KR20080105794A - Method of finite element formulation for two dimensional nonlinear electromagnetic analysis - Google Patents

Method of finite element formulation for two dimensional nonlinear electromagnetic analysis Download PDF

Info

Publication number
KR20080105794A
KR20080105794A KR1020070053838A KR20070053838A KR20080105794A KR 20080105794 A KR20080105794 A KR 20080105794A KR 1020070053838 A KR1020070053838 A KR 1020070053838A KR 20070053838 A KR20070053838 A KR 20070053838A KR 20080105794 A KR20080105794 A KR 20080105794A
Authority
KR
South Korea
Prior art keywords
finite element
analysis
magnetostriction
nonlinear
magnetic field
Prior art date
Application number
KR1020070053838A
Other languages
Korean (ko)
Inventor
원태영
조종두
박순열
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020070053838A priority Critical patent/KR20080105794A/en
Publication of KR20080105794A publication Critical patent/KR20080105794A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

A finite element formulation method for two dimension nonlinear magnetostriction analysis is provided to develop an MEMS interpretation program through the finite element formulation for realizing modeling for the nonlinear magnetostriction analysis, thereby interpreting the nonlinear magnetostriction in a boundary condition to which the triangle mesh is applied. A finite element formulation method for two dimension nonlinear magnetostriction analysis comprises the following steps of: formalizing the constitutive equation of magnetic material; formalizing an equation about the potential energy of the magnetic material when an external magnetic field is applied; formalizing work by external stress and the applied magnetic field; and formalizing the functional in each finite element after the range of interpretation becomes discrete.

Description

2차원 비선형 자기변형 해석을 위한 유한요소 정식화 방법{METHOD OF FINITE ELEMENT FORMULATION FOR TWO DIMENSIONAL NONLINEAR ELECTROMAGNETIC ANALYSIS} FIELD OF FINITE ELEMENT FORMULATION FOR TWO DIMENSIONAL NONLINEAR ELECTROMAGNETIC ANALYSIS}

도1a는 본 발명에 따른 균일한 자기장의 Terfenol박판을 나타내는 도면.Figure 1a is a view showing a Terfenol thin plate of a uniform magnetic field according to the present invention.

도1b는 본 발명에 따른 유한요소 격자를 나타내는 도면.1B illustrates a finite element grating in accordance with the present invention.

도1c는 본 발명에 따른 자기장 해석의 경계 조건을 나타내는 도면.1C is a diagram showing boundary conditions of a magnetic field analysis according to the present invention;

도1d는 본 발명에 따른 탄성해석의 경계 조건을 나타내는 도면.Figure 1d is a diagram showing the boundary conditions of the elastic analysis according to the present invention.

도2a는 본 발명에 따른 자기 포텐셜의 분포를 나타내는 도면.2A shows the distribution of magnetic potential in accordance with the present invention.

도2b는 본 발명에 따른 자기장의 분포를 나타내는 도면.Figure 2b shows the distribution of the magnetic field in accordance with the present invention.

도2c는 본 발명에 따른 Terfenol 박판의 자기변형을 나타내는 도면.Figure 2c is a view showing the magnetostriction of Terfenol thin plate according to the present invention.

본 발명은 컴퓨터, 반도체 관련 산업의 성공을 바탕으로 새로운 기술의 한 주제로 MEMS(Microelectromechanical systems: 초소형 전자기계 시스템)기술에 관한 것이다. 본 분야의 경우 1987년부터 미국에서 국가 주도의 MEMS 연구 프로젝트를 추진해오면서 시작되었고, 일본 및 유럽 등지에서도 1980년대 초반부터 정부 및 대학을 중심으로 MEMS 관련 연구를 활발히 진행되었다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to microelectromechanical systems (MEMS) technology as one of the new technologies based on the success of the computer and semiconductor related industries. In this field, the US-led MEMS research project has been started since 1987 in the United States. In the early 1980s, MEMS-related research has been actively conducted in Japan and Europe.

그러나 국내에서는 IMF이후 근래에 6T의 정부육성정책과 맞물려 매스컴에 많이 보도되고 있으나 세계적인 수준과는 아직 많은 거리가 있다. 세계적으로는 지금까지의 MEMS 관련 연구가 MEMS 제품의 제조공정 및 MEMS와 관련된 원리 및 현상 그리고 아이디어에 의한 시제품 조립에 관한 것이 대부분이었으며 결과적으로 상용화된 것도 극소수에 불과하다. 지금까지 아이디어에 의한 top-down방식의 연구진행과 관련 과학기술지식의 체계화가 미흡하였던 이유로 현재 MEMS 소자의 설계/해석 분야에 관한 연구결과는 상대적으로 미약한 실정이다. 그러나 가까운 미래에 MEMS의 상용화가 꾸준히 기대되고 있으며 예상되는 관련 제품의 종류가 거의 전 분야에 망라하므로 현재 개발비가 매우 비싼 것이 단점중의 하나인 MEMS를 시제품 생산 전 컴퓨터상에서 구현하고 설계, 성능을 검증해 볼 수 있는 기술은 매우 필요할 것이다. 이것이 설계/해석 분야의 컴퓨터 프로그램화가 요구되는 근본 동기가 될 것이다.However, in Korea, since the IMF, it has been reported a lot in the media in conjunction with the 6T government-promoting policy. Most of the world's MEMS researches have been about the fabrication process of MEMS products, the principles and phenomena related to MEMS, and the assembly of prototypes based on ideas. Until now, the researches on the design / analysis of MEMS devices have been relatively weak due to the fact that the research of the top-down method based on ideas and the systematization of related science and technology knowledge are insufficient. However, commercialization of MEMS is expected in the near future, and the related types of products are expected to cover almost all fields, so the development cost is very expensive. A skill to try will be very necessary. This will be the fundamental motivation for computer programming in the design / interpretation field.

특히, 본 발명이 추구하는 비선형 자기변형 해석분야의 종래 기술은 유한미분법 및 유한차분법을 이용한 선형 자기변형을 위한 해석의 수준에 머물러 있었으며, 그 결과 또한 미비한 수준에 지나지 않는다. 이에 본 발명은 유한요소 정식화를 통해 삼각 메쉬를 생성하고, 경계조건에서의 유한요소적인 해석을 통해 2차원 비선형 자기변형의 정밀한 결과를 도출하였다.In particular, the prior art in the field of nonlinear magnetostriction analysis pursued by the present invention has remained at the level of analysis for linear magnetostriction using finite differential and finite differential methods, and the result is also insignificant. Accordingly, the present invention generates a triangular mesh through finite element formulation and derives precise results of two-dimensional nonlinear magnetostriction through finite element analysis under boundary conditions.

전술한 내용은 후술할 발명의 특허 청구 범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 개선하였다. 본 발명의 특허 청구 범위를 구성하는 부가적인 특징과 장점들이 이하에서 상술 될 것이다. 개시된 본 발명의 개념과 특정 실시예는 본 발명과 유사 목적을 수행하기 위한 다른 구조의 설계나 수정의 기본으로서 즉시 사용될 수 있음이 당해 기술 분야의 숙련된 사람들에 의해 인식되어야 한다. The foregoing has somewhat broadly improved the features and technical advantages of the present invention to better understand the claims that follow. Additional features and advantages that make up the claims of the present invention will be described below. It should be appreciated by those skilled in the art that the conception and specific embodiments of the invention disclosed may be readily used as a basis for designing or modifying other structures for carrying out similar purposes to the invention.

또한, 본 발명에서 개시된 발명 개념과 실시예가 본 발명의 동일 목적을 수행하기 위하여 다른 구조로 수정하거나 설계하기 위한 기초로서 당해 기술 분야의 숙련된 사람들에 의해 사용될 수 있을 것이다. 또한, 당해 기술 분야의 숙련된 사람에 의한 그와 같은 수정 또는 변경된 등가 구조는 특허 청구 범위에서 기술한 발명의 사상이나 범위를 벗어나지 않는 한도 내에서 다양한 진화, 치환 및 변경이 가능하다. In addition, the inventive concepts and embodiments disclosed herein may be used by those skilled in the art as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. In addition, such modifications or altered equivalent structures by those skilled in the art may be variously evolved, substituted and changed without departing from the spirit or scope of the invention described in the claims.

따라서 본 발명은 비선형 자기변형 해석을 위한 모델링을 위한 유한요소 정식화를 통한 코드화 작업을 통해 MEMS 해석 프로그램 개발을 위한 것으로, 삼각 메쉬를 적용한 경계조건에서 비선형 자기변형을 해석하여 초정밀 마이크로 소자의 제작 및 설계를 위한 정밀모델을 제공하고자 한다.Therefore, the present invention is for the development of MEMS analysis program through the coding process through finite element formulation for modeling for nonlinear magnetostriction analysis. To provide a precision model for

상기와 같은 목적을 달성하기 위하여, 선형 탄성거동 및 비선형 자기적 거동을 가정하는 경우 자성재료의 구성방정식은 다음과 같이 표현된다.In order to achieve the above object, in case of assuming linear elastic behavior and nonlinear magnetic behavior, the constitutive equation of the magnetic material is expressed as follows.

Figure 112007040373817-PAT00001
Figure 112007040373817-PAT00001

Figure 112007040373817-PAT00002
Figure 112007040373817-PAT00002

여기서

Figure 112007040373817-PAT00003
는 자기장,
Figure 112007040373817-PAT00004
는 자속,
Figure 112007040373817-PAT00005
는 응력 텐서,
Figure 112007040373817-PAT00006
는 변형율 텐서,
Figure 112007040373817-PAT00007
는 탄성구성방정식 행렬,
Figure 112007040373817-PAT00008
는 자기저항행렬,
Figure 112007040373817-PAT00009
는 자기-탄성 연성행렬이며
Figure 112007040373817-PAT00010
는 자속에 의해 유도되는 응력이다. 윗식의 각 항은 다음과 같이 표현할 수 있다.here
Figure 112007040373817-PAT00003
Is a magnetic field,
Figure 112007040373817-PAT00004
Magnetic flux,
Figure 112007040373817-PAT00005
The stress tensor,
Figure 112007040373817-PAT00006
Is the strain tensor,
Figure 112007040373817-PAT00007
Is the elastic composition matrix,
Figure 112007040373817-PAT00008
Is the magnetoresistance matrix,
Figure 112007040373817-PAT00009
Is a self-elastic flexible matrix
Figure 112007040373817-PAT00010
Is the stress induced by the magnetic flux. Each term in the above expression can be expressed as

Figure 112007040373817-PAT00011
Figure 112007040373817-PAT00011

Figure 112007040373817-PAT00012
Figure 112007040373817-PAT00012

Figure 112007040373817-PAT00013
Figure 112007040373817-PAT00013

이를 정리하면 다음과 같다. This is summarized as follows.

Figure 112007040373817-PAT00014
Figure 112007040373817-PAT00014

Figure 112007040373817-PAT00015
Figure 112007040373817-PAT00015

한편 외부 자기장이 인가되었을 때 자성재료의 포텐셜 에너지는 다음과 같 다.On the other hand, when an external magnetic field is applied, the potential energy of the magnetic material is as follows.

Figure 112007040373817-PAT00016
Figure 112007040373817-PAT00016

따라서 위의 식은 다음과 같이 표현된다. Therefore, the above expression is expressed as

Figure 112007040373817-PAT00017
Figure 112007040373817-PAT00017

또한 외부응력 및 인가 자기장에 의한 일(work)은 다음과 같다.In addition, the work by external stress and applied magnetic field is as follows.

Figure 112007040373817-PAT00018
Figure 112007040373817-PAT00018

여기서

Figure 112007040373817-PAT00019
는 자기벡터포텐셜,
Figure 112007040373817-PAT00020
는 전류밀도,
Figure 112007040373817-PAT00021
는 변위,
Figure 112007040373817-PAT00022
는 체적력,
Figure 112007040373817-PAT00023
는 표면력이다. 따라서 범함수(functional ),
Figure 112007040373817-PAT00024
, 는 다음과 같이 표현된다.here
Figure 112007040373817-PAT00019
Is the magnetic vector potential,
Figure 112007040373817-PAT00020
Is the current density,
Figure 112007040373817-PAT00021
Is displacement,
Figure 112007040373817-PAT00022
Is the volumetric force,
Figure 112007040373817-PAT00023
Is surface force. So functional,
Figure 112007040373817-PAT00024
, Is expressed as

Figure 112007040373817-PAT00025
Figure 112007040373817-PAT00025

해석영역이 이산화 된 후, 각 유한요소에서의 범함수는 다음과 같이 나타내어진다.After the analysis domain is discretized, the function at each finite element is expressed as

Figure 112007040373817-PAT00026
Figure 112007040373817-PAT00026

위의 범함수를 최소함으로써 다음과 같은 유한요소 방정식을 얻는다.By minimizing the above function, the following finite element equation is obtained.

Figure 112007040373817-PAT00027
Figure 112007040373817-PAT00027

Figure 112007040373817-PAT00028
Figure 112007040373817-PAT00028

여기서.here.

Figure 112007040373817-PAT00029
: 자기 강성행렬
Figure 112007040373817-PAT00029
Magnetic stiffness matrix

Figure 112007040373817-PAT00030
: 자기-탄성 연성행렬
Figure 112007040373817-PAT00030
Self-elastic flexible matrix

Figure 112007040373817-PAT00031
: 기계 강성행렬
Figure 112007040373817-PAT00031
Mechanical Rigid Matrix

Figure 112007040373817-PAT00032
: 자화 전류 벡터
Figure 112007040373817-PAT00032
: Magnetization current vector

Figure 112007040373817-PAT00033
: 기계적 응력에 의해 유도되는 자화전류 벡터
Figure 112007040373817-PAT00033
: Magnetization current vector induced by mechanical stress

Figure 112007040373817-PAT00034
: 기계적 부하 벡터
Figure 112007040373817-PAT00034
: Mechanical load vector

Figure 112007040373817-PAT00035
: 자기장에 의한 기계적 부하 벡터를 의미한다.
Figure 112007040373817-PAT00035
: Means mechanical load vector by magnetic field.

이러한 일련의 자기변형을 위한 유한요소 정식화를 통해 본 발명은 자기변형 작동기의 거동 예측을 위한 2차원 비선형 유한요소 해석 코드를 개발하여 크기 100×26×2.5mm의 Terfenol 박판이 균일한 인가 자기장(H = 25 kA/m)하에 놓여있을 때 자기변형을 해석하였다. Through the finite element formulation for the series of magnetostrictions, the present invention has developed a two-dimensional nonlinear finite element analysis code for predicting the behavior of the magnetostrictive actuators. = 25 kA / m), the magnetostriction was analyzed.

2차원 비선형 자기변형 유한요소의 코드를 적용하여 도1a의 균일한 자기장의 Terfenol박판과 같은 구조의 해석을 자기변형을 유한요소 정식화를 통해 개발된 프로그램을 사용하여 해석하였다. 도1b는 유한요소 격자를 삼각형 메쉬를 생성하여 해석 영역을 나뉜 것을 보여주고, 도1c는 자기장 해석을 위한 경계면에서의 초기 조건을 나타내며, 도1d는 탄성 해석을 위한 경계면에서의 조건을 나타낸다.By applying the two-dimensional nonlinear magnetostrictive finite element code, the analysis of the structure of Terfenol sheet of uniform magnetic field in Fig. 1a was analyzed using the program developed through the finite element formulation of the magnetostriction. FIG. 1B shows the finite element lattice creating a triangular mesh to divide the analysis region, FIG. 1C shows the initial conditions at the interface for magnetic field analysis, and FIG. 1D shows the conditions at the interface for elastic analysis.

이러한 일련의 구조와 조건하에 본 발명의 유한요소 정식화를 통한 프로그램을 통해 해석된 2차원 비선형 자기변형 해석 결과를 도2에 나타내었다. 도2a는 깊이에 따른 자기포텐셜의 분포를 나타내고, 도2b는 자기장이 이루는 분포 형태를 의미하며, 도2c는 기준 축을 따른 Terfenol 박판의 자기변형을 나타낸다. 2 shows the results of the two-dimensional nonlinear magnetostriction analysis analyzed through the program through the finite element formulation of the present invention under such a series of structures and conditions. Figure 2a shows the distribution of magnetic potential according to the depth, Figure 2b shows the distribution form of the magnetic field, Figure 2c shows the magnetostriction of the Terfenol sheet along the reference axis.

본 발명은 자기변형 작동기의 거동 예측을 통해 2차원 비선형 유한요소 해석 코드개발에 관한 것으로 자왜재료의 모델링을 통한 비선형 자기변형의 해석을 위한 것이다. 자기변형 재료는 선형 탄성 거동 및 비선형 자기 거동을 하는 것으로 가정하여 일련의 코드가 개발되었으며, 자기장의 해석에서는 자기 포텐셜(magnetic potential)을 이용한 수식화기법이 적용되었다. 유한요소 코드의 개발에는 유한요소 정식화를 이용한 기법을 적용하였다. 본 발명을 통해 개발된 자기변형 해석기 프로그램을 통해 초소형 기전 시스템의 기계 및 전자기적 특성을 정확히 예측할 수 있다. The present invention relates to the development of two-dimensional nonlinear finite element analysis code through the prediction of the behavior of a magnetostrictive actuator. The present invention is for the analysis of nonlinear magnetostriction through the modeling of magnetostrictive material. A series of codes have been developed assuming that the magnetostrictive materials have linear elastic behavior and nonlinear magnetic behavior, and a mathematical technique using magnetic potential is applied to the analysis of the magnetic field. In the development of finite element codes, a technique using finite element formulation is applied. The magnetostrictive analyzer program developed through the present invention can accurately predict the mechanical and electromagnetic properties of micro-mechanical systems.

Claims (1)

유한요소 정식화를 통한 2차원 비선형 자기변형 해석 프로그램 개발에 있어서,In developing a two-dimensional nonlinear magnetostriction analysis program through finite element formulation, (a) 자성 재료의 구성방정식을 정식화 하는 단계;(a) formulating a constitutive equation of the magnetic material; (b) 외부 자기장이 인가되었을 때 자성 재료의 포텐셜 에너지에 관한 식을 정식화 하는 단계;(b) formulating an equation relating the potential energy of the magnetic material when an external magnetic field is applied; (c) 외부 응력 및 인가 자기장에 의한 일량을 정식화 하는 단계; 및 (c) formulating work by external stress and applied magnetic field; And (d) 해석영역이 이산화 된 후, 각 유한요소에서의 범함수를 정식화하는 단계를 포함하는 프로그래밍 방법.and (d) formulating a function at each finite element after the analysis region is discretized.
KR1020070053838A 2007-06-01 2007-06-01 Method of finite element formulation for two dimensional nonlinear electromagnetic analysis KR20080105794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070053838A KR20080105794A (en) 2007-06-01 2007-06-01 Method of finite element formulation for two dimensional nonlinear electromagnetic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070053838A KR20080105794A (en) 2007-06-01 2007-06-01 Method of finite element formulation for two dimensional nonlinear electromagnetic analysis

Publications (1)

Publication Number Publication Date
KR20080105794A true KR20080105794A (en) 2008-12-04

Family

ID=40367023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070053838A KR20080105794A (en) 2007-06-01 2007-06-01 Method of finite element formulation for two dimensional nonlinear electromagnetic analysis

Country Status (1)

Country Link
KR (1) KR20080105794A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228657B1 (en) * 2011-12-27 2013-01-31 서강대학교산학협력단 Analysis apparatus and method for forming process, and computer-readable recording medium having program for excute this method
CN106126869A (en) * 2016-08-23 2016-11-16 中国石油大学(华东) The numerical value simplified calculation method of ground liquid in storage tank coupled mode
CN112562799A (en) * 2020-12-11 2021-03-26 西安建筑科技大学 Force-magnetic constitutive model of magnetostrictive material and parameter calibration method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228657B1 (en) * 2011-12-27 2013-01-31 서강대학교산학협력단 Analysis apparatus and method for forming process, and computer-readable recording medium having program for excute this method
CN106126869A (en) * 2016-08-23 2016-11-16 中国石油大学(华东) The numerical value simplified calculation method of ground liquid in storage tank coupled mode
CN106126869B (en) * 2016-08-23 2019-01-22 中国石油大学(华东) Ground-storage tank-fluid coupling mode numerical value simplified calculation method
CN112562799A (en) * 2020-12-11 2021-03-26 西安建筑科技大学 Force-magnetic constitutive model of magnetostrictive material and parameter calibration method
CN112562799B (en) * 2020-12-11 2024-04-26 西安建筑科技大学 Force magnetic constitutive model of magnetostrictive material and parameter calibration method

Similar Documents

Publication Publication Date Title
Groh et al. Dislocation motion in magnesium: a study by molecular statics and molecular dynamics
Hosseini et al. Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory
Pishkenari et al. Surface elasticity and size effect on the vibrational behavior of silicon nanoresonators
Patel et al. Optimization of piezoelectric cantilever energy harvesters including non-linear effects
Lal et al. Thermal vibrations of temperature-dependent functionally graded non-uniform Timoshenko nanobeam using nonlocal elasticity theory
Shooshtari et al. Analytical solution for nonlinear free vibrations of viscoelastic microcantilevers covered with a piezoelectric layer
Ansari et al. Nonlinear bending analysis of hyperelastic Mindlin plates: a numerical approach
Al Ali et al. Concurrent multiscale hybrid topology optimization for light weight porous soft robotic hand with high cellular stiffness
KR20080105794A (en) Method of finite element formulation for two dimensional nonlinear electromagnetic analysis
Liu et al. A finite element framework for magneto-actuated large deformation and instability of slender magneto-active elastomers
Chen et al. An integrated design and fabrication strategy for planar soft dielectric elastomer actuators
Karimi et al. A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto–electro–thermo-elastic nanoplate
Scheidler et al. Nonlinear dynamic modeling and resonance tuning of Galfenol vibration absorbers
Karimiasl et al. Buckling of magneto-electro-hygro-thermal piezoelectric nanoplates system embedded in a visco-Pasternak medium based on nonlocal theory
Kim et al. Design optimization of PZT-based piezoelectric cantilever beam by using computational experiments
Kumar et al. Surface energy effects on thermoelastic vibration of nanomechanical systems under Moore–Gibson–Thompson thermoelasticity and Eringen’s nonlocal elasticity theories
Moayeri et al. Third order nonlinear vibration of viscoelastic circular microplate based on softening and hardening nonlinear viscoelastic foundation under thermal loading
Peng et al. Micromechanical investigation on size effect of tensile strength for recycled aggregate concrete using BFEM
Hurdoganoglu et al. State-of-the-Art Review of Computational Static and Dynamic Behaviors of Small-Scaled Functionally Graded Multilayer Shallow Arch Structures from Design to Analysis
Jayaneththi et al. Design-based modeling of magnetically actuated soft diaphragm materials
Kaltenbacher et al. Physical modeling and numerical computation of magnetostriction
Yang et al. The strain response of silicone dielectric elastomer actuators
Wenmei et al. Numerical dynamic strong coupled model of linear magnetostrictive actuators
Jayakumar et al. Moderately large deflection analysis of simply supported piezo-laminated composite plates under uniformly distributed transverse load
Tan et al. Diversifying temporal responses of magnetoactive elastomers

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination