KR20090014469A - Manufacturing method for nano-structures by anodic aluminum oxide and atomic layer deposition - Google Patents
Manufacturing method for nano-structures by anodic aluminum oxide and atomic layer deposition Download PDFInfo
- Publication number
- KR20090014469A KR20090014469A KR1020070078440A KR20070078440A KR20090014469A KR 20090014469 A KR20090014469 A KR 20090014469A KR 1020070078440 A KR1020070078440 A KR 1020070078440A KR 20070078440 A KR20070078440 A KR 20070078440A KR 20090014469 A KR20090014469 A KR 20090014469A
- Authority
- KR
- South Korea
- Prior art keywords
- nano
- template
- manufacturing
- nanostructures
- aluminum oxide
- Prior art date
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000231 atomic layer deposition Methods 0.000 title claims abstract description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims abstract description 51
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims abstract description 7
- 239000002253 acid Substances 0.000 claims abstract description 4
- 238000007743 anodising Methods 0.000 claims abstract description 3
- 238000002048 anodisation reaction Methods 0.000 claims description 13
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 claims description 2
- 238000001039 wet etching Methods 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 8
- 239000004411 aluminium Substances 0.000 abstract 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 11
- 229910052707 ruthenium Inorganic materials 0.000 description 8
- 239000002070 nanowire Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- BZORFPDSXLZWJF-UHFFFAOYSA-N N,N-dimethyl-1,4-phenylenediamine Chemical compound CN(C)C1=CC=C(N)C=C1 BZORFPDSXLZWJF-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000004574 scanning tunneling microscopy Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
- B82B3/0038—Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02601—Nanoparticles
-
- H01L29/0665—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/054—Particle size between 1 and 100 nm
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
본 발명은 나노 과학영역의 기반 기술이 되는 나노 구조물의 제조 공정에 관한 것으로, 보다 구체적으로는 자기 조립 양극 산화 알루미늄과 원자층 증착 공정을 이용하여 균일하고 정렬도가 높으며 다양한 형상을 대면적으로 구현 가능한 나노 구조물의 제조방법에 관한 것이다.The present invention relates to a fabrication process of nanostructures, which are the basis technology of the nanoscience domain, and more particularly, to realize uniform, highly aligned, and various shapes using a self-assembled anodized aluminum oxide and an atomic layer deposition process. The present invention relates to a method for manufacturing a possible nanostructure.
나노 구조(nano structure)를 만드는 기술은 크게 탑다운(top-down) 방식과 바텀업(bottom-up) 방식으로 구분된다.The technology for making nano structure is largely divided into a top-down method and a bottom-up method.
탑다운 방식은, 전자빔 리소그라피, 주사 터널링 현미경, 에너지 집속 이온빔 등을 사용하여 나노 구조를 형성하는 기본 단위를 만드는 방법인데, 공정 비용이 많이 들뿐 아니라, 기술적으로 분해능에 한계가 있어 수 나노영역의 작은 크기의 패턴의 형성이 어려운 한계가 있다.The top-down method uses electron beam lithography, scanning tunneling microscopy, and energy-focused ion beams to create the basic units that form nanostructures. There is a limitation that the formation of a small size pattern is difficult.
이러한 이유로, 종래의 나노 구조물 형성에 관한 연구는 비용이 적게 들고 생산성도 높은 바텀업 방식이 주를 이루고 있는데, 이 방식은 수 나노영역의 작은 크기의 나노 구조물을 형성할 수 있으나, 형성된 구조물의 균일도와 정렬도가 떨어지기 때문에, 실제 소자로서의 응용에는 제한이 있다.For this reason, the research on the formation of conventional nanostructures is mainly made of a low-cost and high-productivity bottom-up method, which can form nanostructures of small size of several nano-regions, but the uniformity of the formed structures Because of its poor alignment with, there is a limit to the practical application.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 균일성과 정렬도가 우수하며 대면적으로 제조가능한 나노 구조물의 제조방법을 제공하는 것이다.The present invention has been made to solve the above-mentioned problems of the prior art, an object of the present invention is to provide a method for producing a nanostructure capable of producing a large area with excellent uniformity and alignment.
또한 본 발명의 다른 목적은, 다양한 재료로 나노 구조물을 형성할 수 있을 뿐 아니라, 다양한 형상과 구조의 나노 구조물을 용이하게 얻을 수 있는 나노 구조물의 제조방법을 제공하는 것이다.In addition, another object of the present invention is to provide a method of manufacturing a nanostructure that can not only form nanostructures from various materials, but also easily obtain nanostructures of various shapes and structures.
상기 목적을 달성하기 위한 본 발명에 따른 나노 구조물의 제조방법은, (a) 산 용액에 기판을 투입하고 상기 기판상에 알루미늄을 양극산화시킴으로써, 상기 기판의 표면으로부터 수직하게 나노 크기의 구멍이 형성된 산화 알루미늄 나노 템플릿을 형성하는 단계와; (b) 원자층 증착법을 이용하여, 상기 나노 구조물을 이루는 물질로 상기 나노 템플릿에 형성된 구멍을 채우는 단계와; (c) 상기 산화 알루미늄을 제거하는 단계를 포함하는데 구성적 특징이 있다.Method for producing a nanostructure according to the present invention for achieving the above object, (a) by inserting a substrate in an acid solution and anodized aluminum on the substrate, the nano-sized holes are formed perpendicularly from the surface of the substrate Forming an aluminum oxide nano template; (b) filling the holes formed in the nano-template with the material forming the nanostructures using atomic layer deposition; and (c) removing the aluminum oxide.
다시 말해, 본 발명은 산 용액 속에서 알루미늄을 양극산화시킬 때, 알루미늄이 알루미나로 상변태를 일으킬 때 자기정렬(self-align)과정을 통해 수직 방향으로 균일한 크기를 가지고 정렬성이 우수한 나노 크기의 구멍을 형성하여 자기조립(self-assembly) 나노 템플릿(template)을 형성한다는 점과, 단차피복(step coverage)성이 우수한 원자층 증착법을 통해 상기 나노 템플릿에 형성된 구멍에 다 양한 물질로 채운 후, 상기 나노 템플릿을 제거하게 되면, 균일한 크기와 우수한 정렬성을 갖는 나노 구조물을 얻을 수 있다는 기술적 사상에 기반한 것이다.In other words, when the anodization of aluminum in the acid solution, when the aluminum is a phase transformation into alumina through a self-aligning process has a uniform size in the vertical direction and excellent nano-sized alignment After forming holes to form self-assembly nano-templates, and filling the holes formed in the nano-templates with various materials through atomic layer deposition with excellent step coverage, By removing the nano template, it is based on the technical idea that a nano structure having a uniform size and excellent alignment can be obtained.
또한, 상기 (c)단계 전에, 선택적으로 식각공정을 통해 나노 템플릿에 형성된 저항층을 제거하는 단계를 수행할 수 있다.In addition, before the step (c), it may optionally be performed to remove the resist layer formed on the nano-template through an etching process.
또한, 상기 (a) 단계의 나노 템플릿은, 알루미늄의 양극산화 공정과, 양극산화를 통해 형성된 나노 템플릿의 일부를 식각하는 식각공정을 반복수행함으로써 형성될 수 있는데, 이와 같이 양극산화와 일부 식각의 반복을 통해, 나노 템플릿에 형성되는 구멍이 보다 규칙적으로 정렬되게 할 수 있다. In addition, the nano-template of step (a) may be formed by repeatedly performing anodization process of aluminum and an etching process of etching a portion of the nano-template formed through anodization. By repetition, the holes formed in the nano template can be aligned more regularly.
또한, 상기 나노 구조물을 이루는 물질은 금속, 반도체 또는 부도체를 사용할 수 있다. In addition, the material constituting the nanostructure may be a metal, a semiconductor or an insulator.
또한, 상기 알루미늄 양극 산화 공정에서 공정 조건을 제어하여 상기 나노 크기의 구멍의 형상을 조절함으로써, 상기 나노 구조물의 형상을 제어할 수 있으며, 구체적인 공정조건의 제어는 용액의 종류, 농도, 온도, 양극 산화 시간 및 인가전압 중 하나 이상의 변경에 의한다. In addition, by controlling the process conditions in the aluminum anodization process to control the shape of the nano-sized holes, it is possible to control the shape of the nanostructures, the control of specific process conditions are the type of solution, concentration, temperature, anode By at least one of oxidation time and applied voltage.
또한, 상기 나노 구조물은 다양한 응용이 가능한데, 예를 들면 환경 센서, 바이오 센서 등 다양한 센서류에 직접적으로 이용될 수 있고, 메모리 축전기의 제작이나 연료 전지에 사용되는 전극 등에도 응용될 수 있다. In addition, the nanostructure can be used for various applications, for example, it can be directly used in various sensors such as environmental sensors, biosensors, and can be applied to the production of memory capacitors or electrodes used in fuel cells.
본 발명에 따른 나노 구조물 제조방법에 의하면, 원자층 증착법에 의해 증착이 가능하다면 어떠한 재료로도 나노 구조물을 제조할 수 있으므로, 나노 구조물의 필요에 따라, 금속, 반도체, 부도체 등 다양한 재료를 사용하여 나노 구조물을 형성할 수 있다.According to the method for manufacturing nanostructures according to the present invention, since the nanostructures may be manufactured using any material if the deposition is possible by atomic layer deposition, according to the needs of the nanostructures, various materials such as metals, semiconductors, and insulators may be used. Nanostructures can be formed.
또한, 본 발명에 따른 나노 구조물 제조방법에 의하면, 균일한 크기와 높은 정렬도를 갖는 나노 구조물을 대면적으로 용이하게 얻을 수 있다.In addition, according to the method of manufacturing a nanostructure according to the present invention, it is possible to easily obtain a large-area nanostructure having a uniform size and a high degree of alignment.
또한, 본 발명에 따른 나노 구조물 제조방법에 의하면, 알루미늄의 양극 산화 공정의 공정 조건의 조절을 통해, 다양한 구조의 나노 구조물을 얻을 수 있다.In addition, according to the method for manufacturing nanostructures according to the present invention, nanostructures of various structures can be obtained by controlling process conditions of anodizing the aluminum.
이하 첨부한 도면을 참조로 본 발명의 바람직한 실시예에 대해 설명한다. 그러나 본 발명의 기술적 사상 내에서 다양한 변형이 가능하며 하기 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. However, various modifications are possible within the technical idea of the present invention and are not limited to the following examples.
도 1의 (a)~(d)는 본 발명의 실시예에 따라 균일한 크기와 정렬도를 갖는 나노 점을 제조하는 과정을 나타내는 공정도이다.1 (a) to (d) is a process chart showing a process of manufacturing a nano dot having a uniform size and alignment degree in accordance with an embodiment of the present invention.
도 1a에 도시된 바와 같이, 먼저 실리콘 기판상에 양극산화 알루미늄(AAO) 나노 템플릿을 형성시키기 위해 15℃, 0.3mol 옥살산 용액에서 40볼트의 전압을 인가한 조건으로 일차 양극산화 공정을 수행하면, 위에서 볼 때 표면부분에는 정렬도가 불규칙하게 배열되어 있으나 알루미나와 알루미늄 경계면에는 규칙적인 배열을 이루는 나노 템플릿을 얻는다. 이어서, 표면에 불규칙하게 형성된 나노 템플릿을 65℃의 크롬산 9g + 인산 20.2 ml/500 ml 혼합용액에 침지하여 표면부를 제거하면 규칙적인 배열을 가진 알루미늄의 표면이 노출된다. 이 상태에서, 전술한 양극산화 조건과 동일한 조건으로 2차 양극산화를 진행하여서 정렬도를 향상시킨다. 이 상과 같은 표면부 제거와, 양극산화를 3차, 4차로 반복적으로 진행하게 되면, 더욱 높은 정렬도를 갖는 나노 템플릿을 형성시킬 수 있다. 그 후 형성된 나노 템플릿을 30℃, 0.1mol 인산용액에 침지하여 구멍확장 공정을 진행함으로써, 형성된 구멍의 크기는 조절될 수 있다. 이와 같은 공정을 통해, 실리콘 기판상에 수직방향으로 종횡비(aspect ratio)가 2:1인 나노 크기의 구멍이 형성된 AAO 나노 템플릿을 형성하였다.As shown in FIG. 1A, when the first anodization process is performed under a condition of applying a voltage of 40 volts in a 0.3 mol oxalic acid solution at 15 ° C. to form an anodized aluminum (AAO) nano template on a silicon substrate, When viewed from above, the nano-templates have irregular arrangements on the surface, but regular alignment on the alumina and aluminum interfaces. Subsequently, the nano template irregularly formed on the surface is immersed in a mixed solution of 9 g of chromic acid and 20.2 ml / 500 ml of phosphoric acid at 65 ° C. to remove the surface portion, thereby exposing the surface of aluminum having a regular arrangement. In this state, secondary anodization is performed under the same conditions as the above-described anodization conditions to improve the degree of alignment. If the surface portion removal and anodization are repeatedly performed in the third and fourth order as in this phase, it is possible to form a nano-template with a higher degree of alignment. Thereafter, the formed nano-template is immersed in a 0.1 mol phosphate solution at 30 ° C. to proceed with the hole expansion process, and thus the size of the formed hole may be controlled. Through this process, the AAO nano template was formed on the silicon substrate in which a nano-sized hole having an aspect ratio of 2: 1 was formed in the vertical direction.
한편, 전술한 본 발명의 실시예와 다르게 양극산화 공정 조건에 변화를 주면 나노 구멍의 크기, 깊이 및 간격의 조절이 가능하다.On the other hand, it is possible to control the size, depth and spacing of the nano-pores by changing the anodization process conditions unlike the embodiment of the present invention described above.
이어서, 루테늄(Ru)을 증착하기 위하여 액체주입장치가 장착된 원자층 증착장비에서 [Ru(DMPD)(EtCp), (DER)] 선구물질과 O2 반응기를 사용하여, 한 사이클이 5단계(1. DER 주입 0.1초, 2. DER 노출 3초, 3. Ar을 이용한 제거 5초, 4. O2 노출 3초, 5. Ar을 이용한 제거 5초)의 각 사이클을 반복하여, 한 사이클당 0.5 나노미터의 두께로 1300사이클 진행하여, 핵 생성 지연이 없고 낮은 거칠기와 비저항을 갖는 고품질의 루테늄 박막을 형성함으로써, AAO 나노 템플릿의 구멍을 도 1b에 도시된 바와 같이, 루테늄(Ru)으로 채웠다.Subsequently, in an atomic layer deposition apparatus equipped with a liquid injection apparatus for depositing ruthenium (Ru), one cycle was performed in five steps using a [Ru (DMPD) (EtCp), (DER)] precursor and an O 2 reactor. 1. DER injection 0.1 sec, 2. DER exposure 3 sec, 3. Ar
그리고, BCl3 플라스마 에칭을 통해, 도 1c에 도시된 바와 같이, 상기 양극 산화 과정에서 형성된 저항층을 제거하였다.And, through the BCl 3 plasma etching, as shown in Figure 1c, the resist layer formed during the anodic oxidation process was removed.
최종적으로, 상기 루테늄이 채워진 나노 템플릿을 65℃의 크롬산 9g + 인산 20.2 ml/500 ml 혼합용액에 침지하여 산화 알루미늄 나노 템플릿을 선택적으로 제 거함으로써, 도 1d에 도시된 바와 같이, 나노 점을 얻을 수 있게 된다.Finally, the ruthenium-filled nano template was immersed in a mixed solution of 9 g of chromic acid + 20.2 ml / 500 ml of phosphoric acid at 65 ° C. to selectively remove the aluminum oxide nano template, thereby obtaining nano dots as shown in FIG. 1D. It becomes possible.
이상과 같은 공정을 통해 얻어진 나노 점을 주사전자현미경으로 관찰한 결과, 도 2에 나타난 바와 같이, 실리콘 기판 위에 직경 60 nm의 크기와 100 nm의 간격을 갖는 매우 균일하고 높은 정렬도를 갖는 루테늄 나노 점이 형성되었음을 확인하였다.As a result of observing the nano-dots obtained through the above process with a scanning electron microscope, as shown in Figure 2, ruthenium nano having a very uniform and high degree of alignment having a diameter of 60 nm and a gap of 100 nm on the silicon substrate It was confirmed that a dot was formed.
[실시예 2]Example 2
나노 구조물을 센서 구조로 응용하기 위해서는 하부 전극과 상부 전극 사이의 오믹(Ohmic) 접촉이 이루어져야 하는데, 본 발명의 실시예 2에서는 오믹 접촉이 이루어지는지를 확인하기 위하여, 하부 전극과 상부 전극이 형성된 나노 선 정렬구조를 제조하였다.In order to apply the nanostructure as a sensor structure, ohmic contact between the lower electrode and the upper electrode should be made. In Example 2 of the present invention, to confirm whether the ohmic contact is made, the nanowire having the lower electrode and the upper electrode formed thereon An alignment structure was prepared.
도 3의 (a)~(d)는 본 발명의 실시예 2에 따른 나노 구조물의 제조공정을 이용하여 루테늄 나노 선(線)을 형성하는 방법에 대한 개략적인 공정도이다.3 (a) to 3 (d) is a schematic process diagram of a method of forming ruthenium nanowires using the nanostructure manufacturing process according to the second embodiment of the present invention.
도 3a에 도시된 바와 같이, 본 발명의 실시예 2에서는 실시예 1과 달리, 먼저 실리콘 기판상에 하부전극으로 사용할 티타늄 박막을 형성한다. 상기 박막은 공지의 박막 형성방법을 사용하였다.As shown in FIG. 3A, in Embodiment 2 of the present invention, a titanium thin film to be used as a lower electrode is first formed on a silicon substrate. The thin film used a known thin film formation method.
다음으로, 상기 실시예 1과 동일한 공정을 통해, 산화 알루미늄 나노 템플릿을 형성하고(도 3a 참조), 원자층 증착 공정을 통해 상기 나노 템플릿에 형성된 구멍에 루테늄(Ru)을 채운다(도 3b 참조).Next, an aluminum oxide nano template is formed through the same process as in Example 1 (see FIG. 3A), and the ruthenium (Ru) is filled in the hole formed in the nano template through the atomic layer deposition process (see FIG. 3B). .
다음으로, 상기 실시예 1과 동일한 습식식각공정을 통해, 산화 알루미늄 나노 템플릿을 제거함으로써, 센서 구조로의 응용 여부를 확인하기 위한 목적의 나노 선(線) 구조를 얻었다.Next, through the same wet etching process as in Example 1, by removing the aluminum oxide nano-template, a nanowire structure for the purpose of confirming the application to the sensor structure was obtained.
얻어진 나노 선 구조를 각각 주사전자현미경과 투과전자현미경으로 관찰한 결과, 도 4 및 5에 나타난 바와 같이, 상부와 하부 전극의 사이에 100nm의 간격으로 약 1㎛의 길이로 형성된 균일한 나노 선이 형성되어 있음을 확인하였다.As a result of observing the obtained nanowire structure with a scanning electron microscope and a transmission electron microscope, as shown in FIGS. 4 and 5, uniform nanowires formed with a length of about 1 μm at intervals of 100 nm were formed between the upper and lower electrodes. It was confirmed that it was formed.
이와 같이 얻어진 나노 선 구조물의 오믹 접촉 여부를 확인하기 위하여, 인가 전압에 따른 전류를 측정한 결과, 도 6에 도시된 바와 같이, 오믹(ohmic) 접촉이 잘 이루어짐을 알 수 있다. 즉, 본 발명의 실시예 2에 따라 제조된 나노 구조물은 센서류에 직접적인 응용이 가능하다.In order to confirm the ohmic contact of the nanowire structure thus obtained, as a result of measuring the current according to the applied voltage, as shown in FIG. 6, it can be seen that the ohmic contact is well performed. That is, the nanostructure manufactured according to Example 2 of the present invention can be directly applied to sensors.
도 1의 (a)~(d)는 본 발명의 실시예에 따른 나노 구조물의 제조공정도이다.1 (a) to (d) is a manufacturing process diagram of a nanostructure according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라 제조한 루테늄 나노 점(點)의 주사전자현미경 사진이다.2 is a scanning electron micrograph of ruthenium nano dots prepared according to an embodiment of the present invention.
도 3의 (a)~(d)는 본 발명의 다른 실시예에 따라 나노 선(線)을 제조하는 공정을 나타내는 공정도이다.3A to 3D are process diagrams illustrating a process of manufacturing nanowires according to another embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따라 제조한 루테늄 나노 선(線)의 주사전자현미경 사진이다.4 is a scanning electron micrograph of ruthenium nanowires prepared according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따라 제조한 루테늄 나노 선(線)의 투과전자현미경 사진이다.5 is a transmission electron microscope photograph of ruthenium nanowires prepared according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따라 제조한 루테늄 나노 선(線) 정렬구조의 상부전극과 하부전극 사이의 오믹 접촉을 확인하기 위해 측정한 전압-전류 그래프이다.6 is a voltage-current graph measured to confirm the ohmic contact between the upper electrode and the lower electrode of the ruthenium nanowire alignment structure manufactured according to another embodiment of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070078440A KR100973522B1 (en) | 2007-08-06 | 2007-08-06 | Manufacturing method for ruthenium nano-structures by anodic aluminum oxide and atomic layer deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070078440A KR100973522B1 (en) | 2007-08-06 | 2007-08-06 | Manufacturing method for ruthenium nano-structures by anodic aluminum oxide and atomic layer deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090014469A true KR20090014469A (en) | 2009-02-11 |
KR100973522B1 KR100973522B1 (en) | 2010-08-02 |
Family
ID=40684384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070078440A KR100973522B1 (en) | 2007-08-06 | 2007-08-06 | Manufacturing method for ruthenium nano-structures by anodic aluminum oxide and atomic layer deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100973522B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101301953B1 (en) * | 2011-09-05 | 2013-08-30 | 국민대학교산학협력단 | Sensor using metal oxide nanotube and preparing method of the same |
KR101502692B1 (en) * | 2012-07-31 | 2015-03-13 | 경북대학교 산학협력단 | Fabrication of immunosensor using gold nanorod array and the immunosensor by using the same method |
KR20190042905A (en) * | 2017-10-17 | 2019-04-25 | 한국과학기술원 | Fabrication of self-assembled quantum dot array in single-quantum-particle resolution using block-copolymer as template and nanotransfer printing of the array |
KR20220001818A (en) * | 2020-06-30 | 2022-01-06 | 고려대학교 산학협력단 | Ruthenium-based nanowire and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016024803A1 (en) * | 2014-08-14 | 2016-02-18 | 한국전기연구원 | Relief mould production method, membrane produced by using relief mould and production method therefor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100862656B1 (en) * | 2002-04-19 | 2008-10-10 | 삼성전기주식회사 | Nano device utilizing nano hole and method thereof |
KR100687944B1 (en) * | 2003-06-03 | 2007-02-27 | 학교법인 국민학원 | Fabrication Method of Nano-tube Using Atomic Layer Deposition And Nano-template |
-
2007
- 2007-08-06 KR KR1020070078440A patent/KR100973522B1/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101301953B1 (en) * | 2011-09-05 | 2013-08-30 | 국민대학교산학협력단 | Sensor using metal oxide nanotube and preparing method of the same |
KR101502692B1 (en) * | 2012-07-31 | 2015-03-13 | 경북대학교 산학협력단 | Fabrication of immunosensor using gold nanorod array and the immunosensor by using the same method |
KR20190042905A (en) * | 2017-10-17 | 2019-04-25 | 한국과학기술원 | Fabrication of self-assembled quantum dot array in single-quantum-particle resolution using block-copolymer as template and nanotransfer printing of the array |
KR20220001818A (en) * | 2020-06-30 | 2022-01-06 | 고려대학교 산학협력단 | Ruthenium-based nanowire and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100973522B1 (en) | 2010-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4532634B2 (en) | Method for producing pores | |
JP3610293B2 (en) | Structure having pores and device using the structure having pores | |
JP3754876B2 (en) | Method for producing structure having pores and structure having pores | |
JP4536866B2 (en) | Nanostructure and manufacturing method thereof | |
JP2000031462A (en) | Nano-structure and manufacture thereof, electron emission element and manufacture of carbon nano-tube device | |
KR100973522B1 (en) | Manufacturing method for ruthenium nano-structures by anodic aluminum oxide and atomic layer deposition | |
KR20100075032A (en) | Manufacturing method of self-organized anodic titanium oxide nanotube arrays and control of the anodic titanium oxide nanotube thereby | |
Taşaltın et al. | Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions | |
Prida et al. | Electrochemical methods for template-assisted synthesis of nanostructured materials | |
JP3729449B2 (en) | Structure and device having pores | |
Sulka et al. | AAO templates with different patterns and channel shapes | |
Zhang et al. | Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching | |
Vorobyova et al. | Study of metal pillar nanostructure formation with thin porous alumina template | |
JP2002004087A (en) | Method for manufacturing nanostructure and nanostructure | |
JP4681939B2 (en) | Method for producing nanostructure | |
JP2003342791A (en) | Structure having hole and method for producing the same | |
JP2001213700A (en) | Nano-structure and its manufacturing method | |
JP4641442B2 (en) | Method for producing porous body | |
JP4125151B2 (en) | Manufacturing method of structure | |
US10273592B2 (en) | Method of forming local nano/micro size structures of anodized metal | |
RU2489768C1 (en) | Method of producing porous layer of aluminium oxide on insulating substrate | |
Bernardin et al. | Organized porous alumina membranes for high density silicon nanowires growth | |
Robinson et al. | Perfectly Ordered, Free‐Standing Nanowire Arrays With Controllable Geometry | |
DK174913B1 (en) | Nanoscale depression formation for substrate surface involves bringing immersed object proximal to surface of substrate by applying two sets of operating parameters | |
Wei | Electrochemical Nanofabrications: A General Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E90F | Notification of reason for final refusal | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |