KR20080109195A - Ni-mh secondary battery - Google Patents
Ni-mh secondary battery Download PDFInfo
- Publication number
- KR20080109195A KR20080109195A KR1020070057232A KR20070057232A KR20080109195A KR 20080109195 A KR20080109195 A KR 20080109195A KR 1020070057232 A KR1020070057232 A KR 1020070057232A KR 20070057232 A KR20070057232 A KR 20070057232A KR 20080109195 A KR20080109195 A KR 20080109195A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode plate
- secondary battery
- exhaust
- nickel
- electrolyte
- Prior art date
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000003792 electrolyte Substances 0.000 claims abstract description 20
- 239000001257 hydrogen Substances 0.000 claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 6
- 229920000098 polyolefin Polymers 0.000 claims abstract description 6
- 230000005012 migration Effects 0.000 claims abstract description 4
- 238000013508 migration Methods 0.000 claims abstract description 4
- 238000007789 sealing Methods 0.000 claims description 14
- 229910000652 nickel hydride Inorganic materials 0.000 claims description 7
- 229910052987 metal hydride Inorganic materials 0.000 claims description 6
- 229920006351 engineering plastic Polymers 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 11
- -1 nickel hydrogen Chemical class 0.000 abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000012945 sealing adhesive Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/28—Construction or manufacture
- H01M10/281—Large cells or batteries with stacks of plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/52—Removing gases inside the secondary cell, e.g. by absorption
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
Abstract
Description
도 1은, 본 발명에 따른 대용량 각형 밀폐형 니켈 수소 이차전지의 개략도이고, 1 is a schematic diagram of a large-capacity rectangular sealed nickel hydrogen secondary battery according to the present invention,
도 2a와 도 2b는, 종래의 배기식 니켈 수소 전지의 단면도와 측면도를 각각 나타낸 도면이고, 2A and 2B are cross-sectional views and side views of a conventional exhaust nickel metal hydride battery, respectively.
도 3a 및 도 3b는 본 발명에 따른 니켈 수소 전지의 정면도와 측면도를 각각 나타낸 도면이고,3A and 3B are views showing a front view and a side view of the nickel hydride battery according to the present invention, respectively.
도 4는 음극판, 양극판 격리막의 봉합 개략도이고, 4 is a schematic diagram of sealing of the negative electrode plate and the positive electrode plate separator;
도 5는 도 3에 있어서 본 발명의 전지 케이스의 배기부의 상세도이다. 5 is a detailed view of an exhaust unit of the battery case of the present invention in FIG.
*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
1: 전조 2: 커버1: precursor 2: cover
3. 음극판, 양극판 4, 100: 격리막(도3에서 전조임)3. Negative plate,
5: 와샤 6: 너트5: washer 6: nut
7: O-링 8: 배기변7: O-ring 8: exhaust valve
9: 금속 덮개 10: 스프링9: metal cover 10: spring
11: 배기캡 12: 극주11: exhaust cap 12: pole
20: 양극 극주 20': 음극 극주20: anode pole 20 ': cathode pole
25: 극군 40:배기부 25: Extreme group 40: Exhaust part
50: 양극판, 음극판 70: 극군50: positive electrode plate, negative electrode plate 70: electrode group
110: 배기부 110a: 기공(Hole)110:
111: 배기캡 112: 스프링 111: exhaust cap 112: spring
113: 배기변 113a: 배기변 받이부113:
200: 음극판 300: 양극판200: negative electrode plate 300: positive electrode plate
400: 전조400: precursor
본 발명은 니켈 수소 2차 전지의 음극판 및 양극판의 제조 방법에 있어서, 각형 밀폐형 니켈 수소 축전지를 개시하며, 특히 초고율 방전 성능과 충방전 사이클 성능이 우수한 소형 경량화를 실현한 초고율 방전 특성을 만족하며, 전해액을 보충할 필요가 없는 각형 밀폐형 니켈수소 이차전지에 관한 것이다. Disclosure of Invention The present invention discloses a rectangular sealed nickel hydrogen storage battery in a method for manufacturing a negative electrode plate and a positive electrode plate of a nickel hydride secondary battery, and particularly satisfies the ultra high rate discharge characteristic of miniaturization and light weight excellent in ultra high rate discharge performance and charge / discharge cycle performance. In addition, the present invention relates to a rectangular sealed nickel hydrogen secondary battery that does not need to replenish electrolyte solution.
근래 골프카, 근거리이동용 전기 자동차, 전동 공구 및 발전기 시동용을 시작으로 하는 대전류 방전이 필요한 전동기기 및 산업분야가 급속히 증가하고 있는 경향에 있다. 이러한 기기들의 전원으로서 니켈 축전지는 니켈 카드뮴 축전지나 납축전지보다도 단위 체적 및 단위 질량당의 에너지 밀도가 높을 뿐만 아니라 환경친화적인 재료로서 주목받고 있다. In recent years, there has been a rapid increase in the number of electric vehicles and industrial fields requiring a large current discharge, including golf cars, short-range electric vehicles, power tools and generators. As a power source for such devices, nickel accumulators have higher energy density per unit volume and unit mass than nickel cadmium accumulators or lead accumulators, and are attracting attention as environmentally friendly materials.
그러나 현재 양산중인 축전지는 밀폐형이 아닌 액식 전지로써 음, 양극판 제 조방식이 포켓타입을 적용하기 때문에 박판화가 불가능하고 또한, 전조, 커버 등의 케이스로 ABS 수지 또는 스틸을 사용하기 때문에 봉구제나 접착제 사용 및 용접을 하여야 하는 문제가 있었으며, 이로 인해 유동액이 많아 중량 및 체적 밀도가 낮아 설비 설치면적 효율이 떨어지고, 또한 전지 설치시 제약을 받으며, 장기 사용시 전해액 고갈로 전해액을 보충하여야 하고, 뿐만아니라 케이스 소손시 전해액 유출로 문제를 야기할 수 있는 문제가 있었다. However, the battery currently in mass production is a liquid battery, not a sealed type, and since the negative and positive electrode manufacturing methods apply a pocket type, it is impossible to make thin plates. Also, since the ABS resin or steel is used as a case for rolling and cover, sealing materials or adhesives are used. And welding, and due to this there is a large amount of fluid and low weight and volume density, which lowers the installation area efficiency, and is also restricted when installing the battery. When burned out, there was a problem that can cause problems with the electrolyte leakage.
도 2a와 도 2b는, 종래의 배기식 니켈 수소 전지의 단면도와 측면도를 각각 나타낸 도면으로서, 전지의 전조(30)의 양극판(50), 음극판(50), 격리막(도시 않음)으로 구성된 전지의 극군(25) 사이에 여유가 있어 많은 량의 전해액을 전지 전조(30) 내에 수동 주액 가능하였으며, 전조(30) 내부의 음극 판, 양극 판 및 격리 막이 전해액에 충분히 함침되도록 다량의 전해액을 사용하였다. 그러나 장기간 사용시 전지 외부 배기부(40)에 의해 전지의 충·방전시 발생되는 전해액 분해가스(수소, 산소)가 배기부(40)를 통해 방출되어 전해액이 고갈되는 현상이 발생하여 사용자가 주기적으로 전해액을 주액 해야만 하는 보수관리가 필요하였다. 배기부(10)는 단순히 전지의 내외부가 완전 밀폐될 수 없는 플라스틱 재질의 캡을 사용하였다. 도면에 있어서, 20, 20'는 각기 음극 탭과 양극 탭이다. 2A and 2B are cross-sectional views and side views of a conventional exhaust-type nickel metal hydride battery, respectively. FIG. 2A and FIG. 2B are views of a battery composed of a
이와 같은 방법은 전해액을 주입시에 일정량의 전해액을 주기적으로 주액할 수 없고, 또한 전해액 주액 완료후, 주액관로상에 남아있는 잔여 전해액이 전해액 노즐을 통하여 흘러내리는 단점이 있었다. Such a method has a disadvantage in that it is not possible to periodically inject a predetermined amount of electrolyte during injection of the electrolyte, and after completion of the electrolyte injection, residual electrolyte remaining on the injection pipe flows down through the electrolyte nozzle.
따라서 본 발명은 기존 액유동식 니켈 수소 및 니켈 카드뮴 전지의 중량 및 체적 에너지 밀도가 낮고 전해액을 주기적으로 보충해야 하는 문제점을 해결하기 위하여 페이스티드(pasted) 타입의 극판 제조 방법을 개발하여 소형화, 경량화를 통한 중량 및 체적 에너지 밀도를 극대화하고 또한 초고율 방전 특성을 만족하고 전해액을 보충할 필요가 없는 각형 밀폐형 니켈수소 이차전지를 제공하는데 그 목적이 있다. Therefore, in order to solve the problem of low weight and volumetric energy density of the liquid-type nickel metal hydride and nickel cadmium batteries, and to periodically replenish the electrolyte, the present invention has been developed to reduce the size and weight of the electrode plate manufacturing method. The purpose of the present invention is to provide a rectangular sealed nickel-hydrogen secondary battery that maximizes the weight and volumetric energy density, satisfies ultra-high discharge characteristics, and does not require replenishment of the electrolyte.
본 발명은, 양극판, 음극판, 격리막, 전해액 그리고 이 전해액을 담고 있는 케이스를 구비하는 이차전지에 있어서, The present invention is a secondary battery comprising a positive electrode plate, a negative electrode plate, a separator, an electrolyte solution and a case containing the electrolyte solution,
상기 양극판 및 음극판은 페이스티드 타입 극판 제조방법으로 제조된 소형, 박형 극판이고, 상기 격리막은 우수한 다공성과 전기저항이 낮고 이온 이동이 용이한 폴리올레핀계 슬폰화 처리 부직포이고, 상기 케이스의 접착은 히트 실링(heat sealing) 방식으로 수행되고, 상기 케이스의 재질은 고강도 엔지니어링 플라스틱을 사용한 것을 특징으로 하는 니켈 수소 이차전지를 제공한다. The positive electrode plate and the negative electrode plate is a small, thin electrode plate manufactured by a method of manufacturing a faceted type electrode plate, the separator is a polyolefin-based sulfonated nonwoven fabric having excellent porosity, low electrical resistance and easy ion migration, and the case is bonded by heat sealing. It is carried out by (heat sealing) method, the material of the case provides a nickel hydride secondary battery characterized in that the use of high-strength engineering plastics.
이하 도면을 참조하여 본 발명을 구체적으로 설명한다. 또한 본 발명의 요지를 불필요하게 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 1 은 본 발명에 따른 대용량 각형 밀폐형 니켈 수소 이차전지의 개략도로서, 도면에 있어서, 1은 전조이고, 2는 커버로서 엔지니어링 플라스틱으로 구성되고, 난연성이다. 3은 발포 Ni+니켈 산화물로 된 양극판 및 천공체 + 수소 흡장합금 으로 구성되어 있다. 4는 격리막으로 우수한 다공성과 전기저항이 낮고 이온 이동이 용이한 폴리올레핀계 부직포를 적용하여 자기 방전 특성을 개선하였으며, 5는 와셔이고, 6은 너트인데 이들은 스틸로 되어 있으며, 또한 도금되어 있다. 7은 O 링으로서 고무로 되어 있으며, 8은 배기변으로서 고무로 되어 있으며, 9는 금속 덮개로서 스틸로 되어 있으며, 10은 스프링으로서 스틸로 되어 있는데, 금속 덮개와 스프링은 도금되어 있다. 11은 배기캡으로 엔지니어링 플라스틱으로 되어 있으며, 난연성이다. 12는 극주로서 스틸재질에 도금로 되어 있다. 1 is a schematic diagram of a large-capacity rectangular sealed nickel-metal hydride secondary battery according to the present invention, in which 1 is a roll, 2 is made of engineering plastic as a cover, and is flame retardant. 3 consists of a positive electrode plate made of expanded Ni + nickel oxide and a perforated body + hydrogen absorbing alloy. 4 is a separator, polyolefin-based non-woven fabric with excellent porosity, low electrical resistance, and easy ion migration improves self-discharge characteristics. 5 is a washer and 6 is a nut, which is made of steel and is also plated. 7 is rubber as the O ring, 8 is rubber as the exhaust valve, 9 is steel as the metal cover, 10 is steel as the spring, and the metal cover and the spring are plated. 11 is an exhaust cap made of engineering plastic and flame retardant. 12 is a pole, plated on steel.
또한 케이스인 전조(1)와 커버(2)의 경우 융착부(도시 않음)와 배기변(8)이 5기압 정도의 내압에 견뎌야 하기 때문에 이에 적합한 고강도 엔지니어링 플라스틱을 케이스재질로 자체개발하여 내충격, 내알카리성이 우수하고 열융착이 용이하게 하였다. 이의 접착은 히트 실링(heat sealing) 방식을 적용하고, 배기변도 고무와 스프링을 사용하여 밀폐화 하였는데 이 밀폐화에 대해서는 후술한다. 한편 전해액으로서는 KOH(수산화칼륨)를 주성분으로 하고 이에 저온 및 고온 특성을 향상시키기 위하여 첨가제를 사용하였으며, 밀폐화에 있어서 가장 중요한 전해액 주액은 진공 주액을 실시하였다. 주액이 완료된 전지는 전해액의 고른 분산과 도전성 향상을 위해 활성화전 시효처리를 하였으며, 그후 스텝 충전 방식에 의해 1사이클에 90%이상 활성화가 되는 대용량 초고율 방전특성이 우수한 각형 밀폐형 니켈수소 이차전지를 사용하였다. In addition, in case of the rolled case (1) and the cover (2), the welded part (not shown) and the exhaust valve (8) must withstand the internal pressure of about 5 atm. Excellent alkali resistance and easy heat fusion. Its adhesion was sealed by using a heat sealing method (heat sealing), using a rubber and a spring to the exhaust valve, which will be described later. On the other hand, KOH (potassium hydroxide) was used as the main component, and additives were used to improve the low temperature and high temperature characteristics. The most important electrolyte solution for sealing was vacuum injection. After completion of the injection, the cell was subjected to aging treatment before activation to evenly distribute the electrolyte and improve conductivity.Then, after the step charging method, a rectangular sealed nickel-hydrogen secondary battery having a high capacity and ultra high rate discharge characteristic, which is activated by 90% or more per cycle, is used. Used.
또한 수산화 니켈을 사용하여 만든 양극판과 수소 저장 합금을 사용하여 만든 음극판을 슬러리를 제조하여 Foam nickel과 NPPS(Nickel Plated Perforated Steel:천공강판)에 코팅하는 페이스티드 방식을 적용하여 박판화하고, 고율방전에 유리한 격리막으로 봉합하여 극군(도시 않음)을 제조하였으며, 이때 고율특성을 개선하기 위하여 도선 역할을 하는 탭(도시 않음)을 별도 제조하여 스폿 용접과 심(seam) 용접을 실시하였으며, 극군 탭과 극주(12) 용접도 극판(3)손상을 최소하하면서 고율 특성이 우수하도록 레이저 용접을 실시하였다. In addition, the anode plate made of nickel hydroxide and the anode plate made of hydrogen storage alloy are manufactured to produce a slurry, and then laminated by applying a paste method to coat nickel with nickel plated perforated steel (NPPS). A pole group (not shown) was manufactured by sealing with an advantageous separator, and in order to improve high-rate characteristics, a spot tab and a seam welding were separately manufactured by separately manufacturing a tab (not shown) that serves as a conductor. (12) Welding degree Laser welding was performed to minimize the damage to the
도 3a 및 도 3b는 본 발명에 따른 니켈 수소 전지의 정면도와 측면도를 각각 나타낸 도면으로서, 밀폐형 니켈 수소 전지(100)의 경우, 밀폐화를 위해 전지 외부에 별도의 내압 조정용 배기부(110)가 장착되어 있다. 3A and 3B illustrate front and side views of the nickel hydride battery according to the present invention, respectively, in the case of the sealed
도면에 있어서 100은 전조이고, 70은 극군으로서, 전지의 특성상 밀폐화를 위해서는 충방전시 발생하는 수소와 산소가스를 재결합할 수 있는 극군으로 구성하였다. 120은 극주이다. In the figure, 100 is a precursor, 70 is a pole group, and due to the characteristics of the battery, it is composed of a pole group capable of recombining hydrogen and oxygen gas generated during charging and discharging. 120 is the pole.
도 4는 음극판, 양극판 격리막의 봉합 개략도로서, 도면에 있어서, 100은 격리막이고, 200은 음극판이고, 300은, 양극판이고, 400은 전조이다. 4 is a schematic diagram of sealing of a negative electrode plate and a positive electrode plate separator, in which 100 is a separator, 200 is a negative plate, 300 is a positive plate, and 400 is a roll.
본 발명에서는 활물질을 슬러리화하여 Ni-foam과 NPPS에 페이스팅하는 방식을 적용하여 음극의 경우 0.6mm이하로 양극의 경우 0.9mm이하로 박판화를 실현하였다. 전술한 바와 같이 음양극판의 절연을 통해 음양극판의 절연을 통해 단락을 방지하는 격리막으로 우수한 다공성과 전기저항이 낮고 이온의 이동이 용이한 폴리올레핀계 슬폰화 처리한 부직포를 사용하여 자기방전 특성을 개선하였다. 이때 충방전 사이클중 발생할 수 있는 단락방지를 위하여 100㎛이하의 얇은 격리막을 사용하여 음극판만을 봉합하던 것을 도 4의 도시와 같이 음극판 및 양극판을 모두 봉합하 여 내구성을 향상시켰다. In the present invention, the slurry is applied to the Ni-foam and NPPS to paste the active material to achieve a thinning of less than 0.6mm for the negative electrode and 0.9mm or less for the positive electrode. As described above, the insulation film prevents the short circuit through the insulation of the anode plate by using the polyolefin-based sulfonated nonwoven fabric with excellent porosity, low electrical resistance and easy movement of ions. It was. At this time, in order to prevent a short circuit that may occur during the charge and discharge cycle, sealing only the negative electrode plate using a thin separator of 100 μm or less, as shown in FIG. 4, sealed both the negative electrode plate and the positive electrode plate to improve durability.
도 5는 도 3에 있어서 본 발명의 전지 케이스의 배기부(110)의 상세도이다.5 is a detailed view of the
케이스는 배기캡(111), 스프링(112) 및 고무 재질의 배기변(113)으로 구성된배기부(110)를 구비한다. 상기 배기부(110)는 전지 내의 압력이 일정압력이 도달하기 전까지는 열리지 않으며, 전해액의 완전밀폐가 가능하도록 구성되어 있다. 또한 배기변(113)는 배기변 받이부(113a)를 구비한다. 그리고 배기캡(111)을 왼나사를 적용하였다. The case is provided with an
그러면 상기와 같이 구성된 배기부(110)의 동작에 대해서 설명한다. Next, the operation of the
평상시 즉 전지의 내부 압력이 일정한 압력이 도달하기 전에는 배기부(110)는 도면에 도시한 바와 같이 배기변(113)이 전지 내부의 압력을 견디어 전해액이 기공(110a)을 통해 전지의 내부 압력이 배출되지 않는다. 그러나, 전지의 반응중 전지 내부의 발생가스가 일정 압력 이상이 되게 되면 배기변(113)을 밀게 되어 그러면 배기변(113)이 배기변 받이부(113a)로부터 격리되게 되고, 이로 인해 배기변(113)과 배기변 받이부(113a) 사이에 간극이 생기어 이 사이의 간극을 통해 그리고 기공(110a)을 통해 발생 가스가 배출되게 되어 이러한 작용에 의해 충·방전시의 전지 내부에서 발생되는 수소와 산소가스가 일정한 압력 상태에서 외부로 방출되지 않고 전지 내부에서 재결합 반응할 수 있도록 구성되고, 전지 내부의 이상에 의해 압력이 급격하게 상승될 경우에만 배기부(110)를 통해 내부 가스가 방출되게 될 수 있다. Normally, before the internal pressure of the battery reaches a constant pressure, the
본 발명에 의하면, 페이스티드 타입의 극판 제조 방법을 개발하여 소형화, 경량화를 통한 중량 및 체적 에너지 밀도를 극대화하고 또한 초고율 방전 특성을 만족하고 전해액을 보충할 필요가 없는 각형 밀폐형 니켈수소 이차전지를 제공할 수 있다. 또한, 우수한 다공성과 전기저항이 낮고 이온 이동이 용이한 폴리올레핀계 슬폰화 처리 부직포를 적용하여 자기방전 특성을 개선하였으며, 또한 케이스를 고강도 엔지니어링 플라스틱을 사용하여 내충격,내알카리성이 우수하고 열융착이 용이하게 할 수 있는 효과를 얻을 수 있다. 또한 본원발명의 경우, DOD(Depth of Discharge) 100%의 경우에도 방전용량의 저하없이 충분한 전지 사이클 수명을 유지할 수 있는 효과를 얻을 수 있었다. According to the present invention, a rectangular sealed nickel-hydrogen secondary battery which has developed a method of manufacturing a plated electrode plate to maximize the weight and volume energy density through miniaturization and light weight, satisfies ultra-high discharge characteristics, and does not need to replenish electrolyte solution Can provide. In addition, the self-discharge characteristics were improved by applying a polyolefin-based sulfonated nonwoven fabric having excellent porosity, low electrical resistance, and easy ion movement. Also, the case was made of high-strength engineering plastic, which has excellent impact resistance, alkali resistance, and easy heat sealing. You can get the effect that you can make. In addition, in the present invention, even in the case of 100% of the depth of discharge (DOD), it was possible to obtain an effect of maintaining a sufficient battery cycle life without lowering the discharge capacity.
지금까지 본 발명을 일 실시예를 참고로 하여 설명하였지만, 본 발명은 이에 제한되지 않으며, 이하의 부속 청구범위의 사상 및 영역을 일탈하지 않는 범위내에서 당업자에 의해 여러 가지로 변형 및 수정실시될 수 있다. Although the present invention has been described with reference to one embodiment, the present invention is not limited thereto, and various changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the appended claims below. Can be.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070057232A KR100882375B1 (en) | 2007-06-12 | 2007-06-12 | Large Capacity Rectangular Sealed ??-?? secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070057232A KR100882375B1 (en) | 2007-06-12 | 2007-06-12 | Large Capacity Rectangular Sealed ??-?? secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080109195A true KR20080109195A (en) | 2008-12-17 |
KR100882375B1 KR100882375B1 (en) | 2009-02-05 |
Family
ID=40368541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070057232A KR100882375B1 (en) | 2007-06-12 | 2007-06-12 | Large Capacity Rectangular Sealed ??-?? secondary battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100882375B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06338344A (en) * | 1993-05-31 | 1994-12-06 | Sanyo Electric Co Ltd | Sealed nickel-metal hydride alkaline storage battery |
KR100548123B1 (en) * | 2004-02-27 | 2006-02-02 | 현대에너셀 주식회사 | EXHAUST TYPE Ni-MH BATTERY |
-
2007
- 2007-06-12 KR KR1020070057232A patent/KR100882375B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100882375B1 (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107093773B (en) | Battery with a battery cell | |
US20120171535A1 (en) | Nickel-zinc battery and manufacturing method thereof | |
JP3959749B2 (en) | Metal hydride secondary battery with solid polymer electrolyte | |
JP6288655B2 (en) | Reversible fuel cell storage battery | |
KR20160059974A (en) | Battery system and redox flow battery comprising same | |
CN104577224A (en) | Method for manufacturing ultra-high temperature long-service life nickel-hydrogen batteries | |
JP5594744B2 (en) | Reversible fuel cell | |
CN101651210A (en) | Preparation method of nickel metal hydride sealing square battery electrode | |
JP2022517035A (en) | Aqueous hybrid supercapacitor | |
WO2015089208A1 (en) | Cell design for an alkaline battery with channels in electrodes to remove gas | |
CN102208694A (en) | Flat zinc-nickel secondary battery with replaceable polar plates and electrolyte | |
JP7193420B2 (en) | Nickel-metal hydride secondary battery manufacturing method | |
JP5557385B2 (en) | Energy storage device with proton as insertion species | |
JP2020198187A (en) | Secondary battery manufacturing method, and nickel hydrogen secondary battery | |
KR100882375B1 (en) | Large Capacity Rectangular Sealed ??-?? secondary battery | |
CN111755757B (en) | Method for manufacturing nickel-zinc battery | |
CN207705346U (en) | A kind of low self-discharge Ni-MH battery | |
CN202042564U (en) | Flat plate type zinc-nickel secondary battery with replaceable electrode plate and electrolyte | |
JP2020061224A (en) | Method of manufacturing nickel metal hydride storage battery | |
KR102576174B1 (en) | Electrolyte preservation type zinc air battery | |
CN2914336Y (en) | Anode cap of battery and battery thereof | |
KR100790563B1 (en) | Structure of electrode group for large capacity nickel/metal hydryde secondary battery | |
CN103311555A (en) | Axial end face collecting type cylindrical Zn-Ni battery and manufacturing method thereof | |
GB2314200A (en) | A group of winding electrodes | |
CN215496791U (en) | Long-life zinc electrode and zinc-air secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
J204 | Request for invalidation trial [patent] | ||
J301 | Trial decision |
Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20090430 Effective date: 20101126 |
|
FPAY | Annual fee payment |
Payment date: 20130118 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20131227 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150102 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |