KR20080109195A - Ni-mh secondary battery - Google Patents

Ni-mh secondary battery Download PDF

Info

Publication number
KR20080109195A
KR20080109195A KR1020070057232A KR20070057232A KR20080109195A KR 20080109195 A KR20080109195 A KR 20080109195A KR 1020070057232 A KR1020070057232 A KR 1020070057232A KR 20070057232 A KR20070057232 A KR 20070057232A KR 20080109195 A KR20080109195 A KR 20080109195A
Authority
KR
South Korea
Prior art keywords
electrode plate
secondary battery
exhaust
nickel
electrolyte
Prior art date
Application number
KR1020070057232A
Other languages
Korean (ko)
Other versions
KR100882375B1 (en
Inventor
심종수
Original Assignee
세방전지주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40368541&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20080109195(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 세방전지주식회사 filed Critical 세방전지주식회사
Priority to KR1020070057232A priority Critical patent/KR100882375B1/en
Publication of KR20080109195A publication Critical patent/KR20080109195A/en
Application granted granted Critical
Publication of KR100882375B1 publication Critical patent/KR100882375B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/281Large cells or batteries with stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

A nickel hydrogen secondary battery is provided to maximize the weight and volumetric energy density through miniaturization and light weight by using a plate of pasted type. A nickel hydrogen secondary battery comprises a positive plate(300), a negative plate(200), a separator film(100), an electrolyte and a case accommodating the electrolyte. The positive plate and the negative plate are manufactured with a method for manufacturing a pasted type plate electrode. The separator film is a polyolefin-based sulfonated non-woven fabric with excellent porosity, low electric resistance and easy ion migration.

Description

니켈 수소 이차전지{Νⅰ-MH secondary battery}Ni-MH secondary battery

도 1은, 본 발명에 따른 대용량 각형 밀폐형 니켈 수소 이차전지의 개략도이고, 1 is a schematic diagram of a large-capacity rectangular sealed nickel hydrogen secondary battery according to the present invention,

도 2a와 도 2b는, 종래의 배기식 니켈 수소 전지의 단면도와 측면도를 각각 나타낸 도면이고, 2A and 2B are cross-sectional views and side views of a conventional exhaust nickel metal hydride battery, respectively.

도 3a 및 도 3b는 본 발명에 따른 니켈 수소 전지의 정면도와 측면도를 각각 나타낸 도면이고,3A and 3B are views showing a front view and a side view of the nickel hydride battery according to the present invention, respectively.

도 4는 음극판, 양극판 격리막의 봉합 개략도이고, 4 is a schematic diagram of sealing of the negative electrode plate and the positive electrode plate separator;

도 5는 도 3에 있어서 본 발명의 전지 케이스의 배기부의 상세도이다. 5 is a detailed view of an exhaust unit of the battery case of the present invention in FIG.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1: 전조 2: 커버1: precursor 2: cover

3. 음극판, 양극판 4, 100: 격리막(도3에서 전조임)3. Negative plate, positive plate 4, 100: separator (rolled in Figure 3)

5: 와샤 6: 너트5: washer 6: nut

7: O-링 8: 배기변7: O-ring 8: exhaust valve

9: 금속 덮개 10: 스프링9: metal cover 10: spring

11: 배기캡 12: 극주11: exhaust cap 12: pole

20: 양극 극주 20': 음극 극주20: anode pole 20 ': cathode pole

25: 극군 40:배기부 25: Extreme group 40: Exhaust part

50: 양극판, 음극판 70: 극군50: positive electrode plate, negative electrode plate 70: electrode group

110: 배기부 110a: 기공(Hole)110: exhaust 110a: pores (Hole)

111: 배기캡 112: 스프링 111: exhaust cap 112: spring

113: 배기변 113a: 배기변 받이부113: exhaust side 113a: exhaust side receiving portion

200: 음극판 300: 양극판200: negative electrode plate 300: positive electrode plate

400: 전조400: precursor

본 발명은 니켈 수소 2차 전지의 음극판 및 양극판의 제조 방법에 있어서, 각형 밀폐형 니켈 수소 축전지를 개시하며, 특히 초고율 방전 성능과 충방전 사이클 성능이 우수한 소형 경량화를 실현한 초고율 방전 특성을 만족하며, 전해액을 보충할 필요가 없는 각형 밀폐형 니켈수소 이차전지에 관한 것이다. Disclosure of Invention The present invention discloses a rectangular sealed nickel hydrogen storage battery in a method for manufacturing a negative electrode plate and a positive electrode plate of a nickel hydride secondary battery, and particularly satisfies the ultra high rate discharge characteristic of miniaturization and light weight excellent in ultra high rate discharge performance and charge / discharge cycle performance. In addition, the present invention relates to a rectangular sealed nickel hydrogen secondary battery that does not need to replenish electrolyte solution.

근래 골프카, 근거리이동용 전기 자동차, 전동 공구 및 발전기 시동용을 시작으로 하는 대전류 방전이 필요한 전동기기 및 산업분야가 급속히 증가하고 있는 경향에 있다. 이러한 기기들의 전원으로서 니켈 축전지는 니켈 카드뮴 축전지나 납축전지보다도 단위 체적 및 단위 질량당의 에너지 밀도가 높을 뿐만 아니라 환경친화적인 재료로서 주목받고 있다. In recent years, there has been a rapid increase in the number of electric vehicles and industrial fields requiring a large current discharge, including golf cars, short-range electric vehicles, power tools and generators. As a power source for such devices, nickel accumulators have higher energy density per unit volume and unit mass than nickel cadmium accumulators or lead accumulators, and are attracting attention as environmentally friendly materials.

그러나 현재 양산중인 축전지는 밀폐형이 아닌 액식 전지로써 음, 양극판 제 조방식이 포켓타입을 적용하기 때문에 박판화가 불가능하고 또한, 전조, 커버 등의 케이스로 ABS 수지 또는 스틸을 사용하기 때문에 봉구제나 접착제 사용 및 용접을 하여야 하는 문제가 있었으며, 이로 인해 유동액이 많아 중량 및 체적 밀도가 낮아 설비 설치면적 효율이 떨어지고, 또한 전지 설치시 제약을 받으며, 장기 사용시 전해액 고갈로 전해액을 보충하여야 하고, 뿐만아니라 케이스 소손시 전해액 유출로 문제를 야기할 수 있는 문제가 있었다. However, the battery currently in mass production is a liquid battery, not a sealed type, and since the negative and positive electrode manufacturing methods apply a pocket type, it is impossible to make thin plates. Also, since the ABS resin or steel is used as a case for rolling and cover, sealing materials or adhesives are used. And welding, and due to this there is a large amount of fluid and low weight and volume density, which lowers the installation area efficiency, and is also restricted when installing the battery. When burned out, there was a problem that can cause problems with the electrolyte leakage.

도 2a와 도 2b는, 종래의 배기식 니켈 수소 전지의 단면도와 측면도를 각각 나타낸 도면으로서, 전지의 전조(30)의 양극판(50), 음극판(50), 격리막(도시 않음)으로 구성된 전지의 극군(25) 사이에 여유가 있어 많은 량의 전해액을 전지 전조(30) 내에 수동 주액 가능하였으며, 전조(30) 내부의 음극 판, 양극 판 및 격리 막이 전해액에 충분히 함침되도록 다량의 전해액을 사용하였다. 그러나 장기간 사용시 전지 외부 배기부(40)에 의해 전지의 충·방전시 발생되는 전해액 분해가스(수소, 산소)가 배기부(40)를 통해 방출되어 전해액이 고갈되는 현상이 발생하여 사용자가 주기적으로 전해액을 주액 해야만 하는 보수관리가 필요하였다. 배기부(10)는 단순히 전지의 내외부가 완전 밀폐될 수 없는 플라스틱 재질의 캡을 사용하였다. 도면에 있어서, 20, 20'는 각기 음극 탭과 양극 탭이다. 2A and 2B are cross-sectional views and side views of a conventional exhaust-type nickel metal hydride battery, respectively. FIG. 2A and FIG. 2B are views of a battery composed of a positive electrode plate 50, a negative electrode plate 50, and an isolation film (not shown) of a battery roll 30 of the battery. Since there was room between the pole groups 25, a large amount of electrolyte could be manually injected into the battery precursor 30, and a large amount of electrolyte was used so that the negative electrode plate, the positive electrode plate, and the separator membrane inside the precursor 30 were sufficiently impregnated with the electrolyte solution. . However, when the battery is used for a long period of time, the electrolyte decomposition gas (hydrogen and oxygen) generated when the battery is charged and discharged by the battery external exhaust unit 40 is discharged through the exhaust unit 40, causing the electrolyte to be exhausted. Maintenance was required to inject the electrolyte. The exhaust unit 10 simply used a plastic cap that cannot be completely sealed inside and outside of the battery. In the figure, 20 and 20 'are a negative electrode tab and a positive electrode tab, respectively.

이와 같은 방법은 전해액을 주입시에 일정량의 전해액을 주기적으로 주액할 수 없고, 또한 전해액 주액 완료후, 주액관로상에 남아있는 잔여 전해액이 전해액 노즐을 통하여 흘러내리는 단점이 있었다. Such a method has a disadvantage in that it is not possible to periodically inject a predetermined amount of electrolyte during injection of the electrolyte, and after completion of the electrolyte injection, residual electrolyte remaining on the injection pipe flows down through the electrolyte nozzle.

따라서 본 발명은 기존 액유동식 니켈 수소 및 니켈 카드뮴 전지의 중량 및 체적 에너지 밀도가 낮고 전해액을 주기적으로 보충해야 하는 문제점을 해결하기 위하여 페이스티드(pasted) 타입의 극판 제조 방법을 개발하여 소형화, 경량화를 통한 중량 및 체적 에너지 밀도를 극대화하고 또한 초고율 방전 특성을 만족하고 전해액을 보충할 필요가 없는 각형 밀폐형 니켈수소 이차전지를 제공하는데 그 목적이 있다. Therefore, in order to solve the problem of low weight and volumetric energy density of the liquid-type nickel metal hydride and nickel cadmium batteries, and to periodically replenish the electrolyte, the present invention has been developed to reduce the size and weight of the electrode plate manufacturing method. The purpose of the present invention is to provide a rectangular sealed nickel-hydrogen secondary battery that maximizes the weight and volumetric energy density, satisfies ultra-high discharge characteristics, and does not require replenishment of the electrolyte.

본 발명은, 양극판, 음극판, 격리막, 전해액 그리고 이 전해액을 담고 있는 케이스를 구비하는 이차전지에 있어서, The present invention is a secondary battery comprising a positive electrode plate, a negative electrode plate, a separator, an electrolyte solution and a case containing the electrolyte solution,

상기 양극판 및 음극판은 페이스티드 타입 극판 제조방법으로 제조된 소형, 박형 극판이고, 상기 격리막은 우수한 다공성과 전기저항이 낮고 이온 이동이 용이한 폴리올레핀계 슬폰화 처리 부직포이고, 상기 케이스의 접착은 히트 실링(heat sealing) 방식으로 수행되고, 상기 케이스의 재질은 고강도 엔지니어링 플라스틱을 사용한 것을 특징으로 하는 니켈 수소 이차전지를 제공한다. The positive electrode plate and the negative electrode plate is a small, thin electrode plate manufactured by a method of manufacturing a faceted type electrode plate, the separator is a polyolefin-based sulfonated nonwoven fabric having excellent porosity, low electrical resistance and easy ion migration, and the case is bonded by heat sealing. It is carried out by (heat sealing) method, the material of the case provides a nickel hydride secondary battery characterized in that the use of high-strength engineering plastics.

이하 도면을 참조하여 본 발명을 구체적으로 설명한다. 또한 본 발명의 요지를 불필요하게 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.

도 1 은 본 발명에 따른 대용량 각형 밀폐형 니켈 수소 이차전지의 개략도로서, 도면에 있어서, 1은 전조이고, 2는 커버로서 엔지니어링 플라스틱으로 구성되고, 난연성이다. 3은 발포 Ni+니켈 산화물로 된 양극판 및 천공체 + 수소 흡장합금 으로 구성되어 있다. 4는 격리막으로 우수한 다공성과 전기저항이 낮고 이온 이동이 용이한 폴리올레핀계 부직포를 적용하여 자기 방전 특성을 개선하였으며, 5는 와셔이고, 6은 너트인데 이들은 스틸로 되어 있으며, 또한 도금되어 있다. 7은 O 링으로서 고무로 되어 있으며, 8은 배기변으로서 고무로 되어 있으며, 9는 금속 덮개로서 스틸로 되어 있으며, 10은 스프링으로서 스틸로 되어 있는데, 금속 덮개와 스프링은 도금되어 있다. 11은 배기캡으로 엔지니어링 플라스틱으로 되어 있으며, 난연성이다. 12는 극주로서 스틸재질에 도금로 되어 있다. 1 is a schematic diagram of a large-capacity rectangular sealed nickel-metal hydride secondary battery according to the present invention, in which 1 is a roll, 2 is made of engineering plastic as a cover, and is flame retardant. 3 consists of a positive electrode plate made of expanded Ni + nickel oxide and a perforated body + hydrogen absorbing alloy. 4 is a separator, polyolefin-based non-woven fabric with excellent porosity, low electrical resistance, and easy ion migration improves self-discharge characteristics. 5 is a washer and 6 is a nut, which is made of steel and is also plated. 7 is rubber as the O ring, 8 is rubber as the exhaust valve, 9 is steel as the metal cover, 10 is steel as the spring, and the metal cover and the spring are plated. 11 is an exhaust cap made of engineering plastic and flame retardant. 12 is a pole, plated on steel.

또한 케이스인 전조(1)와 커버(2)의 경우 융착부(도시 않음)와 배기변(8)이 5기압 정도의 내압에 견뎌야 하기 때문에 이에 적합한 고강도 엔지니어링 플라스틱을 케이스재질로 자체개발하여 내충격, 내알카리성이 우수하고 열융착이 용이하게 하였다. 이의 접착은 히트 실링(heat sealing) 방식을 적용하고, 배기변도 고무와 스프링을 사용하여 밀폐화 하였는데 이 밀폐화에 대해서는 후술한다. 한편 전해액으로서는 KOH(수산화칼륨)를 주성분으로 하고 이에 저온 및 고온 특성을 향상시키기 위하여 첨가제를 사용하였으며, 밀폐화에 있어서 가장 중요한 전해액 주액은 진공 주액을 실시하였다. 주액이 완료된 전지는 전해액의 고른 분산과 도전성 향상을 위해 활성화전 시효처리를 하였으며, 그후 스텝 충전 방식에 의해 1사이클에 90%이상 활성화가 되는 대용량 초고율 방전특성이 우수한 각형 밀폐형 니켈수소 이차전지를 사용하였다. In addition, in case of the rolled case (1) and the cover (2), the welded part (not shown) and the exhaust valve (8) must withstand the internal pressure of about 5 atm. Excellent alkali resistance and easy heat fusion. Its adhesion was sealed by using a heat sealing method (heat sealing), using a rubber and a spring to the exhaust valve, which will be described later. On the other hand, KOH (potassium hydroxide) was used as the main component, and additives were used to improve the low temperature and high temperature characteristics. The most important electrolyte solution for sealing was vacuum injection. After completion of the injection, the cell was subjected to aging treatment before activation to evenly distribute the electrolyte and improve conductivity.Then, after the step charging method, a rectangular sealed nickel-hydrogen secondary battery having a high capacity and ultra high rate discharge characteristic, which is activated by 90% or more per cycle, is used. Used.

또한 수산화 니켈을 사용하여 만든 양극판과 수소 저장 합금을 사용하여 만든 음극판을 슬러리를 제조하여 Foam nickel과 NPPS(Nickel Plated Perforated Steel:천공강판)에 코팅하는 페이스티드 방식을 적용하여 박판화하고, 고율방전에 유리한 격리막으로 봉합하여 극군(도시 않음)을 제조하였으며, 이때 고율특성을 개선하기 위하여 도선 역할을 하는 탭(도시 않음)을 별도 제조하여 스폿 용접과 심(seam) 용접을 실시하였으며, 극군 탭과 극주(12) 용접도 극판(3)손상을 최소하하면서 고율 특성이 우수하도록 레이저 용접을 실시하였다. In addition, the anode plate made of nickel hydroxide and the anode plate made of hydrogen storage alloy are manufactured to produce a slurry, and then laminated by applying a paste method to coat nickel with nickel plated perforated steel (NPPS). A pole group (not shown) was manufactured by sealing with an advantageous separator, and in order to improve high-rate characteristics, a spot tab and a seam welding were separately manufactured by separately manufacturing a tab (not shown) that serves as a conductor. (12) Welding degree Laser welding was performed to minimize the damage to the electrode plate 3 so as to have a high rate characteristic.

도 3a 및 도 3b는 본 발명에 따른 니켈 수소 전지의 정면도와 측면도를 각각 나타낸 도면으로서, 밀폐형 니켈 수소 전지(100)의 경우, 밀폐화를 위해 전지 외부에 별도의 내압 조정용 배기부(110)가 장착되어 있다. 3A and 3B illustrate front and side views of the nickel hydride battery according to the present invention, respectively, in the case of the sealed nickel hydride battery 100, a separate internal pressure adjusting exhaust unit 110 is provided outside the battery for sealing. It is installed.

도면에 있어서 100은 전조이고, 70은 극군으로서, 전지의 특성상 밀폐화를 위해서는 충방전시 발생하는 수소와 산소가스를 재결합할 수 있는 극군으로 구성하였다. 120은 극주이다. In the figure, 100 is a precursor, 70 is a pole group, and due to the characteristics of the battery, it is composed of a pole group capable of recombining hydrogen and oxygen gas generated during charging and discharging. 120 is the pole.

도 4는 음극판, 양극판 격리막의 봉합 개략도로서, 도면에 있어서, 100은 격리막이고, 200은 음극판이고, 300은, 양극판이고, 400은 전조이다. 4 is a schematic diagram of sealing of a negative electrode plate and a positive electrode plate separator, in which 100 is a separator, 200 is a negative plate, 300 is a positive plate, and 400 is a roll.

본 발명에서는 활물질을 슬러리화하여 Ni-foam과 NPPS에 페이스팅하는 방식을 적용하여 음극의 경우 0.6mm이하로 양극의 경우 0.9mm이하로 박판화를 실현하였다. 전술한 바와 같이 음양극판의 절연을 통해 음양극판의 절연을 통해 단락을 방지하는 격리막으로 우수한 다공성과 전기저항이 낮고 이온의 이동이 용이한 폴리올레핀계 슬폰화 처리한 부직포를 사용하여 자기방전 특성을 개선하였다. 이때 충방전 사이클중 발생할 수 있는 단락방지를 위하여 100㎛이하의 얇은 격리막을 사용하여 음극판만을 봉합하던 것을 도 4의 도시와 같이 음극판 및 양극판을 모두 봉합하 여 내구성을 향상시켰다. In the present invention, the slurry is applied to the Ni-foam and NPPS to paste the active material to achieve a thinning of less than 0.6mm for the negative electrode and 0.9mm or less for the positive electrode. As described above, the insulation film prevents the short circuit through the insulation of the anode plate by using the polyolefin-based sulfonated nonwoven fabric with excellent porosity, low electrical resistance and easy movement of ions. It was. At this time, in order to prevent a short circuit that may occur during the charge and discharge cycle, sealing only the negative electrode plate using a thin separator of 100 μm or less, as shown in FIG. 4, sealed both the negative electrode plate and the positive electrode plate to improve durability.

도 5는 도 3에 있어서 본 발명의 전지 케이스의 배기부(110)의 상세도이다.5 is a detailed view of the exhaust unit 110 of the battery case of the present invention in FIG.

케이스는 배기캡(111), 스프링(112) 및 고무 재질의 배기변(113)으로 구성된배기부(110)를 구비한다. 상기 배기부(110)는 전지 내의 압력이 일정압력이 도달하기 전까지는 열리지 않으며, 전해액의 완전밀폐가 가능하도록 구성되어 있다. 또한 배기변(113)는 배기변 받이부(113a)를 구비한다. 그리고 배기캡(111)을 왼나사를 적용하였다. The case is provided with an exhaust portion 110 composed of an exhaust cap 111, a spring 112, and an exhaust side 113 made of rubber. The exhaust unit 110 is not opened until the pressure in the battery reaches a predetermined pressure, it is configured to enable a complete sealing of the electrolyte. In addition, the exhaust valve 113 includes an exhaust valve receiver 113a. The left cap was applied to the exhaust cap 111.

그러면 상기와 같이 구성된 배기부(110)의 동작에 대해서 설명한다. Next, the operation of the exhaust unit 110 configured as described above will be described.

평상시 즉 전지의 내부 압력이 일정한 압력이 도달하기 전에는 배기부(110)는 도면에 도시한 바와 같이 배기변(113)이 전지 내부의 압력을 견디어 전해액이 기공(110a)을 통해 전지의 내부 압력이 배출되지 않는다. 그러나, 전지의 반응중 전지 내부의 발생가스가 일정 압력 이상이 되게 되면 배기변(113)을 밀게 되어 그러면 배기변(113)이 배기변 받이부(113a)로부터 격리되게 되고, 이로 인해 배기변(113)과 배기변 받이부(113a) 사이에 간극이 생기어 이 사이의 간극을 통해 그리고 기공(110a)을 통해 발생 가스가 배출되게 되어 이러한 작용에 의해 충·방전시의 전지 내부에서 발생되는 수소와 산소가스가 일정한 압력 상태에서 외부로 방출되지 않고 전지 내부에서 재결합 반응할 수 있도록 구성되고, 전지 내부의 이상에 의해 압력이 급격하게 상승될 경우에만 배기부(110)를 통해 내부 가스가 방출되게 될 수 있다. Normally, before the internal pressure of the battery reaches a constant pressure, the exhaust unit 110 as shown in the drawing, the exhaust valve 113 withstands the internal pressure of the battery so that the electrolyte pressure increases through the pores 110a. It is not discharged. However, when the gas generated inside the battery becomes higher than a predetermined pressure during the reaction of the battery, the exhaust valve 113 is pushed, and the exhaust valve 113 is isolated from the exhaust valve receiving part 113a, thereby causing the exhaust valve ( A gap is formed between 113) and the exhaust valve receiving portion 113a, and the generated gas is discharged through the gap therebetween and through the pores 110a, so that hydrogen generated inside the battery during charging and discharging is caused by this action. And oxygen gas are configured to be recombined in the cell without being discharged to the outside under a constant pressure state, and the internal gas is released through the exhaust unit 110 only when the pressure is rapidly increased due to an abnormality inside the cell. Can be.

본 발명에 의하면, 페이스티드 타입의 극판 제조 방법을 개발하여 소형화, 경량화를 통한 중량 및 체적 에너지 밀도를 극대화하고 또한 초고율 방전 특성을 만족하고 전해액을 보충할 필요가 없는 각형 밀폐형 니켈수소 이차전지를 제공할 수 있다. 또한, 우수한 다공성과 전기저항이 낮고 이온 이동이 용이한 폴리올레핀계 슬폰화 처리 부직포를 적용하여 자기방전 특성을 개선하였으며, 또한 케이스를 고강도 엔지니어링 플라스틱을 사용하여 내충격,내알카리성이 우수하고 열융착이 용이하게 할 수 있는 효과를 얻을 수 있다. 또한 본원발명의 경우, DOD(Depth of Discharge) 100%의 경우에도 방전용량의 저하없이 충분한 전지 사이클 수명을 유지할 수 있는 효과를 얻을 수 있었다. According to the present invention, a rectangular sealed nickel-hydrogen secondary battery which has developed a method of manufacturing a plated electrode plate to maximize the weight and volume energy density through miniaturization and light weight, satisfies ultra-high discharge characteristics, and does not need to replenish electrolyte solution Can provide. In addition, the self-discharge characteristics were improved by applying a polyolefin-based sulfonated nonwoven fabric having excellent porosity, low electrical resistance, and easy ion movement. Also, the case was made of high-strength engineering plastic, which has excellent impact resistance, alkali resistance, and easy heat sealing. You can get the effect that you can make. In addition, in the present invention, even in the case of 100% of the depth of discharge (DOD), it was possible to obtain an effect of maintaining a sufficient battery cycle life without lowering the discharge capacity.

지금까지 본 발명을 일 실시예를 참고로 하여 설명하였지만, 본 발명은 이에 제한되지 않으며, 이하의 부속 청구범위의 사상 및 영역을 일탈하지 않는 범위내에서 당업자에 의해 여러 가지로 변형 및 수정실시될 수 있다. Although the present invention has been described with reference to one embodiment, the present invention is not limited thereto, and various changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the appended claims below. Can be.

Claims (6)

양극판, 음극판, 격리막, 전해액 그리고 이 전해액을 담고 있는 케이스를 구비하는 이차전지에 있어서, In a secondary battery having a positive electrode plate, a negative electrode plate, a separator, an electrolyte and a case containing the electrolyte, 상기 양극판 및 음극판은 페이스티드 타입 극판 제조방법으로 제조된 소형, 박형 극판이고, 상기 격리막은 우수한 다공성과 전기저항이 낮고 이온 이동이 용이한 폴리올레핀계 슬폰화 처리 부직포이고, 상기 케이스의 접착은 히트 실링(heat sealing) 방식으로 수행되고, 상기 케이스의 재질은 고강고 엔지니어링 플라스틱을 사용한 것을 특징으로 하는 니켈 수소 이차전지. The positive electrode plate and the negative electrode plate is a small, thin electrode plate manufactured by a method of manufacturing a faceted type electrode plate, the separator is a polyolefin-based sulfonated nonwoven fabric having excellent porosity, low electrical resistance and easy ion migration, and the case is bonded by heat sealing. The nickel hydride secondary battery is performed by a heat sealing method, and the material of the case is made of high strength and engineering plastic. 제 1 항에 있어서, The method of claim 1, 상기 케이스는, 배기캡, 스프링 및 고무 재질의 배기변으로 구성된 배기부를 포함하는 것을 특징으로 하는 니켈 수소 이차전지.The case, the nickel-metal hydride secondary battery comprising an exhaust portion consisting of an exhaust cap, a spring and an exhaust side of a rubber material. 제 2 항에 있어서,The method of claim 2, 상기 배기변은 배기변 받이부를 구비하고, 상기 배기캡은 기공을 포함하는 것을 특징으로 하는 니켈 수소 이차전지.The exhaust valve is provided with an exhaust valve receiving portion, the exhaust cap nickel hydride secondary battery, characterized in that it comprises pores. 제 2 항에 있어서,The method of claim 2, 상기 배기캡은 왼나사 방식을 적용한 것을 특징으로 하는 니켈 수소 이차전 지.The exhaust cap is a nickel-metal hydride secondary battery characterized in that the left screw method is applied. 제 2 항에 있어서,The method of claim 2, 상기 배기부의 배기변은 전지의 내부 가스 압력이 일정 이상의 압력에서만 상방으로 이동하여 압력이 상기 기공을 통해 배출되는 것을 특징으로 하는 니켈 수소 이차전지. The exhaust side of the exhaust portion of the nickel-hydrogen secondary battery, characterized in that the internal gas pressure of the battery moves upward only at a predetermined pressure or more pressure is discharged through the pores. 제 1 항에 있어서,The method of claim 1, 상기 격리 막은 100㎛이하의 얇은 격리막으로서, 음극판 및 양극판을 모두 봉합하는 것을 특징으로 하는 니켈수소 이차전지. The separator is a thin separator having a thickness of 100 μm or less, and seals both the negative electrode plate and the positive electrode plate.
KR1020070057232A 2007-06-12 2007-06-12 Large Capacity Rectangular Sealed ??-?? secondary battery KR100882375B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070057232A KR100882375B1 (en) 2007-06-12 2007-06-12 Large Capacity Rectangular Sealed ??-?? secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070057232A KR100882375B1 (en) 2007-06-12 2007-06-12 Large Capacity Rectangular Sealed ??-?? secondary battery

Publications (2)

Publication Number Publication Date
KR20080109195A true KR20080109195A (en) 2008-12-17
KR100882375B1 KR100882375B1 (en) 2009-02-05

Family

ID=40368541

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070057232A KR100882375B1 (en) 2007-06-12 2007-06-12 Large Capacity Rectangular Sealed ??-?? secondary battery

Country Status (1)

Country Link
KR (1) KR100882375B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338344A (en) * 1993-05-31 1994-12-06 Sanyo Electric Co Ltd Sealed nickel-metal hydride alkaline storage battery
KR100548123B1 (en) * 2004-02-27 2006-02-02 현대에너셀 주식회사 EXHAUST TYPE Ni-MH BATTERY

Also Published As

Publication number Publication date
KR100882375B1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
CN107093773B (en) Battery with a battery cell
US20120171535A1 (en) Nickel-zinc battery and manufacturing method thereof
JP3959749B2 (en) Metal hydride secondary battery with solid polymer electrolyte
JP6288655B2 (en) Reversible fuel cell storage battery
KR20160059974A (en) Battery system and redox flow battery comprising same
CN104577224A (en) Method for manufacturing ultra-high temperature long-service life nickel-hydrogen batteries
JP5594744B2 (en) Reversible fuel cell
CN101651210A (en) Preparation method of nickel metal hydride sealing square battery electrode
JP2022517035A (en) Aqueous hybrid supercapacitor
WO2015089208A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
CN102208694A (en) Flat zinc-nickel secondary battery with replaceable polar plates and electrolyte
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
JP5557385B2 (en) Energy storage device with proton as insertion species
JP2020198187A (en) Secondary battery manufacturing method, and nickel hydrogen secondary battery
KR100882375B1 (en) Large Capacity Rectangular Sealed ??-?? secondary battery
CN111755757B (en) Method for manufacturing nickel-zinc battery
CN207705346U (en) A kind of low self-discharge Ni-MH battery
CN202042564U (en) Flat plate type zinc-nickel secondary battery with replaceable electrode plate and electrolyte
JP2020061224A (en) Method of manufacturing nickel metal hydride storage battery
KR102576174B1 (en) Electrolyte preservation type zinc air battery
CN2914336Y (en) Anode cap of battery and battery thereof
KR100790563B1 (en) Structure of electrode group for large capacity nickel/metal hydryde secondary battery
CN103311555A (en) Axial end face collecting type cylindrical Zn-Ni battery and manufacturing method thereof
GB2314200A (en) A group of winding electrodes
CN215496791U (en) Long-life zinc electrode and zinc-air secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
J204 Request for invalidation trial [patent]
J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20090430

Effective date: 20101126

FPAY Annual fee payment

Payment date: 20130118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150102

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee