KR20090011596A - 광학 계측 시스템의 선택 변수를 최적화하는 방법 - Google Patents
광학 계측 시스템의 선택 변수를 최적화하는 방법 Download PDFInfo
- Publication number
- KR20090011596A KR20090011596A KR1020070075328A KR20070075328A KR20090011596A KR 20090011596 A KR20090011596 A KR 20090011596A KR 1020070075328 A KR1020070075328 A KR 1020070075328A KR 20070075328 A KR20070075328 A KR 20070075328A KR 20090011596 A KR20090011596 A KR 20090011596A
- Authority
- KR
- South Korea
- Prior art keywords
- metrology
- cluster
- parameter
- profile
- patterned structure
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
광학 계측 모델을 사용하여, 반도체 웨이퍼 상에 형성된 패턴화 구조를 검사하는 시스템은 제 1 제조 클러스터, 계측 클러스터, 광학 계측 모델 옵티마이저(optical metrology model optimizer), 및 실시간 프로파일 추정기(real time profile estimator)를 포함한다. 제 1 제조 클러스터는 웨이퍼를 처리하도록 구성되며, 웨이퍼는 제 1 패턴화 및 제 1 비패턴화 구조를 갖는다. 제 1 패턴화 구조는 하부 막 두께, 임계 치수(critical dimension) 및 프로파일을 갖는다. 계측 클러스터는 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함한다. 계측 클러스터는 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성된다. 계측 모델 옵티마이저는 제 1 패턴화 구조에서 벗어난 하나 이상의 측정된 회절 신호를 이용하여 그리고 부동(floating) 프로파일 파라미터, 물질 굴절 파라미터 및 계측 장치 파라미터로, 제 1 패턴화 구조의 광학 계측 모델을 최적화하도록 구성된다. 실시간 프로파일 추정기는 광학 계측 모델 옵티마이저로부터의 최적화된 광학 계측 모델, 제 1 패턴화 구조에서 벗어난 측정된 회절 신호, 및 물질 굴절 파라미터와 계측 장치 파라미터 중에서 적어도 하나의 파라미터에 대한 값의 범위 내에 있는 고정값을 이용하도록 구성된다. 실시간 프로파일 추정기는 제 1 패턴화 구조의 하부 막 두께, 임계 치수 및 프로파일을 포함하는 출력을 생성하도록 구성된다.
광학 계측 모델, 패턴화 구조, 제조 클러스터, 프로파일 파라미터, 회절 신호, 계측 장치, 굴절률 파라미터, 계측 모델 옵티마이저, 계측 데이터 프로세서
Description
본 발명은 일반적으로 반도체 웨이퍼 상에 형성된 구조의 광학 계측에 관한 것으로, 보다 구체적으로는 패턴화 구조의 광학 계측에 관한 것이다.
반도체 제조에서, 주기적 격자(periodic grating)는 통상적으로 품질 보장에 이용된다. 예를 들면, 주기적 격자의 한가지 전형적인 사용은 반도체 칩의 동작 구조의 근처에 주기적 격자를 제조하는 것을 포함한다. 주기적 격자는 전자기 방사(electromagnetic radiation)로 조사된다. 주기적 격자에서 편향 이탈하는 전자기 방사는 회절 신호로서 수집된다. 그리고 나서 회절 신호는 주기적 격자, 및 더 나아가 반도체 칩의 동작 구조가 스펙(specification)에 따라 제조되었는 지를 결정하도록 분석된다.
하나의 종래 시스템에서, 주기적 격자의 조사로부터 수집된 회절 신호(측정된 회절 신호)는 모의 회절 신호의 라이브러리와 비교된다. 라이브러리 내의 모의 회절 신호 각각은 가상 프로파일과 연관된다. 라이브러리 내의 모의 회절 신호 중 하나와 측정된 회절 신호 간에 정합이 이루어지는 경우, 모의 회절 신호와 연관된 가상 프로파일은 주기적 격자의 실제 프로파일을 나타내는 것으로 추정된다.
모의 회절 신호의 라이브러리는 RCWA(Rigorous Coupled Wave Analysis)와 같은 정밀한 방법을 이용하여 생성될 수 있다. 보다 구체적으로, 회절 모델링 기술에서, 모의 회절 신호는 어느 정도 맥스웰 방정식의 해법에 기초하여 계산된다. 모의 회절 신호의 계산은 대량의 복잡한 계산의 이행을 수반하므로, 시간 소비적이며 고가일 수 있다.
광학 계측 모델을 사용하여, 반도체 웨이퍼 상에 형성된 패턴화 구조를 검사하는 시스템은 제 1 제조 클러스터, 계측 클러스터, 광학 계측 모델 옵티마이저(optical metrology model optimizer), 및 실시간 프로파일 추정기(real time profile estimator)를 포함한다. 제 1 제조 클러스터는 웨이퍼를 처리하도록 구성되며, 웨이퍼는 제 1 패턴화 및 제 1 비패턴화 구조를 갖는다. 제 1 패턴화 구조는 하부 막 두께, 임계 치수(critical dimension) 및 프로파일을 갖는다. 계측 클러스터는 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함한다. 계측 클러스터는 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성된다. 광학 계측 모델 옵티마이저는 계측 클러스터에 연결된다. 계측 모델 옵티마이저는 제 1 패턴화 구조에서 벗어난 하나 이상의 측정된 회절 신호를 이용하여 그리고 부동(floating) 프로파일 파라미터, 물질 굴절 파라미터 및 계측 장치 파라미터로 제 1 패턴화 구조의 광학 계측 모델을 최적화하도록 구성된다. 실시간 프로파일 추정기는 광학 모델 옵티마이저 및 계측 클러스터에 연결된다. 실시간 프로파일 추정기는 광학 계측 모델 옵티마이저로부터의 최적화된 광학 계측 모델, 제 1 패턴화 구조에서 벗어난 측정된 회절 신호, 및 물질 굴절 파라미터와 계측 장치 파라미터 중에서 적어도 하나의 파라미터에 대한 값의 범위 내에 있는 고정값을 이용하도록 구성된다. 실시간 프로파일 추정기는 제 1 패턴화 구조의 하부 막 두께, 임계 치수 및 프로파일을 포함하는 출력을 생성하도록 구성된다.
본 발명의 설명을 용이하게 하기 위해서, 본 개념의 적용을 예시하는데 반도체 웨이퍼가 이용될 수 있다. 반복 구조를 갖는 기타 다른 워크피스(work piece)에 방법 및 프로세스가 동일하게 적용된다. 또한, 본 출원에서, 특정하지 않은 경우에는 용어 "구조"는 패턴화 구조를 가리킨다.
도 1a는 반도체 웨이퍼 상의 구조의 프로파일을 결정하는데 광학 계측(optical metrology)이 이용될 수 있는 전형적인 실시예를 예시하는 구성도이다. 광학 계측 시스템(40)은 웨이퍼(47)의 타깃 구조(59)에 빔(43)을 투사하는 계측 빔 소스(41)를 포함한다. 계측 빔(43)은 타깃 구조(59)를 향해 입사각(θi)으로 투사되고, 회절각(θd)으로 회절된다. 회절 빔(49)은 계측 빔 수광기(51)에 의해 측정된다. 회절 빔 데이터(57)는 프로파일 애플리케이션 서버(53)에 전송된다. 프로파일 애플리케이션 서버(53)는 측정된 회절 빔 데이터(57)를, 타깃 구조의 임계 치수와 해상도의 조합의 변화를 나타내는 모의 회절 빔 데이터의 라이브러리(60)에 대조한다. 한가지 전형적인 실시예에서는 측정된 회절 빔 데이터(57)와 최상으로 정합하는 라이브러리(60) 인스턴스(instance)가 선택된다. 회절 스펙트럼이나 신호 및 연관된 가상 프로파일의 라이브러리가 본 개념 및 원리를 예시하는데 종종 이용되지만, 본 발명은 회귀(regression), 신경망(neural net), 및 프로파일 추출에 이용되는 유사한 방법들에서와 같이, 모의 회절 신호 및 연관된 세트의 프로파일 파라미터를 포함하는 데이터 공간에 동일하게 적용됨은 물론이다. 선택된 라이브러리(60) 인스턴스의 가상 프로파일 및 연관된 임계 치수는 타깃 구조(59)의 특징의 실제 단 면 프로파일 및 임계 치수에 대응하는 것으로 추정된다. 광학 계측 시스템(40)은 회절 빔이나 신호를 측정하기 위해 반사계(reflectometer), 타원계(ellipsometer), 또는 기타 광학 계측 장치를 이용할 수 있다. 광학 계측 시스템은 2005년 9월 13일자 Niu 등에게 허여된 GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNAL란 제목의 미국특허 제6,913,900호에 기술되어 있으며, 전반적으로 본원에 참고로 반영되어 있다. 라이브러리의 사용을 필요로 하지 않는 광학 계측에서의 본 발명의 다른 전형적인 실시예들을 아래에서 논의한다.
변형예는 기계 학습 시스템(machine learning system; MLS)을 사용하여 모의 회절 신호의 라이브러리를 생성하는 것이다. 모의 회절 신호의 라이브러리를 생성하기에 앞서, MLS는 알려진 입력 및 출력 데이터를 사용하여 트레이닝된다. 하나의 전형적인 실시예에서, 백-프로퍼게이션(back-propagation), RBF(radial basis function), 서포트 벡터(support vector), 커널 회귀(kernel regression) 등과 같은 기계 학습 알고리즘을 이용하는 기계 학습 시스템(MLS)을 사용하여 모의 회절 신호를 생성할 수 있다. 기계 학습 시스템 및 알고리즘의 보다 상세한 설명을 위해서, 1999년 Prentice Hall의 Simon Haykin 저서 "Neural Networks"를 참조하고, 이는 전반적으로 본원에 참고로 반영되어 있다. 2003년 6월 27일자 출원된 OPTICAL METROLOGY OF STRUCTURES FORMED ON SEMICONDUCTOR WAFERS USING MACHINE LEARNING SYSTEMS이란 제목의 미국특허출원 제10/608,300호를 또한 참조하고, 이는 전반적으로 본원에 참고로 반영되어 있다.
용어 "1차원 구조"는 본원에서 1차원으로만 변화되는 프로파일을 갖는 구조 를 가리키는 것으로 사용된다. 예를 들면, 도 1b는 1차원(즉, x 방향)으로 변화되는 프로파일을 갖는 주기적 격자를 나타낸다. 도 1b에 나타낸 주기적 격자의 프로파일은 x 방향의 함수에 따라 z 방향으로 변화된다. 그렇지만, 도 1b에 나타낸 주기적 격자의 프로파일은 실질적으로 y 방향으로 균일하거나 연속적인 것으로 추정된다.
용어 "2차원 구조"는 본원에서 적어도 2차원으로 변화되는 프로파일을 갖는 구조를 가리키는 것으로 사용된다. 예를 들면, 도 1c는 2차원(즉, x 방향 및 y 방향)으로 변화되는 프로파일을 갖는 주기적 격자를 나타낸다. 도 1c에 나타낸 주기적 격자의 프로파일은 y 방향으로 변화된다.
아래의 도 2a, 2b 및 2c에 대한 논의는 광학 계측 모델링에 대한 2차원 반복 구조의 특징을 설명한다. 도 2a는 2차원 반복 구조의 단위 셀의 전형적인 직교 그리드(orthogonal grid)의 상면도를 나타낸다. 가상의 라인 그리드는 그리드 라인이 주기성 방향을 따라 도시되는 반복 구조의 상면도에 중첩된다. 가상의 라인 그리드는 단위 셀로 칭하는 영역을 형성한다. 단위 셀은 직교 또는 비직교 구성으로 배열될 수 있다. 2차원 반복 구조는 반복 포스트(repeating post), 콘택트 홀, 비어(via), 아일랜드(island), 또는 단위 셀 내의 2개 이상의 형상의 조합과 같은 특징들을 포함할 수 있다. 더욱이, 이 특징들은 다양한 형상을 가질 수 있고 오목하거나 볼록한 특징 또는 오목하고 볼록한 특징의 조합일 수 있다. 도 2a를 참조하면, 반복 구조(300)는 구멍이 직교식으로 배열된 단위 셀을 포함한다. 단위 셀(302)은 실질적으로 단위 셀(302)의 중앙에 구멍(304)을 주로 포함하여 단위 셀(302)의 내부에 모든 특징 및 구성요소를 포함한다.
도 2b는 2차원 반복 구조의 상면도를 나타낸다. 단위 셀(310)은 오목한 타원형 구멍을 포함한다. 도 2b는 치수가 구멍의 바닥까지 점차로 더 작아지는 타원형 구멍을 포함하는 특징(320)을 갖는 단위 셀(310)을 나타낸다. 구조를 특징화하는데 이용되는 프로파일 파라미터는 X 피치(312) 및 Y 피치(314)를 포함한다. 게다가, 특징(320)의 정상을 나타내는 타원(316)의 주축 및 특징(320)의 바닥을 나타내는 타원(318)의 주축은 특징(320)을 특징화하는데 이용될 수 있다. 더욱이, 특징의 정상과 바닥 사이의 중간 주축은 또한 정상, 중간, 또는 바닥 타원의 임의 부축(도시되지 않음)만큼 잘 이용될 수 있다.
도 2c는 2차원 반복 구조의 상면도를 특징화하는 전형적인 기법을 나타내는 도면이다. 반복 구조의 단위 셀(330)은 특징(332), 즉 위에서 본 경우 호두 형상의 아일랜드이다. 한가지 모델링 방법은 변수 또는 타원과 다각형의 조합을 갖는 특징(332)에 근접하는 것을 포함한다. 특징(322)의 상면 형상의 변화성을 분석한 후, 2개의 타원, 즉 Ellipsoid 1과 Ellipsoid 2, 및 2개의 다각형, 즉 Polygon 1과 Polygon 2가 특징(332)을 완전히 특징화하는 것으로 밝혀진 것이 결정되었음을 또한 가정한다. 다음으로, 2개의 타원과 2개의 다각형을 특징화하는데 필요한 파라미터는 다음과 같은 9개의 파라미터를 포함한다: Ellipsoid 1에 대하여 T1 및 T2; Polygon 1에 대하여 T3, T4 및 θ1; Polygon 2에 대하여 T4, T5 및 θ2; Ellipsoid 2에 대하여 T6 및 T7. 다른 많은 조합의 형상들이 단위 셀(330) 내의 특징(332)의 상면을 특징화하는데 이용될 수 있다. 2차원 반복 구조의 모델링의 상세한 설명에 대해서는, 2004년 4월 27일자 Vuong 등이 출원한 OPTICAL METROLOGY OPTIMIZATION FOR REPETITIVE STRUCTURES란 제목의 미국특허출원 제11/061,303호를 참조하고, 이는 전반적으로 본원에 참고로 반영되어 있다.
도 3은 반도체 웨이퍼 상에 형성된 패턴화 구조를 검사하기 위한 전형적인 흐름도이다. 도 3을 참조하면, 단계 400에서, 패턴화 구조의 광학 계측 모델이 생성된다. 광학 계측 모델은 패턴화 구조의 프로파일을 특징화하는 파라미터(즉, 프로파일 파라미터), 구조의 층에 사용되는 물질 굴절에 관련된 파라미터(즉, 물질 굴절 파라미터), 및 반복 구조에 대한 조명 빔의 계측 장치 및 각도 설정에 관련된 파라미터(즉, 계측 장치 파라미터)를 포함한다.
위에서 언급한 바와 같이, 프로파일 파라미터는 높이, 폭, 측벽각, 및 톱 라운딩(top-rounding), T-토핑(T-topping), 푸팅(footing) 등과 같은 프로파일 특징의 특징화를 포함할 수 있다. 또한 언급한 바와 같이, 반복 구조에 대한 프로파일 파라미터는 단위 셀의 X 피치와 Y 피치, 구멍이나 아일랜드 등의 상면 형상을 특징화하는데 이용되는 타원의 주축과 부축 및 다각형의 치수를 포함할 수 있다.
계속해서 도 3을 참조하면, 물질 굴절 파라미터는 다음의 방정식에서 나타낸 바와 같이 굴절률 N 파라미터 및 소멸 계수 K 파라미터를 포함한다:
식 중, λ는 파장, α는 물질에 대한 굴절률 상수, b는 물질에 대한 소멸 계수 상수이다. 부동(floating)의 N 및 K 대신에, 상수 a 및 b가 광학 계측 모델에서 부동될 수 있다.
단계 402에서, 프로파일 파라미터, 물질 굴절 파라미터, 계측 장치 파라미터의 범위가 한정된다. 일례에서, 물질 굴절 파라미터(예컨대, N 및 K 파라미터) 및 계측 장치 파라미터(예컨대, 반복 구조의 주기성의 방향에 대한 입사 빔의 입사각 및 방위각)가 한정된다. 위에서 지적한 바와 같이, 상수 a 및 b는 N 및 K 파라미터에 사용될 수 있다.
단계 404에서, 측정된 회절 신호가 얻어지고, 여기서 측정된 회절 신호는 광학 계측 장치를 사용하여 패턴화 구조에서 벗어나 측정되었다. 일례에서, 측정된 회절 신호를 얻기 위해 특정 광학 계측 장치가 선택되어 사용될 수 있다. 광학 계측 장치는 반사계, 타원계, 하이브리드 반사계/타원계 등일 수 있다.
단계 406에서, 광학 계측 모델은 측정된 회절 신호와, 프로파일 파라미터, 물질 굴절 파라미터 및 계측 장치 파라미터의 범위를 이용하여 최적화된다. 예를 들면, 초기의 광학 계측 모델이 한정될 수 있다. 하나 이상의 모의 회절 신호가 단계 402에서 한정된 범위 내의 프로파일 파라미터, 물질 굴절 파라미터, 계측 장치 파라미터에 대한 값을 사용하여 초기의 광학 계측 모델에 대하여 생성될 수 있다. 하나 이상의 모의 회절 신호는 측정된 회절 신호에 비교될 수 있다. 이 비교의 결과는 비용 함수(cost function), GOF(goodness of fit) 등과 같은 하나 이상의 종료 기준(termination criteria)을 사용하여 평가될 수 있다. 하나 이상의 종료 기준이 만족되지 않으면, 초기의 광학 계측 모델은 개량된 광학 계측 모델을 생성하도록 변경될 수 있다. 하나 이상의 회절 신호를 생성하여 그 하나 이상의 회절 신호를 측정된 회절 신호와 비교하는 프로세스가 반복될 수 있다. 이 광학 계측 모델 변경 프로세스는 하나 이상의 종료 기준이 최적화된 계측 모델을 얻는데 만족될 때까지 반복될 수 있다. 계측 모델 최적화의 상세한 설명에 대해서는, 2002년 6월 27일자 Vuong 등이 출원한 OPTIMIZATION MODEL AND PARAMETER SELECTION FOR OPTICAL METROLOGY란 제목의 미국특허출원 일련번호 제10/206,491호; 2004년 9월 21일자 Vuong가 출원한 OPTICAL METROLOGY MODEL OPTIMIZATION BASED ON GOALS란 제목의 미국특허출원 제10/946,729호; 및 2004년 4월 27일자 Vuong 등이 출원한 OPTICAL METROLOGY OPTIMIZATION FOR REPETITIVE STRUCTURES란 제목의 미국특허출원 일련번호 제11/061,303호를 참조하고, 이들 모두는 전반적으로 본원에 참고로 반영되어 있다.
단계 408에서, 물질 굴절 파라미터 및 계측 장치 파라미터 중에서 적어도 하나의 파라미터에 대해서, 적어도 하나의 파라미터는 적어도 하나의 파라미터에 대 한 값의 범위 내에 있는 고정값으로 설정된다. 도 4a 및 도 4b는 단계 408에서 고정값으로서 사용될 수 있는 광학 계측 모델의 파라미터의 값을 얻기 위한 기법의 전형적인 흐름도이다.
도 4a는 N 및 K 파라미터의 값을 얻기 위한 기법의 전형적인 흐름도이다. 단계 500에서, 상수 a 및 b를 포함하여 N 및 K 파라미터는 동일한 물질, 동일한 레시피의 이전 실행 및 공개물 또는 핸드북으로부터의 이력값을 사용하여 이전 웨이퍼 구조로부터의 유사한 데이터와 같은 실험적 데이터로부터 얻어진다. 단계 510에서, 상수 a 및 b를 포함하여 N 및 K 파라미터는 에칭 또는 트랙 통합 제조 설비 등의 제조 설비와 통합된 광학 계측 장치를 사용한 측정치로부터 얻어진다. 단계 520에서, 상수 a 및 b를 포함하여 N 및 K 파라미터는 오프라인 광학 계측 장치를 사용하여 얻어진다.
일 실시예에서, 단계 520에서 측정된 위치는 패턴화 구조에 인접한 비패턴화 영역이다. 또 다른 실시예에서, 측정된 위치는 패턴화 구조에 인접하지 않고 동일한 웨이퍼의 테스트 영역에 또는 테스트 웨이퍼의 영역에 존재할 수 있다. 또 다른 실시예에서, 하나의 위치가 웨이퍼마다 또는 로트마다 측정되고, 얻어진 상수 a 및 b는 동일한 웨이퍼에, 전체 웨이퍼 로트에, 또는 전체 프로세스 이행에 사용된다. 이와 다르게, 층의 두께와 상수 a 및 b의 이전의 상관 관계는 일단 층의 두께가 결정되면 상수 a 및 b의 값을 얻는데 사용될 수 있다.
도 4a를 참조하면, 단계 540에서, 다양한 소스로부터 얻어지고 다양한 기법을 이용하는 물질 데이터는 패턴화 구조의 프로파일 결정의 이용에 처리된다. 예를 들면, 상수 a 및 b를 결정하는데 몇 가지 측정이 이루어지는 경우, 통계 평균이 계산될 수 있다.
도 4b는 계측 장치 파라미터에 대한 값을 얻기 위한 흐름도이다. 일 실시예에서, 단계 600에서, 선택된 계측 장치에 기초하여, 조명 빔의 입사각은 계측 장치가 가변 입사각을 갖는 경우 벤더 스펙(vendor specification)으로부터 또는 애플리케이션에 사용되는 설정으로부터 얻어진다. 마찬가지로, 단계 610에서, 방위각은 선택된 광학 계측 장치 및 웨이퍼 구조 애플리케이션에 기초하여 결정될 수 있다. 단계 640에서, 광학 계측용 프로세스 장치의 스펙 및 설정 데이터가 처리된다. 선택된 계측 장치에 따라 수직 입사를 갖는 반사계 또는 고정각의 입사를 갖는 타원계가 주어지면, 수직 입사 또는 고정각은 광학 계측 모델에 요구되는 포맷으로 변환된다. 계측 장치의 방위각이 광학 계측 모델에 요구되는 포맷으로 또한 변환되는 경우에도 마찬가지이다.
도 3을 참조하면, 단계 410에서, 패턴화 구조의 프로파일은 단계 408에서 최적화된 광학 계측 모델 및 고정값을 사용하여 결정될 수 있다. 특히, 패턴화 구조의 적어도 하나의 프로파일 파라미터는 단계 408에서 최적화된 광학 계측 모델 및 고정값을 사용하여 결정된다. 이 적어도 하나의 프로파일 파라미터는 회귀 프로세스(regression process) 또는 라이브러리 기반 프로세스를 사용하여 결정될 수 있다.
상술한 바와 같이, 회귀 프로세스에서, 패턴화 구조에서 벗어나서 측정된 측정 회절 신호는 모의 회절 신호와 비교되는데, 이 모의 회절 신호는 측정된 회절 신호에 비교해서 가장 가까운 정합 모의 회절 신호를 생성하는 프로파일 파라미터의 세트에 대한 수렴값을 얻기 위해 프로파일 파라미터의 세트에 기초하여 반복적으로 생성된다. 회귀 기반 프로세스의 보다 상세한 설명에 대해서는, 2004년 8월 31일자 METHOD AND SYSTEM OF DYNAMIC LEARNING THROUGH A REGRESSION-BASED LIBRARY GENERATION PROCESS란 제목의 미국특허 제6,785,638호를 참조하고, 이는 전반적으로 본원에 참고로 반영되어 있다.
라이브러리 기반 프로세스에서, 광학 계측 데이터 스토어(store)는 최적화된 계측 모델을 사용하여 생성된다. 광학 계측 데이터 스토어는 모의 회절 신호 및 프로파일 파라미터의 대응 세트의 쌍을 갖는다. 모의 회절 신호 및 프로파일 파라미터의 대응 세트의 라이브러리와 같은 광학 계측 데이터의 생성에 관한 상세한 설명은 2005년 9월 13일자 Niu 등에게 허여된 GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNAL이란 제목의 미국특허 제6,913,900호에 기술되고, 이는 전반적으로 본원에 참고로 반영되어 있다.
일 실시예에서, 패턴화 구조의 프로파일은 단계 408에서 고정값 내에 있는, 계측 데이터 스토어의 서브셋 및 측정된 회절 신호를 사용하여 결정된다. 예를 들면, N 및 K 파라미터의 a 및 b 상수값이 단계 408에서 고정되면, 사용되는 광학 계측 데이터 스토어의 부분은 고정값 a 및 b에 대응하는 프로파일 파라미터의 세트 및 모의 회절 신호이다.
또 다른 실시예에서, 패턴화 구조의 프로파일은 측정된 회절 신호 및 전체 광학 계측 데이터 스토어를 사용하여, 즉 전체 데이터 공간을 탐색하여 결정된다. 예를 들면, 패턴화 구조의 프로파일은 측정된 회절 신호 및 전체 계측 데이터를 사용하여, 즉 최상의 정합 모의 회절 신호를 탐색하면서 a 및 b 상수를 부동시켜 결정된다.
도 5는 실시간 프로파일 추정기의 전형적인 구성도이다. 제 1 제조 클러스터(916)는 계측 클러스터(912)에 연결된다. 제 1 제조 클러스터(916)는 포토리소그래피, 에칭, 열 처리 시스템, 금속화, 주입, 화학적 기상 증착(CVD), 화학적 기계 연마(CMP), 또는 기타 다른 제조 유닛 중 하나 이상을 포함할 수 있다. 제 1 제조 클러스터(916)는 하나 이상의 프로세스 단계를 통해서 웨이퍼(도시되지 않음)를 처리한다. 각 프로세스 단계 이후, 웨이퍼는 계측 클러스터(912)에서 측정될 수 있다. 계측 클러스터(912)는 반사계, 타원계, 하이브리드 반사계/타원계, 스캐닝 전자 마이크로스코프, 센서 등과 같은 인라인 또는 오프라인 세트의 계측 장치일 수 있다.
웨이퍼 구조를 측정한 후, 계측 클러스터(912)는 회절 신호(811)를 모델 옵티마이저(904)에 전송한다. 계측 모델 옵티마이저(904)는 제조 레시피 입력 정보와 최적화 파라미터(803), 계측 데이터 스토어(914)로부터의 이전의 실험적 구조 프로파일 데이터(809) 및 계측 클러스터(912)로부터의 측정된 회절 신호(811)를 사용하여, 측정된 구조의 광학 계측 모델을 생성 및 최적화한다. 레시피 데이터(recipe data)(803)는 적층 상태의 패턴화 및 비패턴화 구조의 층에 물질을 포함한다. 최적화 파라미터(803)는 프로파일 파라미터, 물질 굴절 파라미터, 및 광학 계측 모델에서 부동되는 계측 장치 파라미터를 포함한다. 모델 옵티마이저(904)는 패턴화 구조 에서 벗어난 측정된 회절 신호(811), 레시피 데이터와 최적화 파라미터(803), 계측 데이터 스토어(914)로부터의 실험적 데이터(809)에 기초해 광학 계측 모델을 최적화하여, 실시간 프로파일 추정기(918)에 전송되는 최적화된 광학 계측 모델(815)을 생성한다.
도 5를 참조하면, 실시간 프로파일 추정기(918)는 패턴화 구조 프로파일, 임계 치수 및 하부 두께(843)를 결정하기 위해서 최적화된 광학 계측 모델(815), 측정된 회절 신호(817), 및 실험적 계측 데이터(805)를 이용한다. 실험적 계측 데이터(805)는 고정된 프로파일 파라미터(피치(pitch) 등), N 및 K 파라미터(상수 a 및 b 등), 및/또는 계측 장치 파라미터(입사각 및/또는 방위각 등)를 포함할 수 있다. 또한 실시간 프로파일 추정기(918)의 출력은 선택적으로, 데이터(841)로서 제 1 제조 클러스터(916)에, 데이터(827)로서 기억용 계측 데이터 스토어(914)에, 그리고 데이터(845)로서 제 2 제조 클러스터(930)에 전송된다.
제 1 제조 클러스터(916)에 전송된 데이터(841)는 하부 막 두께, CD, 및/또는 패턴화 구조의 하나 이상의 프로파일 파라미터의 값을 포함할 수 있다. 하부 막 두께, CD, 및/또는 패턴화 구조의 하나 이상의 프로파일 파라미터의 값은 제 1 제조 클러스터가 포토리소그래피 제조 클러스터를 위한 포커스 및 도우즈(dose) 또는 이온 주입 제조 클러스터를 위한 도펀트 농도와 같은 하나 이상의 프로세스 파라미터를 선택하는데 사용될 수 있다. 제 1 제조 클러스터(930)에 전송된 데이터(845)는 에칭 제조 클러스터에서의 에천트 농도 또는 증착 클러스터에서의 증착 시간을 선택하는데 사용될 수 있는 패턴화 구조 CD를 포함할 수 있다. 계측 데이터 스토어 에 전송된 데이터(827)는 다른 애플리케이션을 위한 검색을 용이하게 하기 위해 웨이퍼 식별정보(ID), 로트(lot) ID, 레시피 및 패턴화 구조 ID 등의 식별 정보와 함께 하부 막 두께, CD, 및/또는 패턴화 구조의 프로파일 파라미터의 값을 포함한다.
도 5를 참조하면, 상술한 바와 같이, 계측 데이터 스토어(914)는 계측 데이터를 구성 및 인덱싱하기 위한 수단으로서 웨이퍼 ID, 로트 ID, 레시피 및 패턴화 구조 ID 등의 식별 정보를 이용할 수 있다. 계측 클러스터(912)로부터의 데이터(813)는 웨이퍼, 로트, 레시피, 장소 또는 웨이퍼 위치에 대한 식별정보와 연관된 측정된 회절 신호, 및 패턴화 구조 또는 비패턴화 구조를 포함한다. 계측 모델 옵티마이저(904)로부터의 데이터(809)는 패턴화 구조 프로파일과 연관된 변수, 계측 장치 유형 및 연관 변수, 그리고 모델링에서 부동되는 변수 및 모델링에서 고정되는 변수 값에 이용된 범위를 포함한다. 상술한 바와 같이, 실험적 계측 데이터(805)는 고정된 프로파일 파라미터(피치 등), N 및 K 파라미터(상수 a 및 b 등), 및/또는 계측 장치 파라미터(입사각 및/또는 방위각 등)를 포함할 수 있다.
도 6은 측정된 회절 신호에 대응하는 프로파일을 결정하기 위해 프로파일 서버를 생성 및 이용하는 전형적인 구성도이다. 도 6은 두 가지를 제외하고는 도 5와 동일하다. 첫째로는, 도 6에서의 모델 옵티마이저(904)는 계측 모델을 최적화하는 것에 부가하여 2개의 데이터 세트 중 하나 또는 2개 모두를 생성할 수 있다는 것이다. 제 1 데이터 세트는 프로파일 파라미터의 대응하는 세트와 모의 회절 신호의 쌍의 라이브러리이다. 제 2 데이터 세트는 상술한 제 1 데이터 세트의 라이브러리의 서브 세트로 트레이닝될 수 있는 트레이닝된 기계 학습 시스템(MLS: machine learning system)이다. 제 1 및/또는 제 2 데이터 세트(819)는 계측 데이터 스토어(914)에 기억된다. 두 번째로는, 도 5에서의 실시간 프로파일 추정기(918)가 도 6에서는 프로파일 서버(920)로 대체되었다는 것이다. 프로파일 서버(920)는 계측 모델 옵티마이저(904)로부터 입수 가능한 라이브러리 데이터 세트 또는 트레이닝된 MLS 데이터 세트 중 어느 것이든 사용할 수 있다. 이와 다르게, 프로파일 서버(920)는 계측 데이터 스토어(914)의 기억된 데이터 세트를 액세스할 수 있다. 프로파일 서버(920)는 하부 막 두께, CD, 및 패턴화 구조(843)의 프로파일 파라미터를 결정하기 위해 계측 클러스터(912)로부터의 측정된 회절 신호(817), 라이브러리, 또는 계측 데이터 스토어(914)로부터의 트레이닝된 MLS를 사용한다. 더욱이, 프로파일 서버(920)는 측정된 회절 신호(817)와의 최상의 정합을 찾는데 사용되는 트레이닝된 MLS 또는 라이브러리의 경계를 설정하기 위해, 고정된 프로파일 파라미터(피치 등), N 및 K 파라미터(상수 a 및 b 등), 및/또는 계측 장치 파라미터(입사각 및/또는 방위각 등)를 포함하는 실험적 계측 데이터(805)를 사용할 수 있다.
도 7은 패턴화 구조의 프로파일 파라미터를 결정하기 위해 계측 프로세서 및 계측 데이터 스토어와 2개 이상의 제조 시스템을 연결하기 위한 전형적인 구성도이다. 제 1 제조 시스템(940)은 모델 옵티마이저(942), 실시간 프로파일 추정기(944), 프로파일 서버(946), 제조 클러스터(948), 및 계측 클러스터(950)를 포함한다. 제 1 제조 시스템(940)은 계측 프로세서(1010)에 연결된다. 계측 프로세서(1010)는 계측 데이터 소스(1000), 계측 데이터 스토어(1040), 제조 호스트 프로세서(1020), 및 프로세스 시뮬레이터(1050)에 연결된다.
도 7을 참조하면, 제 1 제조 시스템(940)의 구성, 즉 모델 옵티마이저(942), 실시간 프로파일 추정기(944), 프로파일 서버(946), 제조 클러스터(948) 및 계측 클러스터(950)가 도 5 및 도 6에 개시된 대응하는 장치와 동일한 기능을 각각 수행하도록 구성된다. 계측 프로세서(1010)는 오프라인 또는 원격의 계측 데이터 소스(1000)로부터 계측 데이터(864)를 수신한다. 오프라인 계측 데이터 소스(1000)는 반사계(reflectometer), 타원계(ellipsometer), SEM 등의, 제조 위치에서의 계측 장치들의 오프라인 클러스터일 수 있다. 원격의 계측 데이터 소스(1000)는 애플리케이션을 위해 계측 데이터를 제공하는 웹사이트, 원격 데이터 서버 또는 원격 프로세서를 포함할 수 있다. 제 1 제조 시스템(940)으로부터 계측 프로세서(1010)로의 데이터(860)는 구조 프로파일 파라미터를 결정하기 위해, 생성된 데이터 스토어와 최적화된 계측 모델의 프로파일 파라미터 범위를 포함할 수 있다. 데이터 스토어(1040)는 프로파일 파라미터의 대응하는 세트와 모의 회절 신호의 쌍의 라이브러리 또는 입력된 측정 회절 신호에 대한 프로파일 파라미터의 세트를 생성할 수 있는 트레이닝된 MLS 시스템을 포함할 수 있다. 데이터 스토어(1040)로부터 계측 프로세서(1010)로의 데이터(870)는 모의 회절 신호 및/또는 프로파일 파라미터의 세트를 포함한다. 계측 프로세서(1010)로부터 제 1 계측 시스템(940)으로의 데이터(860)는 계측 데이터 스토어(1040)에서의 트레이닝된 MLS 스토어 또는 라이브러리에서 검색될 데이터 공간의 부분을 지정하기 위해서 프로파일 파라미터, 물질 굴절 파라미터 및 계측 장치 파라미터의 값을 포함한다. 계측 프로세서(1010)에 대하여 제 2 제조 시스템(970)으로 및 이로부터 전송된 데이터(862)는 제 1 제조 시스 템(940)으로 및 이로부터 전송된 데이터(860)와 동일하다.
다시 도 7을 참조하면, 제조 프로세서(1020)에 대하여 계측 프로세서(1010)로 및 이로부터 전송된 데이터(866)는 제 1 및 제 2 제조 시스템(940 및 970)에서 계측 클러스터(950, 980)에 의해서 측정된 프로세스 데이터와 애플리케이션 레시피에 연관된 데이터를 포함할 수 있다. 프로세스 시뮬레이터(1050)를 이용하여 산출된 프로파일 파라미터와 같은 데이터(868)는 계측 모델의 선택 변수를 고정된 값으로 설정하는데 이용하도록 계측 프로세서(1010)로 전송된다. 프로세스 시뮬레이터의 예로는 ProlithTM, RaphaelTM, AthenaTM 등을 들 수 있다. 이와 다르게, 프로파일 파라미터 값은 프로파일 서버(946 및 976)가 계측 데이터 스토어(1040)에서의 트레이닝된 MLS 스토어 또는 라이브러리에서의 검색을 위한 데이터 공간을 규정하기 위해 이용될 수 있다. 도 7에서의 계측 데이터 스토어(1040)는 계측 데이터의 저장소이고 이 계측 데이터는 제 1 및/또는 제 2 제조 시스템(940 및 970)에 이용될 수 있다. 상술한 바와 같이, 제 1 및/또는 제 2 제조 시스템(940 및 970)은 포토리소그래피, 에칭, 열처리 시스템, 금속화, 주입, 화학적 기상 증착(CVD), 화학적 기계 연마(CMP) 또는 다른 제조 유닛 중 하나 이상을 포함할 수 있다.
도 8은 패턴화 구조 프로파일 결정과, 자동 처리 및 장치 제어를 위한 계측 데이터를 관리 및 이용하기 위한 전형적인 흐름도이다. 단계 1100에서, 광학 계측 모델은 도 3에 개시된 방법을 사용하여 생성 및 최적화된다. 단계 1110에서, 구조 프로파일 파라미터를 결정하기 위한 하나 이상의 데이터 스토어는 최적화된 광학 계측 모델을 이용하여 생성된다. 데이터 스토어는 입력 측정된 회절 신호에 대한 프로파일 파라미터의 세트를 생성할 수 있는 트레이닝된 MLS 시스템, 또는 프로파일 파라미터의 대응하는 세트와 모의 회절 신호의 쌍의 라이브러리를 포함할 수 있다. 단계 1120에서, 프로파일 파라미터, 물질 굴절 파라미터 및 계측 장치 파라미터용 데이터가 얻어진다. 상술한 바와 같이, 선택된 프로파일 파라미터는 유사 웨이퍼 애플리케이션용 이력 데이터 또는 측정된 값을 사용하여 일정하거나 또는 고정될 수 있는 파라미터이다. 물질 굴절 파라미터의 값은 굴절률 N과 손실 계수 K에 대하여 상수 a 및 b이다. 입사각 등의, 계측 장치 파라미터의 값은 계측 장치의 벤더 스펙(vendor specification)으로부터 얻어진다. 방위각의 값은 회절 측정시 사용되는 설정(setup)으로부터 얻어진다. 단계 1130에서, 프로파일 파라미터, CD(critical dimension) 및 하부 두께가 측정된 회절 신호를 사용하여 판정된다.
도 8을 참조하면, 단계 1140에서, 구조의 프로파일 파라미터 및 물질 데이터는 식별 정보와 연관된다. 식별 정보는 측정된 구조의 위치, 웨이퍼, 웨이퍼 로트, 런(run), 애플리케이션 레시피 및 다른 제조 관련 데이터를 포함한다. 단계 1150에서, 계측 데이터 및 연관 식별 정보는 계측 데이터 스토어에 기억된다. 계측 데이터 및/또는 연관 식별 정보는 단계 1160에서 이후 또는 이전 제조 프로세스 단계로 전송될 수 있다. 단계 1170에서, 전송된 계측 데이터 및/또는 연관된 식별 정보는 이후 또는 이전 제조 프로세스 단계에서의 적어도 하나의 프로세스 변수, 또는 이전, 현재 또는 이후 제조 프로세스 단계에서의 장치 제어 변수를 조절하는데 사용된다. 예를 들면, 에칭 프로세스 단계에서 구조의 MCD(Middle Critical Dimension) 의 값은 MCD의 값이 포토리소그래피 프로세스 단계에서 스텝퍼(stepper)의 포커스 및/또는 도우즈(dose)를 조절하는데 사용되는 이전 리소그래피 프로세스 단계로 전송된다. 이와 다르게, 구조의 BCD(bottom critical dimension)는 에칭 프로세스 단계로 전송될 수 있고, 에천트의 농도 또는 에칭의 길이를 조절하는데 BCD의 값이 사용된다. 다른 실시예에서, MCD는 MCD의 값이 PEB 프로세스의 온도를 조절하는데 사용되는 PEB(post exposure bake) 프로세스 단계와 같은 현재 프로세스로 전송될 수 있다. 이 MCD는 또한 에칭 프로세스에서의 반응 챔버 압력 등의, 현재 프로세스에서의 프로세스 변수를 조절하는데 사용될 수 있다.
특히, 본 명세서에 개시된 본 발명의 기능 구현은 하드웨어, 소프트웨어, 펌웨어, 및/또는 다른 가용한 기능 구성 또는 빌딩 블록으로 동일하게 구현될 수 있는 것으로 상정한다. 예를 들면, 계측 데이터 스토어는 컴퓨터 메모리에서 또는 실제 컴퓨터 저장 장치 또는 매체에서 이루어질 수 있다. 다른 변형예 및 실시예들은 상기 기술의 견지에서 이루어질 수 있고, 따라서 본 발명의 범주는 본 상세한 설명에 의해서 한정되지 않지 않으며 이하 청구범위에 의해서 한정되는 것을 의도로 한다.
도 1a는 반도체 웨이퍼 상의 구조의 프로파일을 결정하는데 광학 계측(optical metrology)이 이용될 수 있는 전형적인 실시예를 예시하는 구성도.
도 1b는 전형적인 1차원 반복 구조를 나타내는 도면.
도 1c는 전형적인 2차원 반복 구조를 나타내는 도면.
도 2a는 2차원 반복 구조의 단위 셀의 전형적인 직교 그리드(orthogonal grid)를 나타내는 도면.
도 2b는 2차원 반복 구조의 상면도.
도 2c는 2차원 반복 구조의 상면도를 특징화하는 전형적인 기법을 나타내는 도면.
도 3은 광학 계측 변수의 얻어진 값을 이용하여 웨이퍼 구조의 프로파일 파라미터를 결정하는 전형적인 흐름도.
도 4a는 웨이퍼 구조에 대한 굴절률을 얻기 위한 기법의 전형적인 흐름도.
도 4b는 계측 장치 변수에 대한 값을 얻기 위한 전형적인 흐름도.
도 5는 실시간 프로파일 추정기(real time profile estimator)에 대한 실시예의 전형적인 구성도.
도 6은 프로파일 서버 데이터 스토어를 생성 및 이용하는 실시예의 전형적인 구성도.
도 7은 패턴화 구조의 프로파일 파라미터를 결정하도록 2개 이상의 제조 시스템을 계측 프로세서와 계측 데이터 스토어와 연결하기 위한 전형적인 구성도.
도 8은 자동화 프로세스 및 설비 제어용 계측 데이터를 관리 및 이용하는 전형적인 흐름도.
<도면의 주요 부분에 대한 부호의 설명>
40 : 광학 계측 시스템
41 : 계측 빔 소스
43 : 빔
47 : 웨이퍼
49 : 회절 빔
51 : 계측 빔 수신기
53 : 프로파일 애플리케이션 서버
57 : 회절 빔 데이터
59 : 타깃 구조
Claims (31)
- 광학 계측 모델을 사용하여, 반도체 웨이퍼 상에 형성된 패턴화 구조를 검사하는 시스템에 있어서,웨이퍼를 처리하도록 구성된 제 1 제조 클러스터로서, 상기 웨이퍼는 제 1 패턴화 및 제 1 비패턴화 구조를 갖고, 상기 제 1 패턴화 구조는 하부 막 두께, 임계 치수(critical dimension) 및 프로파일을 갖는 것인 상기 제 1 제조 클러스터와;상기 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함하며, 상기 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성되는 계측 클러스터와;상기 계측 클러스터에 연결되며, 상기 제 1 패턴화 구조에서 벗어난 하나 이상의 측정된 회절 신호를 이용하여 그리고 부동(floating) 프로파일 파라미터, 물질 굴절 파라미터 및 계측 장치 파라미터로, 상기 제 1 패턴화 구조의 광학 계측 모델을 최적화하도록 구성되는 광학 계측 모델 옵티마이저(optical metrology model optimizer)와;상기 광학 모델 옵티마이저 및 상기 계측 클러스터에 연결되며, 상기 광학 계측 모델 옵티마이저로부터의 최적화된 광학 계측 모델, 상기 제 1 패턴화 구조에서 벗어난 측정된 회절 신호, 및 상기 물질 굴절 파라미터와 상기 계측 장치 파라미터 중에서 적어도 하나의 파라미터에 대한 값의 범위 내에 있는 고정값을 이용하 도록 구성되고, 상기 제 1 패턴화 구조의 하부 막 두께, 임계 치수 및 프로파일을 포함하는 출력을 생성하도록 구성되는 실시간 프로파일 추정기(real time profile estimator)를 포함하는, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 제 1 제조 클러스터는 포토리소그래피, 에칭(etch), 증착, 화학적 기계 연마, 또는 열 제조 클러스터를 포함하는 것인, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 제 1 패턴화 구조는 단위 셀에 의해 한정된 반복 패턴화 구조인 것인, 패턴화 구조 검사 시스템.
- 제 3 항에 있어서,상기 단위 셀은 아일랜드(island), 포스트(post), 홀(hole), 또는 비어(via)를 포함하는 하부구조(substructure) 중 하나 이상을 포함하는 것인, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 계측 클러스터는 반사계(reflectometer), 타원계(ellipsometer), 하이 브리드 스캐터로미터(hybrid scatterometer), 및/또는 스캐닝 전자 마이크로스코프를 포함하는 것인, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 제 1 제조 클러스터 및 상기 계측 클러스터는 통합된 장치를 형성하는 것인, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 계측 클러스터는 굴절률(N) 파라미터 및 소멸 계수(K) 파라미터를 포함하는 상기 제 1 패턴화 구조 층의 물질 굴절 파라미터를 측정하도록 더 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 7 항에 있어서,상기 광학 계측 모델 옵티마이저는 N 파라미터, K 파라미터, 및/또는 계측 장치 파라미터를 부동(float)시키도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 8 항에 있어서,상기 실시간 프로파일 추정기는 프로파일 파라미터, 물질 굴절 파라미터, 및 계측 장치 파라미터의 취득값들을 사용하여 상기 제 1 패턴화 구조의 프로파일 및 임계 치수를 결정하도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 8 항에 있어서,상기 광학 계측 모델 옵티마이저는, N 파라미터에 대한 벡터식 N(λ, a)에서 벡터 a를 부동시키고, K 파라미터에 대한 벡터식 K(λ, b)에서 벡터 b를 부동시키도록 구성되며, 여기서 λ는 파장인 것인, 패턴화 구조 검사 시스템.
- 제 10 항에 있어서,상기 실시간 프로파일 추정기는 상기 계측 클러스터를 사용하여 N 파라미터에 대한 벡터 a 및 K 파라미터에 대한 벡터 b의 취득값들을 사용하도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 11 항에 있어서,상기 실시간 프로파일 추정기는 N 파라미터에 대한 벡터 a, K 파라미터에 대한 벡터 b, 입사각, 및/또는 방위각의 취득값들을 사용하도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 제 1 패턴화 구조의 적어도 하나의 프로파일 파라미터 값은 상기 제 1 제조 클러스터에 전송되고, 상기 적어도 하나의 프로파일 파라미터 값은 상기 제 1 제조 클러스터의 적어도 하나의 프로세스 단계의 처리를 변경하는데 사용되는 것 인, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 실시간 프로파일 추정기에 연결되며, 웨이퍼를 처리하도록 구성되는 제 2 제조 클러스터를 더 포함하고,상기 웨이퍼는 제 2 패턴화 및 제 2 비패턴화 구조를 갖고, 상기 제 2 패턴화 구조는 하부 막 두께, 임계 치수 및 프로파일을 갖는 것인, 패턴화 구조 검사 시스템.
- 제 14 항에 있어서,상기 실시간 프로파일 추정기는 상기 제 2 패턴화 구조의 적어도 하나의 프로파일 파라미터를 결정하도록 구성되고, 상기 실시간 프로파일 추정기는 상기 적어도 하나의 프로파일 파라미터를 상기 제 2 제조 클러스터에 전송하도록 구성되며, 상기 적어도 하나의 프로파일 파라미터는 상기 제 2 제조 클러스터의 적어도 하나의 프로세스 단계의 처리를 변경하는데 사용되는 것인, 패턴화 구조 검사 시스템.
- 제 1 항에 있어서,상기 계측 클러스터는,상기 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함하며, 상기 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성되는 인라인 계측 클러스터; 및/또는상기 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함하며, 상기 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성되는 오프라인 계측 클러스터;를 포함하는 것인, 패턴화 구조 검사 시스템.
- 광학 계측 모델을 사용하여, 반도체 웨이퍼 상에 형성된 패턴화 구조를 검사하는 시스템에 있어서,웨이퍼를 처리하도록 구성된 제 1 제조 클러스터로서, 상기 웨이퍼는 제 1 패턴화 및 제 1 비패턴화 구조를 갖고, 상기 제 1 패턴화 구조는 하부 막 두께, 임계 치수 및 프로파일을 갖는 것인 상기 제 1 제조 클러스터와;상기 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함하며, 상기 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성된 계측 클러스터와;상기 제 1 제조 클러스터 및 상기 계측 클러스터에 연결되며, 상기 제 1 패턴화 구조에서 벗어난 하나 이상의 측정된 회절 신호를 이용하여 그리고 부동 프로파일 파라미터, 물질 굴절 파라미터 및 계측 장치 파라미터로, 상기 제 1 패턴화 구조의 광학 계측 모델을 최적화하도록 구성되는 광학 계측 모델 옵티마이저와;상기 광학 모델 옵티마이저 및 상기 계측 클러스터에 연결되며, 상기 광학 계측 모델 옵티마이저로부터의 최적화된 광학 계측 모델, 상기 제 1 패턴화 구조에서 벗어난 측정된 회절 신호, 및 상기 물질 굴절 파라미터와 상기 계측 장치 파라미터 중에서 적어도 하나의 파라미터에 대한 값의 범위 내에 있는 고정값을 이용하도록 구성되고, 상기 제 1 패턴화 구조의 하부 막 두께, 임계 치수 및 프로파일을 포함하는 출력을 생성하도록 구성된 프로파일 서버를 포함하는, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 제 1 제조 클러스터는 포토리소그래피, 에칭, 증착, 화학적 기계 연마, 또는 열 제조 클러스터를 포함하는 것인, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 제 1 패턴화 구조는 단위 셀에 의해 한정된 반복 패턴화 구조이고, 상기 단위 셀은 아일랜드, 포스트, 콘택트 홀, 또는 비어를 포함하는 하부구조 중 하나 이상을 포함하는 것인, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 계측 클러스터는 반사계, 타원계, 하이브리드 스캐터로미터, 및/또는 스캐닝 전자 마이크로스코프를 포함하는 것인, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 제 1 제조 클러스터 및 상기 계측 클러스터는 통합된 장치를 형성하는 것인, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 계측 클러스터는 굴절률(N) 파라미터 및 소멸 계수(K) 파라미터를 포함하는 상기 제 1 패턴화 구조 층의 물질 굴절 파라미터를 측정하도록 더 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 22 항에 있어서,상기 광학 계측 모델 옵티마이저는 N 파라미터, K 파라미터, 및/또는 계측 장치 파라미터를 부동시키도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 23 항에 있어서,상기 실시간 프로파일 추정기는 프로파일 파라미터, 물질 굴절 파라미터, 및 계측 장치 파라미터의 취득값들을 사용하여 상기 제 1 패턴화 구조의 프로파일 및 임계 치수를 결정하도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 23 항에 있어서,상기 광학 계측 모델 옵티마이저는, N 파라미터에 대한 벡터식 N(λ, a)에서 벡터 a를 부동시키고, K 파라미터에 대한 벡터식 K(λ, b)에서 벡터 b를 부동시키도록 구성되며, 여기서 λ는 파장인 것인, 패턴화 구조 검사 시스템.
- 제 25 항에 있어서,상기 실시간 프로파일 추정기는 상기 계측 클러스터를 사용하여 N 파라미터에 대한 벡터 a 및 K 파라미터에 대한 벡터 b의 취득값들을 사용하도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 26 항에 있어서,상기 실시간 프로파일 추정기는 N 파라미터에 대한 벡터 a, K 파라미터에 대한 벡터 b, 입사각, 및/또는 방위각의 취득값들을 사용하도록 구성되는 것인, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 제 1 패턴화 구조의 적어도 하나의 프로파일 파라미터 값은 상기 제 1 제조 클러스터에 전송되고, 상기 적어도 하나의 프로파일 파라미터 값은 상기 제 1 제조 클러스터의 적어도 하나의 프로세스 단계의 처리를 변경하는데 사용되는 것인, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 실시간 프로파일 추정기에 연결되며, 웨이퍼를 처리하도록 구성되는 제 2 제조 클러스터를 더 포함하며,상기 웨이퍼는 제 2 패턴화 및 제 2 비패턴화 구조를 갖고, 상기 제 2 패턴화 구조는 하부 막 두께, 임계 치수 및 프로파일을 갖는 것인, 패턴화 구조 검사 시스템.
- 제 29 항에 있어서,상기 실시간 프로파일 추정기는 상기 제 2 패턴화 구조의 적어도 하나의 프로파일 파라미터를 결정하도록 구성되고, 상기 실시간 프로파일 추정기는 상기 적어도 하나의 프로파일 파라미터를 상기 제 2 제조 클러스터에 전송하도록 구성되며, 상기 적어도 하나의 프로파일 파라미터는 상기 제 2 제조 클러스터의 적어도 하나의 프로세스 단계의 처리를 변경하는데 사용되는 것인, 패턴화 구조 검사 시스템.
- 제 17 항에 있어서,상기 계측 클러스터는,상기 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함하며, 상기 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성되는 인라인 계측 클러스터; 및/또는상기 제 1 제조 클러스터에 연결된 하나 이상의 광학 계측 장치를 포함하며, 상기 제 1 패턴화 및 제 1 비패턴화 구조에서 벗어난 회절 신호를 측정하도록 구성되는 오프라인 계측 클러스터;를 포함하는 것인, 패턴화 구조 검사 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070075328A KR101357326B1 (ko) | 2007-07-26 | 2007-07-26 | 패턴화 구조 검사 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070075328A KR101357326B1 (ko) | 2007-07-26 | 2007-07-26 | 패턴화 구조 검사 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090011596A true KR20090011596A (ko) | 2009-02-02 |
KR101357326B1 KR101357326B1 (ko) | 2014-02-03 |
Family
ID=40682700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070075328A KR101357326B1 (ko) | 2007-07-26 | 2007-07-26 | 패턴화 구조 검사 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101357326B1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012012345A2 (en) * | 2010-07-22 | 2012-01-26 | Kla-Tencor Corporation | Method for automated determination of an optimally parameterized scatterometry model |
KR101426759B1 (ko) * | 2013-01-29 | 2014-08-06 | 경기대학교 산학협력단 | 웨이퍼 연마장치 |
KR20140135732A (ko) * | 2012-02-10 | 2014-11-26 | 도쿄엘렉트론가부시키가이샤 | 광 임계 치수(ocd) 계측을 위한 레일리 파장의 개구수 적분 |
US9036895B2 (en) | 2012-05-10 | 2015-05-19 | Samsung Electronics Co., Ltd. | Method of inspecting wafer |
WO2023039092A1 (en) * | 2021-09-10 | 2023-03-16 | Applied Materials, Inc. | Using elemental maps information from x-ray energy-dispersive spectroscopy line scan analysis to create process models |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102550690B1 (ko) | 2018-05-28 | 2023-07-04 | 삼성디스플레이 주식회사 | 타원해석기 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3762784B2 (ja) | 1995-12-28 | 2006-04-05 | 富士通株式会社 | 測定方法、測定装置および品質管理方法 |
US6943900B2 (en) * | 2000-09-15 | 2005-09-13 | Timbre Technologies, Inc. | Generation of a library of periodic grating diffraction signals |
US7330279B2 (en) * | 2002-07-25 | 2008-02-12 | Timbre Technologies, Inc. | Model and parameter selection for optical metrology |
US7394554B2 (en) * | 2003-09-15 | 2008-07-01 | Timbre Technologies, Inc. | Selecting a hypothetical profile to use in optical metrology |
-
2007
- 2007-07-26 KR KR1020070075328A patent/KR101357326B1/ko not_active IP Right Cessation
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012012345A2 (en) * | 2010-07-22 | 2012-01-26 | Kla-Tencor Corporation | Method for automated determination of an optimally parameterized scatterometry model |
WO2012012345A3 (en) * | 2010-07-22 | 2012-04-26 | Kla-Tencor Corporation | Method for automated determination of an optimally parameterized scatterometry model |
CN103026204A (zh) * | 2010-07-22 | 2013-04-03 | 克拉-坦科股份有限公司 | 用于自动确定最优参数化的散射测量模型的方法 |
US8666703B2 (en) | 2010-07-22 | 2014-03-04 | Tokyo Electron Limited | Method for automated determination of an optimally parameterized scatterometry model |
KR20140135732A (ko) * | 2012-02-10 | 2014-11-26 | 도쿄엘렉트론가부시키가이샤 | 광 임계 치수(ocd) 계측을 위한 레일리 파장의 개구수 적분 |
US9036895B2 (en) | 2012-05-10 | 2015-05-19 | Samsung Electronics Co., Ltd. | Method of inspecting wafer |
KR101426759B1 (ko) * | 2013-01-29 | 2014-08-06 | 경기대학교 산학협력단 | 웨이퍼 연마장치 |
WO2023039092A1 (en) * | 2021-09-10 | 2023-03-16 | Applied Materials, Inc. | Using elemental maps information from x-ray energy-dispersive spectroscopy line scan analysis to create process models |
Also Published As
Publication number | Publication date |
---|---|
KR101357326B1 (ko) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7525673B2 (en) | Optimizing selected variables of an optical metrology system | |
US7526354B2 (en) | Managing and using metrology data for process and equipment control | |
US7495781B2 (en) | Optimizing selected variables of an optical metrology model | |
US7627392B2 (en) | Automated process control using parameters determined with approximation and fine diffraction models | |
KR102035376B1 (ko) | 통계적 모델 기반 계측 | |
US7667858B2 (en) | Automated process control using optical metrology and a correlation between profile models and key profile shape variables | |
US7388677B2 (en) | Optical metrology optimization for repetitive structures | |
KR101144402B1 (ko) | 광학적 계측에 이용되는 가상 프로파일 선택 방법 및 선택 시스템과, 컴퓨터 판독 가능 기억 매체 | |
KR101850407B1 (ko) | 구조체의 관심 파라미터 값의 재구성의 품질을 평가하는 방법, 검사 장치 및 컴퓨터 프로그램 제품 | |
US7372583B1 (en) | Controlling a fabrication tool using support vector machine | |
US7729873B2 (en) | Determining profile parameters of a structure using approximation and fine diffraction models in optical metrology | |
KR102002180B1 (ko) | 구조의 비대칭성을 결정하는 방법 | |
US7417750B2 (en) | Consecutive measurement of structures formed on a semiconductor wafer using an angle-resolved spectroscopic scatterometer | |
KR20180005200A (ko) | 모델 기반의 핫 스팟 모니터링 | |
US20060187466A1 (en) | Selecting unit cell configuration for repeating structures in optical metrology | |
US7522295B2 (en) | Consecutive measurement of structures formed on a semiconductor wafer using a polarized reflectometer | |
US7949490B2 (en) | Determining profile parameters of a structure using approximation and fine diffraction models in optical metrology | |
KR101357326B1 (ko) | 패턴화 구조 검사 시스템 | |
US7596422B2 (en) | Determining one or more profile parameters of a structure using optical metrology and a correlation between profile models and key profile shape variables | |
CN101359611B (zh) | 对光学计量系统的选定变量进行优化 | |
KR101461667B1 (ko) | 패턴화 구조 검사 장치 및 계측 데이터 관리 방법 | |
WO2011139982A2 (en) | Determination of material optical properties for optical metrology of structures | |
TW202334642A (zh) | 基於掃描條件模型之半導體外形測量 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |