KR20080104574A - Image sensor using semiconductor nanocrystal - Google Patents

Image sensor using semiconductor nanocrystal Download PDF

Info

Publication number
KR20080104574A
KR20080104574A KR1020070051517A KR20070051517A KR20080104574A KR 20080104574 A KR20080104574 A KR 20080104574A KR 1020070051517 A KR1020070051517 A KR 1020070051517A KR 20070051517 A KR20070051517 A KR 20070051517A KR 20080104574 A KR20080104574 A KR 20080104574A
Authority
KR
South Korea
Prior art keywords
image sensor
compounds
group
semiconductor
photoelectric conversion
Prior art date
Application number
KR1020070051517A
Other languages
Korean (ko)
Inventor
장은주
전신애
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020070051517A priority Critical patent/KR20080104574A/en
Publication of KR20080104574A publication Critical patent/KR20080104574A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14667Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14694The active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14696The active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes

Landscapes

  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

The image sensor using the semiconductor nanocrystal using the light conducting property of nano-crystalline is provided to implement the high definition and high-sensitivity by using the undoped semiconductor quantum structure. The image sensor comprises the pixel electrode(230), the photoconductive conversion layer(240R, 240G, 240B), the color filter(250R, 250G, 250B), the common electrode(260) formed on the semiconductor substrate(210). The photoconductive conversion layer includes the semiconductor nanocrystal. The insulating layer(220) is laminated on the surface of the semiconductor substrate. The electric charge transportation means is buried in the insulating layer.

Description

반도체 나노결정을 이용한 이미지 센서{Image Sensor Using Semiconductor Nanocrystal} Image Sensor Using Semiconductor Nanocrystals

도 1은 종래의 이미지 센서에 대한 개략 단면도이고,1 is a schematic cross-sectional view of a conventional image sensor,

도 2는 본 발명의 일 구현예에 따른 이미지 센서의 개략 단면도이다.2 is a schematic cross-sectional view of an image sensor according to an embodiment of the present invention.

** 도면의 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of drawings **

210 : 기판 220 : 절연막210: substrate 220: insulating film

230 : 화소 전극 240R, 240G, 240B : 광전변환막230: pixel electrode 240R, 240G, 240B: photoelectric conversion film

250R, 250G, 250B :칼라 필터 260 : 공통 전극 250R, 250G, 250B: Color filter 260: Common electrode

본 발명은 이미지 센서에 관한 것으로, 더욱 상세하게는 광전변환막의 재질로 반도체 나노결정을 사용함으로써 고해상도 및 고감도의 구현이 가능한 이미지 센서에 관한 것이다.The present invention relates to an image sensor, and more particularly, to an image sensor capable of realizing high resolution and high sensitivity by using semiconductor nanocrystals as a material of a photoelectric conversion film.

이미지 센서란 외부에서 전달되는 빛을 받아 이미지를 재현하는 장치로서, 최근 디지털 혁명이 급속도로 진행됨에 따라 휴대전화 카메라나 DSC(Digital Still Camera) 등에서 널리 사용되고 있다.An image sensor is a device that reproduces an image by receiving light transmitted from the outside. As the digital revolution is rapidly progressing in recent years, it is widely used in a mobile phone camera or a digital still camera (DSC).

통상적인 이미지 센서는 픽셀 어레이, 즉 이차원적으로 매트릭스 형태로 배열된 복수개의 픽셀(畵素)로 이루어지며, 각 픽셀은 입사되는 빛(photon)에 의해 신호전하를 발생하는 포토 다이오드와 상기 포토 다이오드에서 발생한 신호전하를 이송 및 출력하기 위한 소자를 포함한다. 신호전하의 이송 및 출력방식에 따라 이미지 센서는 크게 전하결합소자(CCD)형 이미지 센서와 상보성 금속산화물반도체(CMOS)형 이미지 센서의 두 종류로 나뉜다.A typical image sensor is composed of a pixel array, that is, a plurality of pixels arranged in a two-dimensional matrix form, each pixel having a photodiode and a photodiode that generate signal charges by incident light. It includes a device for transferring and outputting the signal charge generated in the. According to the transfer and output method of the signal charge, the image sensor is classified into two types: a charge coupled device (CCD) image sensor and a complementary metal oxide semiconductor (CMOS) image sensor.

또한 통상의 이미지 센서는, 상기 픽셀 어레이의 상부에 외부에서 입사되는 자연광을 특정파장을 가지는 빛으로 분해하는 칼라 필터층이 형성되어 있다. 상기 칼라 필터는 자연광을 빛의 3원색으로 분해하는 RGB(red-green-blue)형 칼라필터 및 자연광을 CYGM(cyan, yellow, green, magenta)의 4색으로 분리하는 보색형 칼라 필터 등이 있다.In addition, in the conventional image sensor, a color filter layer is formed on the pixel array to decompose natural light incident from the outside into light having a specific wavelength. The color filter includes an RGB (red-green-blue) color filter that decomposes natural light into three primary colors of light, and a complementary color filter that separates natural light into four colors of CYGM (cyan, yellow, green, magenta). .

도 1은 종래 이미지 센서의 구조를 도시한 개략 단면도이다. 도 1에 도시된 바와 같이 종래의 이미지 센서(100)는 반도체 기판(110) 상에 포토 다이오드와 같은 광전변환소자(120)가 형성되며, 광전변환소자(120) 상부에는 칼라 필터 층(130)이 형성되고 그 상부에는 보호막(140)과 마이크로렌즈(150)가 구비된다. 한편, 최근 전자기기의 소형화, 고품질화 경향에 따라 상기와 같은 구조의 이미지 센서에 대하여도 고해상도 및 고감도에 대한 요구가 높아지고 있다.1 is a schematic cross-sectional view showing the structure of a conventional image sensor. As shown in FIG. 1, in the conventional image sensor 100, a photoelectric conversion element 120 such as a photodiode is formed on a semiconductor substrate 110, and a color filter layer 130 is formed on the photoelectric conversion element 120. The protection layer 140 and the microlens 150 are provided on the upper portion. On the other hand, according to the trend of miniaturization and high quality of electronic devices, the demand for high resolution and high sensitivity also increases for the image sensor having the above structure.

이 중 고해상도를 달성하기 위하여는 화상의 구성 단위인 픽셀을 고집적화하지 않으면 안되고, 이는 픽셀 사이즈의 축소화를 필연적으로 초래한다. 그러나, 픽셀 사이즈가 작아지게 되면 이에 따라 1개의 화소에 입사되는 광량이 감소하기 때문에 감도의 저하를 초래하게 된다. 이와 같이 고해상도와 고감도는 서로 상반된 관계에 있게 된다. 또한, 종래 광전변환소자의 재질로는 주로 벌크(bulk) 형태의 결정 실리콘(c-Si) 또는 비정질 실리콘(a-Si)이 사용되고 있으나, 이러한 실리콘 재료를 이용한 광전변환소자 구조 및 공정에서는 해상도를 올리는 것이 한계에 도달한 상태이다(1.4 μm 정도). Among these, in order to achieve high resolution, pixels which are structural units of an image must be highly integrated, which inevitably leads to a reduction in pixel size. However, when the pixel size is reduced, the amount of light incident on one pixel is reduced, resulting in a decrease in sensitivity. As such, the high resolution and the high sensitivity are in a mutually opposite relationship. In addition, bulk photonic crystalline silicon (c-Si) or amorphous silicon (a-Si) is generally used as a material of the photoelectric conversion device. However, in the structure and process of the photoelectric conversion device using the silicon material, resolution is increased. Raising has reached the limit (about 1.4 μm).

따라서, 고해상도 및 고감도를 구현하기 위하여는 고감도의 광 전도성(photo conducting) 재료를 이용한 이미지 센서의 개발이 요구되고 있다. Therefore, in order to realize high resolution and high sensitivity, development of an image sensor using a high sensitivity photo conducting material is required.

본 발명은 상기와 같은 종래 기술의 문제점을 극복하기 위한 것으로, 본 발명의 목적은 광전변환소자의 재질로 반도체 나노결정을 사용함으로써 고해상도 및 고감도의 구현이 가능한 이미지 센서를 제공하는 것이다.The present invention is to overcome the problems of the prior art as described above, an object of the present invention is to provide an image sensor capable of high resolution and high sensitivity by using a semiconductor nanocrystal as a material of the photoelectric conversion element.

상기 목적을 달성하기 위한 본 발명의 하나의 양상은, One aspect of the present invention for achieving the above object,

반도체 기판 상에 형성된 화소 전극, 광전변환막, 칼라 필터, 공통 전극을 포함하는 이미지 센서에 있어서, 상기 광전변환막이 반도체 나노결정으로 이루어지 는 것을 특징으로 하는 이미지 센서에 관계한다.An image sensor comprising a pixel electrode, a photoelectric conversion film, a color filter, and a common electrode formed on a semiconductor substrate, wherein the photoelectric conversion film is made of semiconductor nanocrystals.

본 발명의 일 구현예에 따른 상기 이미지 센서는, 반도체 나노결정의 광 전도(photo conductivity) 특성을 이용함으로써 접합(junction)구조 없이 양호한 전하 분리(charge separation)가 가능하고 고효율 양자 효과(quantum efficiency)를 얻을 수 있는 특징이 있다.The image sensor according to an embodiment of the present invention, by using the photo conductivity characteristics of the semiconductor nanocrystals can be a good charge separation (junction) structure without a junction structure and high efficiency quantum efficiency (quantum efficiency) There is a feature to get.

본 발명의 일 구현예에 따른 상기 이미지 센서는, 반도체 나노결정의 크기 및 조성, 형태 등을 조절함으로써 흡광 및 수광 특성을 용이하게 조절할 수 있는 것을 특징으로 한다.The image sensor according to an embodiment of the present invention is characterized in that the light absorption and light receiving characteristics can be easily adjusted by adjusting the size, composition, shape, and the like of the semiconductor nanocrystals.

또한 본 발명의 일 구현예에 따른 상기 이미지 센서는, 실리콘을 제조하는 기상 공정 대신 반도체 나노결정을 이용한 습식 공정으로 광전변환막을 형성할 수 있어 제조 공정성이 향상된 이점을 가진다. In addition, the image sensor according to an embodiment of the present invention, the photoelectric conversion film can be formed by a wet process using a semiconductor nanocrystal instead of a vapor phase process for manufacturing silicon has an advantage of improved manufacturing processability.

이하에서 첨부 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 2는 본 발명의 일 구현예에 따른 이미지 센서의 구조 및 동작을 설명하기 위한 이미지 센서의 개략 단면도이다. 도 2를 참조하면, 반도체 기판(210)의 표면에는 절연층(220)이 적층되며 상기 절연층(220)의 내부에는 전하 이송 수단이 매설되게 된다(도시하지 않았음).2 is a schematic cross-sectional view of the image sensor for explaining the structure and operation of the image sensor according to an embodiment of the present invention. Referring to FIG. 2, an insulating layer 220 is stacked on a surface of the semiconductor substrate 210, and charge transfer means is embedded in the insulating layer 220 (not shown).

상기 절연층(220)의 상부에는 각각의 단위 픽셀 별로 화소 전극(230)이 형성되고, 상기 화소 전극(230) 상부에는 각각 R, G, B 파장 영역의 빛을 흡수하여 전기적 신호로 변환시키는 광전변환막(240R, 240G, 240B)이 형성된다. 상기 각각의 광전변환막(240R, 240G, 240B)의 상부에는 이에 대응하는 R, G, B 형 칼라필터층(250R, 250G, 250B)이 형성된다. 상기 칼라필터층(250R, 250G, 250B) 상부에는 화소 전극(230)에 대응하는 투명한 공통 전극(260)이 적층되며, 상기 공통 전극(260)의 위에는 보호막(270)이 형성되게 된다.A pixel electrode 230 is formed for each unit pixel on the insulating layer 220, and photoelectrics absorb light in R, G, and B wavelength regions and convert the light into an electrical signal on the pixel electrode 230, respectively. Conversion films 240R, 240G, 240B are formed. R, G, and B type color filter layers 250R, 250G, and 250B corresponding thereto are formed on the photoelectric conversion layers 240R, 240G, and 240B, respectively. A transparent common electrode 260 corresponding to the pixel electrode 230 is stacked on the color filter layers 250R, 250G, and 250B, and a passivation layer 270 is formed on the common electrode 260.

이때, 투명 전극(260)을 통하여 빛이 입사되면 상기 칼라필터층(250R, 250G, 250B)에서 각각 R, G, B 파장 영역대로 분리되며, 상기 분리된 빛(photon)은 광전변환막(240R, 240G, 240B)에서 선택적으로 흡수되어 각각의 파장 영역대에 상당하는 전자-정공쌍을 발생시킨다. 여기에서 발생된 전자는 각각의 화소 전극(230)을 통하여 전하 운송 수단으로 이송되고, 정공은 공통 전극(260)을 통하여 외부로 빠져 나간다. In this case, when light is incident through the transparent electrode 260, the color filter layers 250R, 250G, and 250B are separated into R, G, and B wavelength regions, respectively, and the separated photon is converted into a photoelectric conversion film 240R, And selectively absorbed at 240G and 240B to generate electron-hole pairs corresponding to respective wavelength ranges. The generated electrons are transferred to the charge transport means through each pixel electrode 230, and the holes exit to the outside through the common electrode 260.

본 발명의 상기 화소 전극(230)은 각각의 픽셀별로 전기적으로 격리되어 형성되며, 전도성이 있는 물질이면 투명 재료로 형성되어도 좋고 불투명 재료로 형성되어도 관계없다. The pixel electrode 230 of the present invention is electrically isolated for each pixel, and may be formed of a transparent material or an opaque material as long as it is a conductive material.

본 발명의 상기 공통 전극(260)은 접지되어 있어 광전변환막(240R, 240G, 240B)의 표면전위를 고정하는 역할을 하게 된다. 상기 투명한 공통 전극(260)의 재료로는 SnO2, TiO2 , InO2 , ITO 등을 사용할 수 있으나 반드시 이에 한정되는 것은 아니다. 상기 투명한 공통 전극(260)은 일반적인 코팅 방법, 예를 들어 스프레잉, 스핀 코팅, 딥핑, 프린팅, 닥터블레이딩, 스퍼터링 등의 방법을 이용하거나 또는 전기영동법을 이용하여 코팅될 수 있다. The common electrode 260 of the present invention is grounded to serve to fix the surface potential of the photoelectric conversion layers 240R, 240G, and 240B. SnO 2 , TiO 2 , InO 2 , ITO, or the like may be used as the material of the transparent common electrode 260, but is not limited thereto. The transparent common electrode 260 may be coated using a general coating method, for example, spraying, spin coating, dipping, printing, doctor blading, sputtering, or by electrophoresis.

한편 상기 칼라필터층(250R, 250G, 250B)은 R, G, B 대신에 C, Y, G, M의 파장 영역대로 빛을 분리하는 형태일 수 있으며, 이 경우 광전변환막(240R, 240G, 240B)은 상기 파장 영역대의 빛을 각각 선택적으로 흡수하는 이에 상당하는 전기적 신호로 변환시킨다.Meanwhile, the color filter layers 250R, 250G, and 250B may be in the form of separating light into C, Y, G, and M wavelength regions instead of R, G, and B. In this case, the photoelectric conversion layers 240R, 240G, and 240B may be used. ) Converts the light in the wavelength range into corresponding electrical signals which selectively absorb light.

본 발명에 따른 상기 광전변환막(240R, 240G, 240B)은 반도체 나노결정의 크기나 형태, 조성을 조절함으로써 빛의 흡수 영역을 다양하게 조절하는 것이 가능하다. The photoelectric conversion layers 240R, 240G, and 240B according to the present invention can control the light absorption region in various ways by adjusting the size, shape, and composition of the semiconductor nanocrystals.

즉, 반도체 나노결정은 수 나노 크기의 결정 구조를 가진 물질로, 수백에서 수천 개 정도의 원자로 구성되어 있다. 이렇게 작은 크기의 물질은 단위 부피 당 표면적이 넓어 대부분의 원자들이 표면에 존재하게 되고, 양자 제한(quantum confinement) 효과 등을 나타나게 되어, 물질 자체의 고유한 특성과는 다른 독특한 전기적, 자기적, 광학적, 화학적, 기계적 특성을 가지게 된다. 따라서, 반도체 나노결정의 물리, 화학적인 특성을 조절함으로써 다양한 특성을 조절하는 것이 가능해진다.In other words, semiconductor nanocrystals are materials with a crystal structure of several nanoscales, and are composed of hundreds to thousands of atoms. This small size of the material has a large surface area per unit volume, causing most atoms to exist on the surface and exhibit quantum confinement effects, resulting in unique electrical, magnetic, and optical properties that are distinct from the intrinsic properties of the material itself. It has chemical, mechanical properties. Therefore, it is possible to control various properties by adjusting the physical and chemical properties of the semiconductor nanocrystals.

최근의 문헌들에서는 (Klimov et al., Nano Letters, 2006, 6, 3, 424) 특정 물질이 해당하는 밴드갭 이상의 에너지를 갖는 광자 (photon)를 흡수하더라도 열 방출을 포함한 여러 경로를 통하여 잉여 (excess) 에너지를 잃고, 한 개의 엑시톤(exciton)을 생성할 수 있다는 기존의 이론을 반박하고, 밴드갭의 2배 이상의 에너지를 갖는 광자를 흡수하게 되면 두 개의 엑시톤을 생성할 수 있다는 실험적 결 과와 이론을 제시하였다. 특히, 나노결정은 벌크결정에 비하여 Auger recombination과 inverse Auger recombination이 모두 높은 효율로 일어나므로, 적외선 영역에 해당하는 에너지 밴드갭을 갖는 나노결정이 자외선 영역에 해당하는 에너지를 갖는 광자를 흡수할 경우 최대 700% 효율로 엑시톤을 생성시킬 수 있게 되어 기존의 광전환 효율의 한계를 새롭게 규정하였다. Recent publications (Klimov et al., Nano Letters, 2006, 6, 3, 424), although a particular material absorbs photons with energy above the corresponding bandgap, surplus through several pathways, including heat release ( To counter the existing theory of losing excess energy and producing one exciton, and to absorb photons with energy greater than two times the bandgap, two excitons can be produced. The theory is presented. In particular, since nanocrystals have higher efficiency in both Auger recombination and inverse Auger recombination than bulk crystals, nanocrystals with an energy band gap corresponding to an infrared region absorb maximum photons with energy corresponding to an ultraviolet region. Exciton can be generated with 700% efficiency, which newly limits the limits of existing light conversion efficiency.

이상에서와 같이, 본 발명에 따른 이미지 센서는 광전변환 물질로 반도체 나노결정을 사용함으로써, 반도체 나노결정의 광 전도(photo conductivity) 특성을 이용하여 접합 구조 없이 용이하게 전하 분리가 가능하며, 광자(photon)를 전자(electron)로 변환하는 효율이 100% 이상 가능하게 되어 고효율의 이미지 센서를 구현하는 것이 가능하게 되어, 캐리어 증폭 (carrier multiplication) 특성을 이용함으로써 고감도의 이미지 센서를 구현하는 것이 가능하게 된다.As described above, the image sensor according to the present invention uses semiconductor nanocrystals as a photoelectric conversion material, thereby easily separating charges without a junction structure using photoconductive properties of semiconductor nanocrystals, and using photons ( The efficiency of converting photon into electrons is more than 100%, making it possible to realize a high-efficiency image sensor, and to realize a highly sensitive image sensor by using carrier multiplication characteristics. do.

또한, 본 발명의 상기 이미지 센서는 캐리어(carrier)를 증가시키기 위하여 도핑공정을 거쳐야 하는 실리콘 소재에 비하여 도핑(doping)되지 않은 반도체 양자구조를 이용함으로써, 제조 공정을 단순화시킬 수 있는 장점이 있다.In addition, the image sensor of the present invention has an advantage of simplifying the manufacturing process by using a semiconductor quantum structure that is not doped (doping) compared to the silicon material to be subjected to the doping process to increase the carrier (carrier).

본 발명에 따른 상기 반도체 나노결정의 형태는 구형, 정사면체(tetrahedron), 원통형, 막대형(rod), 삼각형, 원판형(disk), 트리포드(tripod), 테트라포드(tetrapod), 큐브(cube), 박스(box), 스타(star), 튜브(tube) 등 다양한 형태를 지닐 수 있으며, 광전 효율을 증가시키기 위해서는 다이폴(dipole)을 안정화시키는 구조가 유리하므로 아스펙트 비율(aspect ratio)이 1 이상인 구조가 더 바람직하다. The shape of the semiconductor nanocrystal according to the present invention is spherical, tetrahedron (tetrahedron), cylindrical, rod (rod), triangle, disk (disk), tripod (tetrapod), tetrapod (cube), It can have various shapes such as a box, a star, and a tube, and a structure having an aspect ratio of 1 or more because a structure for stabilizing a dipole is advantageous to increase photoelectric efficiency. More preferred.

상기 반도체 나노결정을 구성하는 물질로는 II-VI족, III-V족, Ⅳ-Ⅵ족 반도체 화합물과 그 혼합물로 이루어지는 군에서 선택될 수 있다. The material constituting the semiconductor nanocrystal may be selected from the group consisting of II-VI, III-V, and IV-VI semiconductor compounds and mixtures thereof.

상기 II-VI족 화합물은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe 등의 이원소 화합물 또는 CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe 등의 삼원소 화합물 또는 CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, Group II-VI compounds include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe and other binary compounds or CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSee, HgSeT CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, etc. ego,

상기 III-V족 화합물 반도체는 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 등의 이원소 화합물 또는 GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb 등의 삼원소 화합물 또는 GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, The III-V compound semiconductor is a binary compound such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs , Three-element compounds such as AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb and other materials selected from the group consisting of a compound

상기 IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 등의 이원소 화합물 또는 SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 등의 삼원소 화합물 또는 SnPbSSe, SnPbSeTe, SnPbSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질을 예로 들 수 있으나, 반드시 이들로 제한되는 것은 아 니다.The IV-VI compound is a binary element such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or a three-element compound such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or SnPbSSe, SnPbSee For example, the material selected from the group consisting of elemental compounds such as SnPbSTe, but is not limited to these.

또한 상기 반도체 나노결정은 코어 둘레에 오버 코팅을 더 포함하는 코어-쉘 구조의 나노결정일 수 있고, 이때, 상기 오버 코팅물질은 II-VI족 화합물, III-V족 화합물, IV-VI족 화합물 또는 이들의 혼합물에서 선택되는 재료로 구성될 수 있다. In addition, the semiconductor nanocrystal may be a core-shell structure of the nanocrystal further comprising an over coating around the core, wherein the over coating material is a group II-VI compound, III-V compound, IV-VI compound or It may consist of a material selected from a mixture thereof.

상기 II-VI족 화합물은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe 등의 이원소 화합물 또는 CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe 등의 삼원소 화합물 또는 CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질일 수 있다. 상기 III-V족 화합물 반도체는 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 등의 이원소 화합물 또는 GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb 등의 삼원소 화합물 또는 GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 등의 사원소 화합물로 이루어진 군에서 선택되는 물질일 수 있다. 상기 IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 등의 이원소 화합물 또는 SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 등의 삼원소 화합물 또는 SnPbSSe, SnPbSeTe, SnPbSTe 등의 사원소 화합물로 이루어진 군에서 선택될 수 있다.Group II-VI compounds include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe and other binary compounds or CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSee, HgSeT CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, etc. Can be. The group III-V compound semiconductor is a binary element such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs , Three-element compounds such as AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, AlGaN, AlGaP, AlGaAs, AlGaSb, InGaN, InGaP, InGaAs, InGaSb, AlInN, AlInP, AlInAs, AlInSb GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb and the like may be a material selected from the group consisting of. The IV-VI compound is a binary element such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or a three-element compound such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or SnPbSSe, SnPbSee It may be selected from the group consisting of quaternary compounds such as SnPbSTe.

또한, 본 발명의 상기 이미지 센서는, 사용되는 반도체 나노결정을 반도체 화합물-금속 복합체의 접합 구조를 채용함으로써 광전변환효율을 더욱 향상시킬 수 있다. 이때 상기 금속으로는 나노결정의 표면에 결합될 수 있는 금속이면 모두 가능하며, 구체적으로는 Au, Ag, Cu, Pt, Pd, Ni, Fe 및 Co로 이루어지는 군에서 선택될 수 있지만 이에 제한되지 않는다. In addition, the image sensor of the present invention can further improve the photoelectric conversion efficiency by employing a junction structure of a semiconductor compound-metal composite in the semiconductor nanocrystals used. In this case, the metal may be any metal that can be bonded to the surface of the nanocrystal, and specifically, may be selected from the group consisting of Au, Ag, Cu, Pt, Pd, Ni, Fe, and Co, but is not limited thereto. .

본 발명의 상기 반도체 나노결정은 각각 해당 원소를 포함하는 전구체 물질을 사용하여 본 발명이 속하는 기술분야에서 알려져 있는 통상의 방법을 이용하여 합성할 수 있다. 예를 들어, 금속전구체와 칼코겐 화합물(chalcogenide) 각각을 용매 및 분산제에 넣거나, 금속과 칼코겐 화합물 원소를 모두 포함하고 있는 단일 화합물을 넣고, 이들을 혼합하여 균일하게 교반하면서 온도를 올리고 불활성 분위기를 유지하면서 반응시켜 형성할 수 있다. 이때 사용되는 전구체의 농도 및 조성, 반응 온도, 계면활성제의 종류 등을 조절함으로서 반도체 나노결정의 형태 및 조성을 조절할 수 있다. The semiconductor nanocrystals of the present invention can be synthesized using conventional methods known in the art to which the present invention belongs, using precursor materials each containing the corresponding element. For example, each of the metal precursor and the chalcogenide is added to a solvent and a dispersant, or a single compound containing both the metal and the chalcogenide element is added thereto, and the mixture is mixed and stirred to raise the temperature and inert atmosphere. It can form by making it react, holding. At this time, by adjusting the concentration and composition of the precursor used, the reaction temperature, the type of surfactant, etc., the shape and composition of the semiconductor nanocrystals can be controlled.

또한 본 발명의 광전변환막은 반도체 나노결정과 전도성 유기물의 콤포지트가 사용될 수 있으며, 전도성 유기물은 나노결정에서 생성된 캐리어를 전극까지 잘 전달하는 기능을 하며, 나노결정 막의 공정성을 향상시킬 수 있다. 이 때 사용될 수 있는 전도성 유기물은 폴리 (3, 4-에틸렌디오펜)/폴리스티렌 파라술포네이트, 폴리-N-비닐카르바졸, 폴리페닐렌비닐렌, 폴리파라페닐렌, 폴리메타크릴레이트, 폴리 (9,9-다이옥틸플루오렌), 폴리 (스파이로-플루오렌), 폴리 싸이오펜, 트리아릴아민, 구리 프탈로시아닌, 옥사졸, 이소옥사졸, 트리아졸, 이소티아졸, 옥시 디아졸, 티아디아졸, 페릴렌, 트리스 (8-히드록시퀴놀린)-알루미늄, 비스(2-메틸-8-퀴놀라토) (p-페닐-페놀라토) 알루미늄, 비스 (2-메틸-8-퀴놀리네이토) (트리페닐실록시) 알루미늄(III) 구조를 포함하는 유기물이 사용될 수 있다. In addition, in the photoelectric conversion film of the present invention, a composite of a semiconductor nanocrystal and a conductive organic material may be used, and the conductive organic material functions to transfer a carrier generated from the nanocrystal to the electrode, and may improve the processability of the nanocrystalline film. Conductive organics that can be used at this time are poly (3,4-ethylenediophene) / polystyrene parasulfonate, poly-N-vinylcarbazole, polyphenylenevinylene, polyparaphenylene, polymethacrylate, poly (9 , 9-dioctylfluorene), poly (spiro-fluorene), polythiophene, triarylamine, copper phthalocyanine, oxazole, isoxazole, triazole, isothiazole, oxy diazole, thiadiazole , Perylene, tris (8-hydroxyquinoline) -aluminum, bis (2-methyl-8-quinolato) (p-phenyl-phenololato) aluminum, bis (2-methyl-8-quinolinato) Organics containing a (triphenylsiloxy) aluminum (III) structure can be used.

또한 본 발명에 따른 상기 이미지 센서는, 실리콘을 제조하는 기상 공정 대신에 상기 방법에 의하여 합성된 나노결정을 이용하여 습식공정(wet process)에 의하여 간편하게 광전변환막을 형성함으로써 제조 공정이 단순화되고 경제적으로 제조할 수 있는 장점이 있다. 예를 들어 상기 반도체 나노결정을 톨루엔, 헥산 등과 같은 적절한 용매에 용해시켜 드롭 캐스팅(drop casting), 스핀 코팅(spin cating), 딥 코팅(dip coating), 분무 코팅(spray coating), 흐름 코팅(flow coating) 또는 스크린 인쇄(screen printing) 등의 방법에 의하여 광전변환막을 형성할 수 있다. In addition, the image sensor according to the present invention, by using a nanocrystal synthesized by the method instead of the vapor phase process of manufacturing silicon to form a photoelectric conversion film by a wet process (wet process) simply, the manufacturing process is simplified and economically There is an advantage to manufacture. For example, the semiconductor nanocrystals are dissolved in a suitable solvent such as toluene, hexane and the like, so that drop casting, spin cating, dip coating, spray coating, and flow coating are performed. The photoelectric conversion film can be formed by a method such as coating or screen printing.

이때 상기 광전변환막의 두께는 5nm ~ 5mm인 것이 바람직하다. 또한, 상기 광전변환막을 구성하는 반도체 나노결정의 크기는 3nm ~ 30nm 인 것이 바람직하다.At this time, the thickness of the photoelectric conversion film is preferably 5nm ~ 5mm. In addition, the size of the semiconductor nanocrystal constituting the photoelectric conversion film is preferably 3nm ~ 30nm.

이상에서와 같이 본 발명의 이미지 센서는 광전변환물질로 반도체 나노결정을 사용함으로써, 고해상도 및 고감도이 구현이 가능하여 디지털 카메라, 비디오 카메라, 웹카메라, 카메라폰 등에 다양하게 응용될 수 있다.As described above, the image sensor of the present invention uses a semiconductor nanocrystal as a photoelectric conversion material, so that high resolution and high sensitivity can be implemented, and thus may be variously applied to a digital camera, a video camera, a web camera, a camera phone, and the like.

이상에서 상세히 설명한 바와 같이, 본 발명의 이미지 센서는 도핑되지 않은 반도체 양자 구조를 사용하여 나노결정의 광 전도 특성을 이용함으로써 제조 공정이 단순화되고, 고해상도 및 고감도를 구현할 수 있는 효과가 있다.As described in detail above, the image sensor of the present invention simplifies the manufacturing process by utilizing the light conducting properties of the nanocrystals using an undoped semiconductor quantum structure, and has the effect of realizing high resolution and high sensitivity.

또한 본 발명의 이미지 센서는, 반도체 나노결정의 크기 및 조성, 형태 등을 조절함으로써 흡광 및 수광 특성을 용이하게 조절할 수 있는 효가가 있다.In addition, the image sensor of the present invention, there is an effect that can easily adjust the light absorption and light receiving characteristics by adjusting the size, composition, shape, etc. of the semiconductor nanocrystals.

또한 본 발명의 이미지 센서는, 실리콘을 제조하는 기상 공정 대신 반도체 나노결정을 이용한 습식 공정을 이용함으로써 제조 공정이 단순화되고 경제적인 효과가 있다.In addition, the image sensor of the present invention, by using a wet process using a semiconductor nanocrystal instead of a vapor phase process for manufacturing silicon has a simplified manufacturing process and has an economic effect.

Claims (15)

반도체 기판 상에 형성된 화소 전극, 광전변환막, 칼라 필터, 공통 전극을 포함하는 이미지 센서에 있어서, 상기 광전변환막이 반도체 나노결정을 포함하는 것을 특징으로 하는 이미지 센서.An image sensor comprising a pixel electrode, a photoelectric conversion film, a color filter, and a common electrode formed on a semiconductor substrate, wherein the photoelectric conversion film includes semiconductor nanocrystals. 제1항에 있어서, 상기 반도체 나노결정은 Ⅱ-Ⅵ족, Ⅲ-Ⅴ족, Ⅳ-Ⅵ족 화합물 반도체와 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 이미지 센서.The image sensor of claim 1, wherein the semiconductor nanocrystals are selected from the group consisting of II-VI, III-V, and IV-VI compound semiconductors and mixtures thereof. 제 2항에 있어서, 상기 II-VI족 화합물은 CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe 등의 이원소 화합물 또는 CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe 등의 삼원소 화합물 또는 CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, 상기 III-V족 화합물 반도체는 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 등의 이원소 화합물 또는 GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP 등의 삼원소 화합물 또는 GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, 상기 IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 등의 이원소 화합물 또는 SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 등의 삼원소 화합물 또는 SnPbSSe, SnPbSeTe, SnPbSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질인 것을 특징으로 하는 이미지 센서.The method of claim 2, wherein the II-VI compound is a binary element such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe or CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, etc. The group III-V compound semiconductor is selected from binary compounds such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or GaNP, GaNAs, GaNSb, GaPAs , Three-element compounds such as GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP or GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb InAlNAs, InAlNSb, InAlPAs, InAlPSb, and a material selected from the group consisting of elemental compounds such as InAlPSb, Group IV-VI compounds are SnS, SnSe, SnTe, PbS, PbSe, It is a substance selected from the group consisting of two-element compounds such as PbTe or three-element compounds such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or elemental compounds such as SnPbSSe, SnPbSeTe, SnPbSTe Image sensor. 제 2항 또는 제 3항에 있어서, 상기 반도체 나노결정은 오버 코팅을 더 포함하고, 상기 오버 코팅물질은 II-VI족 화합물, III-V족 화합물, IV-VI족 화합물, 또는 이들의 혼합물에서 선택되는 물질인 것을 특징으로 하는 이미지 센서. 4. The method of claim 2 or 3, wherein the semiconductor nanocrystal further comprises an overcoating, wherein the overcoating material is selected from Group II-VI compounds, Group III-V compounds, Group IV-VI compounds, or mixtures thereof. Image sensor, characterized in that the material selected. 제 4항에 있어서, 상기 II-VI족 화합물은 CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe 등의 이원소 화합물, 또는 CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe 등의 삼원소 화합물, 또는 CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, 상기 III-V족 화합물 반도체는 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 등의 이원소 화합물, 또는 GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP 등의 삼원소 화합물, 또는 GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 등의 사원소 화합물로 이루어진 군에서 선택되는 물질이고, 상기 IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 등의 이원소 화합물 또는 SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 등의 삼원소 화합물 또는 SnPbSSe, SnPbSeTe, SnPbSTe 등의 사원소 화합물로 이루어진 군에서 선택되는 물질인 것을 특징으로 하는 이미지 센서. The compound of claim 4, wherein the II-VI compound is a binary element such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, or CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS , HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, etc. The group III-V compound semiconductor is GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb or other binary compounds, or GaNP, GaNAs, Three-element compounds such as GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, or GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInNSb, GaInNSb GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and a compound selected from the group consisting of compounds, Group IV-VI compound is SnS, SnSe, SnTe, PbS, P A substance selected from the group consisting of binary elements such as bSe and PbTe or tri-element compounds such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or isotopic compounds such as SnPbSSe, SnPbSeTe, SnPbSTe Image sensor, characterized in that. 제1항에 있어서, 상기 반도체 나노결정은 Ⅱ-Ⅵ족, Ⅲ-Ⅴ족, Ⅳ-Ⅵ족 화합물 반도체와 금속의 복합체인 것을 특징으로 하는 이미지 센서.The image sensor of claim 1, wherein the semiconductor nanocrystal is a complex of a group II-VI, III-V, IV-VI compound semiconductor and a metal. 제6항에 있어서, 상기 금속은 Au, Ag, Cu, Pt, Pd, Ni, Fe 및 Co로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 이미지 센서.7. The image sensor of claim 6, wherein the metal is selected from the group consisting of Au, Ag, Cu, Pt, Pd, Ni, Fe, and Co. 제2항에 있어서, 상기 반도체 나노결정은 구형, 정사면체(tetrahedron), 원 통형, 막대형(rod), 삼각형, 원판형(disk), 트리포드(tripod), 테트라포드(tetrapod), 큐브(cube), 박스(box), 스타(star), 튜브(tube) 형태 단독 또는 그 혼합 형태인 것을 특징으로 하는 이미지 센서.The semiconductor nanocrystal of claim 2, wherein the semiconductor nanocrystal is spherical, tetrahedron, cylindrical, rod, triangular, disk, tripod, tetrapod, cube. Image box, characterized in that the box (box), star (star), tube (tube) form alone or a mixture thereof. 제 8항에 있어서, 상기 반도체 나노결정이 아스펙트 비율(aspect ratio)이 1 이상인 형태를 특징으로 하는 이미지 센서.The image sensor of claim 8, wherein the semiconductor nanocrystal has an aspect ratio of 1 or more. 제1항에 있어서, 상기 광전변환막은 두께가 5nm 내지 5mm인 것을 특징으로 하는 이미지 센서.The image sensor of claim 1, wherein the photoelectric conversion film has a thickness of 5 nm to 5 mm. 제1항에 있어서, 상기 광전변환막은 350nm에서 1800nm의 파장에 해당하는 영역의 빛을 흡수하는 반도체 나노결정을 포함하는 것을 특징으로 하는 이미지 센서.The image sensor of claim 1, wherein the photoelectric conversion layer comprises semiconductor nanocrystals absorbing light in a region corresponding to a wavelength of 350 nm to 1800 nm. 제 1항에 있어서, 상기의 광전변환막이 반도체 나노결정과 전도성 유기물과의 콤포지트인 것을 특징으로 하는 이미지 센서. The image sensor according to claim 1, wherein the photoelectric conversion film is a composite of a semiconductor nanocrystal and a conductive organic material. 제 12항에 있어서, 상기의 전도성 유기물이 폴리 (3, 4-에틸렌디오펜)/폴리스티렌 파라술포네이트, 폴리-N-비닐카르바졸, 폴리페닐렌비닐렌, 폴리파라페닐렌, 폴리메타크릴레이트, 폴리 (9,9-다이옥틸플루오렌), 폴리 (스파이로-플루오렌), 폴리 싸이오펜, 트리아릴아민, 구리 프탈로시아닌, 옥사졸, 이소옥사졸, 트리아졸, 이소티아졸, 옥시디아졸, 티아디아졸, 페릴렌, 트리스 (8-히드록시퀴놀린)-알루미늄, 비스(2-메틸-8-퀴놀라토) (p-페닐-페놀라토) 알루미늄, 비스 (2-메틸-8-퀴놀리네이토) (트리페닐실록시) 알루미늄(III) 구조를 포함하는 유기물인 것을 특징으로 하는 이미지 센서. 13. The method of claim 12, wherein the conductive organic material is poly (3,4-ethylenediophene) / polystyrene parasulfonate, poly-N-vinylcarbazole, polyphenylenevinylene, polyparaphenylene, polymethacrylate, Poly (9,9-dioctylfluorene), poly (spiro-fluorene), polythiophene, triarylamine, copper phthalocyanine, oxazole, isoxazole, triazole, isothiazole, oxydiazole, Thiadiazole, perylene, tris (8-hydroxyquinoline) -aluminum, bis (2-methyl-8-quinolato) (p-phenyl-phenolato) aluminum, bis (2-methyl-8-quinoli Neito) (triphenylsiloxy) An image sensor comprising an aluminum (III) structure. 제1항에 있어서, 상기 광전변환막은 드롭 캐스팅, 스핀 코팅, 딥 코팅, 분무 코팅, 흐름 코팅 또는 스크린 인쇄 중 어느 하나의 방법에 의하여 형성되는 것을 특징으로 하는 이미지 센서.The image sensor of claim 1, wherein the photoelectric conversion layer is formed by any one of drop casting, spin coating, dip coating, spray coating, flow coating, or screen printing. 제2항에 있어서, 상기 광전변환막을 구성하는 반도체 나노결정의 크기는 3nm 에서 30nm 인 것을 특징으로 하는 이미지 센서.The image sensor of claim 2, wherein the size of the semiconductor nanocrystal constituting the photoelectric conversion film is 3 nm to 30 nm.
KR1020070051517A 2007-05-28 2007-05-28 Image sensor using semiconductor nanocrystal KR20080104574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070051517A KR20080104574A (en) 2007-05-28 2007-05-28 Image sensor using semiconductor nanocrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070051517A KR20080104574A (en) 2007-05-28 2007-05-28 Image sensor using semiconductor nanocrystal

Publications (1)

Publication Number Publication Date
KR20080104574A true KR20080104574A (en) 2008-12-03

Family

ID=40366173

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070051517A KR20080104574A (en) 2007-05-28 2007-05-28 Image sensor using semiconductor nanocrystal

Country Status (1)

Country Link
KR (1) KR20080104574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035530A1 (en) * 2017-08-14 2019-02-21 한양대학교 산학협력단 Image sensor comprising quantum dot layer
CN110612606A (en) * 2018-04-06 2019-12-24 汉阳大学校产学协力团 Dual image sensor including quantum dot layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035530A1 (en) * 2017-08-14 2019-02-21 한양대학교 산학협력단 Image sensor comprising quantum dot layer
CN109673167A (en) * 2017-08-14 2019-04-23 汉阳大学校产学协力团 Imaging sensor including quantum dot layer
US11404458B2 (en) 2017-08-14 2022-08-02 Industry-University Cooperation Foundation Hanyang University Image sensor including quantum dot layer
CN109673167B (en) * 2017-08-14 2023-08-22 汉阳大学校产学协力团 Image sensor including quantum dot layer
CN110612606A (en) * 2018-04-06 2019-12-24 汉阳大学校产学协力团 Dual image sensor including quantum dot layer
CN110612606B (en) * 2018-04-06 2023-08-22 汉阳大学校产学协力团 Dual image sensor including quantum dot layer

Similar Documents

Publication Publication Date Title
US9812596B2 (en) Photoelectric device and electronic apparatus including the same
US10529879B2 (en) Photoelectric conversion device including quantum dot layers
CN109673167B (en) Image sensor including quantum dot layer
KR102582649B1 (en) Display device
US11258935B2 (en) Dual image sensor including quantum dot layer
KR102053086B1 (en) Phototransistor using quantum dot
KR20080104574A (en) Image sensor using semiconductor nanocrystal
KR20090002090A (en) Multi-layer type image sensor using semiconductor nanocrystal
KR20230053174A (en) 2d-od-2d heterojunction structure and manufacturing method by the same, perovskite optoelectric device comprising the same
US20210126159A1 (en) Optoelectric device
KR20080095522A (en) Organic electroluminescent device and method for fabricating thereof
KR102126695B1 (en) Image sensor including quantum dot layer
US20240276838A1 (en) Display device
CN221081905U (en) Display device
CN218959392U (en) Display device
US20230136511A1 (en) Quantum dot film, method for producing quantum dot film, opto-electronic device including quantum dot film, and image sensor including opto-electronic device
US20240026222A1 (en) Semiconductor nanoparticles and electronic device including the same
CN117202718A (en) Display device
CN118206979A (en) Inorganic metal oxide, method of preparing the same, and light emitting device including the same
CN118693122A (en) Display device and method of manufacturing the same
CN118256247A (en) Composite material, preparation method thereof, light-emitting device and display device
CN118159057A (en) Light-emitting device, preparation method thereof and display device
CN115707259A (en) Optoelectronic device and electronic apparatus comprising an optoelectronic device
CN117015290A (en) Composite material and preparation method thereof, light-emitting device and preparation method thereof, and display device
KR20110042043A (en) Method for changing the emission wavelength of multi-layered semiconductor nanocrystals

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination