KR20090010485A - Solar cell utilizing magnetic fields and manufacturing method thereof - Google Patents

Solar cell utilizing magnetic fields and manufacturing method thereof Download PDF

Info

Publication number
KR20090010485A
KR20090010485A KR1020070073610A KR20070073610A KR20090010485A KR 20090010485 A KR20090010485 A KR 20090010485A KR 1020070073610 A KR1020070073610 A KR 1020070073610A KR 20070073610 A KR20070073610 A KR 20070073610A KR 20090010485 A KR20090010485 A KR 20090010485A
Authority
KR
South Korea
Prior art keywords
amorphous silicon
silicon layer
type amorphous
solar cell
layer
Prior art date
Application number
KR1020070073610A
Other languages
Korean (ko)
Inventor
김종환
윤주환
정일형
이헌민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020070073610A priority Critical patent/KR20090010485A/en
Priority to PCT/KR2008/003647 priority patent/WO2009014321A1/en
Publication of KR20090010485A publication Critical patent/KR20090010485A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

The solar battery and the manufacturing method thereof using the magnetic field are provided to prevent the performance degradation of the solar battery and to minimize the recombination of electron-hole. The amorphous silicon solar cell comprises transparent substrate(301), transparent electrode(302), p-type amorphous silicon layer(303), i-type amorphous silicon layer(304), n-type amorphous silicon layer(305) and back side electrode. The magnetic layer(307) has the magnetism of the horizontal direction and is formed on the back side electrode. The material of magnetic layer is NiFe, Fe-Si, Tb system alloy, Nd system alloy.

Description

자계를 이용한 태양전지 및 그 제조 방법 {SOLAR CELL UTILIZING MAGNETIC FIELDS AND MANUFACTURING METHOD THEREOF}Solar cell using magnetic field and its manufacturing method {SOLAR CELL UTILIZING MAGNETIC FIELDS AND MANUFACTURING METHOD THEREOF}

본 발명은 비정질 실리콘 태양전지에 관한 것으로, 구체적으로는, 이면 전극 상에 또는 이면 전극을 대신하여 자기층을 형성시킴으로서, i형 비정질 실리콘층 내 전자의 n형 비정질 실리콘층 방향의 이동도가 증가 및 가속되어 정공과의 재결합이 최소화되고, 이로 인해 태양전지의 성능 열화가 방지되는 비정질 실리콘 태양전지 및 그 제조 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous silicon solar cell. Specifically, by forming a magnetic layer on the back electrode or in place of the back electrode, the mobility of electrons in the i-type amorphous silicon layer in the direction of the n-type amorphous silicon layer is increased. And accelerated to minimize recombination with holes, thereby preventing performance degradation of the solar cell and to a method of manufacturing the same.

태양전지란 광기전력 효과(Photovoltaic Effect)를 이용하여 빛 에너지를 전기 에너지로 변환시키는 장치로서, 그 구성 물질에 따라서 실리콘 태양전지, 박막 태양전지, 염료감응 태양전지 및 유기고분자 태양전지 등으로 구분된다. 이러한 태양전지는 독립적으로는 전자시계, 라디오, 무인등대, 인공위성, 로켓 등의 주전력원으로 이용되고, 상용교류전원의 계통과 연계되어 보조전력원으로도 이용되며, 최근 대체 에너지에 대한 필요성이 증가하면서 태양전지에 대한 관심이 높아지고 있 다.A solar cell is a device that converts light energy into electrical energy by using a photovoltaic effect. The solar cell is classified into a silicon solar cell, a thin film solar cell, a dye-sensitized solar cell, and an organic polymer solar cell. . These solar cells are used independently as main power sources such as electronic clocks, radios, unmanned light towers, satellites, rockets, etc., and are also used as auxiliary power sources in connection with commercial AC power systems. Increasing interest in solar cells is increasing.

이러한 태양전지 중, 비정질 실리콘 태양전지는, 결정구조가 아니므로 박막 형태로의 제작이 쉽고, 실리콘 사용량이 적으며, 다른 형태의 태양전지에 비해 대량, 연속 생산 및 저가화가 가능한 장점이 있어, 차세대 태양전지로 각광받고 있다. Of these solar cells, amorphous silicon solar cells are not crystalline structures, so they are easy to manufacture in a thin film form, use less silicon, and are advantageous in that they can be mass-produced, continuously produced, and reduced in price compared to other types of solar cells. It is attracting attention as a solar cell.

도 1은 종래 비정질 실리콘 태양전지의 단면도이다. 도 1에 도시되는 바와 같이, 통상적인 비정질 실리콘 태양전지(100)는, 유리(glass) 기판(101), 투명 전극(102), p형 비정질 실리콘(α-Si)층(103), i형 비정질 실리콘층(104), n형 비정질 실리콘층(105), 및 이면전극(106)이 순차적으로 증착되는 구조이다.1 is a cross-sectional view of a conventional amorphous silicon solar cell. As shown in FIG. 1, a typical amorphous silicon solar cell 100 includes a glass substrate 101, a transparent electrode 102, a p-type amorphous silicon (α-Si) layer 103, and an i-type. The amorphous silicon layer 104, the n-type amorphous silicon layer 105, and the back electrode 106 are sequentially deposited.

태양 광이 유리 기판(101)측에서 입사되고 투명전극(102), p형 비정질 실리콘층(103)을 투과한 후, i형 비정질 실리콘층(104)에 도달하게 되면, i형 비정질 실리콘층(104)에는 자유전자가 생기게 되며, 이러한 자유전자들은 내부 전기장 등에 의해서 n형 실리콘층(105) 쪽으로 끌려가게 된다. 이러한 방식으로 n형 실리콘층(104)쪽에 전자가 계속 쌓이게 되면서 전지의 기능을 할 수 있는 것이다.When the solar light is incident on the glass substrate 101 side and passes through the transparent electrode 102 and the p-type amorphous silicon layer 103 and reaches the i-type amorphous silicon layer 104, the i-type amorphous silicon layer ( 104, free electrons are generated, and these free electrons are attracted to the n-type silicon layer 105 by an internal electric field. In this manner, electrons continue to accumulate on the n-type silicon layer 104, and thus may function as a battery.

그러나, i형 비정질 실리콘층(104)에서 발생되는 자유전자들은 그 이동방향 및 속도가 매우 다양하여 내부 전기장에 의해서 모든 자유전자들이 n형 비정질 실리콘층(105)으로 이동할 수 있는 것이 아니며 자유전자가 n형 비정질 실리콘층(105)으로 이동하는 동안 i형 비정질 실리콘층(104)에 존재하는 정공(hole)과 재결합을 함으로써 n형 비정질 실리콘층(105)에 도달하지 못하는 등의 문제 때문에, 전지의 효율이 열화되는 문제가 있다. However, the free electrons generated in the i-type amorphous silicon layer 104 vary greatly in the direction and speed of movement thereof, so that not all free electrons can move to the n-type amorphous silicon layer 105 by the internal electric field. Due to problems such as failure to reach the n-type amorphous silicon layer 105 by recombination with holes existing in the i-type amorphous silicon layer 104 while moving to the n-type amorphous silicon layer 105, There is a problem that efficiency is degraded.

따라서, 태양 광에 의해 i형 비정질 실리콘층(104)에서 발생하는 자유전자의 이동도를 증가시켜 n형 비정질 실리콘층으로의 이동을 도와줌으로써, 정공과의 재결합을 감소시키고, 전지의 효율을 높일 수 있는 방법에 대한 개발이 요구된다. Therefore, by increasing the mobility of the free electrons generated in the i-type amorphous silicon layer 104 by sunlight to help the movement to the n-type amorphous silicon layer, reducing the recombination with holes, and improves the efficiency of the battery There is a need for development of ways to be able.

본 발명은 상술한 바와 같은 문제점을 해결하기 위해 안출한 것으로, 이면 전극 상의 또는 이면 전극을 대신하는 자기층을 포함하는 비정질 실리콘 태양전지로서, 상기 자기층에 의해, i형 비정질 실리콘층 내 전자의 n형 비정질 실리콘층 방향의 이동도가 증가 및 가속되어 정공과의 재결합이 최소화되고, 이로 인해 태양전지의 성능 열화가 방지되는 비정질 실리콘 태양전지를 제공하는 것을 그 목적으로 한다. The present invention has been made to solve the above problems, an amorphous silicon solar cell comprising a magnetic layer on the back electrode or in place of the back electrode, by the magnetic layer of the electrons in the i-type amorphous silicon layer An object of the present invention is to provide an amorphous silicon solar cell in which mobility in the direction of an n-type amorphous silicon layer is increased and accelerated to minimize recombination with holes, thereby preventing performance degradation of the solar cell.

본 발명의 다른 목적은, 이면 전극 상에 또는 이면 전극을 대신하여 자기층을 형성시킴으로서, i형 비정질 실리콘층 내 전자의 n형 비정질 실리콘층 방향의 이동도가 증가 및 가속되어 정공과의 재결합이 최소화되고, 이로 인해 태양전지의 성능 열화가 방지되는 비정질 실리콘 태양전지의 제조 방법을 제공하는 것에 있다. Another object of the present invention is to form a magnetic layer on the back electrode or in place of the back electrode, thereby increasing and accelerating the mobility of electrons in the i-type amorphous silicon layer in the direction of the n-type amorphous silicon layer, thereby recombining with holes. The present invention provides a method for manufacturing an amorphous silicon solar cell, which is minimized and thereby prevents performance degradation of the solar cell.

상술한 목적을 달성하기 위한 본 발명의 일 실시형태에 따르면, 순차적으로 형성되는 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, n형 비정질 실리콘층, 및 이면 전극을 포함하는 비정질 실리콘 태양전지로서, 상기 이면 전극 상에 형성되며 수평 방향의 자기를 갖는 자기층을 더 포함하는 것을 특징으로 하는 비정질 실리콘 태양전지가 제공된다.According to an embodiment of the present invention for achieving the above object, comprising a transparent substrate, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a back electrode which are sequentially formed An amorphous silicon solar cell is provided, wherein the amorphous silicon solar cell further comprises a magnetic layer formed on the back electrode and having a magnet in a horizontal direction.

한편, 상술한 목적을 달성하기 위한 본 발명의 다른 실시형태에 따르면, 순 차적으로 형성되는 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, 및 n형 비정질 실리콘층을 포함하는 비정질 실리콘 태양전지로서, 상기 n형 비정질 실리콘층 상에 형성되며 수평 방향의 자기(magnetism)를 갖는 자기층을 더 포함하는 것을 특징으로 하는 비정질 실리콘 태양전지가 제공된다. On the other hand, according to another embodiment of the present invention for achieving the above object, comprising a transparent substrate sequentially formed, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer An amorphous silicon solar cell is provided, wherein the amorphous silicon solar cell further comprises a magnetic layer formed on the n-type amorphous silicon layer and having magnetism in a horizontal direction.

상기 자기층의 재질은, NiFe, Fe-Si, Tb계 합금, Nd계 합금으로 하는 것이 바람직하다. The material of the magnetic layer is preferably NiFe, Fe-Si, Tb-based alloy, or Nd-based alloy.

상기 자기층은, 스퍼터링(sputtering), e-빔 증착(e-beam evaporation), 물리적 기상 증착(PVD; Physical Vapor Deposition), 또는 화학적 기상 증착(CVD; Chemical Vapor Deposition)에 의해 형성되는 것이 바람직하다. The magnetic layer is preferably formed by sputtering, e-beam evaporation, physical vapor deposition (PVD), or chemical vapor deposition (CVD). .

한편, 상술한 목적을 달성하기 위한 본 발명의 또 다른 실시형태에 따르면, 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, n형 비정질 실리콘층, 및 이면 전극을 순차적으로 형성시키는 단계를 포함하는 비정질 실리콘 태양전지의 제조 방법으로서, 상기 이면 전극 상에 수평 방향의 자기(magnetism)를 갖는 자기층을 형성시키는 단계를 더 포함하는 것을 특징으로 하는 비정질 실리콘 태양전지의 제조 방법이 제공된다. Meanwhile, according to still another embodiment of the present invention for achieving the above object, a transparent substrate, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a back electrode are sequentially formed. A method of manufacturing an amorphous silicon solar cell, the method comprising: forming a magnetic layer having a magnetism in a horizontal direction on the back electrode. Is provided.

또한, 한편, 상술한 목적을 달성하기 위한 본 발명의 또 다른 실시형태에 따르면, 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, 및 n형 비정질 실리콘층을 순차적으로 형성시키는 단계를 포함하는 비정질 실리콘 태양전지의 제조 방법으로서, 상기 n형 비정질 실리콘층 상에 수평 방향의 자기(magnetism)를 갖는 자기층을 형성시키는 단계를 더 포함하는 것을 특징으로 하 는 비정질 실리콘 태양전지의 제조 방법이 제공된다. In addition, according to another embodiment of the present invention for achieving the above object, to form a transparent substrate, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer sequentially A method of manufacturing an amorphous silicon solar cell comprising the steps of: forming a magnetic layer having a magnetism in a horizontal direction on the n-type amorphous silicon layer, wherein the amorphous silicon solar cell further comprises: A manufacturing method is provided.

상기 자기층의 재질은, NiFe, Fe-Si, Tb계 합금, Nd계 합금으로 하는 것이 바람직하다. The material of the magnetic layer is preferably NiFe, Fe-Si, Tb-based alloy, or Nd-based alloy.

상기 자기층을 형성시키는 단계는, 스퍼터링(sputtering), e-빔 증착(e-beam evaporation), 물리적 기상 증착(PVD; Physical Vapor Deposition), 또는 화학적 기상 증착(CVD; Chemical Vapor Deposition)에 의해 수행되는 것이 바람직하다.The forming of the magnetic layer may be performed by sputtering, e-beam evaporation, physical vapor deposition (PVD), or chemical vapor deposition (CVD). It is desirable to be.

본 발명의 비정질 실리콘 태양전지에 따르면, 이면 전극 상의 또는 이면 전극을 대신하는 자기층에 의해, i형 비정질 실리콘층 내 전자의 n형 비정질 실리콘층 방향의 이동도가 증가 및 가속되어 정공과의 재결합이 최소화되고, 이로 인해 태양전지의 성능 열화가 방지된다.According to the amorphous silicon solar cell of the present invention, the mobility of electrons in the i-type amorphous silicon layer in the direction of the n-type amorphous silicon layer is increased and accelerated by a magnetic layer on the back electrode or in place of the back electrode, thereby recombining with the holes. Is minimized, thereby preventing deterioration of the performance of the solar cell.

이하, 첨부되는 도면을 참조하여 본 발명의 다양한 실시형태들을 상세히 설명한다. Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 이론적 배경이 되는 홀 효과(Hall Effect)의 원리를 설명한다.2 illustrates the principle of the Hall Effect which is the theoretical background of the present invention.

도 2에 도시되는 바와 같이, 반도체(201)가 일정 자속 속에 놓여져 자기장에 영향을 받을 때, 반도체(201) 내에서 움직이는 전하를 띈 입자는 이동 방향에 수직 인 방향을 갖는 로렌츠 힘(Lorentz Force)을 받게 된다. 상기 전하가 전자(202)이고, 이 전자(202)의 속도 방향은 우측을 향하고 있으며, 인가되는 자기장의 방향이 면을 뚫고 들어가는 방향일 경우, 로렌츠 힘은 전자(202)의 이동 방향과 수직인 방향, 즉, 하측 방향이 된다. 만약 전류가 흐르는 도체에 자기장이 가해지면 위의 원리에 따라 그 내부의 전하는 이동 방향과 수직한 방향으로 로렌츠 힘을 받게 되며, 전하들은 한쪽으로 치우치게 된다. 이렇게 전하가 한쪽으로 치우침에 따라 도체 내에는 전하가 몰려있는 곳과 그렇지 않은 곳이 생기게 되며, 둘 사이에는 전위차가 발생하게 되는데 이러한 현상을 홀 효과라고 한다. 도 1에서는, 로렌츠 힘에 의해 이동하는 전자(202)가 모두 아랫쪽으로 치우치게 되어, 윗면과 아랫면 사이의 일정 전위차가 발생하는 홀 효과가 나타난다. 이러한 홀 효과에 의해 한쪽은 음극, 한쪽은 상대적으로 양극이 형성되어, 전류가 흐르는 수직 방향으로 아주 미세한 전류가 흐르게 되는데, 이를 측정함으로써 반도체가 n형(n-type)인지 p-형(p-type)인지 판단할 수 있다.As shown in FIG. 2, when the semiconductor 201 is placed in a constant magnetic flux and is affected by a magnetic field, charged particles moving in the semiconductor 201 have a Lorentz force having a direction perpendicular to the direction of movement. Will receive. When the charge is electrons 202 and the velocity direction of the electrons 202 is directed to the right, and the direction of the applied magnetic field is a direction penetrating the plane, the Lorentz force is perpendicular to the direction of movement of the electrons 202. Direction, ie, downward direction. If a magnetic field is applied to a current carrying conductor, according to the above principle, the charge inside it is subjected to Lorentz force in a direction perpendicular to the direction of movement, and the charges are biased to one side. As the charge is biased to one side, there is a place where charge is concentrated in the conductor and a place where it is not, and a potential difference occurs between the two. This phenomenon is called a Hall effect. In Fig. 1, all the electrons 202 moving by the Lorentz force are biased downwards, so that a Hall effect occurs in which a constant potential difference occurs between the upper and lower surfaces. Due to this Hall effect, one side of the cathode and one side of the anode are relatively formed, so that a very small current flows in the vertical direction in which the current flows. By measuring this, the semiconductor is n-type or p-type (p- type).

도 3a는 본 발명의 일 실시형태에 따른 비정질 실리콘 태양전지의 단면도이다.3A is a cross-sectional view of an amorphous silicon solar cell according to one embodiment of the present invention.

도 3a에 도시되는 바와 같이, 본 발명의 비정질 실리콘 태양전지(300)는, 투명(glass) 기판(301), 투명 전극(302), p형 비정질 실리콘층(303), i형 비정질 실리콘층(304), n형 비정질 실리콘층(305), 이면 전극(306), 및 자기층(Magnetic Layer; 307)이 순차적으로 형성되는 구조이다.As shown in FIG. 3A, the amorphous silicon solar cell 300 of the present invention includes a glass substrate 301, a transparent electrode 302, a p-type amorphous silicon layer 303, and an i-type amorphous silicon layer ( 304), an n-type amorphous silicon layer 305, a back electrode 306, and a magnetic layer 307 are sequentially formed.

투명(glass) 기판(301), 투명 전극(302), p형 비정질 실리콘층(303), i형 비 정질 실리콘층(304), n형 비정질 실리콘층(305), 이면 전극(306)이 순차적으로 형성되는 구조는 통상적인 비정질 실리콘 태양전지와 동일하며, 여기서 이면 전극(306)의 재질은 은(Ag) 또는 알루미늄(Al) 등으로 하는 것이 바람직하다.The glass substrate 301, the transparent electrode 302, the p-type amorphous silicon layer 303, the i-type amorphous silicon layer 304, the n-type amorphous silicon layer 305, and the back electrode 306 sequentially The structure is formed of the same as the conventional amorphous silicon solar cell, the material of the back electrode 306 is preferably made of silver (Ag), aluminum (Al) or the like.

자기층(307)은 이면 전극(306) 상에 형성되며, i형 비정질 실리콘층(304)에 자기장을 발생시킨다. 자기층(307)은 수평 방향의 자기를 갖는 박막층일 수 있다. 이러한 자기층(307)의 재질로는 비정질 실리콘층(303, 304, 305) 및 투명 전극(302) 등과 접촉 저항이 작고, 비정질 실리콘층(303, 304, 305)으로의 확산이 일어나지 않는 재질로 하는 것이 좋다. 또한, 비정질 실리콘 태양전지는 박막화하여 제작하는 것이 일반적이므로 두께가 얇아도 높은 자기를 발생시킬 수 있는 재질이 바람직하나, 태양전지의 양산과정을 고려하여 보자력(자화된 자성체에 역자기장을 걸어 그 자성체의 자화가 0이 되게 하는 자기장의 세기)이 너무 큰 재질은 피하는 것이 바람직하다. 이러한 조건을 만족시키는 재질로서, NiFe, Fe-Si, Tb계 합금 또는 Nd 계 합금 등을 예로 들 수 있으며, 가장 적절한 재질로는 높은 자속을 갖는 Ni80Fe20 등을 들 수 있다. 이러한 자기층(307)이 발생시키는 수평 방향의 자기장에 의해 i형 비정질 실리콘층(304)에서 발생하는 자유전자가 로렌츠 힘을 받게 되고, 이로 인해 자유 전자의 n형 비정질 실리콘층(305)으로의 이동도가 증가됨으로써, 정공과의 재결합이 최소화되어 비정질 실리콘 태양전지의 성능 열화가 방지된다.The magnetic layer 307 is formed on the back electrode 306 and generates a magnetic field in the i-type amorphous silicon layer 304. The magnetic layer 307 may be a thin film layer having magnetism in a horizontal direction. The magnetic layer 307 may be formed of a material having low contact resistance with the amorphous silicon layers 303, 304, and 305, the transparent electrode 302, and the like, and having no diffusion into the amorphous silicon layers 303, 304, and 305. Good to do. In addition, amorphous silicon solar cells are generally manufactured by thinning them, so a material capable of generating high magnetism is preferable even if the thickness is thin. It is desirable to avoid materials with too much magnetic field strength that causes the magnetization to become zero. Examples of the material that satisfies these conditions include NiFe, Fe-Si, Tb-based alloys, Nd-based alloys, and the like, and Ni 80 Fe 20 having a high magnetic flux may be used as the most suitable material. Due to the horizontal magnetic field generated by the magnetic layer 307, free electrons generated in the i-type amorphous silicon layer 304 are subjected to Lorentz force, which causes free electrons to reach the n-type amorphous silicon layer 305. By increasing the mobility, recombination with holes is minimized to prevent performance degradation of the amorphous silicon solar cell.

도 3b는 본 발명의 다른 실시형태에 따른 비정질 실리콘 태양전지(400)의 단면도이다. 3B is a cross-sectional view of an amorphous silicon solar cell 400 according to another embodiment of the present invention.

도 3b에 도시되는 바와 같이, 본 발명의 비정질 실리콘 태양전지(300)는, 투명(glass) 기판(301), 투명 전극(302), p형 비정질 실리콘층(303), i형 비정질 실리콘층(304), n형 비정질 실리콘층(305), 및 자기층(Magnetic Layer; 307)이 순차적으로 형성되는 구조이다.As shown in FIG. 3B, the amorphous silicon solar cell 300 of the present invention includes a glass substrate 301, a transparent electrode 302, a p-type amorphous silicon layer 303, and an i-type amorphous silicon layer ( 304), an n-type amorphous silicon layer 305, and a magnetic layer 307 are sequentially formed.

즉, 자기층(307)은 은(Ag) 등의 재질인 이면 전극의 역할을 대신할 수도 있으며, 이러한 실시형태에 따르면, 비정질 실리콘 태양전지(300)를 자기층(307)이 없는 태양전지와 동일한 두께로 제조할 수 있음과 동시에, i형 비정질 실리콘층(304)에서 발생된 자유 전자의 재결합을 막아 비정질 실리콘 태양전지의 성능 열화를 또한 방지할 수 있게 된다.That is, the magnetic layer 307 may take the role of a back electrode made of a material such as silver (Ag). According to this embodiment, the amorphous silicon solar cell 300 may be connected to a solar cell without the magnetic layer 307. In addition to being able to manufacture the same thickness, it is also possible to prevent the recombination of free electrons generated in the i-type amorphous silicon layer 304 to prevent performance degradation of the amorphous silicon solar cell.

도 4는 본 발명의 일 실시형태에 따른 비정질 실리콘 태양전지(300)의 단면도로서, 그 동작 원리를 설명한다. 도 4에서는 도시의 간략화를 위해, 그 구조가 상대적으로 간단한 도 3b에 도시된 비정질 실리콘 태양전지(300)를 예로 든다.4 is a cross-sectional view of an amorphous silicon solar cell 300 according to an embodiment of the present invention, and the operation principle thereof will be described. In FIG. 4, for simplicity of illustration, the amorphous silicon solar cell 300 illustrated in FIG. 3B is illustrated as a simple structure.

도 3b 및 도 4를 참조하여 설명하면, 태양 광이 비정질 실리콘 태양전지(300)의 투명 기판(301)측에서 입사되어, 투명 전극(302) 및 p형 비정질 실리콘층(303)을 투과한 후, i형 비정질 실리콘층(304)에 입사하면, i형 비정질 실리콘층(304)에서는 자유 전자 및 정공(hole)이 발생된다. 이러한 자유전자 및 정공의 운동은 기본적으로 랜덤(random)한 특성을 지니나, p형 비정질 실리콘층(303) 및 n형 비정질 실리콘층(305)에 의한 내부 전계, 즉, n형 비정질 실리콘층(305)에서 p형 비정질 실리콘층(305)으로 향하는 전기장에 의해 자유전자는 n형 비정질 실리콘층(305) 방향으로 이동성을 갖는다. Referring to FIGS. 3B and 4, after solar light is incident on the transparent substrate 301 side of the amorphous silicon solar cell 300, it passes through the transparent electrode 302 and the p-type amorphous silicon layer 303. When incident on the i-type amorphous silicon layer 304, free electrons and holes are generated in the i-type amorphous silicon layer 304. These free electrons and holes are basically random, but the internal electric field of the p-type amorphous silicon layer 303 and the n-type amorphous silicon layer 305, that is, the n-type amorphous silicon layer 305 The free electrons move in the direction of the n-type amorphous silicon layer 305 by the electric field toward the p-type amorphous silicon layer 305.

또한, 무수히 많은 자유전자 중에는 p형 비정질 실리콘층(303)과 n형 비정질 실리콘층(305) 중 어느 쪽으로도 이동도를 갖지 않고 수평 방향의 이동도를 갖는 전자가 존재할 수 있는데, 이러한 이동도를 갖는 전자들은 자기층(307)에 의한 자기장에 의해 p형 비정질 실리콘층(303)을 향하는 방향 또는 n형 비정질 실리콘층(305)을 향하는 방향으로의 이동성을 갖게 된다. 즉, 전자가 도면상에서 지면을 뚫고 들어가는 방향으로 이동하고 있다고 가정하면, 도면상 우측 방향의 자기장을 발생시키는 자기층(307)에 의해 상기 전자는 이동 방향과 수직 방향의 로렌츠 힘을 받게 되고 이 힘에 의해 전자는 n형 비정질 실리콘층(305) 방향의 이동성을 갖게 된다. 한편, 반대로 전자가 지면을 뚫고 나오는 방향으로 이동하고 있다면, 동일한 원리에 의해 전자는 p형 비정질 실리콘층(305) 방향의 이동성을 갖게 된다. In addition, among the myriad of free electrons, there may be electrons having a mobility in the horizontal direction without any mobility to either the p-type amorphous silicon layer 303 or the n-type amorphous silicon layer 305. The electrons have mobility in the direction toward the p-type amorphous silicon layer 303 or the direction toward the n-type amorphous silicon layer 305 by the magnetic field by the magnetic layer 307. That is, assuming that the electrons are moving in the direction to penetrate the ground on the drawing, the electrons are subjected to Lorentz force perpendicular to the moving direction by the magnetic layer 307 which generates the magnetic field in the right direction on the drawing. As a result, the electrons have mobility in the direction of the n-type amorphous silicon layer 305. On the other hand, on the contrary, if the electrons are moving in the direction penetrating the ground, the electrons have mobility in the direction of the p-type amorphous silicon layer 305 by the same principle.

이렇게 하여 자기층(307)에 의한 자기장에 의해 n형 비정질 실리콘층(305)을 향하는 방향으로의 이동성이 증가된 전자는 n형 비정질 실리콘층(305)으로 빠져나가는 것이 용이해지며, 이로 인해 i형 비정질 실리콘층(304) 내부에는 전자 결핍 현상이 증대되게 된다. 이렇게 되면, i형 비정질 실리콘층(304) 전체의 중성도를 유지하고자 하는 특성에 의해 정공의 생존 시간이 늘어날 수 밖에 없게 되며, 이에 따라 자유전자와 정공 사이의 재결합이 최소화될 수 있다.In this way, electrons having increased mobility in the direction toward the n-type amorphous silicon layer 305 due to the magnetic field by the magnetic layer 307 can be easily escaped to the n-type amorphous silicon layer 305, so that i In the amorphous silicon layer 304, an electron depletion phenomenon is increased. In this case, the survival time of the hole is inevitably increased due to the property of maintaining the neutrality of the entire i-type amorphous silicon layer 304, and thus recombination between the free electrons and the hole may be minimized.

이러한 방식으로, 수평자기를 발생시키는 자기층(307)이, i형 비정질 실리콘층(304)에서 발생하는 자유 전자에 대한 n형 비정질 실리콘층(305) 방향으로의 이동성을 증가시키고 이를 가속시킴으로써, 자유 전자의 재결합이 최소화되고, 이에 따라 비정질 실리콘 태양전지의 성능 열화가 방지될 수 있다.In this manner, the magnetic layer 307 generating horizontal magnetism increases and accelerates mobility in the direction of the n-type amorphous silicon layer 305 to free electrons generated in the i-type amorphous silicon layer 304, Recombination of free electrons is minimized, and thus performance degradation of the amorphous silicon solar cell can be prevented.

이하, 도 3a 및 3b를 참조하여 본 발명의 비정질 실리콘층(300)의 제조 방법을 설명한다.Hereinafter, a method of manufacturing the amorphous silicon layer 300 of the present invention will be described with reference to FIGS. 3A and 3B.

도 3a에 도시되는 바와 같이, 본 발명의 비정질 실리콘층(300)은, 투명(glass) 기판(301), 투명 전극(302), p형 비정질 실리콘층(303), i형 비정질 실리콘층(304), n형 비정질 실리콘층(305), 이면 전극(306), 및 자기층(Magnetic Layer; 307)을 순차적으로 형성시킴으로써 제조될 수 있다.As shown in FIG. 3A, the amorphous silicon layer 300 of the present invention includes a glass substrate 301, a transparent electrode 302, a p-type amorphous silicon layer 303, and an i-type amorphous silicon layer 304. ), an n-type amorphous silicon layer 305, a back electrode 306, and a magnetic layer 307 may be sequentially formed.

상기 제조 방법에서, 투명(glass) 기판(301), 투명 전극(302), p형 비정질 실리콘층(303), i형 비정질 실리콘층(304), n형 비정질 실리콘층(305), 및 이면 전극(306)의 형성은 종래 비정질 실리콘 태양전지를 제조하는 방법과 동일하다.In the manufacturing method, the glass substrate 301, the transparent electrode 302, the p-type amorphous silicon layer 303, the i-type amorphous silicon layer 304, the n-type amorphous silicon layer 305, and the back electrode Formation of 306 is the same as the method of manufacturing a conventional amorphous silicon solar cell.

자기층(307)을 상기 이면 전극(306) 상에 형성시킴으로써 본 발명에 따른 비정질 실리콘 태양전지(307)가 제조되는데, 이러한 이면 전극(306) 상의 자기층(307) 형성은 스퍼터링(sputtering), e-빔 증착(e-beam evaporation), 물리적 기상 증착(PVD; Physical Vapor Deposition), 화학적 기상 증착(CVD; Chemical Vapor Deposition) 방식으로 이루어질 수 있다.The amorphous silicon solar cell 307 according to the present invention is manufactured by forming a magnetic layer 307 on the back electrode 306. The formation of the magnetic layer 307 on the back electrode 306 is sputtering, e-beam evaporation, physical vapor deposition (PVD), or chemical vapor deposition (CVD).

한편, 도 3b에 도시되는 본 발명의 다른 실시형태에서와 같이, 이면 전극(306)을 생략하여 제조할 수도 있으며, 이 경우에는 자기층(307)을 n형 비정질 실리콘층(305)상에 형성시키며, 형성 방법은 전술한 방법과 동일한 방법을 사용할 수 있다.Meanwhile, as in the other embodiment of the present invention shown in FIG. 3B, the back electrode 306 may be omitted, and in this case, the magnetic layer 307 is formed on the n-type amorphous silicon layer 305. The forming method may be the same as the method described above.

본 발명에 따른 비정질 실리콘 태양전지는, 이면 전극 상에 또는 이면 전극을 대신한 자기층을 포함함으로써, i형 비정질 실리콘층 내의 전자에 대한 n형 비 정질 실리콘층 방향의 이동도를 증가 및 가속시켜 정공과의 재결합을 최소화시킴으로 인해 태양전지의 성능 열화를 방지한다.The amorphous silicon solar cell according to the present invention includes a magnetic layer on the back electrode or in place of the back electrode, thereby increasing and accelerating the mobility in the direction of the n-type amorphous silicon layer with respect to electrons in the i-type amorphous silicon layer. Minimizing recombination with holes prevents performance degradation of solar cells.

도 1은 종래 비정질 실리콘 태양전지의 단면도.1 is a cross-sectional view of a conventional amorphous silicon solar cell.

도 2는 홀 효과의 원리를 설명하기 위한 일반적인 반도체의 사시도.2 is a perspective view of a general semiconductor for explaining the principle of the hall effect.

도 3a은 본 발명의 일 실시형태에 따른 비정질 실리콘 태양전지의 단면도.3A is a cross-sectional view of an amorphous silicon solar cell according to one embodiment of the present invention.

도 3b는 본 발명의 다른 실시형태에 따른 비정질 실리콘 태양전지의 단면도.3B is a cross-sectional view of an amorphous silicon solar cell according to another embodiment of the present invention.

도 4는 본 발명의 일 실시형태에 따른 비정질 실리콘 태양전지의 단면도. 4 is a cross-sectional view of an amorphous silicon solar cell according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

300: 비정질 실리콘 태양전지 301: 투명 기판300: amorphous silicon solar cell 301: transparent substrate

302: 투명 전극 303: p형 비정질 실리콘층302: transparent electrode 303: p-type amorphous silicon layer

304: i형 비정질 실리콘층 305: n형 비정질 실리콘층304: i-type amorphous silicon layer 305: n-type amorphous silicon layer

306: 이면 전극 307: 자기층306: back electrode 307: magnetic layer

Claims (8)

순차적으로 형성되는 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, n형 비정질 실리콘층, 및 이면 전극을 포함하는 비정질 실리콘 태양전지로서, An amorphous silicon solar cell comprising a transparent substrate sequentially formed, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a back electrode, 상기 이면 전극 상에 형성되며 수평 방향의 자기를 갖는 자기층을 더 포함하는 것을 특징으로 하는 비정질 실리콘 태양전지.The amorphous silicon solar cell further comprises a magnetic layer formed on the back electrode and having a magnet in a horizontal direction. 순차적으로 형성되는 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, 및 n형 비정질 실리콘층을 포함하는 비정질 실리콘 태양전지로서,An amorphous silicon solar cell comprising a transparent substrate, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer, which are sequentially formed, 상기 n형 비정질 실리콘층 상에 형성되며 수평 방향의 자기(magnetism)를 갖는 자기층을 더 포함하는 것을 특징으로 하는 비정질 실리콘 태양전지.The amorphous silicon solar cell further comprises a magnetic layer formed on the n-type amorphous silicon layer and having a magnetism in a horizontal direction. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 자기층의 재질은, NiFe, Fe-Si, Tb계 합금, Nd계 합금인 것을 특징으로 하는 비정질 실리콘 태양전지.The material of the magnetic layer is NiFe, Fe-Si, Tb-based alloys, Nd-based alloys, characterized in that the amorphous silicon solar cell. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2, 상기 자기층은, 스퍼터링(sputtering), e-빔 증착(e-beam evaporation), 물리적 기상 증착(PVD; Physical Vapor Deposition), 또는 화학적 기상 증착(CVD; Chemical Vapor Deposition)에 의해 형성되는 것을 특징으로 하는 비정질 실리콘 태양전지.The magnetic layer is formed by sputtering, e-beam evaporation, physical vapor deposition (PVD), or chemical vapor deposition (CVD). Amorphous silicon solar cell. 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, n형 비정질 실리콘층, 및 이면 전극을 순차적으로 형성시키는 단계를 포함하는 비정질 실리콘 태양전지의 제조 방법으로서,A method of manufacturing an amorphous silicon solar cell, the method comprising sequentially forming a transparent substrate, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a back electrode. 상기 이면 전극 상에 수평 방향의 자기(magnetism)를 갖는 자기층을 형성시키는 단계를 더 포함하는 것을 특징으로 하는 비정질 실리콘 태양전지의 제조 방법. And forming a magnetic layer having magnetism in a horizontal direction on the back electrode. 투명 기판, 투명 전극, p형 비정질 실리콘층, i형 비정질 실리콘층, 및 n형 비정질 실리콘층을 순차적으로 형성시키는 단계를 포함하는 비정질 실리콘 태양전지의 제조 방법으로서,A method of manufacturing an amorphous silicon solar cell, the method comprising sequentially forming a transparent substrate, a transparent electrode, a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer. 상기 n형 비정질 실리콘층 상에 수평 방향의 자기(magnetism)를 갖는 자기층을 형성시키는 단계를 더 포함하는 것을 특징으로 하는 비정질 실리콘 태양전지의 제조 방법.And forming a magnetic layer having magnetism in a horizontal direction on the n-type amorphous silicon layer. 제5항 또는 제6항에 있어서,The method according to claim 5 or 6, 상기 자기층의 재질은, NiFe, Fe-Si, Tb계 합금, Nd계 합금으로 하는 것을 특징으로 하는 비정질 실리콘 태양전지의 제조 방법.The material of the magnetic layer is NiFe, Fe-Si, Tb-based alloy, Nd-based alloy manufacturing method of the amorphous silicon solar cell, characterized in that. 제5항 또는 제6항에 있어서, The method according to claim 5 or 6, 상기 자기층을 형성시키는 단계는, 스퍼터링(sputtering), e-빔 증착(e-beam evaporation), 물리적 기상 증착(PVD; Physical Vapor Deposition), 또는 화학적 기상 증착(CVD; Chemical Vapor Deposition)에 의해 수행되는 것을 특징으로 하는 비정질 실리콘 태양전지의 제조 방법.The forming of the magnetic layer may be performed by sputtering, e-beam evaporation, physical vapor deposition (PVD), or chemical vapor deposition (CVD). Method for producing an amorphous silicon solar cell, characterized in that.
KR1020070073610A 2007-07-23 2007-07-23 Solar cell utilizing magnetic fields and manufacturing method thereof KR20090010485A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070073610A KR20090010485A (en) 2007-07-23 2007-07-23 Solar cell utilizing magnetic fields and manufacturing method thereof
PCT/KR2008/003647 WO2009014321A1 (en) 2007-07-23 2008-06-25 Solar cell utilizing magnetic fields and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070073610A KR20090010485A (en) 2007-07-23 2007-07-23 Solar cell utilizing magnetic fields and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20090010485A true KR20090010485A (en) 2009-01-30

Family

ID=40281537

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070073610A KR20090010485A (en) 2007-07-23 2007-07-23 Solar cell utilizing magnetic fields and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20090010485A (en)
WO (1) WO2009014321A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327040B1 (en) * 2011-11-29 2013-11-07 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
KR20150097616A (en) * 2012-12-13 2015-08-26 다니엘 스캇 마샬 Magnetically polarized photonic device
WO2018101665A1 (en) * 2016-11-29 2018-06-07 선문대학교 산학협력단 Method for manufacturing semiconductor coating film by using magnetization

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074654B (en) * 2010-11-23 2012-06-27 中国科学院半导体研究所 Preparation method for improving efficiency of polymer solar battery
CN102760585A (en) * 2012-08-01 2012-10-31 天津理工大学 Dye-sensitized solar cell provided with externally-applied magnetic field and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254817A (en) * 1992-03-12 1993-10-05 Kawasaki Steel Corp Production of polycrystal silicon ingot
JPH10256576A (en) * 1997-03-06 1998-09-25 Matsushita Electric Ind Co Ltd Solar cell sheet
TWI270242B (en) * 2004-11-05 2007-01-01 Ind Tech Res Inst Magnetic field enhanced photovoltaic devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327040B1 (en) * 2011-11-29 2013-11-07 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
KR20150097616A (en) * 2012-12-13 2015-08-26 다니엘 스캇 마샬 Magnetically polarized photonic device
WO2018101665A1 (en) * 2016-11-29 2018-06-07 선문대학교 산학협력단 Method for manufacturing semiconductor coating film by using magnetization

Also Published As

Publication number Publication date
WO2009014321A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
Tiwari et al. CdTe solar cell in a novel configuration
Minemoto et al. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells
JP6277184B2 (en) Method of manufacturing a semiconductor-based multi-junction photovoltaic device
US8866152B2 (en) Betavoltaic apparatus and method
Chen et al. Design optimization of GaAs betavoltaic batteries
KR20090010485A (en) Solar cell utilizing magnetic fields and manufacturing method thereof
KR20180053993A (en) Solar cell module and manufacturing method thereof
CN101694852B (en) Solar battery and manufacturing method
US10256362B2 (en) Flexible silicon infrared emitter
WO2015148544A1 (en) Compact solid-state neutron detector
KR100953448B1 (en) Photoelectric conversion device using semiconductor nano material and method for manufacturing thereof
JPS63100781A (en) Semiconductor element
US20140110245A1 (en) Non-bonded rotatable targets and their methods of sputtering
KR101863068B1 (en) Solar Cell and method of manufacturing the same
US20120145232A1 (en) Solar cell having improved rear contact
Guo et al. Fabrication of silicon microwire arrays for photovoltaic applications
CN217982848U (en) Tritium source-based strip PIN junction type beta radiation volt effect isotope battery
KR102319613B1 (en) Perovskite flexible transparent solar cell using 2d material
Diekmann et al. Pathways towards 30% efficient single-junction perovskite solar cells
CN115020519B (en) Solar laminated battery, battery assembly and photovoltaic system
KR101327040B1 (en) Solar cell apparatus and method of fabricating the same
KR101976673B1 (en) Silicon solar cell
US4705913A (en) Amorphous silicon devices and method of producing
Vasko Issues in the development of all-sputtered zinc oxide/cadmium sulfide/cadmium telluride flexible solar cells
Wang et al. n+-Doped-layer free amorphous silicon thin film solar cells fabricated with the CuMg alloy as back contact metal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application