KR20090006545A - The method for quantitative anaylsis of uss-p and polyethylene glycol - Google Patents

The method for quantitative anaylsis of uss-p and polyethylene glycol Download PDF

Info

Publication number
KR20090006545A
KR20090006545A KR1020070069977A KR20070069977A KR20090006545A KR 20090006545 A KR20090006545 A KR 20090006545A KR 1020070069977 A KR1020070069977 A KR 1020070069977A KR 20070069977 A KR20070069977 A KR 20070069977A KR 20090006545 A KR20090006545 A KR 20090006545A
Authority
KR
South Korea
Prior art keywords
uss
concentration
polyethylene
plating solution
organic matter
Prior art date
Application number
KR1020070069977A
Other languages
Korean (ko)
Other versions
KR101325430B1 (en
Inventor
김종호
김성현
정창우
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070069977A priority Critical patent/KR101325430B1/en
Publication of KR20090006545A publication Critical patent/KR20090006545A/en
Application granted granted Critical
Publication of KR101325430B1 publication Critical patent/KR101325430B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction

Abstract

A method for analyzing quantitatively the concentration of USS-P and a polyethylene-based organic materials in a plating solution is provided to reduce the time required for analysis, thereby decreasing the time required for the correction of USS-P concentration and reducing the error of analysis. A method for analyzing quantitatively the concentration of USS-P and a polyethylene-based organic materials in a plating solution comprises the steps of collecting a sample solution from a plating bath; adding a chromogenic agent and an extraction solvent to the sample solution; extracting an organic layer from the sample solution; measuring the absorbance of the separated organic layer; and calculating the concentration of USS-P and a polyethylene-based organic materials in the plating solution by using the absorbance.

Description

도금 용액 내의 USS-P 및 폴리에틸렌 글리콜계 유기물의 농도를 정량적으로 분석하는 방법{THE METHOD FOR QUANTITATIVE ANAYLSIS OF USS-P AND POLYETHYLENE GLYCOL}Method for quantitatively analyzing the concentrations of PS-P and polyethylene glycol-based organics in the plating solution {THE METHOD FOR QUANTITATIVE ANAYLSIS OF USS-P AND POLYETHYLENE GLYCOL}

본 발명은 전기 아연도금 강판 제조시 도금 용액 내의 UUS-P 및 폴리에틸렌 글리콜계 유기물의 농도를 분석하는 방법에 관한 것으로, 보다 상세하게는 적외선-가시광선 분광법(Ultraviolet-Visible, 이하 "UV"라 함)을 이용하여 신속하고 정확하게 도금 용액 내의 USS-P 및 폴리에틸렌글리콜계 유기물의 농도를 정량적으로 분석하는 방법에 관한 것이다.The present invention relates to a method for analyzing the concentration of UUS-P and polyethylene glycol-based organic matter in the plating solution in the production of electro-galvanized steel sheet, and more specifically, infrared-Visible (hereinafter referred to as "UV") The present invention relates to a method for quantitatively analyzing the concentration of USS-P and polyethylene glycol-based organic matter in a plating solution quickly and accurately.

최근 전기 도금 강판의 수요 증가와 더불어 자동차 및 가전 등의 용도에 쓰이는 강판에 대한 수요자들의 요구가 매우 엄격해져 제품의 물성뿐 아니라, 표면 품질 또한 매우 우수할 것이 요구되고 있다. 전기 아연 도금욕은 석출 반응시 과전압이 작기 때문에 도금 층의 결정립이 조대하고 결정면은 기저면에 우선 배향되는 특성이 있어 표면 백색도는 높으나 광택도가 떨어지고 도금층의 경도가 낮아 강판 취급 시 스크래치(scrach)가 잘 발생한다는 단점이 있다. With the recent increase in demand for electroplated steel sheets, the demands of steel sheets for use in automobiles and home appliances have become very strict, so that not only product properties but also surface quality are required. Electrolytic galvanizing bath has a small overvoltage during the precipitation reaction, so the grain of the plating layer is coarse and the crystal surface is oriented first on the base surface. The disadvantage is that it happens well.

이러한 단점을 보완하기 위해 전기 아연 도금욕에 폴리에틸렌 글로콜계 광택제인 USS-P(H(OHC2CH2)nOH)를 소량 첨가하게 된다. USS-P는 폴리에틸렌 글리콜과 소량의 안식향산을 주성분으로 하며, 염소계 도금 용액 중에 소량(약 0.1~3ml 정도) 첨가되어 결정립을 미세화하는 역할을 수행하는 첨가제이다. USS-P는 석출 반응 시 음극인 강판 표면에 흡착되어 이온들의 환원 반응을 방해하여 결정의 성장을 억제하기 때문에 결정립이 미세하게 되고, 기저면의 성장을 방해하여 결정면을 불규칙하게 한다. In order to compensate for this disadvantage, a small amount of polyethylene glycol-based USS-P (H (OHC 2 CH 2 ) n OH) is added to the electrogalvanizing bath. USS-P is an additive that contains polyethylene glycol and a small amount of benzoic acid as a main component, and adds a small amount (about 0.1 to 3 ml) in the chlorine plating solution to refine the grains. USS-P is adsorbed on the surface of the steel sheet as a cathode during the precipitation reaction to inhibit the growth of ions by inhibiting the reduction reaction of the ions, so that the crystal grains become fine, and the growth of the base surface is disturbed to irregularize the crystal surface.

도 1은 USS-P 농도에 따른 아연 도금층의 조직 변화를 보여주기 위한 것으로, 주사전자현미경으로 촬영한 아연 도금층 표면의 사진이 도시되어 있다. 도 1에서 (a)는 USS-P를 첨가하지 않은 경우의 아연 도금층 조직을 보여주며, (b), (c), (d), (e), (f)는 도금 용액에 USS-P를 각각 0.05ml/l, 0.1ml/l, 0.2ml/l, 0.5ml/l, 1.0ml/l의 양으로 첨가한 경우의 아연 도금층의 조직을 보여준다. 도 1에 의해 USS-P의 농도가 높을수록 도금층의 결정이 미세하게 형성됨을 알 수 있다. Figure 1 is to show the change in the structure of the zinc plated layer according to the USS-P concentration, a photograph of the surface of the zinc plated layer taken with a scanning electron microscope is shown. In Figure 1 (a) shows the galvanized layer structure when the USS-P is not added, (b), (c), (d), (e), (f) shows the USS-P in the plating solution The structure of the galvanized layer in the case of adding in an amount of 0.05 ml / l, 0.1 ml / l, 0.2 ml / l, 0.5 ml / l and 1.0 ml / l, respectively. As shown in FIG. 1, the higher the concentration of USS-P, the finer the crystals of the plating layer.

USS-P는 결정 크기 뿐만 아니라 강판 표면의 색상, 합금화도, 광택도, 도금 품질 등에도 영향을 미친다(도 2 및 도 3 참조). USS-P affects not only the crystal size but also the color, alloying degree, glossiness, plating quality, etc. of the steel sheet surface (see FIGS. 2 and 3).

이처럼 연속 전기 도금라인에서 생산되는 전기 도금강판의 표면 외관은 도금용액 내의 USS-P 의 농도에 의해 큰 영향을 받기 때문에, 우수한 표면 외관을 갖는 강판을 제공하기 위해서는 도금 용액 내의 USS-P의 농도를 적정하게 관리하는 것이 매우 중요하다. Since the surface appearance of the electroplated steel sheet produced in the continuous electroplating line is greatly influenced by the concentration of USS-P in the plating solution, in order to provide a steel sheet having an excellent surface appearance, the concentration of the USS-P in the plating solution is increased. Proper care is very important.

종래의 USS-P 농도 분석 방법은 비이커의 무게를 달고, 도금 용액으로부터 얻은 시료 용액을 상기 비이커에 넣은 후 클로로포름과 혼합하여 여과, 증발, 건조, 냉각 등의 과정을 거쳐 USS-P를 추출한 후 비이커의 무게를 칭량하고, 이를 검량선 곡선에 대입하여 USS-P의 농도를 측정하는, 이른바, 추출 중량법으로 실시되었다. 그러나 상기 추출 중량법은 사람 손으로 직접 비이커의 무게를 달고, 증발, 여과 등의 과정을 여러 번 거치기 때문에 분석 오차가 50% 이상으로 크며, 분석 시간 역시 6시간 이상으로 장시간이 소요되므로, 이러한 분석 방법으로는 전기도금강판 제조 시에 USS-P의 농도가 적정하게 유지되도록 관리하는 것이 어렵고, 그 결과 전기도금강판의 표면 품질을 양호하게 유지하기 어렵다는 문제점이 있었다. The conventional USS-P concentration analysis method weighs a beaker, and puts a sample solution obtained from a plating solution into the beaker, and then mixed with chloroform to extract USS-P through filtration, evaporation, drying, cooling, and the like. Was weighed and substituted into the calibration curve to measure the concentration of USS-P, so-called extraction gravimetric method. However, the extraction gravimetric method weighs the beaker directly by a human hand, and the analysis error is greater than 50% because it passes through several processes such as evaporation and filtration, and the analysis time also takes a long time to 6 hours or more. As it is difficult to manage so that the concentration of the USS-P is properly maintained during the production of electroplated steel sheet, as a result there was a problem that it is difficult to maintain a good surface quality of the electroplated steel sheet.

따라서 본 발명은 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 보다 신속하고 정확하게 측정할 수 있는 새로운 분석 방법을 제공하여, 도금욕 내의 USS-P 농도를 적정하게 유지함으로써, 표면 외관이 우수한 전기 도금 강판을 제조할 수 있도록 하는 것을 그 목적으로 한다. Therefore, the present invention provides a new analysis method that can more quickly and accurately measure the concentration of USS-P and polyethylene-based organic matter in the plating solution, and maintains the USS-P concentration in the plating bath appropriately, thereby providing excellent surface appearance. It aims at being able to manufacture a coated steel plate.

이를 위해 본 발명은 일 측면에서 도금욕에서 시료 용액을 채취하는 단계; 상기 시료 용액에 발색 시약 및 추출 용매를 첨가하는 단계; 상기 시료 용액으로부터 유기물 층을 추출하여 분리하는 단계; 상기 분리된 유기물 층의 흡광도를 측정하는 단계; 상기 흡광도를 이용하여 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 산출하는 단계;를 포함하여 이루어지는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법을 제공한다.To this end, the present invention comprises the steps of taking a sample solution in a plating bath in one aspect; Adding a coloring reagent and an extraction solvent to the sample solution; Extracting and separating an organic layer from the sample solution; Measuring absorbance of the separated organic layer; Comprising the step of calculating the concentration of the USS-P and polyethylene-based organic matter in the plating solution using the absorbance provides a method for quantitatively analyzing the concentration of the USS-P and polyethylene-based organic matter in the plating solution.

상기 도금욕은 아연 전기 도금욕 또는 아연-철 전기 도금욕인 것이 바람직하며, 상기 발색 시약은 염화제2철과 치오시안산염의 혼합 용액으로 이루어지고, 상기 염화 제2철과 치오시안산염의 혼합비는 몰 수를 기준으로 1:0.05 내지 1:3인 것이 바람직하며, 상기 치오시안산염은 암모늄, 코발트, 칼륨, 나트륨, 칼슘, 마그네슘, 알루미늄 및 바륨의 염으로 이루어진 군으로부터 선택되는 1종 이상의 화합물인 것이 바람직하고, 상기 추출 용매는 이염화 에틸렌인 것이 바람직하다.Preferably, the plating bath is a zinc electroplating bath or a zinc-iron electroplating bath, and the color developing reagent comprises a mixed solution of ferric chloride and thiocyanate, and a mixing ratio of the ferric chloride and thiocyanate. Is preferably 1: 0.05 to 1: 3 based on the number of moles, and the thiocyanate is at least one compound selected from the group consisting of salts of ammonium, cobalt, potassium, sodium, calcium, magnesium, aluminum and barium It is preferable that the extraction solvent is ethylene dichloride.

또한, 상기 유기물 층 분리는 원심 분리에 의해 이루어질 수 있으며, 상기 흡광도는 510nm의 파장에서 이루어질 수 있다. In addition, the organic layer separation may be made by centrifugation, the absorbance may be made at a wavelength of 510nm.

또한, 상기 농도 분석 방법은 필요한 경우에 USS-P 및 폴리에틸렌계 유기물의 농도를 알고 있는 도금 용액의 흡광도를 측정하여 검량선을 얻는 단계를 더 포함하여 이루어질 수 있다. In addition, the concentration analysis method may further comprise the step of obtaining a calibration curve by measuring the absorbance of the plating solution knowing the concentration of the USS-P and the polyethylene-based organic matter, if necessary.

본 발명에서 제공되는 도금 용액 내의 USS-P 및 폴리에틸렌 글리콜계 유기물의 농도 분석 방법은 분석에 소요되는 시간이 적기 때문에, 도금 용액 내의 USS-P 농도에 대한 보정이 빠르게 이루어질 수 있고, 분석 오차가 적어 보다 정밀하고 효율적으로 도금 용액을 관리할 수 있다는 장점이 있다.Since the method for analyzing the concentration of USS-P and polyethylene glycol-based organic matter in the plating solution provided in the present invention requires less time for analysis, the USS-P concentration in the plating solution can be quickly corrected and the analysis error is small. The advantage is that the plating solution can be managed more precisely and efficiently.

본 발명은 도금 용액 내의 USS-P 농도의 정량 분석을 위해 기존의 추출 중량법 대신 UV 분광법을 사용하는 것을 특징으로 한다. The present invention is characterized by using UV spectroscopy instead of conventional extraction gravimetric method for quantitative analysis of USS-P concentration in plating solution.

UV는 용액의 색상에 따라 일정한 파장에서 특수한 파장만을 흡수하는 성질이 있기 때문에 이를 이용하면, 유기물을 용이하게 분석할 수 있다. UV 분광법을 통한 유기물 분석은 분석 시간이 짧고, 오차가 적다는 장점이 있다. 그러나, UV 분광법은 유기물이 물에 용해되어 있을 때에는 물로부터 흡수되는 파장과 유기물로부터 흡수되는 파장이 겹치기 때문에 유기물만의 분석이 불가능하다는 문제점이 있다.Since UV absorbs only a specific wavelength at a certain wavelength depending on the color of the solution, it can be easily analyzed for organic matter. Organic material analysis by UV spectroscopy has advantages of short analysis time and low error. However, UV spectroscopy has a problem in that when the organic material is dissolved in water, the wavelength absorbed from the water and the wavelength absorbed from the organic material overlap each other, and thus only the organic material cannot be analyzed.

따라서 본 발명은 이와 같은 문제를 해결하고, UV를 이용한 신속한 분석이 이루어질 수 있도록 하기 위해 도금용액에 발색 시약을 첨가하여 도금 용액 내의 USS-P를 발색시키고, 유기 용매를 이용하여 이를 추출한 후, UV로 흡광도를 측정하는 방법을 적용하였다.  Therefore, the present invention solves this problem, in order to make a rapid analysis using UV to add a coloring reagent to the plating solution to develop the USS-P in the plating solution, and extracted with an organic solvent, after UV The method of measuring the absorbance was applied.

이하 본 발명을 보다 구체적으로 살펴보기로 한다. Hereinafter, the present invention will be described in more detail.

먼저, 농도 측정에 앞서 USS-P 및 폴리에틸렌계 유기물의 농도를 알고 있는 도금 용액의 흡광도를 측정하여 검량선을 얻는다. 이 과정을 보다 구체적으로 살펴보면 다음과 같다.First, before measuring the concentration, the absorbance of the plating solution having a known concentration of the USS-P and the polyethylene-based organic substance is measured to obtain a calibration curve. This process is described in more detail as follows.

도금용액 중의 USS-P 농도가 0, 1, 2, 3, 4mL/L로 서로 다른 5가지 시료용액을 분취한 후, 발색 시약 및 추출 용매를 첨가한다. 다음으로 상기 용액을 원심분리기를 이용하여 유기물층을 분리시킨다. 분리된 유기물층을 UV 분광기를 이용하여 흡광도를 측정한다. 측정된 흡광도를 이용하여 USS-P의 농도에 대한 흡광도 그래프를 그려 검량선을 얻는다.Five different sample solutions with USS-P concentrations of 0, 1, 2, 3, and 4 mL / L in the plating solution are aliquoted, and then a coloring reagent and an extraction solvent are added. Next, the organic layer is separated from the solution using a centrifuge. The separated organic layer was measured for absorbance using a UV spectrometer. Using the measured absorbance, a graph of absorbance against the concentration of USS-P is drawn to obtain a calibration curve.

도 4에는 아연 도금욕 및 아연-철 도금욕으로부터 USS-P 농도가 0, 1, 2, 3, 4mL/L인 시료 용액을 각각 1mL씩 분취한 후, 발색 시약으로 염화제2철과 치오시안산염 혼합 용액 5mL, 추출 용매로 이염화 에틸렌 10 mL를 사용하여 510nm 파장에서 흡광도를 측정하여 얻은 검량선이 도시되어 있다. 도 4a는 아연 도금욕에서 채취된 시료 용액을 이용하여 생성한 검량 곡선이며, 도 4b는 아연-철 도금욕에서 채취한 시료 용액을 이용하여 생성한 검량 곡선이다. 도 4a 및 도 4b에 의해 도금 용액 내의 USS-P 농도의 증가에 따라 흡광도가 일직선으로 나타나 분석 정확도가 거의 100%에 가까움을 알 수 있다. FIG. 4 shows an aliquot of a sample solution having a USS-P concentration of 0, 1, 2, 3, and 4 mL / L from a zinc plating bath and a zinc-iron plating bath, respectively, and then using ferric chloride and thiocyanine as a coloring reagent. The calibration curve obtained by measuring the absorbance at 510 nm wavelength using 5 mL of the acid mixture solution and 10 mL of ethylene dichloride as the extraction solvent is shown. 4A is a calibration curve generated using a sample solution collected in a zinc plating bath, and FIG. 4B is a calibration curve generated using a sample solution collected in a zinc-iron plating bath. 4A and 4B, the absorbance is in a straight line as the USS-P concentration in the plating solution increases, indicating that the analysis accuracy is almost 100%.

다만, 상기한 검량선을 얻는 단계는 항상 수행되어야 하는 것은 아니며, 본 발명의 도 4의 그래프를 이용하여도 무방하다.However, the step of obtaining the calibration curve does not always have to be performed, and may be used using the graph of FIG. 4 of the present invention.

다음으로 도금욕에서 측정하고자 하는 시료 용액을 채취한 후, 상기 시료 용액에 발색 시약 및 추출 용매를 첨가한다. Next, after collecting the sample solution to be measured in the plating bath, a color developing reagent and an extraction solvent are added to the sample solution.

이때 상기 발색 시약으로는 염화제2철(FeCl3)과 치오시안산염(X-SCN)의 혼합 용액을 사용하는 것이 바람직하다. 이때 상기 염화 제2철과 치오시안산염의 혼합비는 몰 수를 기준으로 1:0.05 내지 1:3인 것이 바람직하다.At this time, it is preferable to use a mixed solution of ferric chloride (FeCl 3 ) and thiocyanate (X-SCN) as the color developing reagent. At this time, the mixing ratio of the ferric chloride and thiocyanate is preferably 1: 0.05 to 1: 3 based on the number of moles.

한편, 상기 치오시안산염은 암모늄, 코발트, 칼륨, 나트륨, 칼슘, 마그네슘, 알루미늄 및 바륨의 염으로써 어느 것이나 사용될 수 있다. On the other hand, the thiocyanate may be used as a salt of ammonium, cobalt, potassium, sodium, calcium, magnesium, aluminum and barium.

발색 시약은 USS-P 및 폴리에틸렌 글리콜을 발색시키는데 사용되며, 그 반응 매카니즘은 다음과 같다.Coloring reagents are used to color USS-P and polyethylene glycols, and the reaction mechanism is as follows.

염화제2철과 치오인산염이 혼합되면 다음과 같은 반응이 일어나면서 붉은 색을 띄는 Fe(SCN)2를 생성하게 된다.When ferric chloride and thiophosphate are mixed, the following reaction occurs, producing red Fe (SCN) 2 .

FeCl3 + 2X-SCN → Fe(SCN)2 (붉은 색)+ 2X+ + 3Cl- FeCl 3 + 2X-SCN → Fe (SCN) 2 ( red) + 2X + + 3Cl -

그런 다음 상기 Fe(SCN)2는 도금 용액 내의 USS-P 및 폴리에틸렌 글리콜과 중합반응을 하고, 그 결과 USS-P 및 폴리에틸렌 글리콜이 발색되게 된다. The Fe (SCN) 2 is then polymerized with USS-P and polyethylene glycol in the plating solution, resulting in the development of USS-P and polyethylene glycol.

발색 시약은 도금 용액 내의 USS-P 및 폴리에틸렌 글리콜과 충분히 반응할 수 있도록 과량으로 첨가한다.The color development reagent is added in excess to sufficiently react with USS-P and polyethylene glycol in the plating solution.

한편, 추출 용매는 Fe(SCN)2와 USS-P 및 폴리에틸렌 글리콜의 중합체를 용해시켜 시료 용액으로부터 물을 제외하고 유기물만을 추출하기 위한 것으로, 이염화 메틸렌(ClCH2Cl) 또는 이염화 에틸렌(ClCH2CH2Cl) 등을 사용할 수 있으며, 이염화 에틸렌이 보다 바람직하다. On the other hand, the extraction solvent is to dissolve the polymer of Fe (SCN) 2 and USS-P and polyethylene glycol to extract only organic matter from the sample solution except water, methylene dichloride (ClCH 2 Cl) or ethylene dichloride (ClCH) 2 CH 2 Cl) and the like, and ethylene dichloride is more preferable.

상기 추출 용매는 도금 용액 내의 Fe(SCN)2와 USS-P 또는 폴리에틸렌 글리콜의 중합체를 모두 추출할 수 있도록 과량 첨가하는 것이 바람직하며, 예를 들면, 시료 용액 1mL당 1 ~ 50mL정도의 양으로 첨가하는 것이 바람직하다. 1 mL 이하로 첨가하면 Fe(SCN)2와 USS-P 또는 폴리에틸렌 글리콜의 중합체를 전량 추출하지 못하며 50 mL 이상 첨가하면 발색 색상이 희석되어 흡광도값이 낮게 측정되어 분석오차가 발생될 수 있기 때문이다.The extraction solvent is preferably added in excess to extract all of the polymer of Fe (SCN) 2 and USS-P or polyethylene glycol in the plating solution, for example, in an amount of about 1 to 50 mL per 1 mL of the sample solution It is desirable to. If it is added below 1 mL, it will not be able to extract all the polymers of Fe (SCN) 2 and USS-P or polyethylene glycol. If it is added above 50 mL, the color development may be diluted and the absorbance value may be measured, resulting in analysis error. .

추출 용매에 유기물, 즉 Fe(SCN)2와 USS-P 또는 폴리에틸렌 글리콜의 중합체가 용해되도록 충분히 교반한 후, 유기층을 분리해낸다. 이때 상기 분리 방법으로는 원심 분리 방법을 사용할 수 있다. After stirring sufficiently to dissolve the organic material, that is, the polymer of Fe (SCN) 2 and USS-P or polyethylene glycol in the extraction solvent, the organic layer is separated. At this time, the separation method may be a centrifugal separation method.

다음으로, 상기 분리된 유기층의 흡광도를 측정한 후, 측정된 흡광도 값을 상기에서 얻은 검량선에 대입하여 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 산출한다.Next, after measuring the absorbance of the separated organic layer, the measured absorbance value is substituted into the calibration curve obtained above to calculate the concentration of USS-P and polyethylene-based organic matter in the plating solution.

상기와 같은 방법을 이용하여 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 산출하는데 걸린 시간은 약 10분 이내로 나타났다. Using the above method, the time taken to calculate the concentration of USS-P and polyethylene-based organic matter in the plating solution was found to be about 10 minutes or less.

이하 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to specific examples.

실시예Example 1 One

아연 도금 용액에 USS-P를 농도가 0.1mL/L이 되도록 첨가한 후, 측정을 위해 시료 용액을 1mL 채취하였다. 상기 시료 용액에 염화제2철 1몰과 치오인산염 0.5몰이 혼합된 발색 시약 5mL 및 이염화에틸렌 10mL를 넣은 후, 1분간 교반한 다음, 원심 분리하여 유기층을 분리하였다. 분리된 유기층의 흡광도를 측정하고, 측정된 흡광도를 도 2의 검량선에 대입하여 USS-P의 농도를 측정하였다. USS-P was added to the zinc plating solution so that the concentration was 0.1 mL / L, and then 1 mL of the sample solution was taken for measurement. 5 mL of a coloring reagent and 10 mL of ethylene dichloride were mixed with 1 mol of ferric chloride and 0.5 mol of thiophosphate, followed by stirring for 1 minute, followed by centrifugation to separate an organic layer. The absorbance of the separated organic layer was measured, and the concentration of USS-P was measured by substituting the measured absorbance into the calibration curve of FIG. 2.

상기 과정을 10회 반복하여 본 분석 방법 및 유효성 및 정밀성을 검증하였다. 결과는 표 1에 도시되어 있다. The procedure was repeated 10 times to verify this analysis method and its effectiveness and precision. The results are shown in Table 1.

실시예Example 2 2

아연-철 도금 용액에 USS-P를 농도가 3.0 mL/L이 되도록 첨가한 후, 측정을 위해 시료 용액을 1mL 채취하였다. 상기 시료용액에 염화제2철 1몰과 치오인산염 0.5몰이 이 혼합된 발색 시약 5mL 및 이염화에틸렌 10mL를 넣은 후, 1분간 교반한 다음, 원심 분리하여 유기층을 분리하였다. 분리된 유기층의 흡광도를 측정하고, 측정된 흡광도를 도 2의 검량선에 대입하여 USS-P의 농도를 측정하였다.USS-P was added to the zinc-iron plating solution so that the concentration was 3.0 mL / L, and then 1 mL of the sample solution was taken for measurement. To the sample solution was added 5 mL of a coloring reagent mixed with 1 mol of ferric chloride and 0.5 mol of thiophosphate and 10 mL of ethylene dichloride, followed by stirring for 1 minute, followed by centrifugation to separate an organic layer. The absorbance of the separated organic layer was measured, and the concentration of USS-P was measured by substituting the measured absorbance into the calibration curve of FIG. 2.

상기 과정을 10회 반복하여 본 분석 방법 및 유효성 및 정밀성을 검증하였다. 결과는 표 1에 도시되어 있다. The procedure was repeated 10 times to verify this analysis method and its effectiveness and precision. The results are shown in Table 1.

실시예Example 3 3

아연 도금 및 아연-철 도금 공정에서 각각 미지의 시료 용액을 1mL 채취하였다. 상기 시료 용액에 염화제2철 1몰과 치오인산염 0.5몰이 혼합된 발색 시약 5mL 및 이염화에틸렌 10mL를 넣은 후, 1분간 교반한 다음, 원심 분리하여 유기층을 분리하였다. 분리된 유기층의 흡광도를 측정하고, 측정된 흡광도를 도 2의 검량선에 대입하여 USS-P의 농도를 측정하였다.  In a zinc plating and zinc-iron plating process, 1 mL of an unknown sample solution was respectively collected. 5 mL of a coloring reagent and 10 mL of ethylene dichloride were mixed with 1 mol of ferric chloride and 0.5 mol of thiophosphate, followed by stirring for 1 minute, followed by centrifugation to separate an organic layer. The absorbance of the separated organic layer was measured, and the concentration of USS-P was measured by substituting the measured absorbance into the calibration curve of FIG. 2.

상기 과정을 10회 반복하여 본 분석 방법 및 유효성 및 정밀성을 검증하였다. 결과는 표 1에 도시되어 있다. The procedure was repeated 10 times to verify this analysis method and its effectiveness and precision. The results are shown in Table 1.

자체조제 표준시료Self prepared standard sample 공정시료Process Sample 도금용액Plating solution 아연 zinc 아연-철 Zinc-iron 아연zinc 아연-철Zinc-iron 분 석 회 수  Analysis lime 1One 0.10080.1008 3.0213.021 0.2320.232 1.7951.795 22 0.10130.1013 3.0143.014 0.2310.231 1.7961.796 33 0.10110.1011 3.0023.002 0.2300.230 1.7931.793 44 0.10060.1006 3.0333.033 0.2290.229 1.7981.798 55 0.10160.1016 3.0023.002 0.2330.233 1.8021.802 66 0.09970.0997 3.0103.010 0.2310.231 1.7981.798 77 0.10120.1012 2.9982.998 0.2300.230 1.7951.795 88 0.10200.1020 2.9912.991 0.2290.229 1.8011.801 99 0.09940.0994 3.0063.006 0.2330.233 1.7961.796 1010 0.10230.1023 3.0103.010 0.2310.231 1.7921.792 참값(ml/l)True value (ml / l) 0.10000.1000 3.0003.000 평균(ml/l)Average (ml / l) 0.10100.1010 3.0093.009 0.2310.231 1.7971.797 표준편차Standard Deviation 0.000920.00092 0.01190.0119 0.00110.0011 0.00320.0032 CV(%)CV (%) 0.910.91 0.400.40 0.480.48 0.180.18 판정Judgment 변동계수(CV=1.0% 이내) : 양호Coefficient of variation (within CV = 1.0%): good

상기 표 1에 의하면, 본 발명의 분석 방법에 의해 도금 용액 내의 USS-P농도를 측정할 경우, 변동 계수가 1.0% 이하로 나타남을 알 수 있다. 따라서, 본 발명을 이용하면 도금 용액 내의 USS-P 농도를 정확하게 측정할 수 있을 것으로 예측된다. According to the said Table 1, when measuring USS-P density | concentration in a plating solution by the analysis method of this invention, it turns out that a variation coefficient is 1.0% or less. Therefore, it is expected that the present invention can accurately measure the USS-P concentration in the plating solution.

도 1은 USS-P의 농도가 아연 도금층의 조직 변화에 미치는 영향을 보여주기 위해 주사전자현미경으로 아연 도금층 표면을 촬영한 사진이다. Figure 1 is a photograph of the surface of the zinc plated layer with a scanning electron microscope to show the effect of the concentration of USS-P on the change in the structure of the zinc plated layer.

도 2는 USS-P의 농도가 아연-철 도금층의 철 합금화도에 미치는 영향을 보여주는 그래프이다.2 is a graph showing the effect of the concentration of USS-P on the iron alloying degree of the zinc-iron plated layer.

도 3은 USS-P의 농도가 아연 도금층의 표면외관에 미치는 영향을 보여주는 그래프이다.3 is a graph showing the effect of the concentration of the USS-P on the surface appearance of the galvanized layer.

도 4는 본 발명의 UV 분석법을 이용하여 생성한 검량 곡선이다. 도 4a는 아연 도금욕으로부터 채취된 시료 용액을 이용하여 생성한 검량 곡선이며, 도 4b는 아연 -철 도금욕으로부터 채취된 시료 용액을 이용하여 생성한 검량 곡선이다.4 is a calibration curve generated using the UV analysis of the present invention. 4A is a calibration curve generated using a sample solution collected from a zinc plating bath, and FIG. 4B is a calibration curve generated using a sample solution taken from a zinc-iron plating bath.

Claims (9)

도금욕에서 시료 용액을 채취하는 단계;Collecting a sample solution in a plating bath; 상기 시료 용액에 발색 시약 및 추출 용매를 첨가하는 단계;Adding a coloring reagent and an extraction solvent to the sample solution; 상기 시료 용액으로부터 유기물 층을 추출하여 분리하는 단계;Extracting and separating an organic layer from the sample solution; 상기 분리된 유기물 층의 흡광도를 측정하는 단계;Measuring absorbance of the separated organic layer; 상기 흡광도를 이용하여 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 산출하는 단계;를 포함하여 이루어지는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.Computing the concentration of the USS-P and polyethylene-based organic matter in the plating solution using the absorbance; Method of quantitatively analyzing the concentration of the USS-P and polyethylene-based organic matter in the plating solution comprising a. 제1항에 있어서,The method of claim 1, 상기 도금욕은 아연 전기 도금욕 또는 아연-철 전기 도금욕인 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The plating bath is a zinc electroplating bath or zinc-iron electroplating bath characterized in that the concentration of USS-P and polyethylene-based organic matter in the plating solution quantitatively. 제1항에 있어서,The method of claim 1, 상기 발색 시약은 염화제2철과 치오시아산염의 혼합 용액으로 이루어지며, 상기 염화 제2철과 치오시아산염의 혼합비는 몰 수를 기준으로 1:0.05 내지 1:3인 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The coloring reagent is composed of a mixed solution of ferric chloride and thiocyanate, the mixing ratio of the ferric chloride and thiocyanate is 1: 0.05 to 1: 3 based on the number of moles A method for quantitatively analyzing the concentration of USS-P and polyethylene-based organic matter in the body. 제3항에 있어서,The method of claim 3, 상기 치오시안산염은 암모늄, 코발트, 칼륨, 나트륨, 칼슘, 마그네슘, 알루미늄 및 바륨의 염으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The thiocyanate is quantitatively the concentration of USS-P and polyethylene-based organic matter in the plating solution, characterized in that at least one selected from the group consisting of salts of ammonium, cobalt, potassium, sodium, calcium, magnesium, aluminum and barium. How to Analyze. 제1항에 있어서, The method of claim 1, 상기 추출 용매는 이염화 에틸렌 또는 이염화메틸렌인 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The extraction solvent is a method for quantitatively analyzing the concentration of the USS-P and polyethylene-based organic matter in the plating solution, characterized in that ethylene dichloride or methylene dichloride. 제1항에 있어서, The method of claim 1, 상기 추출 용매는 시료 용액 1mL를 기준으로 1 내지 50mL의 양으로 첨가되는 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The extraction solvent is a method for quantitatively analyzing the concentration of the USS-P and polyethylene-based organic matter in the plating solution, characterized in that the addition of 1 to 50mL amount based on 1mL of the sample solution. 제1항에 있어서,The method of claim 1, 상기 유기물 층 분리는 원심 분리에 의해 이루어지는 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The organic layer separation is a method for quantitatively analyzing the concentration of the USS-P and polyethylene-based organic matter in the plating solution, characterized in that by centrifugation. 제1항에 있어서,The method of claim 1, 상기 흡광도는 510nm 파장에서 이루어지는 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The absorbance is quantitatively analyzing the concentration of the USS-P and polyethylene-based organic matter in the plating solution, characterized in that at a wavelength of 510nm. 제1항에 있어서,The method of claim 1, 상기 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 산출하는 단계는 USS-P 및 폴리에틸렌계 유기물의 농도를 알고 있는 도금 용액을 이용하여 얻은 검량선에 상기 흡광도를 대입하여 농도를 산출하는 것을 특징으로 하는 도금 용액 내의 USS-P 및 폴리에틸렌계 유기물의 농도를 정량적으로 분석하는 방법.The step of calculating the concentration of the USS-P and the polyethylene-based organic matter in the plating solution is characterized by calculating the concentration by substituting the absorbance into the calibration curve obtained using the plating solution knowing the concentration of the USS-P and the polyethylene-based organic matter. Method for quantitatively analyzing the concentration of USS-P and polyethylene-based organic matter in the plating solution.
KR1020070069977A 2007-07-12 2007-07-12 The method for quantitative anaylsis of uss-p and polyethylene glycol KR101325430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070069977A KR101325430B1 (en) 2007-07-12 2007-07-12 The method for quantitative anaylsis of uss-p and polyethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070069977A KR101325430B1 (en) 2007-07-12 2007-07-12 The method for quantitative anaylsis of uss-p and polyethylene glycol

Publications (2)

Publication Number Publication Date
KR20090006545A true KR20090006545A (en) 2009-01-15
KR101325430B1 KR101325430B1 (en) 2013-11-04

Family

ID=40487742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070069977A KR101325430B1 (en) 2007-07-12 2007-07-12 The method for quantitative anaylsis of uss-p and polyethylene glycol

Country Status (1)

Country Link
KR (1) KR101325430B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691949B1 (en) * 2016-10-28 2017-01-02 서울대학교 산학협력단 Measurement method of iodide in plating solution
CN106290337A (en) * 2016-08-31 2017-01-04 四川新华西乳业有限公司 A kind of detection method of Residues in Milk sodium rhodanate
KR101725456B1 (en) * 2016-10-28 2017-04-10 서울대학교 산학협력단 Measurement method of average molecular weight of polymeric suppressor in plation soultion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940004666B1 (en) * 1990-12-31 1994-05-27 포항종합제철 주식회사 Density analysis method of a group of amin in the electroplating liquid
KR950002923B1 (en) * 1991-10-22 1995-03-28 포항종합제철주식회사 Untitative analysis method of the addition of amine group among zn-ni plating liquid using ultraviolet extinction photometry method
KR0143489B1 (en) * 1994-12-31 1998-07-15 김만제 An analysis method of cr3+ and cr6+ using ultra violet light spectrometry
KR100232288B1 (en) * 1995-12-26 1999-12-01 이구택 Automatic analyzing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290337A (en) * 2016-08-31 2017-01-04 四川新华西乳业有限公司 A kind of detection method of Residues in Milk sodium rhodanate
KR101691949B1 (en) * 2016-10-28 2017-01-02 서울대학교 산학협력단 Measurement method of iodide in plating solution
KR101725456B1 (en) * 2016-10-28 2017-04-10 서울대학교 산학협력단 Measurement method of average molecular weight of polymeric suppressor in plation soultion

Also Published As

Publication number Publication date
KR101325430B1 (en) 2013-11-04

Similar Documents

Publication Publication Date Title
US8440555B2 (en) Method for analyzing electrolytic copper plating solution
US6645364B2 (en) Electroplating bath control
Lu et al. Molecular Recognition by the Protonated Hexaaza Macrocyclic Ligand 3, 6, 9, 16, 19, 22-Hexaaza-27, 28-dioxatricyclo [22.2. 1.111, 14] octacosa-1 (26), 11, 13, 24-tetraene
CN102680555A (en) Method for measuring free acid concentration in acid liquid
KR101325430B1 (en) The method for quantitative anaylsis of uss-p and polyethylene glycol
Väänänen et al. Speciation and coagulation performance of novel coagulant–Aluminium formate
KR20040104501A (en) A method and apparatus for automated analysis and characterization of chemical constituents of process solutions
DE19911447C2 (en) Method for the analytical determination of the concentration of additives in galvanic metal deposition baths
Paolicchi et al. Application of an optimization procedure in adsorptive stripping voltammetry for the determination of trace contaminant metals in aqueous medium
Gholivand et al. Simultaneous spectrophotometric determination of trace amounts of cobalt, nickel, and copper using the partial least-squares method after the preconcentration of their 2-aminocyclopentene-1-dithiocarboxylate complexes on microcrystalline naphthalene
Koga et al. Spectroscopic and Electrochemical Analysis of Cu (I) in Electroplating Solution and Evaluation of Plated Films
US20180355505A1 (en) Concentration indicator of metal component contained in plating solution, and plating method using the same
Sciscenko et al. Determination of a typical additive in zinc electroplating baths
CN109827916B (en) Water quality nitrate detection method based on zinc-cadmium reduction salt-free effect
CN114739930A (en) Method for monitoring concentration of sodium polydithio-dipropyl sulfonate in copper foil plating solution
KR100474418B1 (en) Quantitative Method of the organic additives in chloride bath
JP3614088B2 (en) Method for quantitative analysis and concentration control of organic compounds in metal surface treatment liquid
KR20060037433A (en) Copper electrolysis solution for production of electrolytic copper foil and process for producing electrolytic copper foil
US20180298515A1 (en) Method for managing copper sulfate plating solution
KR940004666B1 (en) Density analysis method of a group of amin in the electroplating liquid
CN110655919A (en) Copper ion fluorescent probe and preparation method and application thereof
CN114892222B (en) Method for monitoring concentration of saccharin sodium in copper foil plating solution
CN116399858A (en) Be used for survey impurity Cr in plating bath solution 6+ Is a method of (2)
CN113686979B (en) Detection method of sodium saccharin and sodium benzene sulfinate serving as brightening agents in nickel electrolyte
CN108776110A (en) A method of utilizing the COD in the Microwave Digestion detection sewage of silver-free catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171026

Year of fee payment: 5