KR20080110538A - New compound semiconductor material and producing method thereof, and solar cell using the same - Google Patents

New compound semiconductor material and producing method thereof, and solar cell using the same Download PDF

Info

Publication number
KR20080110538A
KR20080110538A KR1020080055871A KR20080055871A KR20080110538A KR 20080110538 A KR20080110538 A KR 20080110538A KR 1020080055871 A KR1020080055871 A KR 1020080055871A KR 20080055871 A KR20080055871 A KR 20080055871A KR 20080110538 A KR20080110538 A KR 20080110538A
Authority
KR
South Korea
Prior art keywords
bicuote
compound semiconductor
solar cell
present
compound
Prior art date
Application number
KR1020080055871A
Other languages
Korean (ko)
Other versions
KR101008035B1 (en
Inventor
박철희
홍승태
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20080110538A publication Critical patent/KR20080110538A/en
Application granted granted Critical
Publication of KR101008035B1 publication Critical patent/KR101008035B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A compound semiconductor material and a method of manufacturing the compound semiconductor material is provided to be used as a light absorbing layer of a solar battery and to be applied to an active layer of a light emitting diode. A compound is indicated by a chemical formula of BiCuOTe and is manufactured by being vacuum-sintered after mixing each powder of Bi2O3, Bi, Cu and Te. A temperature in sintering is 400~570‹C. A solar battery uses the compound as a light absorbing layer.

Description

신규한 화합물 반도체 물질 및 그 제조 방법과, 이를 이용한 태양 전지 {New compound semiconductor material and producing method thereof, and solar cell using the same}New compound semiconductor material and manufacturing method thereof and solar cell using same

본 발명은 화합물 반도체 및 그 제조 방법과, 이를 이용한 태양 전지에 관한 것이다.The present invention relates to a compound semiconductor, a method for producing the same, and a solar cell using the same.

화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작하는 화합물이다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다. 대표적으로, 광전 변환 효과를 이용한 발광 다이오드나 레이저 다이오드 등의 발광 소자와 태양 전지, 그리고 펠티어 효과(Feltier Effect)를 이용한 열전 변환 소자 등에 화합물 반도체가 이용된다. Compound A semiconductor is a compound which acts as a semiconductor by combining two or more elements rather than a single element such as silicon or germanium. Various kinds of such compound semiconductors are currently developed and used in various fields. Typically, compound semiconductors are used in light emitting devices such as light emitting diodes and laser diodes using a photoelectric conversion effect, solar cells, and thermoelectric conversion devices using a Peltier effect.

이중 자연에 존재하는 태양광 이외의 별도 에너지원을 필요로 하지 않고 친환경적인 태양 전지는 미래의 대체 에너지원으로 활발히 연구되고 있다. 태양 전지는, 주로 실리콘의 단일 원소를 이용하는 실리콘 태양 전지와, 화합물 반도체를 이용하는 화합물 반도체 태양 전지, 그리고 서로 다른 밴드갭 에너지(bandgap energy)를 갖는 태양 전지를 2 이상 적층한 적층형(tandem) 태양 전지로 대별된다. Of these, eco-friendly solar cells that do not require a separate energy source other than sunlight existing in nature are being actively researched as alternative energy sources of the future. The solar cell is mainly a tandem solar cell in which two or more silicon solar cells using a single element of silicon, a compound semiconductor solar cell using a compound semiconductor, and a solar cell having different bandgap energy are stacked. It is roughly divided into.

화합물 반도체 태양 전지는, 태양광을 흡수하여 전자-정공 쌍을 생성하는 광흡수층에 화합물 반도체를 사용하는데, GaAs, InP, GaAlAs, GaInAs 등의 III-V족 화합물 반도체, CdS, CdTe, ZnS 등의 II-VI족 화합물 반도체, CuInSe2로 대표되는 I-III-VI족 화합물 반도체 등을 사용한다.The compound semiconductor solar cell uses a compound semiconductor in a light absorption layer that absorbs sunlight to generate an electron-hole pair, and includes a group III-V compound semiconductor such as GaAs, InP, GaAlAs, GaInAs, CdS, CdTe, and ZnS. Group II-VI compound semiconductors, Group I-III-VI compound semiconductors represented by CuInSe 2 , and the like are used.

태양 전지의 광흡수층은, 장기적인 전기·광학적 안정성이 우수하고, 광전 변환 효율이 높으며, 조성의 변화나 도핑에 의해 밴드갭 에너지나 도전형을 조절하기가 용이할 것 등이 요구된다. 또한, 실용화를 위해서는 제조 비용이나 수율 등의 요건도 만족해야 한다. 전술한 각종의 화합물 반도체는 이러한 요건들을 모두 함께 만족시키지는 못하며, 각각의 장단점에 따라, 용도에 따라 적절히 이용되고 있는 실정이다.The light absorbing layer of a solar cell is required to be excellent in long-term electrical and optical stability, high in photoelectric conversion efficiency, and to easily adjust bandgap energy or conductivity by changing composition or doping. In addition, for practical use, requirements such as manufacturing cost and yield must also be satisfied. The various compound semiconductors described above do not satisfy all of these requirements, and are used according to their advantages and disadvantages according to their use.

본 발명은 태양 전지 등 다양한 용도에 활용할 수 있는 신규한 화합물 반도체 물질을 제공하는 데에 그 목적이 있다.It is an object of the present invention to provide a novel compound semiconductor material that can be used for various applications such as solar cells.

또한, 본 발명은 상기 신규한 화합물 반도체 물질의 제조 방법을 제공하는 데에 그 목적이 있다.It is another object of the present invention to provide a method for producing the novel compound semiconductor material.

나아가, 본 발명은 상기 신규한 화합물 반도체 물질을 이용하는 태양 전지를 제공하는 데에 그 목적이 있다.Furthermore, an object of the present invention is to provide a solar cell using the novel compound semiconductor material.

본 발명자들은 화합물 반도체에 관한 거듭된 연구 끝에 BiCuOTe의 화학식으로 표시되는 신규한 화합물을 합성하는 데에 성공하고, 이 신규한 화합물이 태양 전지 등의 화합물 반도체로서 사용될 수 있음을 확인하여 본 발명을 완성하였다.The present inventors have succeeded in synthesizing a novel compound represented by the chemical formula of BiCuOTe after repeated studies on the compound semiconductor, and completed the present invention by confirming that the novel compound can be used as a compound semiconductor such as a solar cell. .

이 신규한 화합물은, Bi2O3, Bi, Cu 및 Te의 각 분말을 혼합한 후, 진공 소결함으로써 제조할 수 있다. The novel compounds can be prepared by mixing each powder of Bi 2 O 3, Bi, Cu and Te, by vacuum sintering.

한편, 상기 화합물에서 Te 대신 Se이 포함된 BiCuOSe는 발표된 바 있다[A.M. Kusainova, P.S. Berdonosov, L.N. Kholodkovskaya, L.G. Akselrud, V.A. Dolgikh, and B. A. Popovkin, "Powder X-Ray and IR Studies of the New Oxyselenides MOCuSe(M=Bi, Gd, Dy)", J. Solid State Chemistry, 118, 74-77 (1995)]. 또한, Bi 자리에 La, Ce, Nd가 포함된 LnCuOTe(Ln=La, Ce, Nd)도 발표된 바 있다[M.L. Liu, L. B. Wu, F.Q. Huang, L.D. Chen, J.A. Ibers, "Syntheses, Crystal and Electronic Structure, and Some Optical and Transport Properties of LnCuOTe(Ln=La, Ce, Nd)", J. Solid State Chemistry, 180, 62-69 (2007)].On the other hand, BiCuOSe containing Se instead of Te in the compound has been published [A.M. Kusainova, P.S. Berdonosov, L.N. Kholodkovskaya, L.G. Akselrud, V.A. Dolgikh, and B. A. Popovkin, "Powder X-Ray and IR Studies of the New Oxyselenides MOCuSe (M = Bi, Gd, Dy)", J. Solid State Chemistry, 118, 74-77 (1995). In addition, LnCuOTe (Ln = La, Ce, Nd) containing La, Ce, and Nd at Bi sites has also been published [M.L. Liu, L. B. Wu, F.Q. Huang, L.D. Chen, J.A. Ibers, "Syntheses, Crystal and Electronic Structure, and Some Optical and Transport Properties of LnCuOTe (Ln = La, Ce, Nd)", J. Solid State Chemistry, 180, 62-69 (2007).

그러나, 이들 화합물들은 본 발명에 따른 BiCuOTe와 밴드갭 에너지 등 전기·광학적 특성이 다르고, 이들 화합물들의 합성 조건에서는 합성되지 않는다. 즉, 이러한 화합물 반도체는 소결에 의해 제조할 때 통상 700℃나 800℃ 정도의 온도에서 합성되지만, 본 발명의 BiCuOTe는 이러한 온도에서는 합성되지 않고, 이보다 상당히 낮은 400~570℃에서 합성된다. 따라서, 본 발명에 따른 BiCuOTe는, 종래의 화합물 반도체와는 다른 새로운 물질로서 종래의 화합물 반도체를 대체하거나 종래의 화합물 반도체에 더하여 또 하나의 소재로서 이용될 수 있다.However, these compounds differ in electrical and optical properties such as BiCuOTe and bandgap energy according to the present invention, and are not synthesized under the synthesis conditions of these compounds. That is, such a compound semiconductor is normally synthesized at a temperature of about 700 ° C or 800 ° C when manufactured by sintering, but the BiCuOTe of the present invention is not synthesized at this temperature, but is synthesized at a considerably lower 400-570 ° C. Therefore, BiCuOTe according to the present invention can be used as another material in addition to the conventional compound semiconductor as a new material different from the conventional compound semiconductor or in addition to the conventional compound semiconductor.

상세히는 후술하지만, 본 발명에 따른 BiCuOTe는 밴드갭 에너지가 0.5 eV보다 작은 정도로서, 이러한 밴드갭에 상응하는 파장의 빛을 흡수하거나 방출하는 광전 변환 소자에 사용될 수 있다. 예컨대, 본 발명에 따른 BiCuOTe는 태양 전지의 광흡수층으로 사용될 수 있으며, 발광 다이오드의 활성층으로의 적용도 예상된다. 또한, 본 발명에 따른 BiCuOTe는 열전 변환 소자나, 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서에도 적용이 예상된다.Although described later in detail, BiCuOTe according to the present invention has a bandgap energy of less than 0.5 eV, and can be used in a photoelectric conversion element that absorbs or emits light having a wavelength corresponding to the bandgap. For example, BiCuOTe according to the present invention can be used as a light absorption layer of a solar cell, it is also expected to be applied to the active layer of a light emitting diode. In addition, BiCuOTe according to the present invention is expected to be applied to a thermoelectric conversion element, an infrared window (IR window) or an infrared sensor for selectively passing infrared rays.

본 발명의 BiCuOTe의 화학식으로 표시되는 신규한 화합물 반도체 물질은, 종래의 화합물 반도체를 대체하거나 종래의 화합물 반도체에 더하여 또 하나의 소재로서 태양 전지 등 다양한 용도에 이용할 수 있다.The novel compound semiconductor material represented by the chemical formula of BiCuOTe of the present invention can be used in various applications such as solar cells as another material in addition to the conventional compound semiconductor or in addition to the conventional compound semiconductor.

이하, 본 발명에 대한 이해를 돕기 위해 도면을 참조하여 본 발명의 실시예를 더욱 상세하게 설명한다. Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings to aid in understanding the present invention.

본 실시예에서는 BiCuOTe를 소결법으로 합성하고, X-선 회절분석을 통하여 동정하였으며, 그 결정 구조를 분석하고 밴드갭 에너지를 구하였다.In this example, BiCuOTe was synthesized by sintering method and identified by X-ray diffraction analysis. The crystal structure was analyzed and the bandgap energy was obtained.

먼저, BiCuOTe의 합성을 위해, Bi2O3 (Aldrich, 99.9%, 100 mesh) 0.7465g, Bi (Aldrich, 99.99%, < 10 ㎛), 0.3348g, Cu (Aldrich, 99.7%, 3 ㎛) 0.3054g, Te (Aldrich, 99.99%, ~100 mesh) 0.6133g을 아게이트 몰타르(agate mortar)를 이용하여 잘 혼합하였다. 혼합된 재료는 실리카 튜브(silica tube)에 넣고 진공 밀봉하여, 510℃에서 15시간 동안 가열함으로써 BiCuTeO 분말을 얻었다.First, for the synthesis of BiCuOTe, 0.7465 g of Bi 2 O 3 (Aldrich, 99.9%, 100 mesh), Bi (Aldrich, 99.99%, <10 μm), 0.3348 g, Cu (Aldrich, 99.7%, 3 μm) 0.3054 g, Te (Aldrich, 99.99%, ˜100 mesh) 0.6133g was mixed well using agate mortar. The mixed material was placed in a silica tube and vacuum sealed and heated at 510 ° C. for 15 hours to obtain BiCuTeO powder.

X-선 회절 분석을 위해 시료를 잘 분쇄하여 X-선 회절 분석기(Bruker D8-Advance XRD)의 샘플 홀더에 충전하였으며, X-선은 CuKα1(λ=1.5405Å), 인가 전압 50kV, 인가 전류 40mA로, 0.02도 간격으로 스캔하여 측정하였다. 그 결과를 도 1에 도시한다.The sample was ground well for X-ray diffraction analysis and filled into a sample holder of an X-ray diffractometer (Bruker D8-Advance XRD), where the X-rays were CuKα 1 (λ = 1.5405 Hz), applied voltage 50 kV, applied current. Scanning was performed at 40 mA at 0.02 degree intervals. The result is shown in FIG.

또한, 얻어진 물질의 결정 구조를 알아내기 위해서, GSAS 프로그램(A.C. Larson and R.B. Von Dreele, "General Structure Analysis System," Report no. LAUR086-748, Los Alamos National Laboratory, Los Alamos, NM 87545.)을 사용하여 결정 구조를 분석하였다. 그 결과를 아래 표 1과 도 2에 나타낸다.In addition, the GSAS program (AC Larson and RB Von Dreele, "General Structure Analysis System," Report no. LAUR086-748, Los Alamos National Laboratory, Los Alamos, NM 87545.) was used to determine the crystal structure of the obtained material. The crystal structure was analyzed. The results are shown in Table 1 below and FIG. 2.

AtomAtom sitesite xx yy zz Occup.Occup. Uiso U iso BiBi 2c2c 0.250.25 0.250.25 0.37256(7)0.37256 (7) 1One 0.0079(1)0.0079 (1) CuCu 2a2a 0.750.75 0.250.25 00 1One 0.0079(1)0.0079 (1) OO 2b2b 0.750.75 0.250.25 0.50.5 1One 0.0079(1)0.0079 (1) TeTe 2c2c 0.250.25 0.250.25 0.81941(5)0.81941 (5) 1One 0.0079(1)0.0079 (1)

BiCuOTe의 리트벨트 구조분석(Rietveld refinement)으로부터 얻은 결정학적 데이터 [Space group I4/nmm (No.129), a = 4.04366(3)Å, c = 9.53188(7) Å]Crystallographic data from Rietveld refinement of BiCuOTe [Space group I4 / nmm (No.129), a = 4.04366 (3) Å, c = 9.53188 (7) Å)

도 1을 참조하면, 측정된 패턴과 표 1의 결과에 따른 계산된 패턴이 잘 일치한다는 것을 알 수 있고, 이로써 본 실시예에 의해 얻어진 물질이 BiCuOTe임이 동정되었다.Referring to FIG. 1, it can be seen that the measured pattern agrees well with the calculated pattern according to the results of Table 1, thereby identifying that the material obtained by the present example is BiCuOTe.

한편, 위의 시료에 대해 반사 분광법을 사용하여 광학적 밴드갭 에너지를 측정하였다. 분광기는 Shimadzu UV-3600을 사용하였고, 측정 범위는 650~2500nm이며, 측정 간격은 1nm였다. 비교를 위해 유사한 시료인 BiCuOS, BiCuOSe의 반사율을 함께 나타낸 도 3의 그래프를 보면, BiCuOS의 경우는 약 1.1 eV에서 밴드갭 에너지가 관찰되나, BiCuOTe의 경우에는 2500nm(=0.496 eV)까지 에너지 흡수에 의한 반사율의 현저한 변화가 관찰되지 않는다. 따라서, 본 발명에 따른 BiCuOTe은 밴드갭 에너지가 0.5 eV보다 작은 정도라고 추정된다.On the other hand, the optical bandgap energy was measured using the reflection spectroscopy for the above sample. The spectrometer used Shimadzu UV-3600, and the measurement range was 650-2500 nm, and the measurement interval was 1 nm. For comparison, the graphs of FIG. 3 showing the reflectances of similar samples, BiCuOS and BiCuOSe, show a bandgap energy at about 1.1 eV for BiCuOS, but up to 2500 nm (= 0.496 eV) for BiCuOTe. No significant change in reflectance is observed. Therefore, BiCuOTe according to the present invention is estimated to have a band gap energy of less than 0.5 eV.

이어서, 본 발명에 따른 BiCuOTe을 광흡수층으로 이용하는 태양 전지에 대해 설명한다. BiCuOTe를 이용한 태양 전지는, 통상의 방법에 따라, 태양광이 입사되는 쪽에서부터 순차적으로, 전면(前面) 투명 전극, 버퍼층, 광흡수층, 배면 전극, 기판이 적층된 구조로 제조할 수 있다. 이를 간단히 설명하면 다음과 같다.Next, a solar cell using BiCuOTe according to the present invention as a light absorption layer will be described. A solar cell using BiCuOTe can be manufactured in a structure in which a front transparent electrode, a buffer layer, a light absorbing layer, a back electrode, and a substrate are sequentially stacked from the side where sunlight is incident in accordance with a conventional method. This is briefly described as follows.

가장 아래에 위치하는 기판은 통상 유리로 이루어지며, 그 위에 전면(全面)적으로 형성되는 배면 전극은 Mo 등의 금속을 증착함으로써 형성된다. 이어서, 배면 전극 위에, 전술한 실시예에서와 같이 합성된 본 발명의 BiCuOTe를 전자빔 증착법, 졸-겔(sol-gel)법, PLD(Pulsed Laser Deposition) 등의 방법으로 적층함으로써 광흡수층을 형성한다. 광흡수층 위에는, 전면 투명 전극으로 통상 사용되는 ZnO층과 광흡수층 간의 격자상수 차이 및 밴드갭 차이를 완충하는 버퍼층을 통상 형성하는데, 이 버퍼층은 CdS 등의 재료를 CBD(Chemical Bath Deposition) 등의 방법으로 증착함으로써 형성할 수 있다. 이어서, 버퍼층 위에 ZnO나 ZnO와 ITO의 적층막으로 전면 투명 전극을 스퍼터링 등의 방법으로 형성한다. 광흡수층인 BiCuOTe는 기본적으로 p형 반도체이므로, 전면 투명 전극인 n형 반도체로서의 ZnO 등은 전면 전극으로서 기능함과 동시에 광흡수층과의 p-n 접합을 이루게 된다. The substrate located at the bottom is usually made of glass, and the back electrode formed entirely on it is formed by depositing a metal such as Mo. Subsequently, a light absorption layer is formed on the back electrode by laminating the BiCuOTe of the present invention synthesized as in the above-described embodiment by an electron beam deposition method, a sol-gel method, or a pulsed laser deposition (PLD) method. . On the light absorbing layer, a buffer layer for buffering the lattice constant difference and the band gap difference between the ZnO layer and the light absorbing layer, which is usually used as the front transparent electrode, is usually formed. It can form by vapor-depositing. Subsequently, a front transparent electrode is formed on the buffer layer by a laminated film of ZnO or ZnO and ITO by sputtering or the like. Since BiCuOTe, which is a light absorption layer, is basically a p-type semiconductor, ZnO or the like as an n-type semiconductor, which is a front transparent electrode, functions as a front electrode and simultaneously forms a p-n junction with the light absorption layer.

한편, 상술한 태양 전지는 알려진 다양한 변형이 가능하다. 예를 들어, 상기의 BiCuOTe를 광흡수층으로 사용한 태양 전지의 상부 또는 하부에 밴드갭 에너지가 다른 물질을 사용한 태양 전지를 적층한 적층형 태양 전지를 제조할 수 있으며, 이 적층되는 다른 태양 전지는 실리콘이나 다른 알려진 화합물 반도체를 이용한 태양 전지를 사용할 수 있다. 나아가, 본 발명의 BiCuOTe의 밴드갭을 변화시킴으로써 서로 다른 밴드갭을 가지는 BiCuOTe를 광흡수층으로 사용하는 복수의 태양 전지를 적층할 수도 있다. BiCuOTe의 밴드갭은 이 화합물을 이루는 구성 원소 특히, Te의 조성비를 변화시킴으로써 용이하게 조절할 수 있다. On the other hand, the above-described solar cell is possible in a variety of known variations. For example, a stacked solar cell may be fabricated by stacking a solar cell using a material having a different bandgap energy on or above a solar cell using the BiCuOTe as a light absorption layer. Solar cells using other known compound semiconductors can be used. Furthermore, by changing the band gap of the BiCuOTe of the present invention, a plurality of solar cells using BiCuOTe having different band gaps as the light absorption layer can be stacked. The band gap of BiCuOTe can be easily adjusted by changing the composition ratio of the constituent elements constituting the compound, in particular, Te.

이상 실시예를 들어 본 발명을 설명하였지만, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되지 않아야 하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Although the present invention has been described with reference to the above embodiments, the terms or words used in the specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventor should explain his invention in the best way. Based on the principle that the concept of the term can be appropriately defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되지 않아야 하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors can appropriately define the concept of terms in order to best describe their invention. Based on the principle, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 상술한 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the detailed description of the present invention serve to further understand the technical spirit of the present invention, the present invention includes matters described in such drawings. It should not be construed as limited to.

도 1은 본 발명에 따른 화합물인 BiCuOTe의 X-선 회절 패턴과 구조모델의 이론 패턴을 비교한 리트벨트 프로화일(Rietveld profile)을 도시한 그래프이다.1 is a graph showing a Rietveld profile comparing the theoretical pattern of the structural model with the X-ray diffraction pattern of the compound according to the present invention BiCuOTe.

도 2는 본 발명에 따른 화합물인 BiCuOTe의 결정구조도이다.2 is a crystal structure diagram of BiCuOTe, a compound according to the present invention.

도 3은 본 발명에 따른 화합물인 BiCuOTe의 반사 분광도를 유사한 물질인 BiCuOSe, BiCuOS의 반사 분광도와 함께 도시한 그래프로서, 이 화합물의 밴드갭 에너지를 구하는 과정을 설명하기 위한 도면이다.3 is a graph showing the reflection spectroscopy of BiCuOTe, a compound according to the present invention, with the reflection spectra of BiCuOSe and BiCuOS, which are similar materials, illustrating a process of obtaining a bandgap energy of the compound.

Claims (4)

BiCuOTe의 화학식으로 표시되는 화합물.A compound represented by the chemical formula of BiCuOTe. Bi2O3, Bi, Cu 및 Te의 각 분말을 혼합한 후, 진공 소결함으로써 BiCuOTe의 화학식으로 표시되는 화합물을 제조하는 방법. A method for producing a compound represented by the chemical formula of BiCuOTe by mixing the respective powders of Bi 2 O 3 , Bi, Cu, and Te, followed by vacuum sintering. 제2항에 있어서, The method of claim 2, 상기 소결시의 온도는 400~570℃인 것을 특징으로 하는 BiCuOTe의 화학식으로 표시되는 화합물을 제조하는 방법. The temperature at the time of sintering is a method for producing a compound represented by the chemical formula of BiCuOTe, characterized in that 400 ~ 570 ℃. BiCuOTe의 화학식으로 표시되는 화합물을 광흡수층으로 사용하는 것을 특징으로 하는 태양 전지.A solar cell using a compound represented by the chemical formula of BiCuOTe as a light absorption layer.
KR20080055871A 2007-06-14 2008-06-13 New compound semiconductor material and producing method thereof, and solar cell using the same KR101008035B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070058266 2007-06-14
KR1020070058266 2007-06-14

Publications (2)

Publication Number Publication Date
KR20080110538A true KR20080110538A (en) 2008-12-18
KR101008035B1 KR101008035B1 (en) 2011-01-13

Family

ID=40369372

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080055871A KR101008035B1 (en) 2007-06-14 2008-06-13 New compound semiconductor material and producing method thereof, and solar cell using the same

Country Status (1)

Country Link
KR (1) KR101008035B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316793A2 (en) * 2008-08-29 2011-05-04 LG Chem, Ltd. New semiconductive compound, method of manufacture thereof, and thermoelectric component using the same
FR2996355A1 (en) * 2012-09-28 2014-04-04 Rhodia Operations MIXED OXIDES AND SULFIDES OF BISMUTH AND COPPER FOR PHOTOVOLTAIC APPLICATION
KR20140143323A (en) 2013-06-05 2014-12-16 주식회사 엘지화학 Novel compound and photoelectric conversion device having the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316793A2 (en) * 2008-08-29 2011-05-04 LG Chem, Ltd. New semiconductive compound, method of manufacture thereof, and thermoelectric component using the same
EP2320485A2 (en) * 2008-08-29 2011-05-11 LG Chem, Ltd. New thermoelectric material, method of manufacture thereof and thermoelectric component using the same
EP2319082A1 (en) * 2008-08-29 2011-05-11 LG Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same
EP2320485A4 (en) * 2008-08-29 2013-10-30 Lg Chemical Ltd New thermoelectric material, method of manufacture thereof and thermoelectric component using the same
EP2316793A4 (en) * 2008-08-29 2013-11-20 Lg Chemical Ltd New semiconductive compound, method of manufacture thereof, and thermoelectric component using the same
EP2319082A4 (en) * 2008-08-29 2013-12-04 Lg Chemical Ltd New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same
FR2996355A1 (en) * 2012-09-28 2014-04-04 Rhodia Operations MIXED OXIDES AND SULFIDES OF BISMUTH AND COPPER FOR PHOTOVOLTAIC APPLICATION
WO2014049172A3 (en) * 2012-09-28 2014-10-02 Rhodia Operations Mixed bismuth and copper oxides and sulphides for photovoltaic use
CN104813483A (en) * 2012-09-28 2015-07-29 罗地亚经营管理公司 Mixed bismuth and copper oxides and sulphides for photovoltaic use
KR20140143323A (en) 2013-06-05 2014-12-16 주식회사 엘지화학 Novel compound and photoelectric conversion device having the same

Also Published As

Publication number Publication date
KR101008035B1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
US9620696B2 (en) Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
KR101614062B1 (en) New compound semiconductors and their application
KR101446165B1 (en) New compound semiconductors and their application
Ghorpade et al. Emerging chalcohalide materials for energy applications
KR101626933B1 (en) New compound semiconductors and their application
KR20120127299A (en) New compound semiconductors and their application
KR101463195B1 (en) New compound semiconductors and their application
KR101008035B1 (en) New compound semiconductor material and producing method thereof, and solar cell using the same
US20130009117A1 (en) New compound semiconductors and their application
KR101453036B1 (en) New compound semiconductors and their application
KR20120127304A (en) New compound semiconductors and their application
KR101380945B1 (en) New compound semiconductors and their application
KR20120127305A (en) New compound semiconductors and their application
KR101357159B1 (en) New compound semiconductors and their application
Owens Photoconductive Materials
KR101614063B1 (en) New compound semiconductors and their application
KR101372523B1 (en) New compound semiconductors and their application
Abdi Jalebi Chemical modifications and passivation approaches in metal halide perovskite solar cells
KR20120127322A (en) New compound semiconductors and their application
Tawalare et al. Metal Oxides: Spectral Modifiers for Solar Cell Applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151229

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 10