KR20090022040A - Preparation of high porous activated carbon for methane storage - Google Patents

Preparation of high porous activated carbon for methane storage Download PDF

Info

Publication number
KR20090022040A
KR20090022040A KR1020070087061A KR20070087061A KR20090022040A KR 20090022040 A KR20090022040 A KR 20090022040A KR 1020070087061 A KR1020070087061 A KR 1020070087061A KR 20070087061 A KR20070087061 A KR 20070087061A KR 20090022040 A KR20090022040 A KR 20090022040A
Authority
KR
South Korea
Prior art keywords
activated carbon
methane
shell
potassium hydroxide
activation
Prior art date
Application number
KR1020070087061A
Other languages
Korean (ko)
Inventor
진항교
조득희
최명재
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020070087061A priority Critical patent/KR20090022040A/en
Publication of KR20090022040A publication Critical patent/KR20090022040A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Abstract

A method for manufacturing high porous activated carbon for methane storage is provided to maintain great storage capacity of methane by activating an activated charcoal precursor to potassium hydroxide chemically. A method for manufacturing high porous activated carbon for methane storage comprises the following steps of: mixing and pulverizing an activated carbon precursor with potassium hydroxide to 1:2~5 weight ratio; performing dehydration the mixed and pulverized compounds at 350~450°C; performing heat treatment of the dehydrated compounds at 700~900°C and activating the compounds; cooling, washing, and drying the activated compounds.

Description

메탄 저장용 고기공도 활성탄의 제조방법{Preparation of high porous activated carbon for methane storage}Manufacturing method of high carbon activated carbon for methane storage {Preparation of high porous activated carbon for methane storage}

본 발명은 메탄 저장용 고기공도 활성탄의 제조방법에 관한 것으로서, 더욱 상세하게는 활성탄 전구체를 불활성 분위기 하에서 수산화칼륨에 의해 특정의 조건에서 탈수 및 활성화 반응을 수행하여 표면적 등의 기공도를 고도로 발달시켜 흡착과 탈착 공정 수행이 용이하고 메탄의 반복적 흡착 저장이 용이하며, 특히 천연가스자동차, 연료전지 개질기 등의 실용화 촉진에 유용한 메탄 저장용 고기공도 활성탄을 제조하는 방법 및 이로부터 제조된 활성탄을 이용한 메탄 저장방법에 관한 것이다.The present invention relates to a method of manufacturing a high porosity activated carbon for methane storage, and more particularly, by dehydrating and activating the activated carbon precursor under specific conditions with potassium hydroxide under an inert atmosphere to highly develop porosity such as surface area. It is easy to carry out the adsorption and desorption process, and it is easy to store and repeat the adsorption of methane. It relates to a storage method.

메탄은 가격이 저렴하고 수입석유의존도를 낮출 수 있을 뿐만 아니라 휘발유나 디젤유보다 환경오염을 적게 시키므로 1980년대 이후에 천연가스의 형태로 자동차연료로서 사용이 증가하고 있다. 그러나, 표준상태조건에서 메탄은 기체이고 단위부피당 연소열로 정의되는 부피에너지밀도는 0.038 MJ/liter 로서 휘발유의 0.11%에 불과할 정도로 매우 작기 때문에 효율적인 저장 및 이송을 하기 위해서는 부피에너지밀도를 증가시킬 필요가 있다. 메탄을 순수한 상태로 액체화시킬 수 있다면 22.44 MJ/liter 정도의 높은 에너지밀도를 구현할 수 있는 데 메탄의 임계온도가 -82 ℃로서 매우 낮아 상온에서는 가압만으로는 액화시킬 수 없다. -82 ℃ 이하의 저온에서 액화가 가능하지만 특수 용기설계와 에너지 손실 등이 자동차 등에 적용하기는 기술적으로 용이하지 않는 실정이다.Since methane is inexpensive and can lower the dependence on imported oil, it also has less environmental pollution than gasoline or diesel, so it has been increasingly used as an automobile fuel in the form of natural gas since the 1980s. However, under standard conditions, methane is a gas and the volume energy density, defined as the heat of combustion per unit volume, is 0.038 MJ / liter, which is so small that it is only 0.11% of gasoline. Therefore, it is necessary to increase the volume energy density for efficient storage and transportation. have. If methane can be liquefied in a pure state, a high energy density of 22.44 MJ / liter can be achieved. The critical temperature of methane is -82 ° C, which is very low, and can not be liquefied at room temperature alone. It is possible to liquefy at low temperature below -82 ℃, but special container design and energy loss are not technically easy to apply to automobiles.

이에 따라 메탄의 부피에너지밀도를 높이기 위한 여러 다른 방법이 고려되고 있다. 현재 전 세계적으로 널리 사용되고 있는 압축 저장방법은 메탄을 가압하여 상온에서 통상 250 기압의 초임계유체로서 저장되어 있는 데 이럴 경우 고압용기를 사용해야 하므로 실린더 설계상의 어려움, 과다한 용기 중량 및 연비감소 등을 을 감수하고 있다. 그리고 250 기압정도로 고압 압축을 하려면 고비용의 다단압축을 하여야 한다. 이러한 문제점들은 상온, 저압에서 충분한 양의 천연가스를 저장할 수 있다면 해결될 수 있을 것인 데 그 하나의 방법으로서 흡착 메탄 저장방법이 고려될 수 있다.Accordingly, different methods for increasing the volumetric energy density of methane have been considered. Currently, the compression storage method widely used all over the world is pressurized methane and stored at room temperature as a supercritical fluid of 250 atm, and in this case, it is necessary to use a high pressure container, which may cause difficulties in cylinder design, excessive container weight and fuel economy. I'm taking it. And high pressure compression to about 250 atmospheres requires expensive multistage compression. These problems may be solved if a sufficient amount of natural gas can be stored at room temperature and low pressure. As one method, the adsorption methane storage method may be considered.

메탄가스는 기공성 물질에 흡착되는 거동을 보이는 데 흡착된 메탄은 액체 상태로 존재하므로 흡착량을 높일 경우 기상압축 저장방법보다 부피에너지밀도가 높일 가능성이 있다.Methane gas is adsorbed by the porous material, but the adsorbed methane exists in the liquid state, so if the adsorption amount is increased, the volume energy density may be higher than that of the gas phase compression storage method.

활성탄은 일반적으로 환경 기능성 소재로서, 표면적 및 기공구조의 발달에 따른 흡착능력 및 흡착속도가 우수하여, 그 사용목적에 따라 기상에서 가스분리, 제거 및 탈취, 액상에서의 유기용제 및 중금속 회수, 정제 농축 및 탈색을 위한 흡착필터, 촉매 및 촉매용 담체 등의 용도로 널리 사용되고 있다. 현재 널리 사 용되고 있는 활성탄은 주로 야자각(coconut shell), 톱밥(saw dust), 석탄(coal) 등을 원료로 하여 제조되고 있으며, 최근에는 왕겨, 볏집 등과 같은 농업 부산물을 사용하거나 폐타이어나 커피 폐기물과 같은 폐자원을 사용한 활성탄의 제조방법에 관한 기술들이 다수 보고되고 있다.Activated carbon is generally an environmentally functional material, and has excellent adsorption capacity and adsorption rate according to the development of surface area and pore structure, and according to the purpose of use, gas separation, removal and deodorization in gas phase, organic solvent and heavy metal recovery in liquid phase, and purification It is widely used for adsorption filters, catalysts and catalyst carriers for concentration and decolorization. Currently, widely used activated carbon is mainly manufactured from coconut shell, sawdust, coal, etc., and recently, agricultural by-products such as rice hulls, crests, etc. Many techniques for producing activated carbon using waste resources such as coffee waste have been reported.

기공이 잘 발달되어 총표면적이 2,000 ㎡/g 이상인 고기공도 활성탄은 높은 메탄 저장능을 나타낼 가능성이 보인다.Porosity is well developed, and high porosity activated carbon with a total surface area of more than 2,000 m 2 / g is likely to exhibit high methane storage capacity.

이러한 활성탄은 일반적으로 탄소가 주성분인 유기물을 탄화한 후 활성화시켜 제조는 바, '탄화'란 유기물을 불활성 분위기하에서 가열하면 열분해, 중축합, 방향족탄화 등의 다양한 화학반응을 거쳐 탄소가 농축된 형태로 되는 것을 의미한다. Such activated carbon is generally manufactured by carbonizing and activating an organic substance containing carbon as a main component, and carbonization is a form in which carbon is concentrated through various chemical reactions such as pyrolysis, polycondensation, and aromatic carbonization when the organic substance is heated in an inert atmosphere. It means to be.

탄화물을 활성화시켜 활성탄을 제조하는 방법에는 기체 활성화법과 화학 활성화법이 있다. There are gas activation and chemical activation methods for producing activated carbon by activating carbide.

첫째로, 기체 활성화법은 고온에서 탄화물을 수증기, 탄산가스, 공기 등의 산화성기체와 접촉시키면 탄화물이 산화성가스와 반응하여 이산화탄소, 일산화탄소의 형태로 제거되면서 그 자리에 미세한 기공이 형성되는 것이다. 기체 활성화 과정은 다음의 두 단계로 진행된다고 알려져 있다. First, in the gas activation method, when the carbide is contacted with an oxidizing gas such as water vapor, carbon dioxide, or air at a high temperature, the carbide reacts with the oxidizing gas to be removed in the form of carbon dioxide and carbon monoxide, thereby forming fine pores in place. The gas activation process is known to proceed in two steps.

제 1 단계에서는 탄화물의 활성점(미조직화 부분)이 선택적으로 반응하여 제거되면서 미세한 기공이 생성되고 탄소결정체 사이에 닫혀있던 기공이 개방되어 기공도가 급속히 증가하는 단계이다. 제 2 단계에서는 탄소결정체와 미세한 기공이 산화성기체와 반응하면서 기공크기가 증가하는 단계이다.In the first step, the active site (unstructured portion) of the carbide is selectively reacted and removed to generate fine pores and open pores closed between the carbon crystals to rapidly increase porosity. In the second step, the pore size increases as the carbon crystal and the fine pores react with the oxidative gas.

이러한 기체 활성화법은 반응공정이 간단하고 장치의 부식이 적으며 대량생산이 용이하여 현재 상업용 활성탄의 대부분이 기체 활성화법으로 제조되고 있으나, 고표면적의 잘 발달된 미세기공을 갖는 활성탄을 얻기 위하여 많은 고정 탄소의 기화를 수반해야하기 때문에 활성화 수율이 낮고 기공구조의 조절이 어려우며 고온 열처리를 통한 많은 에너지가 소요되므로 경제적이지 못하다. 또한, 제조한 활성탄의 경우 기공도가 높지 않아 일반적으로 총표면적 1,500 m2/g 이하의 활성탄을 제조하고 있다. This gas activation method is simple in the reaction process, less corrosion of the device and easy to mass production, most of the commercial activated carbon is produced by the gas activation method, but to obtain activated carbon having high surface area and well developed fine pores Since it must be accompanied by the vaporization of fixed carbon, it is not economical because the activation yield is low, the pore structure is difficult to control, and a lot of energy is required through high temperature heat treatment. In addition, in the case of the activated carbon produced is not high porosity, generally activated carbon having a total surface area of 1,500 m 2 / g or less.

둘째로, 화학 활성화법은 탄소질 원료에 화학활성화제를 함유시킨 후 불활성 분위기하에서 가열하면 탈수 및 산화반응이 진행되면서 다공질의 활성탄이 제조되는 것이다. 화학 활성화제로는 일반적으로 인산, 염화아연, 금속수산화물 등의 산성 용액이나 염기성 용액이 사용된다. Second, the chemical activation method is to include a chemical activator in the carbonaceous raw material and then heated in an inert atmosphere to produce porous activated carbon as the dehydration and oxidation reaction proceeds. Generally as a chemical activator, acidic solutions, such as phosphoric acid, zinc chloride, a metal hydroxide, and basic solution are used.

이러한 화학 활성화법의 한 예를 들면 톱밥 등의 목질을 화학 활성화제인 인산과 혼합한 후 350 ~ 500 ℃에서 하소시키면 중기공이 발달한 비표면적 2,000 m2/g 정도의 고기공도 활성탄이 제조된다. One example of such chemical activation method is to mix wood such as sawdust with phosphoric acid, a chemical activator, and then calcinate at 350 to 500 ° C. to produce a high porosity activated carbon having a specific surface area of about 2,000 m 2 / g.

이에, 본 발명자들은 상기와 같이 종래의 메탄저장방법이 에너지손실이 크고 고압으로 인한 안전성 취약 및 용기 중량이 과다한 문제를 해결하고자 연구 노력한 결과, 활성탄 전구체를 불활성 분위기 하에서 수산화칼륨으로 특정의 조건에서 화 학적으로 활성화시키면, 이로부터 제조된 활성탄은 총표면적 등의 기공도가 증가하고 메탄의 흡ㆍ탈착이 용이하며, 특히, 메탄 저장압력을 현저하게 저감시킬 수 있음을 알게 되어 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the problems of the conventional methane storage method is a high energy loss, safety weakness due to high pressure and excessive container weight, as a result, the activated carbon precursor is converted to potassium hydroxide under inert atmosphere under specific conditions. When activated scientifically, the activated carbon prepared therefrom has been found to increase porosity such as total surface area and to easily absorb and desorb methane, and in particular, to significantly reduce the methane storage pressure, thereby completing the present invention. .

따라서, 본 발명은 메탄 저장용 고기공도 활성탄의 제조방법을 제공하는데 그 목적이 있다.Therefore, an object of the present invention is to provide a method for producing a meat ball activated carbon for methane storage.

또한, 본 발명은 상기 방법으로 제조된 고기공도 활성탄을 이용한 메탄의 저장방법을 제공하는데 또 다른 목적이 있다.In addition, the present invention has another object to provide a storage method of methane using the meat ball activated carbon prepared by the above method.

본 발명은 The present invention

활성탄 전구체와 수산화칼륨을 1 : 2 ~ 5 중량비로 혼합 및 분쇄하는 1 단계; 1 step of mixing and grinding the activated carbon precursor and potassium hydroxide in a weight ratio of 1: 2 to 5;

상기 혼합 및 분쇄된 혼합물을 350 ~ 450 ℃에서 탈수 반응시키는 2 단계; Dehydrating the mixed and pulverized mixture at 350 to 450 ° C .;

상기 탈수 반응된 혼합물을 700 ~ 900 ℃에서 열처리하여 활성화 하는 3 단계; 및 3 steps of activating the dehydrated mixture by heat treatment at 700 ~ 900 ℃; And

상기 활성화된 생성물을 냉각, 세척 및 건조하는 4 단계Four steps of cooling, washing and drying the activated product

를 포함하여 이루어진 메탄저장용 고기공도 활성탄의 제조방법에 그 특징이 있다.There is also a feature in the manufacturing method of activated carbon for methane storage made of activated carbon.

본 발명은 활성탄 전구체를 수산화칼륨으로 화학 활성화시켜 제조한 고기공 도 활성탄은 높은 메탄 저장용량을 지님으로써 천연가스 자동차, 연료전지 등의 실용화를 촉진시키고 메탄 이송효율을 높일 수 있으며 궁극적으로는 환경오염 감소를 대비할 수 있는 효과가 있다.In the present invention, the high-molecular-weight activated carbon prepared by chemically activating the activated carbon precursor with potassium hydroxide has a high methane storage capacity, thereby promoting the practical use of natural gas vehicles, fuel cells, etc., and improving the methane transport efficiency, and ultimately environmental pollution. The effect is to prepare for the decline.

이하, 본 발명을 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 메탄 흡착용량이 우수하여 메탄 저장용으로 사용될 수 있는 고기공도 활성탄의 제조방법 및 이로부터 제조된 활성탄을 이용한 메탄의 저장방법에 관한 것이다.The present invention relates to a method for preparing a high porosity activated carbon that can be used for methane storage with excellent methane adsorption capacity and a method for storing methane using the activated carbon prepared therefrom.

본 발명에서는 비가열원료(green state), 탄화물 등의 다양한 전구체를 특정의 조건에서 화학적으로 활성화시킴으로써 기공도 및 메탄 흡착용량을 월등히 향상시킨 것이다. 또한, 물리 흡착거동을 따르므로 흡착과 탈착 공정 수행이 자유로워 메탄의 반복적 흡착 저장이 가능하다.In the present invention, the porosity and the methane adsorption capacity are greatly improved by chemically activating various precursors such as green state and carbide under specific conditions. In addition, since the adsorption and desorption processes can be freely performed, the methane can be repeatedly adsorbed and stored.

본 발명에 따른 메탄 저장용 고기공도 활성탄에 대하여 보다 구체적으로 설명하면 다음과 같다.When explaining the high porosity activated carbon for methane storage according to the present invention in more detail.

활성탄 전구체로서는 리그노셀룰로오즈계, 고분자수지계, 그리고 석탄계 등을 사용할 수 있다. 리그노셀룰로오즈계로는 참나무, 대나무 등의 목질과 호두각, 잣각, 아몬드각, 피스타치오각, 야자각, 은행각, 개암각 및 캐슈넛각 등의 견과각이 사용될 수 있다. 고분자수지계로는 페놀수지계, 폴리아크릴로니트릴계, 레이욘계 등이 사용될 수 있다. 석탄계로는 유연탄, 갈탄, 무연탄 등을 사용할 수 있다.As the activated carbon precursor, lignocellulosic, polymer resin, coal, or the like can be used. As the lignocellulosic system, nuts such as oak and bamboo and nuts such as walnut shell, pine nut, almond shell, pistachio shell, palm shell, ginkgo shell, hazel shell and cashew nut shell can be used. Phenolic resin, polyacrylonitrile, rayon or the like may be used as the polymer resin. Bituminous coal, lignite coal, anthracite coal, etc. can be used as a coal system.

본 발명에서는 활성탄 전구체로서 야자각과 참나무, 페놀수지, 유연탄 등을 사용하였는 바, 이들은 다른 원료에 비해 대량 공급이 용이하고, 가격이 저렴하여 경제적이어 메탄저장용 활성탄에 적합하다.In the present invention, the use of coconut shell, oak, phenol resin, bituminous carbon, etc. as the activated carbon precursor, they are easy to supply in large quantities compared to other raw materials, and the price is low and economically suitable for activated carbon for methane storage.

또한, 탄화질 원료의 활성화를 위한 목적으로 널리 사용되고 있는 나트륨 화합물, 칼륨 화합물 및 암모늄 화합물 등의 활성화제로는 예를 들면 NaOH, NaCl, NaHCO3, KOH, K2CO3, KClO3, KCl, NH4OH, NH4Cl, NH4HCO3 등을 사용할 수 있으나 상기 활성화 중에서 칼륨 화합물은 활성탄 전구체를 화학적으로 활성화시키면서 동시에 활성탄내에 존재하는 미세결정 구조 속으로 층간 삽입되어 메탄 흡착용량 향상에 기여할 가능성이 있기 때문에 이를 선택 사용하는 것이 바람직하다. 이러한 칼륨화합물 중 특히, 수산화칼륨은 전구체와 혼합되어 열분해, 중축합 등의 탈수반응을 완결한 후 활성화 단계에서 제거되면서 메탄 흡착이 잘 이루어지는 잉크병(ink-bottle) 형태의 입구가 좁은 기공을 생성시키기 때문에 이를 선택 사용하는 것이 가장 바람직하다. 이러한 수산화칼륨은 무수물 또는 수분함량이 2 ~ 25 중량%인 수화물 형태로 사용될 수 있다. In addition, as an activator such as sodium compounds, potassium compounds and ammonium compounds which are widely used for the activation of carbonaceous raw materials, for example, NaOH, NaCl, NaHCO 3 , KOH, K 2 CO 3 , KClO 3 , KCl, NH 4 OH, NH 4 Cl, NH 4 HCO 3 may be used, but during the activation, the potassium compound is intercalated into the microcrystalline structure present in the activated carbon while chemically activating the activated carbon precursor, which may contribute to the enhancement of methane adsorption capacity. It is preferable to use it because it exists. Among these potassium compounds, potassium hydroxide is mixed with a precursor to complete dehydration reaction such as pyrolysis and polycondensation, and then removed at the activation stage to generate narrow pores in the form of an ink-bottle inlet having good methane adsorption. It is most preferable to use it selectively. Such potassium hydroxide may be used in the form of an anhydride or a hydrate having a water content of 2 to 25% by weight.

한편, 본 발명에 따른 메탄 저장용 고기공도 활성탄의 제조방법에 대하여 구체적으로 살펴보면 다음과 같다.On the other hand, the method of manufacturing the methane storage meat ball activated carbon according to the present invention in detail.

먼저, 상기 전구체와 수산화칼륨을 일정비로 첨가한 후, 미분쇄하면서 균일하게 혼합한다. 전구체와 수산화칼륨은 1 : 2 ~ 5 중량비, 바람직하기로는 1 : 3 ~ 4 중량비 범위를 유지하는 것이 좋다. 상기 수산화칼륨의 사용량이 2 중량 비 미만이면 화학활성화가 불완전하게 일어나 기공생성이 적어지고, 5 중량비를 초과하는 경우에는 과다한 활성화 반응으로 인해 기공벽이 파괴되어 기공도가 오히려 감소되고 활성탄의 수율 및 경제성이 불량해지는 문제가 있다.First, the precursor and potassium hydroxide are added in a constant ratio, and then mixed uniformly while grinding. The precursor and potassium hydroxide may maintain a weight ratio of 1: 2 to 5, preferably 1: 3 to 4 weight ratio. If the amount of potassium hydroxide is less than 2% by weight of the chemical activation is incomplete to reduce the pore production, if the amount exceeds 5% by weight excess pore wall due to the excessive activation reaction to reduce the porosity rather than the yield of activated carbon and There is a problem of poor economic efficiency.

이때, 전구체와 수산화칼륨으로 구성된 반응 혼합물은 입자크기가 44 ~ 420 ㎛ 크기가 되도록 미분쇄되는 것이 적당한데 보다 바람직하기로는 74 ~ 177 ㎛ 크기를 유지하는 것이 좋다. 미분쇄된 반응물 입자의 크기가 420 ㎛ 보다 크면 화학활성화제가 견과각 입자 속으로 확산되기 어려워 활성화반응이 불완전하게 이루어지고 결과적으로 기공도 및 메탄흡착용량이 감소하며 반응물 입자의 크기가 44 ㎛ 보다 작을 경우에는 미분쇄에 소요되는 동력비가 증가한다. 상기 미분쇄는 크러셔, 밀, 커터 등의 장치로 행할 수 있다.At this time, the reaction mixture composed of the precursor and potassium hydroxide is preferably pulverized so that the particle size is 44 ~ 420 ㎛ size, more preferably it is preferable to maintain the 74 ~ 177 ㎛ size. If the size of the finely pulverized reactant particles is larger than 420 μm, it is difficult for the chemical activator to diffuse into the nut shell particles, resulting in incomplete activation reactions, resulting in reduced porosity and methane adsorption capacity and smaller size of the reactant particles than 44 μm. In this case, the power cost for grinding is increased. The fine pulverization can be performed with a device such as a crusher, a mill, a cutter, or the like.

상기와 같이 미분쇄된 전구체와 수산화칼륨은 혼합 분쇄과정을 거친 후, 전구체의 탈수반응을 수행한다. 이는 전구체를 열분해과 동시에 중축합시켜 가교결합이 이루어지게 하여 기공의 막힘 현상을 억제하는 효과를 얻기 위함이다. As described above, the pulverized precursor and potassium hydroxide undergo a mixed grinding process and then dehydrate the precursor. This is to obtain the effect of suppressing the clogging of the pores by the polycondensation at the same time as the pyrolysis precursor to crosslinking.

이때, 탈수반응은 상온에서부터 가열하여 350 ~ 450 ℃의 범위에서 1 ~ 2 시간 수행하여 수산화칼륨의 용융 및 반응발생 수분을 제거한다. 상기 탈수반응시 온도가 350 ℃ 미만인 경우에는 탈수반응속도가 느리고, 450 ℃를 초과하는 경우에는 가교결합이 안정하게 이루어지기 어려운 문제가 있다. 또한, 탈수반응시 1시간 미만이면 탈수반응이 완결되지 않아 후속 활성화반응이 양호하게 이루어지지 않을 수 있고 2시간을 초과하면 생성물의 물성에는 영향이 없지만 공정의 생산성이 감소되고 에너지 소요량이 증가하는 문제가 있다.At this time, the dehydration reaction is heated from room temperature to perform 1 to 2 hours in the range of 350 ~ 450 ℃ to remove the potassium hydroxide melting and reaction water. When the temperature is less than 350 ℃ during the dehydration reaction, the dehydration reaction rate is slow, if the temperature exceeds 450 ℃ cross-linking is difficult to be made stable. In addition, if the dehydration reaction is less than 1 hour, the dehydration reaction may not be completed, and subsequent activation reaction may not be satisfactory. If the dehydration reaction is longer than 2 hours, the physical properties of the product may not be affected, but the productivity of the process may be reduced and the energy requirement may be increased. There is.

탈수반응 후, 온도를 700 ~ 900 ℃ 까지 승온시킨 후 2 ~ 3 시간동안 활성화반응을 수행한다. 상기 활성화반응의 온도가 700 ℃ 미만이면 활성화 반응속도가 느려 활성화시간이 과다하게 소요되고 900 ℃를 초과하는 경우에는 과도한 활성화반응으로 인해 공정의 제어가 어려워지고 기공벽이 파괴되어 기공도가 감소하며 활성탄의 기계적 강도가 감소하는 문제가 발생한다. 즉, 활성화온도는 제조된 활성탄의 기공도에 큰 영향을 주는 요인이므로 상기 범위를 유지하는 것이 바람직하다. 탈수 및 활성화 공정에서 가열을 하기 위해서는 일반적인 로타리킬른, 회분식킬른, 다단로(multiple-hearth furnace) 등을 사용한다.After the dehydration reaction, the temperature is raised to 700 ~ 900 ℃ and the activation reaction is carried out for 2 to 3 hours. If the temperature of the activation reaction is less than 700 ℃, the activation reaction rate is slow to take excessive activation time, if it exceeds 900 ℃ the control of the process is difficult due to excessive activation reaction and the pore wall is destroyed to reduce the porosity The problem occurs that the mechanical strength of activated carbon is reduced. That is, the activation temperature is a factor that greatly affects the porosity of the produced activated carbon, it is preferable to maintain the above range. Common rotary rotary kilns, batch kilns and multiple-hearth furnaces are used for heating in the dehydration and activation processes.

일반적으로 화학 활성화는 800 ~ 900 ℃ 범위에서 탄화공정을 수행한 후, 400 ~ 1000 ℃에서 열처리하여 활성화반응을 수행하는 바, 본 발명은 비열처리원료인 전구체를 활성화 원료로 사용하므로 이와는 다른 새로운 방법에 의해 활성탄을 제조하는 것이다.In general, the chemical activation is performed after the carbonization process in the range of 800 ~ 900 ℃, heat treatment at 400 ~ 1000 ℃ to perform the activation reaction, the present invention uses a precursor that is a non-heat treatment raw material as an activation raw material different from the other method To produce activated carbon.

활성화반응 후, 생성물은 상온(20 ~ 30 ℃)까지 냉각시키고 여과액의 수소이온 농도가 중성이 될 때까지 물로 세척한다. 이때, 여과는 원심분리기 또는 필터프레스 등을 이용하여 수행한다. 상기 세척된 활성탄케이크는 회분식 또는 연속식 건조기 등을 이용하여 115 ~ 150 ℃에서 2 ~ 3 시간동안 건조하여 수분을 제거한 후 밀봉하여 메탄흡착제로 사용한다.After the activation reaction, the product is cooled to room temperature (20 ~ 30 ℃) and washed with water until the hydrogen ion concentration of the filtrate is neutral. At this time, the filtration is performed using a centrifuge or a filter press. The washed activated carbon cake is dried for 2 to 3 hours at 115-150 ° C. using a batch or continuous dryer to remove moisture, and then sealed and used as a methane adsorbent.

상기한 바와 같이 전구체를 수산화칼륨으로 화학 활성화시켜 제조한 활성탄은 고도로 발달된 기공도(총 표면적 2,000 ~ 3,500 ㎡/g, 총 기공부피 0.8 ~ 2.5 cc/g)를 보이며 비교적 저압에서 높은 메탄 흡착용량(메탄 흡착용량 12.0 ~ 25.0 중량%)을 보인다. 본 발명에 따른 활성탄의 경우 상온(20 ~ 30 ℃), 대기압 ~ 60 기압에서의 메탄 저장용량이 12 ~ 25 중량%로서 이는 종래의 고압 저장방식에서 150 기압에 해당하는 메탄 저장용량에 해당되므로 저장압력을 약 1/4 정도로 낮추는 효과를 보인다. 또한, 물리 흡착거동을 나타내므로 메탄의 흡착 및 탈착이 용이하여 메탄을 반복적으로 흡착 저장이 가능하다.As described above, the activated carbon prepared by chemically activating the precursor with potassium hydroxide has a highly developed porosity (total surface area of 2,000 to 3,500 m 2 / g, total pore volume of 0.8 to 2.5 cc / g) and high methane adsorption capacity at a relatively low pressure. (Methane adsorption capacity 12.0 ~ 25.0 wt%). In the case of activated carbon according to the present invention, the storage capacity of methane at room temperature (20 ~ 30 ℃), atmospheric pressure ~ 60 atm is 12 to 25% by weight, which corresponds to the storage capacity of methane corresponding to 150 atm in the conventional high pressure storage method. The effect is to reduce the pressure by about a quarter. In addition, since the adsorption and desorption of methane is easy because of the physical adsorption behavior, the methane can be repeatedly adsorbed and stored.

이하, 본 발명에 대하여 실시예에 의거하여 더욱 상세히 설명하겠으나, 다음 실시예에 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

실시예 1Example 1

유연탄 10.0 g과 수산화칼륨 30.0 g(야자각 : 수산화칼륨 = 1 : 3의 중량)를 진동밀에 가하고 혼합, 분쇄한 후 시료용기에 담아 관형로에 넣었다. 아르곤 기체를 흘려보내면서 가열을 시작하여 400 ℃에서 1시간 동안 탈수반응을 충분히 시킨 후, 활성화 반응온도인 700 ℃ 까지 승온시켜 2시간 동안 활성화시켰다. 상기 활성화된 반응 생성물을 25 ℃까지 냉각시키고, 물 2,000 g을 가하고 교반하여 잔존 수산화칼륨을 용출시킨 후 여과하고 물 3,000 g으로 세척하였다. 상기 여과된 활성탄케이크를 150 ℃에서 3시간 건조시켜 활성탄을 제조하였다. 10.0 g of bituminous coal and 30.0 g of potassium hydroxide (coconut shell: potassium hydroxide = 1: 3) were added to a vibrating mill, mixed and pulverized, and put in a sample container and placed in a tubular furnace. The heating was started while flowing argon gas, and sufficient dehydration reaction was performed at 400 ° C. for 1 hour, and then, the temperature was raised to 700 ° C., which is an activation reaction temperature, and activated for 2 hours. The activated reaction product was cooled to 25 ° C., 2,000 g of water was added and stirred to elute the remaining potassium hydroxide, then filtered and washed with 3,000 g of water. The filtered activated carbon cake was dried at 150 ° C. for 3 hours to prepare activated carbon.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 2Example 2

상기 실시예 1과 동일하게 실시하되, 상기 활성화 반응온도를 800 ℃까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, the activation was performed by raising the activation reaction temperature to 800 ℃.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 3Example 3

상기 실시예 1과 동일하게 실시하되, 상기 활성화 반응온도를 900 ℃까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, the activation was performed by raising the activation reaction temperature to 900 ℃.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 4Example 4

상기 실시예 1과 동일하게 실시하되, 유연탄 대신에 야자각탄을 사용하였다.In the same manner as in Example 1, but instead of bituminous coal was used coconut grenade.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 5Example 5

상기 실시예 1과 동일하게 실시하되, 유연탄 대신에 야자각탄을 사용하고 상기 활성화 반응온도를 800 ℃까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, instead of bituminous coal, coconut coal was used, and activation was performed by raising the activation reaction temperature to 800 ° C.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 6Example 6

상기 실시예 1과 동일하게 실시하되, 유연탄 대신에 야자각탄을 사용하고 상기 활성화 반응온도를 900 ℃까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, instead of bituminous coal, coconut coal was used, and activation was performed by raising the activation reaction temperature to 900 ° C.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 7Example 7

상기 실시예 1과 동일하게 실시하되, 유연탄 대신에 페놀수지 분말을 사용하였다.In the same manner as in Example 1, phenol resin powder was used instead of bituminous coal.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 8Example 8

상기 실시예 1과 동일하게 실시하되, 유연탄 대신에 페놀수지 분말을 사용하고 상기 활성화 반응온도를 800 ℃까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, in place of bituminous coal, phenol resin powder was used, and activation was performed by raising the activation reaction temperature to 800 ° C.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 9Example 9

상기 실시예 1과 동일하게 실시하되, 유연탄 대신에 페놀수지분말을 사용하고 상기 활성화 반응온도를 900 ℃ 까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, instead of the bituminous coal, phenol resin powder was used, and activation was performed by raising the activation reaction temperature to 900 ° C.

상기에서 제조된 활성탄의 기공도와 메탄흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

Figure 112007062961915-PAT00001
Figure 112007062961915-PAT00001

상기 표 1에 나타낸 바와 같이, 본 발명에 따라 유연탄을 수산화칼륨으로 화학 활성화시킨 실시예 1 ~ 3은 최대 총표면적이 3,149 m2/g, 최대 메탄 흡착용량 20.5 중량%를 나타내었다. 또한, 야자각탄과 페놀수지의 경우 유연탄에 비해 표면적, 기공부피 등의 기공도가 약간 저하되는 경향을 보이며 메탄 흡착용량도 감소하였다.As shown in Table 1, Examples 1 to 3 in which the bituminous coal was chemically activated with potassium hydroxide according to the present invention showed a maximum total surface area of 3,149 m 2 / g and a maximum methane adsorption capacity of 20.5% by weight. In addition, in the case of palm kernel coal and phenol resin, porosity such as surface area and pore volume tended to decrease slightly compared with bituminous coal, and methane adsorption capacity was also decreased.

상기한 유연탄, 야자각탄 및 페놀수지 모두 총표면적에서 미세기공표면적이 차지하는 분율이 98% 이상으로서 분자크기가 작고 액화하기 어려운 메탄분자의 흡착 저장에 유리한 기공구조를 가지고 있다. The bituminous coal, palm kernel and phenol resin all have a pore structure of 98% or more in the total surface area, and have a pore structure that is advantageous for adsorption and storage of methane molecules having a small molecular size and difficult to liquefy.

도 1에 본 발명에 따른 메탄저장용 고기공도 활성탄의 제조공정도를 나타내었다. 1 shows a manufacturing process chart of the methane storage meat ball activated carbon according to the present invention.

또한, 도 2에 상기 실시예 1과 실시예 2 에서 제조한 활성탄의 메탄 흡착등온선을 25 ℃, 10 ~ 60 기압의 범위에서 측정하여 도시한 결과, BDDT 분류에 의한 Type 1 형태의 흡착등온선을 나타내어 흡착압력의 증가에 따라 저압에서는 메탄 흡착량이 급격히 증가하다가 60기압 이상의 고압에서는 메탄 흡착량이 더 이상 증가되지 않는 포화현상을 보인다.In addition, the methane adsorption isotherm of the activated carbon prepared in Example 1 and Example 2 is measured and shown in the range of 10 to 60 atmospheres at 25 ° C., which shows a type 1 adsorption isotherm by BDDT classification. As the adsorption pressure increases, the methane adsorption amount increases rapidly at low pressure, but at high pressures above 60 atm, the methane adsorption amount no longer increases.

비교예 1Comparative Example 1

유연탄 10.0 g을 관형로에 넣고 아르곤 기체를 흘려보내면서 가열을 시작하여 950 ℃에서 1시간 동안 탄화반응을 충분히 시킨 후 아르곤 기체흐름을 중단시키고 이산화탄소를 흘려보내면서 950 ℃에서 1시간 동안 활성화시켰다. 상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 2에 나타내었다.10.0 g of bituminous coal was placed in a tubular furnace, and heating was started while flowing argon gas. After sufficient carbonization reaction was performed at 950 ° C. for 1 hour, the argon gas flow was stopped and carbon dioxide was flowed and activated at 950 ° C. for 1 hour. The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 2 below.

비교예 2Comparative Example 2

야자각탄 10.0 g을 관형로에 넣고 아르곤 기체를 흘려보내면서 가열을 시작하여 활성화온도인 950 ℃에 도달하면 아르곤 기체흐름을 중단시키고 이산화탄소를 흘려보내면서 950 ℃에서 1시간 동안 활성화시켰다. 상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 2에 나타내었다.10.0 g of coconut coal was placed in a tubular furnace and started heating while flowing argon gas to stop the argon gas flow when reaching the activation temperature of 950 ° C. and activated at 950 ° C. for 1 hour while flowing carbon dioxide. The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 2 below.

비교예 3Comparative Example 3

상기 비교예 1과 동일하게 실시하되, 유연탄 대신에 페놀수지 분말을 사용하였다. In the same manner as in Comparative Example 1, a phenol resin powder was used instead of bituminous coal.

상기에서 제조된 활성탄의 기공도와 메탄 흡착용량을 측정하여 다음 표 2에 나타내었다.The porosity and methane adsorption capacity of the activated carbon prepared above are measured and shown in Table 2 below.

Figure 112007062961915-PAT00002
Figure 112007062961915-PAT00002

상기 표 2에 나타난 바와 같이, 활성탄 전구체를 이산화탄소, 수증기 등으로 기체 활성화시킨 경우 표 1에 나타낸 화학 활성화의 경우 보다 표면적, 기공부피 등의 기공도가 현저히 감소하고 메탄 흡착용량도 작음을 알 수 있다.As shown in Table 2, when activated carbon precursor is activated by gas with carbon dioxide, water vapor, etc., it can be seen that the porosity of surface area, pore volume, etc. is significantly reduced and methane adsorption capacity is smaller than that of chemical activation shown in Table 1. .

비교예 4Comparative Example 4

현재 메탄 저장방법으로 사용 또는 고려되고 있는 여러 종류의 메탄 저장방법의 메탄저장효율을 다음 표 3에 나타내었다.The methane storage efficiencies of various methane storage methods currently used or considered as methane storage methods are shown in Table 3 below.

Figure 112007062961915-PAT00003
Figure 112007062961915-PAT00003

25 ℃, 1기압의 일반상태기체의 부피상대밀도를 1이라 가정할 때 액화메탄의 부피상대밀도는 600으로 모든 저장방법 중에서 가장 높다. 그런데 액화 저장방법은 에너지 손실상 실용화하기 어려우므로 차선책인 압축저장방식을 검토해보면 25 ℃, 150기압에서 부피상대밀도가 150인데 실시예 1에서 합성한 고기공도 활성탄을 사용하여 흡착 저장하면 동일한 상대저장밀도를 40 기압에서 얻을 수 있다. 즉, 150 기압이 필요한 압축저장방식을 40기압의 흡착방식으로 대체가 가능하므로 이에 따르는 용기중량 저감, 연비 향상, 안전성 증가 등의 효과를 얻을 수 있다.Assuming that the volumetric density of a normal gas at 25 ° C and 1 atm is 1, the volumetric density of liquefied methane is 600, the highest among all storage methods. However, the liquefied storage method is difficult to be commercialized due to energy loss, so when considering the next best compression storage method, the volume relative density is 150 at 25 ° C. and 150 atm. Density can be obtained at 40 atmospheres. That is, since the compression storage method requiring 150 atm can be replaced by the adsorption method of 40 atm, it is possible to reduce the weight of the container, improve fuel efficiency, and increase safety.

실시예 10Example 10

상기 실시예 1에서 제조된 활성탄을 이용하여, 메탄의 반복 흡착 및 탈착 수행시의 메탄 흡착용량의 변화를 측정하고 그 결과를 다음 표 4에 나타내었다. By using the activated carbon prepared in Example 1, the change of methane adsorption capacity during the repeated adsorption and desorption of methane was measured and the results are shown in Table 4 below.

이때 반복 흡ㆍ탈착 조건은 25 ℃ 항온조건에서 40기압 흡착, 상압 탈착 및 진공 탈착 공정을 100회 거쳤다.At this time, repeated adsorption and desorption conditions were subjected to 40 atmosphere adsorption, atmospheric desorption, and vacuum desorption processes 100 times at 25 ° C constant temperature conditions.

흡착회수Adsorption Recovery 메탄 흡착용량, 중량% (상온, 40 기압)Methane adsorption capacity, weight percent (room temperature, 40 atmospheres) 1One 20.520.5 5050 20.420.4 100100 20.420.4

상기 표 4에 나타낸 바와 같이, 본 발명에 따른 활성탄을 이용하여 메탄의 반복 흡착 및 탈착 수행시 메탄흡착용량의 감소량은 0.1% 이내로 측정오차 범위 내 이므로 메탄 흡착은 물리 흡착거동을 따르며 상온에서 반복 사용하여도 메탄 저장능력이 유지된다는 것을 확인할 수 있었다.As shown in Table 4, when the repeated adsorption and desorption of methane using the activated carbon according to the present invention, the amount of reduction in the methane adsorption capacity is within 0.1% within the measurement error range, and thus the methane adsorption follows physical adsorption behavior and repeated use at room temperature. Even though the methane storage capacity was maintained.

도 3은 상기 실시예 1 ~ 9 에서 제조된 활성탄들의 메탄 흡착용량을 총표면적에 대해 도시하였다. 그 결과를 살펴보면 전반적으로 메탄 흡착용량은 총표면적에 비례하는 거동을 보였으며 고기공도의 활성탄이 메탄 저장소재로서 효용성이 있음을 확인할 수 있었다.3 shows the methane adsorption capacity of the activated carbons prepared in Examples 1 to 9 with respect to the total surface area. The results showed that the overall methane adsorption capacity was proportional to the total surface area, and it was confirmed that the activated carbon in the meat plot was useful as a methane reservoir.

도 1은 본 발명에 따른 메탄저장용 고기공도 활성탄의 제조공정도이다.1 is a manufacturing process chart of the methane storage meat ball activated carbon according to the present invention.

도 2는 본 발명에 따라 제조한 활성탄의 압력변화에 따른 메탄등온흡착선(25 ℃)을 나타낸 것이다(실시예 1 과 실시예 2의 활성탄).Figure 2 shows the methane isothermal adsorption line (25 ℃) according to the pressure change of the activated carbon prepared according to the present invention (activated carbon of Example 1 and Example 2).

도 3은 활성탄 종류에 따른 총표면적과 메탄흡착용량과의 상관관계를 실시예 1 내지 실시예 9의 활성탄에 대해 나타낸 것이다.Figure 3 shows the correlation between the total surface area and the methane adsorption capacity according to the activated carbon type for the activated carbon of Examples 1 to 9.

Claims (6)

활성탄 전구체와 수산화칼륨을 1 : 2 ~ 5 중량비로 혼합 및 분쇄하는 1 단계;1 step of mixing and grinding the activated carbon precursor and potassium hydroxide in a weight ratio of 1: 2 to 5; 상기 혼합 및 분쇄된 혼합물을 350 ~ 450 ℃에서 탈수 반응시키는 2 단계;Dehydrating the mixed and pulverized mixture at 350 to 450 ° C .; 상기 탈수반응된 혼합물을 700 ~ 900 ℃에서 열처리하여 활성화하는 3 단계; 및3 steps of activating the dehydrated mixture by heat treatment at 700 ~ 900 ℃; And 상기 활성화된 생성물을 냉각, 세척 및 건조하는 4 단계; 4 steps of cooling, washing and drying the activated product; 포함하여 이루어진 것을 특징으로 하는 메탄저장용 고기공도 활성탄의 제조방법.Method for producing a methane storage meat ball activated carbon, characterized in that made. 제 1 항에 있어서, 상기 활성탄 전구체는 유연탄, 갈탄, 무연탄, 참나무의 목질, 대나무의 목질, 호두각, 잣각, 아몬드각, 피스타치오각, 야자각, 은행각, 개암각 및 캐슈넛각, 페놀수지, 폴리아크릴로니트릴수지 및 레이욘수지 중에서 선택된 1종 이상인 것을 특징으로 하는 제조방법.According to claim 1, wherein the activated carbon precursor is bituminous coal, lignite, anthracite coal, oak wood, bamboo wood, walnut shell, pine nut, almond shell, pistachio shell, palm shell, ginkgo shell, hazel and cashew nut shell, phenol resin, poly At least one selected from acrylonitrile resin and rayon resin. 제 1 항에 있어서, 상기 활성탄 전구체와 수산화칼륨의 분쇄는 입자크기가 44 ~ 420 ㎛ 가 되도록 미분쇄하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the pulverization of the activated carbon precursor and potassium hydroxide is pulverized to have a particle size of 44 ~ 420 ㎛. 제 1 항에 있어서, 상기 수산화칼륨은 무수물 또는 수분이 2 ~ 25 중량% 함유된 수화물인 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the potassium hydroxide is an anhydride or a hydrate containing 2 to 25% by weight of water. 제 1 항에 있어서, 상기 활성탄의 기공도는 총 표면적이 2,000 ~ 3,500 ㎡/g이고, 총 기공부피가 0.8 ~ 2.5 cc/g이며, 상기 활성탄의 메탄 흡착용량은 10.0 ~ 25.0 중량%인 것임을 특징을 하는 제조방법.According to claim 1, The porosity of the activated carbon has a total surface area of 2,000 ~ 3,500 m 2 / g, the total pore volume of 0.8 ~ 2.5 cc / g, the methane adsorption capacity of the activated carbon is 10.0 ~ 25.0 wt% Manufacturing method. 청구항 1 내지 5 중에서 선택된 어느 한 항의 방법으로 제조된 고기공도 활성탄에 대기압 ~ 60 기압 하에서 메탄을 흡착시켜 메탄을 저장하는 방법.Method for storing methane by adsorbing methane to the meat ball activated carbon prepared by the method of any one of claims 1 to 5 under atmospheric pressure ~ 60 atm.
KR1020070087061A 2007-08-29 2007-08-29 Preparation of high porous activated carbon for methane storage KR20090022040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070087061A KR20090022040A (en) 2007-08-29 2007-08-29 Preparation of high porous activated carbon for methane storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070087061A KR20090022040A (en) 2007-08-29 2007-08-29 Preparation of high porous activated carbon for methane storage

Publications (1)

Publication Number Publication Date
KR20090022040A true KR20090022040A (en) 2009-03-04

Family

ID=40691990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070087061A KR20090022040A (en) 2007-08-29 2007-08-29 Preparation of high porous activated carbon for methane storage

Country Status (1)

Country Link
KR (1) KR20090022040A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311389B1 (en) * 2012-04-16 2013-09-25 주식회사 동양탄소 A method for preparing anthracite-based powdered activated carbon with high specific surface area from anthracites
CN103657592A (en) * 2013-12-09 2014-03-26 北京工业大学 Dye absorbent made of hazelnut shells
KR20140080910A (en) * 2012-12-20 2014-07-01 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom
CN105731752A (en) * 2016-04-29 2016-07-06 东北大学 Method for preparing biochar by carrying out copyrolysis on excess sludge and hazelnut shell
KR20180079546A (en) * 2016-12-30 2018-07-11 주식회사 유기산업 Method of preparing activated carbon for filter using biomass and method of preparing filter using the same
CN111217369A (en) * 2020-03-10 2020-06-02 国家能源集团宁夏煤业有限责任公司 Benzene protection active carbon and preparation method thereof
KR102175095B1 (en) * 2019-11-13 2020-11-05 주식회사 우진이엔지 Combined regenerating method and system of wasted active carbon using desorption gas from wasted activated carbon
KR20220131615A (en) * 2021-03-22 2022-09-29 한국에너지기술연구원 Method for producing carbon adsorbent and carbon adsorbent prepared therefrom.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311389B1 (en) * 2012-04-16 2013-09-25 주식회사 동양탄소 A method for preparing anthracite-based powdered activated carbon with high specific surface area from anthracites
KR20140080910A (en) * 2012-12-20 2014-07-01 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom
CN103657592A (en) * 2013-12-09 2014-03-26 北京工业大学 Dye absorbent made of hazelnut shells
CN105731752A (en) * 2016-04-29 2016-07-06 东北大学 Method for preparing biochar by carrying out copyrolysis on excess sludge and hazelnut shell
CN105731752B (en) * 2016-04-29 2019-04-26 东北大学 A method of charcoal is prepared using excess sludge and hazelnut shell copyrolysis
KR20180079546A (en) * 2016-12-30 2018-07-11 주식회사 유기산업 Method of preparing activated carbon for filter using biomass and method of preparing filter using the same
KR102175095B1 (en) * 2019-11-13 2020-11-05 주식회사 우진이엔지 Combined regenerating method and system of wasted active carbon using desorption gas from wasted activated carbon
CN111217369A (en) * 2020-03-10 2020-06-02 国家能源集团宁夏煤业有限责任公司 Benzene protection active carbon and preparation method thereof
KR20220131615A (en) * 2021-03-22 2022-09-29 한국에너지기술연구원 Method for producing carbon adsorbent and carbon adsorbent prepared therefrom.

Similar Documents

Publication Publication Date Title
CA2668887C (en) High surface area carbon and process for its production
Egbosiuba et al. Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics
Chen et al. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance
KR20090022040A (en) Preparation of high porous activated carbon for methane storage
Aghel et al. CO2 capture from biogas by biomass-based adsorbents: A review
US5204310A (en) High activity, high density activated carbon
CN104583120B (en) Activated carbon with high active surface area
Kopac Hydrogen storage characteristics of bio‐based porous carbons of different origin: a comparative review
CN108557816B (en) Preparation method of porous graphitized carbon with high specific surface area
Bai et al. N-doped porous carbon derived from macadamia nut shell for CO2 adsorption
US5238470A (en) Emission control device
Vahdati-Khajeh et al. Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution
Mestre et al. Nanoporous carbon synthesis: An old story with exciting new chapters
Kang et al. Adsorption of basic dyes using walnut shell-based biochar produced by hydrothermal carbonization
CN111732097B (en) Preparation method and application of large-specific-surface-area graphitized carbon
Khelifi et al. Nickel (II) adsorption from aqueous solutions by physico-chemically modified sewage sludge
Sun et al. Customizing high-performance molten salt biochar from wood waste for CO2/N2 separation
CN101723364B (en) Method for preparing activated carbon by using plasmas to crack solid coal product
Zhang et al. A novel amorphous porous biochar for adsorption of antibiotics: Adsorption mechanism analysis via experiment coupled with theoretical calculations
Chouikhi et al. Valorization of agricultural waste as a carbon materials for selective separation and storage of CO2, H2 and N2
Soodmand et al. Chemical activation and cold plasma surface modification of olefin plant waste pyrolytic coke and its effectiveness for elimination of an azo dye from aqueous solutions
Hasanah et al. Utilization of rambutan peel as a potential adsorbent for the adsorption of malachite green, procion red, and congo red dyes
Chen et al. An effective pre-burning treatment boosting adsorption capacity of sorghum distillers' grain derived porous carbon
Jin et al. Sawdust wastes-derived porous carbons for CO2 adsorption. Part 2. Insight into the CO2 adsorption enhancement mechanism of low-doping of microalgae
Du et al. Study on CO2 adsorption performance of biocarbon synthesized in situ from nitrogen-rich biomass pomelo peel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application