-vinyl pyrrolidone)), PHEMA(Poly(2-hydroxyethyl methacrylate)), PHPMA(poly(2-hydroxypropyl methacrylate)) , PGMA(poly (2-glycidyl methacrylate)), PAN(poly (acrylonitrile)) 중 어느 하나인 것을 특징으로 하는 디메틸에테르를 이용한 고분자미립자의 합성방법.The method of claim 1, wherein the polymer fine particles prepared by the synthesis method is PVK (poly (N-vinylcarbazole)), PVCL (poly (N-vinyl caprolactam)), PVP (poly (N-vinyl pyrrolidone)), PHEMA (Poly (2-hydroxyethyl methacrylate)), PHPMA (poly (2-hydroxypropyl methacrylate)), PGMA (poly (2-glycidyl methacrylate)), PAN (poly (acrylonitrile)) is a polymer using dimethyl ether, characterized in that any one Synthesis method of fine particles. 제 1 항에서, 상기 개시제는 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile(AIBN), dimethyl 2,2'-azobis(isobutyrate) 중에서 선택되는 어느 하나인 것을 특징으로 하는 디메틸에테르를 이용한 고분자미립자의 합성방법.The method of claim 1, wherein the initiator is any one selected from 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile (AIBN), dimethyl 2,2'-azobis (isobutyrate) Method for synthesizing polymer fine particles using dimethyl ether. 제 1 항에서, 상기 방법에 의하여 제조되는 고분자미립자가 구형인 것을 특징으로 하는 디메틸에테르를 이용한 고분자미립자의 합성방법.The method of synthesizing polymer fine particles using dimethyl ether according to claim 1, wherein the polymer fine particles produced by the method are spherical.
KR1020070089393A 2007-09-04 2007-09-04 Manufacturing method for fine polymer particles using dimethylether KR20090024396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070089393A KR20090024396A (en) 2007-09-04 2007-09-04 Manufacturing method for fine polymer particles using dimethylether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070089393A KR20090024396A (en) 2007-09-04 2007-09-04 Manufacturing method for fine polymer particles using dimethylether

Publications (1)

Publication Number Publication Date
KR20090024396A true KR20090024396A (en) 2009-03-09

Family

ID=40693272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070089393A KR20090024396A (en) 2007-09-04 2007-09-04 Manufacturing method for fine polymer particles using dimethylether

Country Status (1)

Country Link
KR (1) KR20090024396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353233B1 (en) * 2012-03-22 2014-01-20 서울대학교산학협력단 Purifying method of polymers using dimethyl ether as extracting solvent and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353233B1 (en) * 2012-03-22 2014-01-20 서울대학교산학협력단 Purifying method of polymers using dimethyl ether as extracting solvent and apparatus thereof

Similar Documents

Publication Publication Date Title
Cornel et al. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques
Nadgorny et al. 3D-printing of dynamic self-healing cryogels with tuneable properties
Huo et al. Semi‐fluorinated methacrylates: a class of versatile monomers for polymerization‐induced self‐assembly
Lotierzo et al. Synthesis of Janus and patchy particles using nanogels as stabilizers in emulsion polymerization
Dao et al. Self-Assembling Peptide—Polymer Nano-Objects via Polymerization-Induced Self-Assembly
Grazon et al. Aqueous ROPISA of α-amino acid N-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy
Xu et al. Synthesis of fluorinated nanoparticles via RAFT dispersion polymerization-induced self-assembly using fluorinated macro-RAFT agents in supercritical carbon dioxide
Matsuyama et al. Preparation of poly (methyl methacrylate)–TiO2 nanoparticle composites by pseudo-dispersion polymerization of methyl methacrylate in supercritical CO2
Sun et al. Glucose-and temperature-responsive core–shell microgels for controlled insulin release
Luo et al. Novel thermo‐responsive self‐assembly micelles from a double brush‐shaped PNIPAM‐g‐(PA‐b‐PEG‐b‐PA)‐g‐PNIPAM block copolymer with PNIPAM polymers as side chains
Jinhua et al. Polystyrene microbeads by dispersion polymerization: Effect of solvent on particle morphology
Maiti et al. Self-assembly of well-defined fatty acid based amphiphilic thermoresponsive random copolymers
Tajbakhsh et al. Recyclable polymers with boronic ester dynamic bonds prepared by miniemulsion polymerization
Li et al. Self-assembled structures from PEGylated polypeptide block copolymers synthesized using a combination of ATRP, ROP, and click chemistry
Pich et al. Polymeric particles prepared with fluorinated surfmer
Audureau et al. Dual Thermo-and pH-Responsive N-Cyanomethylacrylamide-Based Nano-Objects Prepared by RAFT-Mediated Aqueous Polymerization-Induced Self-Assembly
Fodor et al. Poly (N-vinylimidazole)-l-poly (propylene glycol) amphiphilic conetworks and gels: molecularly forced blends of incompatible polymers with single glass transition temperatures of unusual dependence on the composition
Santos et al. High pressure phase equilibrium data for carbon dioxide, methyl methacrylate and poly (dimethylsiloxane) systems
KR20090024396A (en) Manufacturing method for fine polymer particles using dimethylether
Yang et al. A New Associative Diblock Copolymer of Poly (ethylene glycol) and Dense 1, 2, 3‐Triazole Blocks: Self‐Association Behavior and Thermoresponsiveness in Water
Carrot et al. Synthesis, characterization and micelle formation of amphiphilic graft copolymers
Kortsen et al. Exploiting the tuneable density of scCO2 to improve particle size control for dispersion polymerisations in the presence of poly (dimethyl siloxane) stabilisers
Guo et al. Facile Synthesis of CO2‐Responsive Nano‐Objects: Batch versus Semi‐Batch RAFT Copolymerization
Haldorai et al. Preparation of poly (vinyl pivalate) microspheres by dispersion polymerization in an ionic liquid and saponification for the preparation of poly (vinyl alcohol) with high syndiotacticity
CN110698617A (en) Method for preparing rod-shaped nanoparticles by using liquid crystal fluorine-containing monomer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application