KR20090005853A - The nano mixed non-organic repair material for crack repair of concrete structure - Google Patents

The nano mixed non-organic repair material for crack repair of concrete structure Download PDF

Info

Publication number
KR20090005853A
KR20090005853A KR1020070069225A KR20070069225A KR20090005853A KR 20090005853 A KR20090005853 A KR 20090005853A KR 1020070069225 A KR1020070069225 A KR 1020070069225A KR 20070069225 A KR20070069225 A KR 20070069225A KR 20090005853 A KR20090005853 A KR 20090005853A
Authority
KR
South Korea
Prior art keywords
repair material
nano
crack repair
crack
concrete
Prior art date
Application number
KR1020070069225A
Other languages
Korean (ko)
Other versions
KR100915422B1 (en
Inventor
정훈
전찬기
김종필
Original Assignee
(주)선한엠엔티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)선한엠엔티 filed Critical (주)선한엠엔티
Priority to KR1020070069225A priority Critical patent/KR100915422B1/en
Publication of KR20090005853A publication Critical patent/KR20090005853A/en
Application granted granted Critical
Publication of KR100915422B1 publication Critical patent/KR100915422B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Civil Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

A nano mixed inorganic repair material is provided to ensure excellent adhesion performancel, good salinity penetration, neutralization and salt water resistance and to recover and improve the performance of a concrete structure. A nano mixed inorganic repair material used for crack repair of a concrete structure comprises (1) powdery crack repair material containing an inorganic material as a main material, (2) liquid nanosilicate containing silicate as a main material,; and (3) liquid nano polymer binder containing nano acryl emulsion as a main material.

Description

콘크리트 구조물의 균열 보수를 위한 나노 합성 무기계 보수재{THE NANO MIXED NON-ORGANIC REPAIR MATERIAL FOR CRACK REPAIR OF CONCRETE STRUCTURE}Nano Synthetic Inorganic Repair Materials for Crack Repair of Concrete Structures {THE NANO MIXED NON-ORGANIC REPAIR MATERIAL FOR CRACK REPAIR OF CONCRETE STRUCTURE}

도 1은 본 발명에 따른 나노 합성 무기계 보수재의 부착강도 측정 과정 사진이다.1 is a photograph of the process of measuring the adhesion strength of the nano-synthetic inorganic repair material according to the present invention.

도 2는 본 발명에 따른 나노 합성 무기계 보수재의 표준 상태의 부착강도를 도시한 그래프이다.Figure 2 is a graph showing the adhesion strength of the standard state of the nano-synthetic inorganic repair material according to the present invention.

도 3은 본 발명에 따른 나노 합성 무기계 보수재의 건습반복 상태의 부착강도를 도시한 그래프이다.Figure 3 is a graph showing the adhesion strength of the wet and dry repeat state of the nano-synthetic inorganic water-retaining material according to the present invention.

도 4는 본 발명에 따른 나노 합성 무기계 보수재의 SEM&EDS 분석결과를 도시한 사진이다. Figure 4 is a photograph showing the SEM & EDS analysis results of the nano synthetic inorganic repair material according to the present invention.

도 5는 본 발명에 따른 나노 합성 무기계 보수재의 총 통과전하량을 도시한 그래프이다. 5 is a graph showing the total amount of charge passing through the nano-synthetic inorganic water-retaining material according to the present invention.

도 6은 본 발명에 따른 나노 합성 무기계 보수재의 염소이온 침투깊이 및 확산계수를 도시한 그래프이다. Figure 6 is a graph showing the depth of chlorine ion penetration and diffusion coefficient of the inorganic nano-repairing material according to the present invention.

도 7은 본 발명에 따른 나노 합성 무기계 보수재의 탄산화 깊이를 도시한 그래프이다. 7 is a graph showing the carbonation depth of the nano-synthetic inorganic repair material according to the present invention.

도 8은 본 발명에 따른 나노 합성 무기계 보수재의 내염수성 시험 후의 공시 체를 도시한 사진이다. Figure 8 is a photograph showing the specimen after the salt water resistance test of the nano-synthetic inorganic repair material according to the present invention.

본 발명은 균열이 발생된 콘크리트 구조물의 성능 회복 및 성능 향상을 위하여 첨단 기술을 접목한 경제적이고 친환경적인 나노 합성 무기계 균열보수재에 관한 것이다. The present invention relates to an economical and eco-friendly nano-synthetic inorganic crack repair material incorporating cutting-edge technology for the performance recovery and performance improvement of the concrete structure cracked.

일반적으로 콘크리트는 시멘트ㆍ골재ㆍ물 및 기타 혼화재료의 혼합으로 이루어지는 불연속, 이방성 및 비균질성의 경화체로서, 그 물리적ㆍ화학적 특성이 매우 다양하고 복잡하다. 이러한 콘크리트는 수화반응, 블리딩, 수화열, 소성수축 그리고 재료들의 서로 다른 특성으로 인해 제조 단계부터 많은 공극 또는 미세균열을 가진다. 콘크리트가 경화되면 건조수축과 열응력 및 외부하중 등의 여러 요인에 의해 제조단계에서 발생된 미세균열은 균열로 성장하게 된다. In general, concrete is a discontinuous, anisotropic and inhomogeneous hardened body composed of a mixture of cement, aggregate, water, and other miscible materials, and its physical and chemical properties are very diverse and complicated. Such concrete has many voids or microcracks from the manufacturing stage due to the hydration reaction, bleeding, heat of hydration, plastic shrinkage and the different properties of the materials. When concrete hardens, microcracks generated at the manufacturing stage grow into cracks due to various factors such as dry shrinkage, thermal stress and external load.

이러한 콘크리트의 균열은 여러 가지 요인에 의하여 발생되며 구조물에 미치는 영향도 다양하다. 균열은 콘크리트 재료적 요인에 의한 균열, 설계오류로 인한 균열, 시공불량으로 인한 균열, 하중작용으로 인한 균열로 분류할 수 있으며, 이렇게 발생된 균열은 콘크리트 부재의 내구성, 철근부식에 의한 내하력저하, 수밀성 및 기밀성의 저하, 미관 등에 영향을 미치게 된다.These concrete cracks are caused by various factors, and their effects on the structure also vary. Cracks can be categorized into cracks due to concrete material factors, cracks due to design errors, cracks due to poor construction, and cracks due to load action.The cracks generated are the durability of concrete members, the drop in load capacity due to reinforcement corrosion, It affects water tightness and airtightness, aesthetics, etc.

콘크리트 구조물에서 발생하는 균열은 심할 경우 콘크리트의 성능을 크게 저하시킬 뿐만 아니라, 나아가 구조체로서의 역할을 상실시켜 수명을 단축시키게 된 다. 또한 구조물의 내력, 내구성 및 방수성 등 모든 기능을 저하시키는 주원인으로 구조물의 안전성과 사용성에 심각한 문제를 유발할 수 있으므로, 구조물의 내구성에 직접적인 영향을 주지 않는 미세한 균열이라고 소홀히 다루어서는 아니되는 것은 당연하다 할 것이다. Cracks in concrete structures severely degrade the performance of concrete, and further shorten their lifespan by losing their role as structures. In addition, since it is the main cause of deterioration of all functions such as the strength, durability, and waterproofness of a structure, it may cause serious problems in the safety and usability of the structure. Therefore, it is natural to not neglect it as a minute crack that does not directly affect the durability of the structure. will be.

콘크리트 구조물의 균열에 따른 성능저하는 보수보강, 우회도로의 건설 및 유지관리 등에 상당한 비용이 소요된다는 문제점이 있다. 또한 구조물이 붕괴될 경우 그 파급효과는 경제적, 기술적 차원을 넘어 국가와 기술자에 대한 불안을 조장할 요인을 제공할 뿐만 아니라 국제사회에서의 경쟁력 약화와 신뢰성 상실로 이어지게 된다.The performance degradation due to the cracking of the concrete structure has a problem in that a considerable cost is required for reinforcing reinforcement, construction and maintenance of the bypass road. In addition, if the structure collapses, its spillover effects not only provide economic and technical factors, but also lead to anxiety for the state and technicians, leading to weakened competitiveness and loss of credibility in the international community.

최근의 국내의 건설 환경은 신규투자보다는 기존시설의 유지관리와 성능향상을 위한 보수보강으로 변화되고 있으며, 기존 시설물의 효율적인 관리 및 예산의 중복투자를 막기 위하여 시설물에 대한 유지관리 및 수명연장 등에 대한 관심이 최근 급증하고 있다. 그러나 국내의 경우 콘크리트 구조물의 보수보강을 위한 보수재료 및 공법의 개발이 선진 외국에서 비해 매우 부족하며, 기존에 사용되고 있는 보수재료의 경우는 수입하여 사용함으로써 기술 종속도가 심화되고 불필요한 외화의 유출이 증가하고 있는 상태일 뿐만 아니라 최근 발전되고 있는 ET, IT 및 메카트로닉스 기술 등과 같은 첨단 분야를 접목한 보수보강 재료 및 공법은 전혀 이루지 못하고 있는 상태이다.In recent years, the domestic construction environment is changing to reinforcement for maintenance and improvement of existing facilities rather than new investments. Interest has recently surged. However, in Korea, the development of repair materials and construction methods for repairing and reinforcing concrete structures is much less than in advanced countries. In the case of existing repair materials, import and use of repair materials intensify technical dependency and unnecessary outflow of foreign currency. Not only are they increasing, but there are no reinforcing reinforcement materials and construction methods that combine advanced technologies such as ET, IT, and mechatronics technologies that have recently been developed.

본 발명은 상기와 같은 종래의 기술이 가지는 문제점을 해결하기 위하여 창 작된 것으로서, 첨단 기술을 접목한 경제적이고 친환경적인 나노 합성 무기계 균열보수재를 개발하여 건설 산업에 활용함으로써 국가 경쟁력에 기여하여, 궁극적으로는 산업발전에 이바지하고자 하는 것이다. The present invention was created to solve the problems of the conventional technology as described above, by contributing to the national competitiveness by developing economic and eco-friendly nano-synthetic inorganic-based crack repair materials incorporating advanced technology and utilizing them in the construction industry, ultimately Is to contribute to industrial development.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 콘크리트 구조물의 균열보수에 사용되는 보수재료에 있어서, 상기 보수재료는 주성분이 무기계인 분말형 균열보수재와, 주성분이 실리케이트인 액상형 나노 실리케이트와, 그리고 주성분이 나노아크릴 에멀젼인 액상형 나노 폴리머바인더로 이루어지는 것을 특징으로 하는 나노합성 무기계 균열보수재를 제공하며, 나아가 상기 분말형 균열보수재는 비중이 1.62이며, 상기 나노 실리케이트는 비중이 1.01이고 고형분이 2.5%이며, 상기 나노 폴리머바인더는 비중이 1.02이며, 고형분이 50%인 것을 특징으로 하는 나노합성 무기계 균열보수재를 제공한다. In order to solve the above problems, the present invention is a repair material used for crack repair of concrete structures, the repair material is a powder-type crack repair material whose main component is inorganic, liquid nano silicate whose main component is silicate, and the main component This nanoacrylic emulsion provides a nano-synthetic inorganic crack repair material comprising a liquid nano polymer binder, furthermore, the powder crack repair material has a specific gravity of 1.62, the nano silicate has a specific gravity of 1.01 and a solid content of 2.5%, The nanopolymer binder has a specific gravity of 1.02 and provides a nano-synthetic inorganic crack repair material, characterized in that the solid content is 50%.

이하에서는 첨부된 도면과 도표를 참고로 하여, 본 발명에 따른 나노 합성 무기계 균열보수재의 역학적 특성 및 내구 특성에 대한 실험을 수행하였다. Hereinafter, with reference to the accompanying drawings and diagrams, the experiment on the mechanical properties and durability of the nano-synthetic inorganic crack repair material according to the present invention was performed.

실험 개요Experiment overview

1. 시멘트1. Cement

국내의 S사에서 생산되는 비중 3.15, 비표면적 3,112㎠/g인 보통 포틀랜드시멘트를 사용하였다.A typical Portland cement with a specific gravity of 3.15 and a specific surface area of 3,112cm2 / g was used.

2. 골재2. Aggregate

잔골재는 비중 2.50, 조립률 2.30인 강모래 및 굵은골재는 최대치수 25mm와 비중 2.62인 부순돌을 사용하였다.For coarse aggregates, steel sand and coarse aggregates with a specific gravity of 2.50 and an assembly rate of 2.30 were used as crushed stone with a maximum dimension of 25 mm and a specific gravity of 2.62.

3. 나노 합성 무기계 균열보수재3. Nano synthetic inorganic crack repair material

본 발명에 따른 균열보수재는 무기계 균열보수재이며, 바탕콘크리트와의 접착력 향상을 위하여 나노실리케이트 및 나노 폴리머 바인더를 사용하였다. 균열보수재의 주성분 및 물리적 성질을 아래의 <표 1>에 나타내어진다. The crack repair material according to the present invention is an inorganic crack repair material, and used nanosilicates and nano polymer binders to improve adhesion with the base concrete. The main components and physical properties of the crack repair material are shown in Table 1 below.

Figure 112007050256740-PAT00001
Figure 112007050256740-PAT00001

4. 시험체 제작4. Test body production

균열보수재를 도포하기 위하여 사용된 바탕콘크리트의 물-시멘트비는 45%, 슬럼프 10± 1.5, 공기량 4.5± 1.5로 정하였다. 제작 후 28일간 양생한 후 3일간 기건 양생을 실시하였다. 이후 바탕콘크리트에 균열보수재를 도포한 후, 소정의 시간 동안 양생을 실시하였다. 본 발명에 따른 시험체 제작 방법을 <표 2>에 나타내었다.The water-cement ratio of the ground concrete used to apply the crack repair material was set to 45%, slump 10 ± 1.5, and air volume 4.5 ± 1.5. After curing for 28 days after the production was subjected to dry curing for 3 days. After applying the crack repair material to the base concrete, curing was performed for a predetermined time. The test body preparation method according to the present invention is shown in Table 2.

Figure 112007050256740-PAT00002
Figure 112007050256740-PAT00002

실험방법Experiment method

1. 표준상태의 부착성능 평가1. Evaluation of adhesion performance in standard condition

시험체의 표면에 균열보수재를 도포한 후 도 1의 (a)와 같이 상부 인장용 강철제 지그를 올려놓고, 접착시킨 후 주위에 잉여분의 접착제를 제거한다. 강철제 지그 주변을 따라 홈을 내고 도 1의 (b)에서와 같은 밑 인장용 강철제 지그와 강철제 받침판으로 시험체면에 대하여 연직방향으로 인장력을 가하여 최대 인장하중을 구하였다. 시험 후 평가는 측정 시 인장용 지그의 탈락상태 및 인발 접착강도에 따라 평가하게 되며, 탈락상태의 경우 모체(바탕)파괴, 바탕과 도장재층의 표면탈락, 도장재층의 파손탈락, 도장재층과 인장용 지그의 경계면 탈락 4단계로 구분 할 수 있다.After applying the crack repair material to the surface of the test body, as shown in Fig. 1 (a) put the top of the steel jig, and after bonding to remove the excess adhesive around. The maximum tensile load was obtained by making a groove along the periphery of the steel jig and applying a tensile force in the vertical direction with respect to the surface of the test body by using a steel tension plate and a base tension steel jig as shown in FIG. The evaluation after the test is evaluated according to the dropping state and the pull-out adhesive strength of the tensioning jig at the time of measurement.In the case of the dropping state, the base (base) breakdown, the surface dropping of the base and the coating layer, the breakage of the coating layer, the coating layer and the tensile It can be divided into 4 stages of eliminating the boundary of the jig.

2. 건습반복 상태의 부착성능 평가2. Evaluation of adhesion performance in wet and dry condition

건습반복 부착강도 시험은 시험체의 성능저하를 촉진시키기 위해서 공시체 윗면에 틀을 만들고 용액 속에 2일간 침지하고, 2일간 건조시키는 과정을 1사이클 로 하는 침지시험을 실시하였으며, 표준상태의 부착력 실험과 같은 방법으로 시험을 시행하였다.In order to accelerate the performance degradation of the test specimen, the wet and dry repeated strength test was performed by immersion test using 1 cycle of making a frame on the specimen surface, immersing in solution for 2 days, and drying for 2 days. The test was conducted by the method.

3. 염소이온 침투저항성 시험3. Chlorine Ion Penetration Resistance Test

1) 통과전류 및 총통과전하량 산정1) Calculation of passing current and total passing charge

콘크리트 시험체 양단에 60V의 직류전압을 6시간 동안 통전시키면서 시험체에 흐르는 전류를 데이터 로거(TDS 303)를 이용하여 30분 간격으로 측정하였다. 전위차를 가한 후 30분 단위로 측정된 전류로부터 시간에 대한 전류의 적분 값을 취하여 아래의 식 (1)에 의하여 총 통과전하량을 산정하였다.The current flowing through the test body was measured at 30-minute intervals using a data logger (TDS 303) while energizing a 60 V DC voltage at both ends of the concrete test body for 6 hours. After adding the potential difference, the integrated value of the current with respect to time was taken from the current measured in units of 30 minutes, and the total pass charge was calculated by Equation (1) below.

Figure 112007050256740-PAT00003
(식 1)
Figure 112007050256740-PAT00003
(Equation 1)

위의 식 (1)로부터 계산된 총 통과전하량을 근거로 <표 3>에 제시된 범위구간과 비교하여 염소이온에 대한 침투저항성을 판단한다.Based on the total amount of charges calculated from Equation (1) above, the penetration resistance against chlorine ions is determined by comparing with the range shown in <Table 3>.

Figure 112007050256740-PAT00004
Figure 112007050256740-PAT00004

2) 촉진시험에 의한 확산계수의 추정방법2) Estimation method of diffusion coefficient by facilitation test

전위차 촉진시험법에 의한 비정상상태의 염소이온 확산계수는 염소이온 침투깊이에 의한 확산계수(Dcpd)로 산정하였으며, 계산식은 아래의 식 2와 같다.The chlorine ion diffusion coefficient in the abnormal state by the potentiometric acceleration test method was calculated as the diffusion coefficient (Dcpd) by the chlorine ion penetration depth, and the equation is shown in Equation 2 below.

Figure 112007050256740-PAT00005
(식 2)
Figure 112007050256740-PAT00005
(Equation 2)

4. 촉진중성화 시험4. Promote neutralization test

제작된 시멘트 경화체를 20± 1℃의 수중에서 14일간 양생 후 한 면만을 남기고 경화체의 표면에 콘크리트 보호용 도장재를 코팅하여 중성화 촉진 시험을 실시하였다. 촉진실험 조건은 온도 30℃, 상대습도 60%, CO2농도 10%로 설정하였다. 촉진 시험 후 중성화 깊이의 측정은 촉진개시부터 28일에 측정하였다. 중성화 깊이 평가는 콘크리트 경화체를 할렬인장 후에 할렬면에 1% 페놀프탈레인 용액(KS M 0015)을 분무하고 분홍색으로 변색되지 않은 미착색의 콘크리트 중성화 부분을 측정하였다.After curing the cement cured body produced in water at 20 ± 1 ℃ for 14 days, the surface of the cured body was coated with a protective coating material for concrete to conduct a neutralization test. Acceleration test conditions were set to a temperature of 30 ℃, relative humidity 60%, CO 2 concentration 10%. The neutralization depth was measured 28 days after the palpation from the palpation test. Neutralization depth evaluation was performed by spraying 1% phenolphthalein solution (KS M 0015) on the splitting surface after the splitting of the concrete cured body, and measuring the uncolored concrete neutralizing portion that did not turn pink.

5. 내염수성 시험5. Salt water resistance test

내염수성실험은 해수와 유사한 농도인 염화나트륨(NaCl)용액(3 w/v%)을 사용하여 상온 20℃에서 15일간 침지 후, 시편을 꺼내어 시험편을 깨끗이 세척한 다음 2시간 방치한 후 도막의 부풀음, 벗겨짐, 연화, 구멍을 을 육안으로 관찰하고 기준 시험체와 비교하여 색상의 변화를 관찰하였다. 특별히 규정하지 않은 경우는 시험편 주변 및 액면에서 폭 약 10mm 이내의 범위는 관찰할 대상으로 하지 않는다.The salt water resistance test was performed by immersion at 20 ° C for 15 days using sodium chloride (NaCl) solution (3 w / v%) at a concentration similar to that of seawater. The specimens were taken out, washed, and left for 2 hours before swelling. , Peeling, softening, and holes were visually observed and the change of color was observed in comparison with the reference specimen. Unless otherwise specified, a range of about 10 mm in width around the specimen and at the liquid level is not to be observed.

6. 균열보수재의 미세조직 구조촬영 6. Microstructure Structure of Crack Repair

주사형 전자현미경(SEM)은 가느다란 전자빔을 샘플 표면에 주사시켜 2차 전자를 발생케 하여 입체감 있는 시료의 표면상을 얻게 하는 장치이다. 본 실험에 사용된 주사형 전자현미경은 Philips XL30 ESEM이다.A scanning electron microscope (SEM) is a device that scans a thin electron beam onto a sample surface to generate secondary electrons to obtain a three-dimensional surface of a sample. The scanning electron microscope used in this experiment was the Philips XL30 ESEM.

실험결과 및 고찰Experimental Results and Discussion

1. 역학적 특성 및 미세구조 분석1. Mechanical Properties and Microstructure Analysis

1) 표준 상태의 부착강도1) Attachment strength in standard condition

콘크리트 균열보수재는 콘크리트 표면에 처리제를 붓 또는 스프레이를 이용하여 보호막을 형성시킴으로써 외부로부터 침투하는 CO2 가스, 염화물 및 미세 균열로 인한 콘크리트의 성능 저하를 방지할 수 있는 수단이다. 따라서 균열보수재의 성능을 평가하는 가장 기본적인 것도 균열보수재가 기존의 콘크리트 구체에 얼마나 강하게 오래도록 접착하느냐 하는 것이 매우 중요하다. 본 실험에 사용된 균열보수재의 부착성능을 평가하기 위하여 부착강도를 측정한 결과를 정리하여 도 2에 나타내었다.Concrete crack repair material is a means to prevent the performance degradation of concrete due to CO2 gas, chloride and fine cracks penetrating from the outside by forming a protective film using a brush or spray treatment agent on the concrete surface. Therefore, the most basic way to evaluate the performance of crack repair material is how strongly the crack repair material adheres to existing concrete spheres. In order to evaluate the adhesion performance of the crack repair material used in this experiment, the results of measuring the adhesion strength are summarized in FIG. 2.

이들 결과에서 알 수 있듯이, 모든 시험체에서 재령이 증가할수록 부착강도가 증가함을 알 수 있었으며, 4종류의 균열보수재의 부착강도가 KS F 4936에 명시된 1MPa을 2배 정도 상회하여 부착성능이 우수함을 알 수 있었다.As can be seen from these results, it was found that the bond strength increased as the age of all specimens increased, and the adhesion strength of four types of crack repair materials exceeded 1MPa specified in KS F 4936, which is excellent in adhesion performance. Could know.

또한, 균열보수재 중 가장 우수한 부착성능을 보인 S4의 경우는 모든 재령에서 모체와의 일체된 결합으로 모체가 파괴되는 형상을 보였으나, S1, S2 및 S3의 경우는 재령 7일에서 모체와의 계면에서 탈락이 일어나는 것으로 확인되었다. 이는 S4가 콘크리트 모체와 일체되는 결합을 하는 것으로 좋은 부착성능을 나타낸 것이라고 사료된다. 그러나 모든 균열보수재에서 재령 28일에서는 탈락형상이 모체가 파괴되는 것으로 확인되었다.In addition, in the case of S4, which showed the best adhesion performance among the crack repair materials, the mother was destroyed by the integral bonding with the mother at all ages, but in the case of S1, S2 and S3, the interface with the mother at 7 days of age. It was confirmed that the dropout occurred at. This suggests that S4 has a good bond with the concrete matrix. However, in all crack repair materials, it was confirmed that the mother was destroyed in the dropout shape at 28 days of age.

이처럼 동일한 결합재에서 전 재령에서 모체탈락 형상이 일어나고 부착강도가 가장 크게 나타난 S4의 경우는 S4에 포함되어 있는 나노 폴리머바인더와 나노 세라믹이 모체 표면의 공극속으로 침투하여 일체화된 구조를 가지게 함으로써 부착력을 향상시켜 모체탈락 형상을 보이게 된 것으로 판단된다. In the case of S4 where the maternal dropout shape occurs at the same age and the bond strength is the highest in the same binder, the nanopolymer binder and nano ceramics contained in S4 penetrate into the pores of the mother surface to have an integrated structure. It is judged that the mother dropout shape is shown by the improvement.

2) 건습반복 상태의 부착강도2) Adhesion strength in wet and dry condition

건습반복에 따른 가혹한 조건에서 균열보수재의 부착 성능을 평가하기 위하여 용액 속에 2일간 침지하고, 2일간 건조시키는 과정을 1사이클로 하는 침지시험을 실시한 후 15사이클까지의 결과를 도 3에 나타내었다.In order to evaluate the adhesion performance of the crack repair material under the harsh conditions according to the wet and dry repeat, the results up to 15 cycles are shown in FIG.

이들 도면에서 알 수 있듯이, 건습반복 상태의 부착강도 크기는 S4〉S3〉S2〉S1 순으로 나타났다. 또한 4종류의 균열보수재의 부착강도가 KS F 4936에 명시된 1MPa을 모두 상회하여 부착성능이 우수함을 알 수 있었다.As can be seen from these figures, the magnitude of adhesion strength in the wet and dry state was found in the order S4> S3> S2> S1. In addition, it was found that the adhesion strength of the four types of crack repair materials exceeded 1 MPa specified in KS F 4936, so that the adhesion performance was excellent.

도장재의 경우는 건습반복에 의한 부착강도는 감소하는 것이 일반적이지만, 본 연구에 사용된 균열보수재의 경우는 표준 상태의 28일 부착강도와 비교하여 15사이클의 건습반복 상태의 부착강도가 오히려 더 크게 나타났다. 이는 균열보수재의 수화반응으로 인하여 조직구조가 더 치밀하게 형성되어 부착강도가 증가된 것으 로 생각된다. In the case of coating material, it is common to reduce the adhesion strength due to wet and dry repetition, but in the case of crack repair material used in this study, the adhesion strength in the dry and repeated 15 cycles was 15 times higher than that of standard 28 days. appear. This is thought to be due to the formation of more dense structure due to the hydration reaction of the crack repair material, resulting in increased adhesion strength.

또한 표준 상태의 부착강도 결과와 동일하게 건습반복 상태에서도 4종류의 균열보수재 중에 S4가 가장 큰 부착강도 값을 나타내었다.In addition, S4 showed the highest bond strength value among the four types of crack repair materials in the wet and repeated condition similar to the bond strength results of the standard state.

3) 미세구조 분석3) Microstructure Analysis

균열보수재의 조직구조 및 원소분석을 알아보기 위해서 본 발명에서는 28일 이상 양생시킨 시험체에 각각의 균열보수재를 도포하여 7일 이상의 재령이 지난 후 SEM 및 EDS 촬영을 통하여 얻은 결과를 도 4에 나타내었다.In order to examine the structure and elemental analysis of the crack repair material in the present invention, the results obtained through SEM and EDS imaging after 7 days or more after the application of each crack repair material to the specimen cured for 28 days or more is shown in FIG. .

이 결과에서 알 수 있듯이, 나노 합성 무기계 균열보수재에서 육각판상의 Ca(OH)2 및 Type-Ⅲ C-S-H가 다량으로 분포되어 있는 것을 관찰할 수 있었으며, 이는 EDS profile에 의한 조사를 실시한 결과에서도 Ca 및 Si가 다량으로 분포되어 있음을 확인하였다.As can be seen from these results, it was observed that Ca (OH) 2 and Type-III CSH were distributed in a large amount in the nano-composite inorganic crack repair material. It was confirmed that Si was distributed in a large amount.

또한, 일반 콘크리트에 비하여 매우 치밀한 조직을 구성하고 있음을 알 수 있었다. 이러한 경우 균열보수재가 치밀한 조직을 구성하고 있기 때문에 생성된 공극 사이로 염소이온, 이산화탄소 등의 유해 성분의 성능저하 물질이 균열보수재에 침투 억제되어 콘크리트의 성능저하 저항성이 우수할 것으로 판단된다. In addition, it can be seen that the structure is very dense than the general concrete. In this case, since the crack repair material constitutes a dense structure, the degradation performance of harmful components such as chlorine ions and carbon dioxide is prevented from penetrating into the crack repair material, so that the performance of the concrete is excellent.

2. 내구성에 대한 평가2. Evaluation of durability

1) 염소이온 침투에 대한 저항성1) Resistance to chlorine ion penetration

균열보수재의 염분침투확산에 대한 저항성을 평가하기 위하여 총 통과전하량 및 침투깊이에 의한 염소이온 확산계수의 측정 결과를 도 5 내지 도 6에 나타내었 다.5 to 6 show the results of measuring the chlorine ion diffusion coefficient according to the total charge amount and penetration depth in order to evaluate the resistance to salt penetration of the crack repair material.

이들 결과에서 알 수 있듯이, 일반콘크리트(이하 NC로 약함)의 경우는 총 통과전하량이 2058(Coulomb)로 <표 2>의 염소이온 침투성 평가기준에 의하면 Moderate 상태를 나타내었으나, 균열보수재를 도포한 시험체에서는 Low 및 Very low로 나타났다. 또한 균열보수재를 도포한 시험체에서는 NC에 비하여 48~69% 정도 감소하는 것으로 나타났으며, 특히 S4의 경우는 총 통과전하량이 992(Coulomb)로서 NC에 비하여 48% 정도의 감소 효과가 있는 것으로 확인되었다. As can be seen from these results, in the case of general concrete (weakly referred to as NC), the total passing charge was 2058 (Coulomb), and the chlorine ion permeability evaluation criteria of <Table 2> showed a moderate state. The specimens showed Low and Very low. In addition, the test specimen coated with crack repair material showed a 48 ~ 69% reduction in comparison with NC. Especially, in case of S4, total charge passed through 992 (Coulomb) was found to be reduced by 48% compared to NC. It became.

한편, 도 6의 염소이온의 침투깊이에 의한 확산계수 결과에서도 NC의 경우는 6.56E-12인 반면 균열보수재를 도포한 시험체에서는 확산계수비가 약 54~78% 수준으로 감소하는 경향을 나타내었다. 특히 S4 경우는 3.57E-12로서 약 54% 정도 감소하는 것으로 나타났다. 이는 부착강도 결과와도 유사하게 S4의 경우는 나노 폴리머 바인더와 나노 세라믹이 모체 표면의 공극속으로 침투하여 충전효과(micro-filler effect)에 의하여 공극속을 메워 치밀한 조직구조를 형성하므로 유해이온을 차단하여 염소이온 침투 저항성이 향상되는 것으로 사료된다. On the other hand, in the diffusion coefficient results of the penetration depth of the chlorine ion of Figure 6 in the case of NC was 6.56E-12, while in the test specimen coated with crack repair material, the diffusion coefficient ratio tended to decrease to about 54 ~ 78% level. In particular, in case of S4, 3.57E-12 decreased by about 54%. Similar to the result of the adhesion strength, in the case of S4, the nanopolymer binder and the nano ceramic penetrate into the pores of the mother surface, filling the pores by the micro-filler effect to form a dense tissue structure, thereby forming harmful ions. It is thought that the resistance to chlorine ion penetration is improved by blocking.

2) 탄산화에 대한 저항성2) resistance to carbonation

대기중의 이산화탄소의 농도는 약 0.03%정도로 자연상태에서 탄산화실험을 할 경우 많은 측정시간이 소요된다. 따라서 이산화탄소농도를 높인 촉진 실험장치에서 실험적으로 탄산화깊이를 구해 장기 재령 시 탄산화깊이를 예측하는 방법이 주로 사용되고 있다.The concentration of carbon dioxide in the atmosphere is about 0.03%, which takes a lot of measurement time when carbonation experiments are performed in nature. Therefore, the method of estimating the carbonation depth experimentally in the accelerated experimental apparatus to increase the carbon dioxide concentration to predict the carbonation depth at long-term age is mainly used.

본 발명에서도 촉진 탄산화 실험장치를 이용하여 탄산화실험을 행하여 콘크 리트 보호용 균열보수재를 도장한 시험체의 촉진 시험에 대한 측정을 14일, 28일로 하고 시험체를 할렬한 후 할렬면을 대상으로 1%의 페놀프탈레인 용액을 분무해서 미착색 부분을 탄산화 부분으로서 깊이를 측정한 결과를 도 7에 정리하여 나타내었다.In the present invention, the carbonation test was carried out using an accelerated carbonation test apparatus to measure the accelerated test of the test body coated with the concrete protection crack repair material for 14 days and 28 days, and after splitting the test object, 1% of phenolphthalein was used for the splitting surface. The result of having measured the depth by spraying a solution and making an uncolored part into a carbonation part is shown collectively in FIG.

이들 결과에서 알 수 있듯이, 탄산화 깊이는 균열보수재를 도포하지 않은 시험체NC의 경우가 촉진재령 14일에서는 가장 깊은 탄산화깊이를 나타내었다. 한편 균열보수재를 도포한 시험체의 중성화깊이는 NC에 비하여 30~50% 정도 감소하는 경향을 나타내었다. 촉진재령 28일의 탄산화깊이는 촉진재령 14일과 상이하게 S1 및 S2의 경우는 오히려 NC 시험체 보다 큰 탄산화깊이를 나타낸 반면 S3 및 S4의 경우는 80% 정도 감소하는 것으로 나타났다. 이런 결과는 S1, S2 및 S3의 경우는 나노 나노폴리머 바인더가 들어 있지 않는 크랙만을 위한 보수재이고 및 S4의 경우는 나노폴리머 바인더와 나노 세라믹이 첨가된 것으로 염소이온 확산 특성과 유사하게 콘크리트의 미세 모세관 공극까지 침투하여 콘크리트 공극이 보다 치밀하게 변화되어 탄산화 저항상이 향상된 것으로 사료된다.As can be seen from these results, the carbonation depth showed the deepest carbonation depth in the specimen NC without crack repairing material at 14 days of acceleration age. On the other hand, the neutralization depth of the specimen coated with crack repair material showed a tendency to decrease by 30 ~ 50% compared to NC. The carbonation depth of 28 days of promotion age was different from that of S1 and S2, whereas the carbonation depth of S1 and S2 was larger than that of NC test specimens, while that of S3 and S4 decreased by 80%. These results indicate that S1, S2, and S3 are repair materials for cracks that do not contain nano-nanopolymer binders, and S4, which contains nanopolymer binders and nano ceramics, is similar to the chlorine ion diffusion characteristics. It is believed that the concrete pores change more densely and penetrate into the pores, thereby improving the carbonation resistance phase.

3) 내염수성3) salt water resistance

내염수성 실험을 위해 3% NaCl용액을 사용하여 상온 20℃에서 시험체를 15일간 침지시킨 후 시험체를 꺼내어 깨끗한 물로 세척하고 2시간 정도 방치한 후, 부풀음, 벗겨짐, 연화, 구멍, 기준시험체와 색상차이를 육안으로 관찰하였다. 내염수성에 대한 결과를 <표 4> 및 도 8에 나타내었다. For the saline resistance test, the specimen was immersed at room temperature for 20 days using 3% NaCl solution for 15 days, and the specimen was taken out and washed with clean water and left for about 2 hours. Was visually observed. Results for saline resistance are shown in Table 4 and FIG. 8.

이들 결과에서 알 수 있듯이, 균열보수재를 도포한 모든 시험체에서 부풀음, 벗겨짐, 연화, 구명 및 색상변화 등의 내염수성에 대하여 양호한 저항성을 나타내었으나 S1 및 S2에서는 약한 연화 현상이 나타났다. 또한 모든 종류의 균열보수재가 내염수성에 대하여 우수한 저항성을 나타내었지만, 보다 다양한 약품 및 장기적인 시험의 필요성이 필요할 것으로 예상된다.As can be seen from these results, all specimens coated with crack repair material showed good resistance to saline resistance such as swelling, peeling, softening, life saving, and color change, but weak softening phenomenon in S1 and S2. In addition, although all kinds of crack repair materials exhibited excellent resistance to salt water resistance, it is expected that more various chemicals and the need for long-term tests will be required.

Figure 112007050256740-PAT00006
Figure 112007050256740-PAT00006

이상에서 살펴본 바와 같이, 본 발명에 따른 나노합성 무기계 균열보수재의 역학적 특성을 평가한 결과 표준상태 및 건습반복 상태의 모든 시험체에서 KS F 4936에 명시된 1MPa을 상회하는 우수한 부착성능을 나타냈으며, 염분침투확산에 대한 저항성을 평가한 결과 균열보수재를 도포한 시험체에서는 Low 및 Very low로 나타고, 염소이온의 침투깊이에 의한 확산계수는 일반콘크리트에 비해 약 54~78% 수준으로 감소하는 효과가 있었다. As described above, as a result of evaluating the mechanical properties of the nano-composite inorganic crack repair material according to the present invention showed excellent adhesion performance exceeding 1MPa specified in KS F 4936 in all the specimens of the standard state and dry and repeated conditions, salt penetration As a result of evaluating the resistance to diffusion, the specimens coated with crack repair material showed Low and Very low, and the diffusion coefficient by chlorine ion penetration depth was reduced to about 54 ~ 78% compared to general concrete.

또한 본 발명의 나노합성 무기계 균열보수재에 대하여 중성화 촉진시험을 실시한 후 중성화 깊이를 측정한 결과, 일반콘크리트에 비하여 중성화 저항성이 매우 양호하게 나타났으며, 균열보수재의 조직구조 및 원소분석을 실시한 결과, 육각판상의 Ca(OH)2 및 Type-Ⅲ C-S-H가 다량으로 분포되어 있는 것을 관찰할 수 있었고, 내염수성 실험을 실시한 결과, 균열보수재를 도포한 모든 시험체에서 부풀음, 벗겨짐, 연화, 구명 및 색상변화 등의 내염수성에 대하여 양호한 저항성을 나타내는 효과가 있었다. In addition, as a result of measuring the neutralization depth of the nano-synthetic inorganic crack repair material of the present invention after the neutralization promotion test, the neutralization resistance was very good compared to the general concrete, and the structure and elemental analysis of the crack repair material, The distribution of Ca (OH) 2 and Type-III CSH on the hexagonal plate was observed to be large, and the salt water resistance test resulted in swelling, peeling, softening, lifesaving, and color change in all specimens coated with crack repair material. There was an effect of showing good resistance to salt water resistance such as.

상기에서 기술된 구성과 효과를 가진 본 발명은 다양한 방법으로 변형이 가능하며, 상기에서 기술된 내용은 본 발명의 범위를 한정하고자 하는 것은 아니다. 또한 본 발명의 사상과 범위에서 벗어나지 않는 한도 내에서 다양한 변형과 수정이 가능하며, 본 발명이 속한 분야의 당업자에게 자명한 변형은 다음의 특허청구범위 범위 내에 포함되어진다.The present invention having the configurations and effects described above can be modified in various ways, and the above description is not intended to limit the scope of the present invention. In addition, various modifications and variations are possible without departing from the spirit and scope of the invention, and modifications apparent to those skilled in the art to which the invention pertains are included within the scope of the following claims.

Claims (2)

콘크리트 구조물의 균열보수에 사용되는 보수재료에 있어서, 상기 보수재료는In the repair material used for crack repair of concrete structures, the repair material 주성분이 무기계인 분말형 균열보수재와, 주성분이 실리케이트인 액상형 나노 실리케이트와, 그리고 주성분이 나노아크릴 에멀젼인 액상형 나노 폴리머바인더로 이루어지는 것을 특징으로 하는 나노합성 무기계 균열보수재.A nano-composite inorganic crack repair material comprising an inorganic powder crack repair material having a main component, a liquid nano silicate whose main component is a silicate, and a liquid nano polymer binder whose main component is a nanoacrylic emulsion. 제 1 항에 있어서, 상기 분말형 균열보수재는 비중이 1.62이며, 상기 나노 실리케이트는 비중이 1.01이고 고형분이 2.5%이며, 상기 나노 폴리머바인더는 비중이 1.02이며, 고형분이 50%인 것을 특징으로 하는 나노합성 무기계 균열보수재.The method of claim 1, wherein the powder crack repair material has a specific gravity of 1.62, the nano silicate has a specific gravity of 1.01, solid content of 2.5%, the nanopolymer binder is characterized by a specific gravity of 1.02, characterized in that the solid content is 50%. Nano synthetic inorganic crack repair material.
KR1020070069225A 2007-07-10 2007-07-10 Composition for Crack Reparing of Concrete Structure KR100915422B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070069225A KR100915422B1 (en) 2007-07-10 2007-07-10 Composition for Crack Reparing of Concrete Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070069225A KR100915422B1 (en) 2007-07-10 2007-07-10 Composition for Crack Reparing of Concrete Structure

Publications (2)

Publication Number Publication Date
KR20090005853A true KR20090005853A (en) 2009-01-14
KR100915422B1 KR100915422B1 (en) 2009-09-03

Family

ID=40487375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070069225A KR100915422B1 (en) 2007-07-10 2007-07-10 Composition for Crack Reparing of Concrete Structure

Country Status (1)

Country Link
KR (1) KR100915422B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045598A (en) * 2017-10-24 2019-05-03 가천대학교 산학협력단 Method for evaluating durability recovery performance of self-healing concrete by measuring change of chloride ion concentration using electric device
KR102434601B1 (en) * 2022-07-25 2022-08-24 다우산업(주) Composition of high elastic putty with enhanced crack resistance and antibacterial, and CRS-D construction method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237264A (en) * 1997-02-27 1998-09-08 Asanumagumi:Kk Grout for concrete structure and method of repairing the structure by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045598A (en) * 2017-10-24 2019-05-03 가천대학교 산학협력단 Method for evaluating durability recovery performance of self-healing concrete by measuring change of chloride ion concentration using electric device
KR102434601B1 (en) * 2022-07-25 2022-08-24 다우산업(주) Composition of high elastic putty with enhanced crack resistance and antibacterial, and CRS-D construction method using the same

Also Published As

Publication number Publication date
KR100915422B1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
Azarsa et al. Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland Limestone Cement
Al-Zahrani et al. Effect of waterproofing coatings on steel reinforcement corrosion and physical properties of concrete
Hwang et al. Enhancing the durability properties of concrete containing recycled aggregate by the use of pozzolanic materials
Medeiros et al. Surface treatment of reinforced concrete in marine environment: Influence on chloride diffusion coefficient and capillary water absorption
Pei et al. Cementitious coatings for improved corrosion resistance of steel reinforcement
Goyal et al. Inhibitor efficiency of migratory corrosion inhibitors to reduce corrosion in reinforced concrete exposed to high chloride environment
Kim et al. The influence of C3A content in cement on the chloride transport
Kaur et al. Efficiency of migratory-type organic corrosion inhibitors in carbonated environment
Saraswathy et al. Comparative study of strength and corrosion resistant properties of plain and blended cement concrete types
Bernal et al. Durability and testing–degradation via mass transport
KR100915422B1 (en) Composition for Crack Reparing of Concrete Structure
KR100306056B1 (en) A permeablility polymer composition for concrete structures and a manufaturing method thereof
Dacuan et al. Hydrophobic polyurethane coating against corrosion of reinforced concrete structures exposed to marine environment
Kim et al. Effect of hydrophobic surface treatment in lowering ionic transport into concrete
Arafa et al. Quantifying the effect of ammonium nitrate attack on mechanical and physical properties of cement mortars
Rath et al. Effects of Carbonation on Corrosion Rate of Reinforcing Steel in Different Concrete and Repair Materials
Ožbolt et al. Accelerated corrosion of steel reinforcement in concrete: experimental tests and numerical 3D FE analysis
Jiang et al. Chloride transportation and electrochemical behavior of concrete containing corrosion-inhibiting admixture and its inhibition mechanism under compound salt and drying-wetting cycles
Sola et al. Modelling corrosion of steel reinforcement in concrete: natural vs. accelerated corrosion
KR101581302B1 (en) Manufacturing and working method of environmental-friendly surface repairing materials for concrete structures using inorganic material
Saraswathy et al. Evaluation of cementitious repair mortars for corrosion resistance
Alrubaie et al. Durability of slurry infiltrated fiber concrete to corrosion in chloride environment: an experimental study, part I
Elinwa et al. Sawdust ash as an inhibitor for reinforcement corrosion in concrete
Alrubaie et al. Experimental investigation on protection methods of Slurry Infiltrated Fiber Concrete in corrosive environments
Wasim et al. Unique declining electrochemical trend of macro-cell half-cell potential with increase in temperature at constant high humidity for corroding steel bars in repaired concrete patches

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130828

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140821

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee