KR20080104574A - Image sensor using semiconductor nanocrystal - Google Patents
Image sensor using semiconductor nanocrystal Download PDFInfo
- Publication number
- KR20080104574A KR20080104574A KR1020070051517A KR20070051517A KR20080104574A KR 20080104574 A KR20080104574 A KR 20080104574A KR 1020070051517 A KR1020070051517 A KR 1020070051517A KR 20070051517 A KR20070051517 A KR 20070051517A KR 20080104574 A KR20080104574 A KR 20080104574A
- Authority
- KR
- South Korea
- Prior art keywords
- image sensor
- compounds
- group
- semiconductor
- photoelectric conversion
- Prior art date
Links
- 239000004054 semiconductor nanocrystal Substances 0.000 title claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims description 45
- -1 GaN Chemical class 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 229910017083 AlN Inorganic materials 0.000 claims description 4
- 229910017115 AlSb Inorganic materials 0.000 claims description 4
- 229910004613 CdTe Inorganic materials 0.000 claims description 4
- 229910004611 CdZnTe Inorganic materials 0.000 claims description 4
- 229910002601 GaN Inorganic materials 0.000 claims description 4
- 229910005540 GaP Inorganic materials 0.000 claims description 4
- 229910005542 GaSb Inorganic materials 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 4
- 229910004262 HgTe Inorganic materials 0.000 claims description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 4
- 241000764773 Inna Species 0.000 claims description 4
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 claims description 4
- 229910002665 PbTe Inorganic materials 0.000 claims description 4
- 229910005642 SnTe Inorganic materials 0.000 claims description 4
- 229910007709 ZnTe Inorganic materials 0.000 claims description 4
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 4
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims description 4
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011368 organic material Substances 0.000 claims description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 claims description 4
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims description 3
- 241001455273 Tetrapoda Species 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 2
- 229920000291 Poly(9,9-dioctylfluorene) Polymers 0.000 claims description 2
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000003618 dip coating Methods 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 claims description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 claims description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920000123 polythiophene Polymers 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 claims description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 claims description 2
- 125000005259 triarylamine group Chemical group 0.000 claims description 2
- 150000003852 triazoles Chemical class 0.000 claims description 2
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical group [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 claims 1
- 230000000155 isotopic effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 239000002159 nanocrystal Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- HTARNFAKZVZKEI-UHFFFAOYSA-N triphenylsilyloxyaluminum(2+) Chemical group C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(O[Al+2])C1=CC=CC=C1 HTARNFAKZVZKEI-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14665—Imagers using a photoconductor layer
- H01L27/14667—Colour imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14694—The active layers comprising only AIIIBV compounds, e.g. GaAs, InP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14696—The active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0296—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
Landscapes
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
도 1은 종래의 이미지 센서에 대한 개략 단면도이고,1 is a schematic cross-sectional view of a conventional image sensor,
도 2는 본 발명의 일 구현예에 따른 이미지 센서의 개략 단면도이다.2 is a schematic cross-sectional view of an image sensor according to an embodiment of the present invention.
** 도면의 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of drawings **
210 : 기판 220 : 절연막210: substrate 220: insulating film
230 : 화소 전극 240R, 240G, 240B : 광전변환막230:
250R, 250G, 250B :칼라 필터 260 : 공통 전극 250R, 250G, 250B: Color filter 260: Common electrode
본 발명은 이미지 센서에 관한 것으로, 더욱 상세하게는 광전변환막의 재질로 반도체 나노결정을 사용함으로써 고해상도 및 고감도의 구현이 가능한 이미지 센서에 관한 것이다.The present invention relates to an image sensor, and more particularly, to an image sensor capable of realizing high resolution and high sensitivity by using semiconductor nanocrystals as a material of a photoelectric conversion film.
이미지 센서란 외부에서 전달되는 빛을 받아 이미지를 재현하는 장치로서, 최근 디지털 혁명이 급속도로 진행됨에 따라 휴대전화 카메라나 DSC(Digital Still Camera) 등에서 널리 사용되고 있다.An image sensor is a device that reproduces an image by receiving light transmitted from the outside. As the digital revolution is rapidly progressing in recent years, it is widely used in a mobile phone camera or a digital still camera (DSC).
통상적인 이미지 센서는 픽셀 어레이, 즉 이차원적으로 매트릭스 형태로 배열된 복수개의 픽셀(畵素)로 이루어지며, 각 픽셀은 입사되는 빛(photon)에 의해 신호전하를 발생하는 포토 다이오드와 상기 포토 다이오드에서 발생한 신호전하를 이송 및 출력하기 위한 소자를 포함한다. 신호전하의 이송 및 출력방식에 따라 이미지 센서는 크게 전하결합소자(CCD)형 이미지 센서와 상보성 금속산화물반도체(CMOS)형 이미지 센서의 두 종류로 나뉜다.A typical image sensor is composed of a pixel array, that is, a plurality of pixels arranged in a two-dimensional matrix form, each pixel having a photodiode and a photodiode that generate signal charges by incident light. It includes a device for transferring and outputting the signal charge generated in the. According to the transfer and output method of the signal charge, the image sensor is classified into two types: a charge coupled device (CCD) image sensor and a complementary metal oxide semiconductor (CMOS) image sensor.
또한 통상의 이미지 센서는, 상기 픽셀 어레이의 상부에 외부에서 입사되는 자연광을 특정파장을 가지는 빛으로 분해하는 칼라 필터층이 형성되어 있다. 상기 칼라 필터는 자연광을 빛의 3원색으로 분해하는 RGB(red-green-blue)형 칼라필터 및 자연광을 CYGM(cyan, yellow, green, magenta)의 4색으로 분리하는 보색형 칼라 필터 등이 있다.In addition, in the conventional image sensor, a color filter layer is formed on the pixel array to decompose natural light incident from the outside into light having a specific wavelength. The color filter includes an RGB (red-green-blue) color filter that decomposes natural light into three primary colors of light, and a complementary color filter that separates natural light into four colors of CYGM (cyan, yellow, green, magenta). .
도 1은 종래 이미지 센서의 구조를 도시한 개략 단면도이다. 도 1에 도시된 바와 같이 종래의 이미지 센서(100)는 반도체 기판(110) 상에 포토 다이오드와 같은 광전변환소자(120)가 형성되며, 광전변환소자(120) 상부에는 칼라 필터 층(130)이 형성되고 그 상부에는 보호막(140)과 마이크로렌즈(150)가 구비된다. 한편, 최근 전자기기의 소형화, 고품질화 경향에 따라 상기와 같은 구조의 이미지 센서에 대하여도 고해상도 및 고감도에 대한 요구가 높아지고 있다.1 is a schematic cross-sectional view showing the structure of a conventional image sensor. As shown in FIG. 1, in the
이 중 고해상도를 달성하기 위하여는 화상의 구성 단위인 픽셀을 고집적화하지 않으면 안되고, 이는 픽셀 사이즈의 축소화를 필연적으로 초래한다. 그러나, 픽셀 사이즈가 작아지게 되면 이에 따라 1개의 화소에 입사되는 광량이 감소하기 때문에 감도의 저하를 초래하게 된다. 이와 같이 고해상도와 고감도는 서로 상반된 관계에 있게 된다. 또한, 종래 광전변환소자의 재질로는 주로 벌크(bulk) 형태의 결정 실리콘(c-Si) 또는 비정질 실리콘(a-Si)이 사용되고 있으나, 이러한 실리콘 재료를 이용한 광전변환소자 구조 및 공정에서는 해상도를 올리는 것이 한계에 도달한 상태이다(1.4 μm 정도). Among these, in order to achieve high resolution, pixels which are structural units of an image must be highly integrated, which inevitably leads to a reduction in pixel size. However, when the pixel size is reduced, the amount of light incident on one pixel is reduced, resulting in a decrease in sensitivity. As such, the high resolution and the high sensitivity are in a mutually opposite relationship. In addition, bulk photonic crystalline silicon (c-Si) or amorphous silicon (a-Si) is generally used as a material of the photoelectric conversion device. However, in the structure and process of the photoelectric conversion device using the silicon material, resolution is increased. Raising has reached the limit (about 1.4 μm).
따라서, 고해상도 및 고감도를 구현하기 위하여는 고감도의 광 전도성(photo conducting) 재료를 이용한 이미지 센서의 개발이 요구되고 있다. Therefore, in order to realize high resolution and high sensitivity, development of an image sensor using a high sensitivity photo conducting material is required.
본 발명은 상기와 같은 종래 기술의 문제점을 극복하기 위한 것으로, 본 발명의 목적은 광전변환소자의 재질로 반도체 나노결정을 사용함으로써 고해상도 및 고감도의 구현이 가능한 이미지 센서를 제공하는 것이다.The present invention is to overcome the problems of the prior art as described above, an object of the present invention is to provide an image sensor capable of high resolution and high sensitivity by using a semiconductor nanocrystal as a material of the photoelectric conversion element.
상기 목적을 달성하기 위한 본 발명의 하나의 양상은, One aspect of the present invention for achieving the above object,
반도체 기판 상에 형성된 화소 전극, 광전변환막, 칼라 필터, 공통 전극을 포함하는 이미지 센서에 있어서, 상기 광전변환막이 반도체 나노결정으로 이루어지 는 것을 특징으로 하는 이미지 센서에 관계한다.An image sensor comprising a pixel electrode, a photoelectric conversion film, a color filter, and a common electrode formed on a semiconductor substrate, wherein the photoelectric conversion film is made of semiconductor nanocrystals.
본 발명의 일 구현예에 따른 상기 이미지 센서는, 반도체 나노결정의 광 전도(photo conductivity) 특성을 이용함으로써 접합(junction)구조 없이 양호한 전하 분리(charge separation)가 가능하고 고효율 양자 효과(quantum efficiency)를 얻을 수 있는 특징이 있다.The image sensor according to an embodiment of the present invention, by using the photo conductivity characteristics of the semiconductor nanocrystals can be a good charge separation (junction) structure without a junction structure and high efficiency quantum efficiency (quantum efficiency) There is a feature to get.
본 발명의 일 구현예에 따른 상기 이미지 센서는, 반도체 나노결정의 크기 및 조성, 형태 등을 조절함으로써 흡광 및 수광 특성을 용이하게 조절할 수 있는 것을 특징으로 한다.The image sensor according to an embodiment of the present invention is characterized in that the light absorption and light receiving characteristics can be easily adjusted by adjusting the size, composition, shape, and the like of the semiconductor nanocrystals.
또한 본 발명의 일 구현예에 따른 상기 이미지 센서는, 실리콘을 제조하는 기상 공정 대신 반도체 나노결정을 이용한 습식 공정으로 광전변환막을 형성할 수 있어 제조 공정성이 향상된 이점을 가진다. In addition, the image sensor according to an embodiment of the present invention, the photoelectric conversion film can be formed by a wet process using a semiconductor nanocrystal instead of a vapor phase process for manufacturing silicon has an advantage of improved manufacturing processability.
이하에서 첨부 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 2는 본 발명의 일 구현예에 따른 이미지 센서의 구조 및 동작을 설명하기 위한 이미지 센서의 개략 단면도이다. 도 2를 참조하면, 반도체 기판(210)의 표면에는 절연층(220)이 적층되며 상기 절연층(220)의 내부에는 전하 이송 수단이 매설되게 된다(도시하지 않았음).2 is a schematic cross-sectional view of the image sensor for explaining the structure and operation of the image sensor according to an embodiment of the present invention. Referring to FIG. 2, an
상기 절연층(220)의 상부에는 각각의 단위 픽셀 별로 화소 전극(230)이 형성되고, 상기 화소 전극(230) 상부에는 각각 R, G, B 파장 영역의 빛을 흡수하여 전기적 신호로 변환시키는 광전변환막(240R, 240G, 240B)이 형성된다. 상기 각각의 광전변환막(240R, 240G, 240B)의 상부에는 이에 대응하는 R, G, B 형 칼라필터층(250R, 250G, 250B)이 형성된다. 상기 칼라필터층(250R, 250G, 250B) 상부에는 화소 전극(230)에 대응하는 투명한 공통 전극(260)이 적층되며, 상기 공통 전극(260)의 위에는 보호막(270)이 형성되게 된다.A
이때, 투명 전극(260)을 통하여 빛이 입사되면 상기 칼라필터층(250R, 250G, 250B)에서 각각 R, G, B 파장 영역대로 분리되며, 상기 분리된 빛(photon)은 광전변환막(240R, 240G, 240B)에서 선택적으로 흡수되어 각각의 파장 영역대에 상당하는 전자-정공쌍을 발생시킨다. 여기에서 발생된 전자는 각각의 화소 전극(230)을 통하여 전하 운송 수단으로 이송되고, 정공은 공통 전극(260)을 통하여 외부로 빠져 나간다. In this case, when light is incident through the transparent electrode 260, the
본 발명의 상기 화소 전극(230)은 각각의 픽셀별로 전기적으로 격리되어 형성되며, 전도성이 있는 물질이면 투명 재료로 형성되어도 좋고 불투명 재료로 형성되어도 관계없다. The
본 발명의 상기 공통 전극(260)은 접지되어 있어 광전변환막(240R, 240G, 240B)의 표면전위를 고정하는 역할을 하게 된다. 상기 투명한 공통 전극(260)의 재료로는 SnO2, TiO2 , InO2 , ITO 등을 사용할 수 있으나 반드시 이에 한정되는 것은 아니다. 상기 투명한 공통 전극(260)은 일반적인 코팅 방법, 예를 들어 스프레잉, 스핀 코팅, 딥핑, 프린팅, 닥터블레이딩, 스퍼터링 등의 방법을 이용하거나 또는 전기영동법을 이용하여 코팅될 수 있다. The common electrode 260 of the present invention is grounded to serve to fix the surface potential of the
한편 상기 칼라필터층(250R, 250G, 250B)은 R, G, B 대신에 C, Y, G, M의 파장 영역대로 빛을 분리하는 형태일 수 있으며, 이 경우 광전변환막(240R, 240G, 240B)은 상기 파장 영역대의 빛을 각각 선택적으로 흡수하는 이에 상당하는 전기적 신호로 변환시킨다.Meanwhile, the
본 발명에 따른 상기 광전변환막(240R, 240G, 240B)은 반도체 나노결정의 크기나 형태, 조성을 조절함으로써 빛의 흡수 영역을 다양하게 조절하는 것이 가능하다. The
즉, 반도체 나노결정은 수 나노 크기의 결정 구조를 가진 물질로, 수백에서 수천 개 정도의 원자로 구성되어 있다. 이렇게 작은 크기의 물질은 단위 부피 당 표면적이 넓어 대부분의 원자들이 표면에 존재하게 되고, 양자 제한(quantum confinement) 효과 등을 나타나게 되어, 물질 자체의 고유한 특성과는 다른 독특한 전기적, 자기적, 광학적, 화학적, 기계적 특성을 가지게 된다. 따라서, 반도체 나노결정의 물리, 화학적인 특성을 조절함으로써 다양한 특성을 조절하는 것이 가능해진다.In other words, semiconductor nanocrystals are materials with a crystal structure of several nanoscales, and are composed of hundreds to thousands of atoms. This small size of the material has a large surface area per unit volume, causing most atoms to exist on the surface and exhibit quantum confinement effects, resulting in unique electrical, magnetic, and optical properties that are distinct from the intrinsic properties of the material itself. It has chemical, mechanical properties. Therefore, it is possible to control various properties by adjusting the physical and chemical properties of the semiconductor nanocrystals.
최근의 문헌들에서는 (Klimov et al., Nano Letters, 2006, 6, 3, 424) 특정 물질이 해당하는 밴드갭 이상의 에너지를 갖는 광자 (photon)를 흡수하더라도 열 방출을 포함한 여러 경로를 통하여 잉여 (excess) 에너지를 잃고, 한 개의 엑시톤(exciton)을 생성할 수 있다는 기존의 이론을 반박하고, 밴드갭의 2배 이상의 에너지를 갖는 광자를 흡수하게 되면 두 개의 엑시톤을 생성할 수 있다는 실험적 결 과와 이론을 제시하였다. 특히, 나노결정은 벌크결정에 비하여 Auger recombination과 inverse Auger recombination이 모두 높은 효율로 일어나므로, 적외선 영역에 해당하는 에너지 밴드갭을 갖는 나노결정이 자외선 영역에 해당하는 에너지를 갖는 광자를 흡수할 경우 최대 700% 효율로 엑시톤을 생성시킬 수 있게 되어 기존의 광전환 효율의 한계를 새롭게 규정하였다. Recent publications (Klimov et al., Nano Letters, 2006, 6, 3, 424), although a particular material absorbs photons with energy above the corresponding bandgap, surplus through several pathways, including heat release ( To counter the existing theory of losing excess energy and producing one exciton, and to absorb photons with energy greater than two times the bandgap, two excitons can be produced. The theory is presented. In particular, since nanocrystals have higher efficiency in both Auger recombination and inverse Auger recombination than bulk crystals, nanocrystals with an energy band gap corresponding to an infrared region absorb maximum photons with energy corresponding to an ultraviolet region. Exciton can be generated with 700% efficiency, which newly limits the limits of existing light conversion efficiency.
이상에서와 같이, 본 발명에 따른 이미지 센서는 광전변환 물질로 반도체 나노결정을 사용함으로써, 반도체 나노결정의 광 전도(photo conductivity) 특성을 이용하여 접합 구조 없이 용이하게 전하 분리가 가능하며, 광자(photon)를 전자(electron)로 변환하는 효율이 100% 이상 가능하게 되어 고효율의 이미지 센서를 구현하는 것이 가능하게 되어, 캐리어 증폭 (carrier multiplication) 특성을 이용함으로써 고감도의 이미지 센서를 구현하는 것이 가능하게 된다.As described above, the image sensor according to the present invention uses semiconductor nanocrystals as a photoelectric conversion material, thereby easily separating charges without a junction structure using photoconductive properties of semiconductor nanocrystals, and using photons ( The efficiency of converting photon into electrons is more than 100%, making it possible to realize a high-efficiency image sensor, and to realize a highly sensitive image sensor by using carrier multiplication characteristics. do.
또한, 본 발명의 상기 이미지 센서는 캐리어(carrier)를 증가시키기 위하여 도핑공정을 거쳐야 하는 실리콘 소재에 비하여 도핑(doping)되지 않은 반도체 양자구조를 이용함으로써, 제조 공정을 단순화시킬 수 있는 장점이 있다.In addition, the image sensor of the present invention has an advantage of simplifying the manufacturing process by using a semiconductor quantum structure that is not doped (doping) compared to the silicon material to be subjected to the doping process to increase the carrier (carrier).
본 발명에 따른 상기 반도체 나노결정의 형태는 구형, 정사면체(tetrahedron), 원통형, 막대형(rod), 삼각형, 원판형(disk), 트리포드(tripod), 테트라포드(tetrapod), 큐브(cube), 박스(box), 스타(star), 튜브(tube) 등 다양한 형태를 지닐 수 있으며, 광전 효율을 증가시키기 위해서는 다이폴(dipole)을 안정화시키는 구조가 유리하므로 아스펙트 비율(aspect ratio)이 1 이상인 구조가 더 바람직하다. The shape of the semiconductor nanocrystal according to the present invention is spherical, tetrahedron (tetrahedron), cylindrical, rod (rod), triangle, disk (disk), tripod (tetrapod), tetrapod (cube), It can have various shapes such as a box, a star, and a tube, and a structure having an aspect ratio of 1 or more because a structure for stabilizing a dipole is advantageous to increase photoelectric efficiency. More preferred.
상기 반도체 나노결정을 구성하는 물질로는 II-VI족, III-V족, Ⅳ-Ⅵ족 반도체 화합물과 그 혼합물로 이루어지는 군에서 선택될 수 있다. The material constituting the semiconductor nanocrystal may be selected from the group consisting of II-VI, III-V, and IV-VI semiconductor compounds and mixtures thereof.
상기 II-VI족 화합물은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe 등의 이원소 화합물 또는 CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe 등의 삼원소 화합물 또는 CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, Group II-VI compounds include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe and other binary compounds or CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSee, HgSeT CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, etc. ego,
상기 III-V족 화합물 반도체는 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 등의 이원소 화합물 또는 GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb 등의 삼원소 화합물 또는 GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, The III-V compound semiconductor is a binary compound such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs , Three-element compounds such as AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb and other materials selected from the group consisting of a compound
상기 IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 등의 이원소 화합물 또는 SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 등의 삼원소 화합물 또는 SnPbSSe, SnPbSeTe, SnPbSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질을 예로 들 수 있으나, 반드시 이들로 제한되는 것은 아 니다.The IV-VI compound is a binary element such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or a three-element compound such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or SnPbSSe, SnPbSee For example, the material selected from the group consisting of elemental compounds such as SnPbSTe, but is not limited to these.
또한 상기 반도체 나노결정은 코어 둘레에 오버 코팅을 더 포함하는 코어-쉘 구조의 나노결정일 수 있고, 이때, 상기 오버 코팅물질은 II-VI족 화합물, III-V족 화합물, IV-VI족 화합물 또는 이들의 혼합물에서 선택되는 재료로 구성될 수 있다. In addition, the semiconductor nanocrystal may be a core-shell structure of the nanocrystal further comprising an over coating around the core, wherein the over coating material is a group II-VI compound, III-V compound, IV-VI compound or It may consist of a material selected from a mixture thereof.
상기 II-VI족 화합물은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe 등의 이원소 화합물 또는 CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe 등의 삼원소 화합물 또는 CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질일 수 있다. 상기 III-V족 화합물 반도체는 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 등의 이원소 화합물 또는 GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb 등의 삼원소 화합물 또는 GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 등의 사원소 화합물로 이루어진 군에서 선택되는 물질일 수 있다. 상기 IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 등의 이원소 화합물 또는 SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 등의 삼원소 화합물 또는 SnPbSSe, SnPbSeTe, SnPbSTe 등의 사원소 화합물로 이루어진 군에서 선택될 수 있다.Group II-VI compounds include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe and other binary compounds or CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSee, HgSeT CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, etc. Can be. The group III-V compound semiconductor is a binary element such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs , Three-element compounds such as AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb and the like may be a material selected from the group consisting of. The IV-VI compound is a binary element such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or a three-element compound such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or SnPbSSe, SnPbSee It may be selected from the group consisting of quaternary compounds such as SnPbSTe.
또한, 본 발명의 상기 이미지 센서는, 사용되는 반도체 나노결정을 반도체 화합물-금속 복합체의 접합 구조를 채용함으로써 광전변환효율을 더욱 향상시킬 수 있다. 이때 상기 금속으로는 나노결정의 표면에 결합될 수 있는 금속이면 모두 가능하며, 구체적으로는 Au, Ag, Cu, Pt, Pd, Ni, Fe 및 Co로 이루어지는 군에서 선택될 수 있지만 이에 제한되지 않는다. In addition, the image sensor of the present invention can further improve the photoelectric conversion efficiency by employing a junction structure of a semiconductor compound-metal composite in the semiconductor nanocrystals used. In this case, the metal may be any metal that can be bonded to the surface of the nanocrystal, and specifically, may be selected from the group consisting of Au, Ag, Cu, Pt, Pd, Ni, Fe, and Co, but is not limited thereto. .
본 발명의 상기 반도체 나노결정은 각각 해당 원소를 포함하는 전구체 물질을 사용하여 본 발명이 속하는 기술분야에서 알려져 있는 통상의 방법을 이용하여 합성할 수 있다. 예를 들어, 금속전구체와 칼코겐 화합물(chalcogenide) 각각을 용매 및 분산제에 넣거나, 금속과 칼코겐 화합물 원소를 모두 포함하고 있는 단일 화합물을 넣고, 이들을 혼합하여 균일하게 교반하면서 온도를 올리고 불활성 분위기를 유지하면서 반응시켜 형성할 수 있다. 이때 사용되는 전구체의 농도 및 조성, 반응 온도, 계면활성제의 종류 등을 조절함으로서 반도체 나노결정의 형태 및 조성을 조절할 수 있다. The semiconductor nanocrystals of the present invention can be synthesized using conventional methods known in the art to which the present invention belongs, using precursor materials each containing the corresponding element. For example, each of the metal precursor and the chalcogenide is added to a solvent and a dispersant, or a single compound containing both the metal and the chalcogenide element is added thereto, and the mixture is mixed and stirred to raise the temperature and inert atmosphere. It can form by making it react, holding. At this time, by adjusting the concentration and composition of the precursor used, the reaction temperature, the type of surfactant, etc., the shape and composition of the semiconductor nanocrystals can be controlled.
또한 본 발명의 광전변환막은 반도체 나노결정과 전도성 유기물의 콤포지트가 사용될 수 있으며, 전도성 유기물은 나노결정에서 생성된 캐리어를 전극까지 잘 전달하는 기능을 하며, 나노결정 막의 공정성을 향상시킬 수 있다. 이 때 사용될 수 있는 전도성 유기물은 폴리 (3, 4-에틸렌디오펜)/폴리스티렌 파라술포네이트, 폴리-N-비닐카르바졸, 폴리페닐렌비닐렌, 폴리파라페닐렌, 폴리메타크릴레이트, 폴리 (9,9-다이옥틸플루오렌), 폴리 (스파이로-플루오렌), 폴리 싸이오펜, 트리아릴아민, 구리 프탈로시아닌, 옥사졸, 이소옥사졸, 트리아졸, 이소티아졸, 옥시 디아졸, 티아디아졸, 페릴렌, 트리스 (8-히드록시퀴놀린)-알루미늄, 비스(2-메틸-8-퀴놀라토) (p-페닐-페놀라토) 알루미늄, 비스 (2-메틸-8-퀴놀리네이토) (트리페닐실록시) 알루미늄(III) 구조를 포함하는 유기물이 사용될 수 있다. In addition, in the photoelectric conversion film of the present invention, a composite of a semiconductor nanocrystal and a conductive organic material may be used, and the conductive organic material functions to transfer a carrier generated from the nanocrystal to the electrode, and may improve the processability of the nanocrystalline film. Conductive organics that can be used at this time are poly (3,4-ethylenediophene) / polystyrene parasulfonate, poly-N-vinylcarbazole, polyphenylenevinylene, polyparaphenylene, polymethacrylate, poly (9 , 9-dioctylfluorene), poly (spiro-fluorene), polythiophene, triarylamine, copper phthalocyanine, oxazole, isoxazole, triazole, isothiazole, oxy diazole, thiadiazole , Perylene, tris (8-hydroxyquinoline) -aluminum, bis (2-methyl-8-quinolato) (p-phenyl-phenololato) aluminum, bis (2-methyl-8-quinolinato) Organics containing a (triphenylsiloxy) aluminum (III) structure can be used.
또한 본 발명에 따른 상기 이미지 센서는, 실리콘을 제조하는 기상 공정 대신에 상기 방법에 의하여 합성된 나노결정을 이용하여 습식공정(wet process)에 의하여 간편하게 광전변환막을 형성함으로써 제조 공정이 단순화되고 경제적으로 제조할 수 있는 장점이 있다. 예를 들어 상기 반도체 나노결정을 톨루엔, 헥산 등과 같은 적절한 용매에 용해시켜 드롭 캐스팅(drop casting), 스핀 코팅(spin cating), 딥 코팅(dip coating), 분무 코팅(spray coating), 흐름 코팅(flow coating) 또는 스크린 인쇄(screen printing) 등의 방법에 의하여 광전변환막을 형성할 수 있다. In addition, the image sensor according to the present invention, by using a nanocrystal synthesized by the method instead of the vapor phase process of manufacturing silicon to form a photoelectric conversion film by a wet process (wet process) simply, the manufacturing process is simplified and economically There is an advantage to manufacture. For example, the semiconductor nanocrystals are dissolved in a suitable solvent such as toluene, hexane and the like, so that drop casting, spin cating, dip coating, spray coating, and flow coating are performed. The photoelectric conversion film can be formed by a method such as coating or screen printing.
이때 상기 광전변환막의 두께는 5nm ~ 5mm인 것이 바람직하다. 또한, 상기 광전변환막을 구성하는 반도체 나노결정의 크기는 3nm ~ 30nm 인 것이 바람직하다.At this time, the thickness of the photoelectric conversion film is preferably 5nm ~ 5mm. In addition, the size of the semiconductor nanocrystal constituting the photoelectric conversion film is preferably 3nm ~ 30nm.
이상에서와 같이 본 발명의 이미지 센서는 광전변환물질로 반도체 나노결정을 사용함으로써, 고해상도 및 고감도이 구현이 가능하여 디지털 카메라, 비디오 카메라, 웹카메라, 카메라폰 등에 다양하게 응용될 수 있다.As described above, the image sensor of the present invention uses a semiconductor nanocrystal as a photoelectric conversion material, so that high resolution and high sensitivity can be implemented, and thus may be variously applied to a digital camera, a video camera, a web camera, a camera phone, and the like.
이상에서 상세히 설명한 바와 같이, 본 발명의 이미지 센서는 도핑되지 않은 반도체 양자 구조를 사용하여 나노결정의 광 전도 특성을 이용함으로써 제조 공정이 단순화되고, 고해상도 및 고감도를 구현할 수 있는 효과가 있다.As described in detail above, the image sensor of the present invention simplifies the manufacturing process by utilizing the light conducting properties of the nanocrystals using an undoped semiconductor quantum structure, and has the effect of realizing high resolution and high sensitivity.
또한 본 발명의 이미지 센서는, 반도체 나노결정의 크기 및 조성, 형태 등을 조절함으로써 흡광 및 수광 특성을 용이하게 조절할 수 있는 효가가 있다.In addition, the image sensor of the present invention, there is an effect that can easily adjust the light absorption and light receiving characteristics by adjusting the size, composition, shape, etc. of the semiconductor nanocrystals.
또한 본 발명의 이미지 센서는, 실리콘을 제조하는 기상 공정 대신 반도체 나노결정을 이용한 습식 공정을 이용함으로써 제조 공정이 단순화되고 경제적인 효과가 있다.In addition, the image sensor of the present invention, by using a wet process using a semiconductor nanocrystal instead of a vapor phase process for manufacturing silicon has a simplified manufacturing process and has an economic effect.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070051517A KR20080104574A (en) | 2007-05-28 | 2007-05-28 | Image sensor using semiconductor nanocrystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070051517A KR20080104574A (en) | 2007-05-28 | 2007-05-28 | Image sensor using semiconductor nanocrystal |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080104574A true KR20080104574A (en) | 2008-12-03 |
Family
ID=40366173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070051517A KR20080104574A (en) | 2007-05-28 | 2007-05-28 | Image sensor using semiconductor nanocrystal |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20080104574A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019035530A1 (en) * | 2017-08-14 | 2019-02-21 | 한양대학교 산학협력단 | Image sensor comprising quantum dot layer |
CN110612606A (en) * | 2018-04-06 | 2019-12-24 | 汉阳大学校产学协力团 | Dual image sensor including quantum dot layer |
-
2007
- 2007-05-28 KR KR1020070051517A patent/KR20080104574A/en not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019035530A1 (en) * | 2017-08-14 | 2019-02-21 | 한양대학교 산학협력단 | Image sensor comprising quantum dot layer |
CN109673167A (en) * | 2017-08-14 | 2019-04-23 | 汉阳大学校产学协力团 | Imaging sensor including quantum dot layer |
US11404458B2 (en) | 2017-08-14 | 2022-08-02 | Industry-University Cooperation Foundation Hanyang University | Image sensor including quantum dot layer |
CN109673167B (en) * | 2017-08-14 | 2023-08-22 | 汉阳大学校产学协力团 | Image sensor including quantum dot layer |
CN110612606A (en) * | 2018-04-06 | 2019-12-24 | 汉阳大学校产学协力团 | Dual image sensor including quantum dot layer |
CN110612606B (en) * | 2018-04-06 | 2023-08-22 | 汉阳大学校产学协力团 | Dual image sensor including quantum dot layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9812596B2 (en) | Photoelectric device and electronic apparatus including the same | |
US10529879B2 (en) | Photoelectric conversion device including quantum dot layers | |
CN109673167B (en) | Image sensor including quantum dot layer | |
KR102582649B1 (en) | Display device | |
US11258935B2 (en) | Dual image sensor including quantum dot layer | |
KR102053086B1 (en) | Phototransistor using quantum dot | |
KR20080104574A (en) | Image sensor using semiconductor nanocrystal | |
KR20090002090A (en) | Multi-layer type image sensor using semiconductor nanocrystal | |
KR20230053174A (en) | 2d-od-2d heterojunction structure and manufacturing method by the same, perovskite optoelectric device comprising the same | |
US20210126159A1 (en) | Optoelectric device | |
KR20080095522A (en) | Organic electroluminescent device and method for fabricating thereof | |
KR102126695B1 (en) | Image sensor including quantum dot layer | |
US20240276838A1 (en) | Display device | |
CN221081905U (en) | Display device | |
CN218959392U (en) | Display device | |
US20230136511A1 (en) | Quantum dot film, method for producing quantum dot film, opto-electronic device including quantum dot film, and image sensor including opto-electronic device | |
US20240026222A1 (en) | Semiconductor nanoparticles and electronic device including the same | |
CN117202718A (en) | Display device | |
CN118206979A (en) | Inorganic metal oxide, method of preparing the same, and light emitting device including the same | |
CN118693122A (en) | Display device and method of manufacturing the same | |
CN118256247A (en) | Composite material, preparation method thereof, light-emitting device and display device | |
CN118159057A (en) | Light-emitting device, preparation method thereof and display device | |
CN115707259A (en) | Optoelectronic device and electronic apparatus comprising an optoelectronic device | |
CN117015290A (en) | Composite material and preparation method thereof, light-emitting device and preparation method thereof, and display device | |
KR20110042043A (en) | Method for changing the emission wavelength of multi-layered semiconductor nanocrystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |