KR20080093723A - Polyethylene resin, preparation method thereof and cross-linked polyethylene pipe made from the same - Google Patents

Polyethylene resin, preparation method thereof and cross-linked polyethylene pipe made from the same Download PDF

Info

Publication number
KR20080093723A
KR20080093723A KR1020070037833A KR20070037833A KR20080093723A KR 20080093723 A KR20080093723 A KR 20080093723A KR 1020070037833 A KR1020070037833 A KR 1020070037833A KR 20070037833 A KR20070037833 A KR 20070037833A KR 20080093723 A KR20080093723 A KR 20080093723A
Authority
KR
South Korea
Prior art keywords
polyethylene resin
ethylene
hydrogen
reactor
pressure ratio
Prior art date
Application number
KR1020070037833A
Other languages
Korean (ko)
Other versions
KR101032210B1 (en
Inventor
권혁주
박철영
김용전
안동환
황산악
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020070037833A priority Critical patent/KR101032210B1/en
Publication of KR20080093723A publication Critical patent/KR20080093723A/en
Application granted granted Critical
Publication of KR101032210B1 publication Critical patent/KR101032210B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/623Component covered by group C08F4/62 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6543Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/127Rigid pipes of plastics with or without reinforcement the walls consisting of a single layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A method for preparing a polyethylene resin, a polyethylene resin prepared by the method, and a crosslinked polyethylene pipe using the resin are provided to inhibit the generation of a volatile low molecular weight polyethylene and to reduce the generation of bubbles. A method for preparing a polyethylene resin comprises the steps of contacting an ethylene monomer with a catalyst diluted with a solvent in the presence of hydrogen as a molecular weight controller to polymerize it; and discharging the gaseous component of a reactor when the conversion rate of polymerization is 95-99.5 wt% and polymerizing the unreacted ethylene monomer, wherein the difference between the pressure ratio(P_H2/P_C2) of the gaseous hydrogen and ethylene at the first step and the pressure ratio(P_H2/P_C2) of the gaseous hydrogen and ethylene at the second step is 0.01-0.2.

Description

폴리에틸렌 수지, 이의 제조방법 및 이로부터 제조된 가교화된 폴리에틸렌 파이프{POLYETHYLENE RESIN, PREPARATION METHOD THEREOF AND CROSS-LINKED POLYETHYLENE PIPE MADE FROM THE SAME}POLYETHYLENE RESIN, PREPARATION METHOD THEREOF AND CROSS-LINKED POLYETHYLENE PIPE MADE FROM THE SAME

본 발명은 폴리에틸렌 수지, 이의 제조방법 및 이로부터 제조되는 가교화된 폴리에틸렌 파이프에 관에 관한 것으로, 보다 상세하게는 제조 공정이 간단하고, 휘발성의 저분자량 폴리에틸렌의 생성을 억제하여, 가교파이프 등으로 가공시 기포발생빈도가 현저히 낮은 폴리에틸렌 수지, 이의 제조방법 및 이로부터 제조되는, 기포량이 현저히 적어 내압특성이 우수한 가교화된 폴리에틸렌 파이프에 관한 것이다. The present invention relates to a polyethylene resin, a method for producing the same, and a tube for a crosslinked polyethylene pipe produced therefrom. More specifically, the manufacturing process is simple, and the production of volatile low molecular weight polyethylene is suppressed, and thus The present invention relates to a polyethylene resin having a significantly low bubble generation frequency during processing, a method for producing the same, and a crosslinked polyethylene pipe having a low amount of bubbles, having excellent pressure resistance characteristics.

폴리에틸렌은 가볍고 인성이 높으며, 또한 열접착이 가능하여 시공이 용이하고, 급수관에 적용할 때 상수에 포함되어 있는 염소 등에 대하여 내화학성이 우수하여 현재 파이프 등으로 많이 이용되고 있다. Polyethylene is light, high toughness, heat-adhesive and easy to install, and when applied to the water supply pipe is excellent in chemical resistance against chlorine contained in the water, etc., is now widely used as a pipe.

폴리에틸렌 파이프는 근래에 콘크리이트 관을 대신해 하수관으로 사용되는 경우가 많고, 배수관, 지중 매립 전선관, 상수도관, 가스관, 또는 물 등을 이송하 는 호우스나 온돌파이프 등에도 사용되고 있으며, 그 적용 가능한 용도는 계속해서 늘어나고 있다. Recently, polyethylene pipes are often used as sewage pipes instead of concrete pipes, and are also used in drain pipes, underground buried conduits, water pipes, gas pipes, or hoses and ondol pipes for transferring water. It's growing.

종래의 파이프용 폴리에틸렌 수지의 제조방법으로 한 개의 중합 반응기로 크롬계 촉매를 사용하여 압출가공성이 용이한 분자량 분포를 갖도록 하는 방법이 있으나, 고도의 촉매기술을 요한다는 문제가 있다. As a conventional method for producing a polyethylene resin for pipes, there is a method of having a molecular weight distribution that is easily extrudable by using a chromium-based catalyst as one polymerization reactor, but has a problem of requiring a high catalytic technology.

다른 종래의 제조방법(미국특허 제 6225421호, 2001.05.01 공개)으로 2 개의 중합 반응기를 직렬로 연결하여 첫 번째 반응기에서 저분자량의 고분자를 제조하고, 제조된 고분자의 슬러리를 두 번째 반응기로 이송하여 다시 고분자량의 고분자를 제조하여 압출가공성이 용이한 분자량 분포를 갖도록 하는 방법이 있으나, 부가적인 장치를 필요로하고, 공정이 복잡해지는 문제가 있다. Another conventional manufacturing method (US Patent No. 6225421, published on May 1, 2001) connects two polymerization reactors in series to produce a low molecular weight polymer in the first reactor, and transfers the slurry of the prepared polymer to the second reactor. There is a method for producing a high molecular weight polymer again to have a molecular weight distribution that is easy to extrude, but there is a problem that requires an additional device, the process is complicated.

상기 분자량 분포는 이정의 분자량 곡선 형태를 갖는데, 저분자량 부분의 고분자는 성형 가공시의 압출 가공성을 증가시키고, 고분자량 부분의 고분자는 기계적인 물성을 증가시키는 역할을 한다.The molecular weight distribution has a bimodal molecular weight curve form, the polymer of the low molecular weight portion increases the extrusion processability during the molding process, the polymer of the high molecular weight portion serves to increase the mechanical properties.

폴리에틸렌 수지 자체는 급수관 등의 플라스틱 파이프로 사용되기에는 내열성, 내압특성 및 내환경응력균열성이 좋지 않으므로, 폴리에틸렌 수지를 화학가교 또는 수가교함으로써 부족한 물성을 개량하여 사용된다. Since the polyethylene resin itself is not good in heat resistance, pressure resistance and environmental stress cracking resistance to be used as plastic pipes such as water supply pipes, the polyethylene resin is used by improving the physical properties insufficient by chemical crosslinking or water crosslinking.

수가교 방식은 폴리에틸렌에 비닐에톡시실란과 같은 실란 화합물, 유기 과산화물 및 실라놀 축합촉매를 배합하고, 얻어진 조성물을 가열하면서 파이프로 압출성형하고, 그 성형된 파이프를 수분을 포함한 환경에 노출시켜 실란가교를 진행시키는 방식이다.In the water-crosslinking method, a silane compound such as vinyl ethoxysilane, an organic peroxide, and a silanol condensation catalyst are mixed with polyethylene, and the obtained composition is extruded into a pipe while heating the obtained composition, and the formed pipe is exposed to an environment containing water to produce a silane. It is a method of advancing crosslinking.

상기 수가교 방식으로 성형된 실란 가교 파이프는 사용시 불포화 실란 화합물 등에서 나는 악취 등의 문제가 있고, 파이프 압출성형에 있어서도 다량의 다이눈꼽이 발생하여 장기 압출작업이 곤란해지는 문제가 있다.The silane crosslinked pipe formed by the water crosslinking method has a problem such as odor generated from unsaturated silane compound and the like during use, and there is a problem that long-term extrusion work is difficult because a large amount of die is generated even during pipe extrusion.

화학가교 방식은 폴리에틸렌에 디쿠밀퍼록사이드와 같은 유기과산화물의 분해온도 이상으로 가열하면서 파이프 모양으로 압출성형하는 방식으로, 유기과산화물이 열분해하여 유기 라티칼이 되고, 이 유기 라티칼의 작용으로 폴리에틸렌에 라디칼이 발생하여 가교가 진행된다. The chemical crosslinking method is extrusion molding into a pipe shape while heating the polyethylene to a decomposition temperature of an organic peroxide such as dicumyl peroxide, and the organic peroxide is thermally decomposed into organic radicals. Radicals are generated and crosslinking proceeds.

상기 유기과산화물을 이용한 화학가교법은 공업적으로 가장 많이 이용되는 폴리에틸렌 수지의 가교방법이다.The chemical crosslinking method using the organic peroxide is a crosslinking method of the polyethylene resin most used industrially.

상기 화학가교 방식으로 가교화된 폴리에틸렌 파이프는, 폴리에틸렌 수지가 고온에서 과산화물과 접촉하여 가교화되어 3차원 네트워크를 형성하면서 제조된다. 대부분 이와 같은 공정에서는 분말 형태의 폴리에틸렌 수지와 과산화물 가교제를 혼합하여 입자 공극내로 과산화물의 침투가 일어날 수 있도록 한 후, 엥겔 압출기(램 압출기) 내에서 파이프로 가공된다.The chemically crosslinked polyethylene pipes are produced while the polyethylene resin is crosslinked in contact with the peroxide at high temperature to form a three-dimensional network. In most of these processes, the polyethylene resin in powder form and the peroxide crosslinking agent are mixed to allow peroxide to penetrate into the particle pores and then processed into a pipe in an Engel extruder (ram extruder).

상기 폴리에틸렌 파이프 가공 중 수지 내에 포함된 휘발성의 저분자량 물질로 인해 최종 파이프 제품에 기포가 포함되어 생산되는 경우가 있다. 이는 파이프의 국부적인 강도를 약화시켜 내압 특성을 저하시키는 중요한 원인이 된다.Due to the volatile low molecular weight material contained in the resin during the processing of the polyethylene pipe, the final pipe product may include bubbles. This is an important cause of weakening the local strength of the pipe and lowering the pressure resistance characteristic.

따라서, 가교파이프 등으로 가공시 기포발생빈도가 낮고, 고도의 촉매기술을 요하지 않으면서 제조공정이 단순한 폴리에틸렌 수지의 개발이 필요한 실정이다.Therefore, there is a need for the development of polyethylene resins having low bubble generation frequency when processed into crosslinked pipes and simple manufacturing process without requiring high catalyst technology.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 제조 공정이 간단하고, 휘발성의 저분자량의 폴리에틸렌의 생성을 억제하여, 가교 파이프 등으로 가공시 기포발생빈도가 현저히 낮은 폴리에틸렌 수지의 제조방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, the present invention provides a method for producing a polyethylene resin that is simple in the manufacturing process, suppresses the production of volatile low molecular weight polyethylene, and has a significantly low bubble generation frequency when processed into a crosslinked pipe or the like. It aims to provide.

또한, 본 발명은 상기 제조방법에 따른 폴리에틸렌 수지를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a polyethylene resin according to the above production method.

또한, 본 발명은 상기 폴리에틸렌 수지로부터 제조되는 기포량이 현저히 적어 내압특성이 우수한 가교화된 폴리에틸렌 파이프를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a crosslinked polyethylene pipe excellent in pressure resistance characteristics because the amount of bubbles produced from the polyethylene resin is remarkably small.

본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

상기의 목적을 달성하기 위하여, 본 발명은 연속 교반형 반응기에서 에틸렌 단량체를 분자량 조절제인 수소 하에서 용매에 희석된 촉매와 반응시켜 폴리에틸렌 수지를 제조하는 방법으로서, In order to achieve the above object, the present invention is a method for producing a polyethylene resin by reacting an ethylene monomer with a catalyst diluted in a solvent under hydrogen as a molecular weight regulator in a continuous stirred reactor,

ⅰ) 에틸렌 단량체를 촉매와 접촉시켜 중합시키는 단계; 및 ⅱ) 상기 ⅰ)단계의 중합전환율이 95 내지 99.5 중량%인 시점에서 반응기 내의 기체성분을 배출시키고, 미반응된 에틸렌 단량체를 중합시키는 단계;를 포함하며, Iii) contacting the ethylene monomer with a catalyst to polymerize; And ii) discharging the gas component in the reactor at the time when the polymerization conversion rate of step iii) is 95 to 99.5% by weight, and polymerizing the unreacted ethylene monomer.

상기 ⅰ)단계의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2)와 ⅱ)단계의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2) 차이가 0.01 내지 0.2인 것을 특징으로 하는 폴리에틸렌 수지의 제조방법을 제공한다.Polyethylene resin, characterized in that the pressure ratio (P_H 2 / P_C 2 ) of the hydrogen and ethylene in the gas phase of step iii) and the pressure ratio (P_H 2 / P_C 2 ) of hydrogen and ethylene in the gas phase of step ii) of 0.01 to 0.2 It provides a method of manufacturing.

또한, 본 발명은 상기 제조방법에 따른 폴리에틸렌 수지를 제공한다.In addition, the present invention provides a polyethylene resin according to the above production method.

또한, 본 발명은 상기 폴리에틸렌 수지 및 과산화물 가교제를 반응시켜 제조한 가교화된 폴리에틸렌 파이프를 제공한다. The present invention also provides a crosslinked polyethylene pipe prepared by reacting the polyethylene resin and the peroxide crosslinking agent.

이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 파이프 제품 등에 기포가 존재하는 경우 그 두께가 얇아져 국부적인 내압특성이 저하되고, 제품을 장기간 사용하는 경우 그곳이 파열될 수 있음을 인식하고, 파이프 제품 등에 기포발생빈도를 감소시키는 연구를 거듭한 결과, 연속교반형 반응기(CSTR)의 주반응기에 에틸렌 단량체 전량을 투입하여 95 내지 99.5 중량% 까지 중합시키고 이를 보조반응기로 이동시켜 미반응된 0.5 내지 5 중량% 에틸렌 단량체를 중합시키는 과정에서, 상기 주반응기와 보조반응기의 기상의 수소와 에틸렌의 압력비 차이를 0.01 내지 0.2로 조절하여 폴리에틸렌 수지를 제조하는 경우, 이 제조된 폴리에틸렌 수지로 만들어지는 가교파이프 제품 등은 기존의 가교파이프 제품 등에 비하여 기포량이 현저히 감소하는 것을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.The present inventors have recognized that the presence of air bubbles in pipe products may be reduced in thickness, thereby lowering local pressure resistance characteristics, and that there may be rupture when using the product for a long time. As a result, in the process of polymerizing up to 95 to 99.5% by weight of the total amount of ethylene monomer to the main reactor of the continuous stirring reactor (CSTR) and moving it to the co-reactor to polymerize unreacted 0.5 to 5% by weight of ethylene monomer When the polyethylene resin is prepared by adjusting the pressure ratio difference between hydrogen and ethylene in the gaseous phase of the main reactor and the secondary reactor to 0.01 to 0.2, the crosslinked pipe product made of the prepared polyethylene resin is compared with the conventional crosslinked pipe product. It is confirmed that the amount of bubbles is significantly reduced, and based on this, to complete the present invention The.

본 발명의 폴리에틸렌 수지의 제조방법은, 연속 교반형 반응기에서 에틸렌 단량체를 분자량 조절제인 수소 하에서 용매에 희석된 촉매와 반응시켜 폴리에틸렌 수지를 제조하는 방법으로서, The method for producing a polyethylene resin of the present invention is a method for producing a polyethylene resin by reacting an ethylene monomer with a catalyst diluted in a solvent under hydrogen as a molecular weight regulator in a continuous stirred reactor.

ⅰ) 에틸렌 단량체를 촉매와 접촉시켜 중합시키는 단계; 및 ⅱ) 상기 ⅰ)단계의 중합전환율이 95 내지 99.5 중량%인 시점에서 반응기 내의 기체성분을 배출시키고, 미반응된 에틸렌 단량체를 중합시키는 단계;를 포함하며, Iii) contacting the ethylene monomer with a catalyst to polymerize; And ii) discharging the gas component in the reactor at the time when the polymerization conversion rate of step iii) is 95 to 99.5% by weight, and polymerizing the unreacted ethylene monomer.

상기 ⅰ)단계의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2)와 ⅱ)단계의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2) 차이가 0.01 내지 0.2인 것을 특징으로 한다. Further characterized in that the ⅰ) pressure ratio between hydrogen and ethylene in the gas phase of step (P_H 2 / P_C 2) and ⅱ) pressure ratio between hydrogen and ethylene in the gas phase of step (P_H 2 / P_C 2) differ from 0.01 to 0.2.

상기 ⅰ)단계에서는 반응시키고자 하는 에틸렌 단량체를 전부 투입하고, 이를 수소 하에서 촉매와 접촉시켜, 투입된 에틸렌 단량체의 95 내지 99.5 중량%가 중합되도록 하는 것이 바람직하다.In the step iii), all of the ethylene monomers to be reacted are added and contacted with a catalyst under hydrogen so that 95 to 99.5% by weight of the added ethylene monomer is polymerized.

상기 ⅰ)단계의 기상의 수소와 에틸렌 단량체의 압력비(P_H2/P_C2)는 0.1 내지 0.5인 것이 바람직하나, 이에 제한되는 것은 아니다. The pressure ratio (P_H 2 / P_C 2 ) of the gaseous hydrogen and ethylene monomer of step (iii) is preferably 0.1 to 0.5, but is not limited thereto.

상기 연속 교반형 반응기에서 용매로 희석된 촉매를 사용하여 에틸렌을 중합하는 슬러리 공정에서는 반응기에서 기상의 수소와 에틸렌 단량체의 농도 혹은 압력비(P_H2/P_C2)를 조절하므로써 용액상에서 원하는 분자량의 폴리에틸렌을 제조할 수 있다. 그 압력비가 높을수록 저분자량이 중합되며, 낮을수록 고분자량이 중합된다. In the slurry process in which ethylene is polymerized using a catalyst diluted in a solvent in the continuous stirred reactor, polyethylene having a desired molecular weight in solution is controlled by controlling the concentration or pressure ratio (P_H 2 / P_C 2 ) of hydrogen and ethylene monomers in the gas phase in the reactor. It can manufacture. The higher the pressure ratio, the lower the molecular weight is polymerized, and the lower the higher the molecular weight is.

상기 촉매로는 지글러 나타계 촉매를 사용할 수 있고, 이는 마그네슘과 티타 늄의 할로겐화 착물로 이루어진 주촉매와 주기율표 Ⅱ 또는 Ⅲ족의 유기금속 화합물로 이루어진 조촉매를 포함하는 전형적인 지글러 나타계 촉매이다. 지글러 나타계 촉매는 티타늄 함량이 10 내지 30 중량%, Ti+3 전환율이 30 내지 60 %인 촉매가 바람직하다. As the catalyst, a Ziegler-Natta catalyst may be used, which is a typical Ziegler-Natta catalyst including a main catalyst composed of a halogenated complex of magnesium and titanium and a cocatalyst composed of an organometallic compound of group II or III of the periodic table. The Ziegler-Natta catalyst is preferably a catalyst having a titanium content of 10 to 30% by weight and a Ti +3 conversion of 30 to 60%.

상기 유기금속 화합물로는 트리알킬 알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 알루미늄 디알킬 하이드라이드 또는 알킬 알루미늄 세스퀴 할라이드 등을 사용하는 것이 바람직하고, 보다 바람직하게는 Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(i-C4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2, Al(i-C4H9)(C12H25)2, Al(i-C4H9)2H, Al(i-C4H9)3, (C2H5)2AlCl, (i-C3H9)2AlCl 또는 (C2H5)3Al2Cl3 등을 사용하는 것이다. As the organometallic compound, it is preferable to use trialkyl aluminum, dialkyl aluminum halide, alkyl aluminum dihalide, aluminum dialkyl hydride or alkyl aluminum sesqui halide, and more preferably Al (C 2 H 5 ). 3 , Al (C 2 H 5 ) 2 H, Al (C 3 H 7 ) 3 , Al (C 3 H 7 ) 2 H, Al (iC 4 H 9 ) 2 H, Al (C 8 H 17 ) 3 , Al (C 12 H 25 ) 3 , Al (C 2 H 5 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) 2 H, Al (iC 4 H 9 ) 3 , (C 2 H 5 ) 2 AlCl, (iC 3 H 9 ) 2 AlCl, (C 2 H 5 ) 3 Al 2 Cl 3 , and the like.

상기 유기금속화합물들은 혼합하여 사용할 수 있고, 바람직하게는 Al(C2H5)3 및 Al(i-C4H9)3의 혼합물, Al(C2H17)3, Al(C2H5)3 및 Al(C8H17)3의 혼합물, Al(C4H9)2H 및 Al(C8H17)3의 혼합물, Al(i-C4H9)3 및 Al(C8H17)3의 혼합물, Al(C2H5)3 및 Al(C12H25)3의 혼합물, Al(i-C4H9)3 및 Al(C12H25)3의 혼합물, Al(C2H5)3 및 Al(C16H33)3의 혼합물, 또는 Al(C3H7)3 및 Al(C18H37)2(i-C4H9)의 혼합물 등을 사용하는 것이다.The organometallic compounds may be mixed and used, preferably a mixture of Al (C 2 H 5 ) 3 and Al (iC 4 H 9 ) 3 , Al (C 2 H 17 ) 3 , Al (C 2 H 5 ) A mixture of 3 and Al (C 8 H 17 ) 3 , a mixture of Al (C 4 H 9 ) 2 H and Al (C 8 H 17 ) 3 , Al (iC 4 H 9 ) 3 and Al (C 8 H 17 ) A mixture of 3 , a mixture of Al (C 2 H 5 ) 3 and Al (C 12 H 25 ) 3 , a mixture of Al (iC 4 H 9 ) 3 and Al (C 12 H 25 ) 3 , Al (C 2 H 5 ) 3 and Al (C 16 H 33) 3 of the mixture, or Al (C 3 H 7) 3 and Al (C 18 H 37) is the use of such a mixture of 2 (iC 4 H 9).

상기 촉매는 올레핀 중합공정에 적합한 펜탄, 헥산, 헵탄, 노난, 데칸 또는 이들의 이성질체와 같은 탄소수 5 내지 12의 지방족 탄화수소 용매 또는 톨루엔, 벤젠과 같은 방향족 탄화수소 용매 등에 슬러리 형태로 희석하여 주입할 수 있다. The catalyst may be injected by dilution in the form of a slurry in an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms such as pentane, hexane, heptane, nonane, decane or an isomer thereof, or an aromatic hydrocarbon solvent such as toluene or benzene. .

상기 용매에 용해된 에틸렌 단량체는 슬러리 형태로 존재하는 촉매와 중합반응을 일으킨다. The ethylene monomer dissolved in the solvent causes a polymerization reaction with the catalyst present in the form of a slurry.

상기 ⅰ)단계의 중합은 2 내지 10 atm, 및 70 내지 90 ℃ 조건에서 실시되는 것이 바람직하고, 이로부터 제조되는 폴리에틸렌 수지의 용융지수(MFR)는 0.03 내지 0.1 인 것이 바람직하다. The polymerization of step iii) is preferably performed at 2 to 10 atm, and 70 to 90 ° C., and the melt index (MFR) of the polyethylene resin prepared therefrom is preferably 0.03 to 0.1.

상기 ⅱ)단계는 상기 ⅰ)단계에서 중합되지 않고 남은 0.5 내지 5 중량%의 에틸렌 단량체를 중합시키는 단계이다.Step ii) is a step of polymerizing 0.5 to 5% by weight of ethylene monomer remaining without polymerization in step iii).

상기 ⅱ)단계는 더 이상의 반응물을 투여하지 않고, 기체성분을 배출시킴으로써 수소와 에틸렌 단량체의 압력비(P_H2/P_C2)가 0.11 내지 0.7인 조건에서 중합되도록 하는 것이 바람직하나, 이에 제한되는 것은 아니다. In step ii), the gas is discharged without any further reactants, and the polymerization is performed under conditions where the pressure ratio (P_H 2 / P_C 2 ) of hydrogen and ethylene monomers is 0.11 to 0.7, but is not limited thereto. .

상기 ⅱ)단계는 수소와 에틸렌 단량체의 압력비(P_H2/P_C2)를 조절하여 중합되는 폴리에틸렌의 분자량을 높이고, 저분자량 폴리에틸렌의 생성을 억제하여, 이후 파이프 등으로 가공시 기포의 생성을 억제하는 효과를 가진다. 또한, 보조반응기에서 더 이상의 반응물을 투여하지 않으므로, 반응 공정을 단순화시키는 효과를 가진다.Step ii) increases the molecular weight of the polyethylene polymerized by adjusting the pressure ratio (P_H 2 / P_C 2 ) between hydrogen and ethylene monomer, and suppresses the production of low molecular weight polyethylene, thereby suppressing the formation of bubbles during processing in pipes and the like. Has an effect. In addition, since no further reactants are administered in the co-reactor, it has the effect of simplifying the reaction process.

상기 ⅱ)단계의 기체성분은 에틸렌 단량체와 수소만을 고려할 때 거의 수소로 이루어져 있으므로, 일정량의 기체성분을 배출시키는 것으로써 수소의 양을 조절할 수 있다.  Since the gas component of step ii) is composed almost of hydrogen when considering only ethylene monomer and hydrogen, the amount of hydrogen can be controlled by discharging a certain amount of gas component.

용매에 용해된 에틸렌 단량체가 중합반응으로 소모되면, 기상에 존재하는 에틸렌 단량체는 용매에 쉽게 용해되므로, 에틸렌 단량체와 수소만을 고려할 때 보조반응기의 기체 성분은 대부분 수소가 되고, 미반응된 에틸렌 단량체는 대부분 용매에 용해되어 있게 된다. 따라서, 보조반응기에서 기체성분을 배출시키면 대부분 수소가 배출되고, 배출 후에는 액상에 녹아있는 에틸렌 단량체의 일부가 기상으로 기화되어 보조반응기에서 기상의 수소와 에틸렌 단량체의 압력비(P_H2/P_C2)가 조절될 수 있다.When the ethylene monomer dissolved in the solvent is consumed by the polymerization reaction, since the ethylene monomer in the gas phase is easily dissolved in the solvent, when considering only the ethylene monomer and hydrogen, the gas component of the co-reactor is mostly hydrogen, and the unreacted ethylene monomer is Most of them are dissolved in a solvent. Therefore, when the gas component is discharged from the co-reactor, most of the hydrogen is discharged. After discharge, part of the ethylene monomer dissolved in the liquid phase is vaporized into the gas phase, and the pressure ratio of hydrogen and ethylene monomer of the gas phase in the co-reactor (P_H 2 / P_C 2 ) Can be adjusted.

상기 ⅱ)단계의 중합은 0.2 내지 5 atm, 및 70 내지 90 ℃ 조건에서 실시되는 것이 바람직하고, i)단계 및 ii)단계의 중합을 거쳐 최종적으로 제조되는 폴리에틸렌 수지의 용융지수(MFR)는 0.03 내지 0.1인 것이 바람직하다. The polymerization of the step ii) is preferably carried out at 0.2 to 5 atm, and 70 to 90 ℃ condition, the melt index (MFR) of the polyethylene resin finally produced through the polymerization of steps i) and ii) is 0.03 It is preferable that it is to 0.1.

상기 ⅰ)단계의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2)와 ⅱ)단계에서의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2) 차이가 0.03 내지 0.2인 것이 바람직하다. The ⅰ) pressure ratio between hydrogen and ethylene in the gas phase of step (P_H 2 / P_C 2) and ⅱ) pressure ratio between hydrogen and ethylene in the gas phase in step (P_H 2 / P_C 2) is preferably a difference of 0.03 to 0.2.

상기 압력비 차이가 0.01 미만인 경우에 각 반응기 간 압력차에 의해 이송되는 유체의 흐름을 방해하는 효과가 있고, 0.2를 초과하는 경우에 파이프 압출 가공 시 기포발생률이 급격히 증가하는 효과가 있다.When the pressure ratio difference is less than 0.01, there is an effect of disturbing the flow of the fluid transported by the pressure difference between each reactor, when the pressure exceeds 0.2 has an effect of rapidly increasing the bubble generation rate during the pipe extrusion process.

상기 연속 교반형 반응기는 에틸렌 중합시 통상 사용되는 것일 수 있으며, 바람직하게는 상기 ⅰ)단계 중합이 실시되는 주반응기 및 이와 직렬로 연결된 ⅱ)단계 중합이 실시되는 보조반응기를 포함할 수 있다. The continuous stirred reactor may be one commonly used in ethylene polymerization, and may preferably include a main reactor in which step iii) is carried out and an auxiliary reactor in which step ii) is connected in series.

상기 주반응기에서 ⅰ)단계 과정이 끝나면 반응물은 보조반응기로 옮겨져 ⅱ)단계 과정을 시작하게 된다.At the end of step iii) in the main reactor, the reactants are transferred to the auxiliary reactor to start step ii).

상기 기체성분의 배출은 상기 주반응기와 보조반응기를 연결하는 관 또는 보조반응기에서 실시될 수 있다.Discharge of the gas component may be carried out in a tube or a secondary reactor connecting the main reactor and the secondary reactor.

상기 보조반응기는 주반응기의 후단에 위치하여 주반응기에서 반응되지 않고 남은 에틸렌 단량체 0.5 내지 5 중량%를 추가로 중합하여 에틸렌 중합 수율을 극대화시킬 수 있다.The co-reactor may be located at the rear end of the main reactor to further polymerize 0.5 to 5% by weight of the remaining ethylene monomer without reaction in the main reactor to maximize the ethylene polymerization yield.

본 발명의 폴리에틸렌 수지는 상기 제조방법에 따라 제조되는 것을 특징으로 한다.The polyethylene resin of the present invention is characterized in that it is prepared according to the above production method.

상기 폴리에틸렌 수지는 용융지수(MFR)가 0.03 내지 0.1이며, 밀도가 0.945 내지 0.955 ㎏/ℓ인 것이 바람직하다. The polyethylene resin preferably has a melt index (MFR) of 0.03 to 0.1 and a density of 0.945 to 0.955 kg / L.

상기 폴리에틸렌 수지는 가교파이프용으로 사용될 수 있으나, 이에 제한되는 것은 아니다.The polyethylene resin may be used for the crosslinked pipe, but is not limited thereto.

본 발명의 가교화된 폴리에틸렌 파이프는 상기 가교파이프용 폴리에틸렌 수지 및 과산화물 가교제를 반응시켜 제조되는 것을 특징으로 한다. The crosslinked polyethylene pipe of the present invention is prepared by reacting the polyethylene resin for crosslinked pipe and the peroxide crosslinking agent.

상기 과산화물은 폴리에틸렌 수지와 접촉하여 가교를 일으키고, 3차원 네트워크를 형성시켜 가교화된 폴리에틸렌 파이프를 제조할 수 있다. The peroxide can be brought into contact with the polyethylene resin to cause crosslinking, and a three-dimensional network can be formed to produce a crosslinked polyethylene pipe.

상기 파이프의 제조공정은 분말 형태의 폴리에틸렌 수지와 과산화물 가교제 를 혼합하여 입자 공극내로 과산화물의 침투가 일어날 수 있도록 한 후 엥겔 압출기(램 압출기)를 통하여 파이프로 가공되는 공정을 포함할 수 있다. The pipe manufacturing process may include a process of mixing the polyethylene resin and the peroxide crosslinking agent in powder form to allow peroxide to penetrate into the particle pores and then processing the pipe through an Engel extruder (ram extruder).

상기 폴리에틸렌 수지를 사용하여 과산화물 가교폴리에틸렌 파이프를 가공하는 경우 폴리에틸렌 수지 내에 저분자량의 물질이 적어 최종 파이프 제품에 포함되는 기포의 양을 크게 줄일 수 있다. 이로 말미암아 파이프의 국부적인 두께의 감소를 막고, 파이프의 전범위에 있어 강도 및 내압 특성을 일률적으로 유지할 수 있다.When the peroxide crosslinked polyethylene pipe is processed using the polyethylene resin, a low molecular weight material is contained in the polyethylene resin, thereby greatly reducing the amount of bubbles included in the final pipe product. This prevents the local thickness reduction of the pipe and maintains the strength and pressure resistance properties uniformly throughout the pipe.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.

[[ 실시예Example ]]

실시예Example 1 One

<< 지글러Ziegler 나타계Nata 촉매의 제조> Preparation of Catalyst

마그네슘 알콕사이드의 헥산 현탁액에 테트라클로라이드티타늄 (TiCl4)을 마그네슘에 대한 티타늄의 몰비(Ti/Mg)가 0.27이 되도록 첨가하여 반응 혼합물을 제조하고, 상기 반응 혼합물을 85 ℃로 가열한 후, 5.5 시간 동안 교반하여 생성된 침전물을 여과한 후, 헥산으로 5 회 세척하였다. 그 후, 트리에틸알루미늄을 0.5 몰비로 반응시켜 전활성화(preactivation)를 실시하여 지글러 나타계 촉매를 제조하였다. 제조된 촉매의 Ti3 + 비율은 40 %였다. Tetrachloride titanium (TiCl 4 ) was added to a hexane suspension of magnesium alkoxide so that the molar ratio of titanium to magnesium (Ti / Mg) was 0.27 to prepare a reaction mixture, and the reaction mixture was heated to 85 ° C., and then 5.5 hours. The resulting precipitate was filtered off and washed five times with hexane. Thereafter, triethylaluminum was reacted at a molar ratio of 0.5 to perform preactivation to prepare a Ziegler-Natta catalyst. Was Ti 3 + ratio of the prepared catalyst was 40%.

<폴리에틸렌 수지의 제조><Production of Polyethylene Resin>

연속 교반형 반응기(CSTR 타입의 반응기)에서 용적이 200 L인 주반응기에 용매로 핵산 40 kg/hr, 상기 제조된 지글러 나타계 촉매 2 mM Ti/hr, 및 조촉매로 트리에틸알루미늄 70 mM/hr의 유속으로 투입하였다. 여기에 에틸렌 단량체를 12 ㎏/hr, 분자량조절제로 수소를 2.5 g/hr로 투입하여 주반응기의 기체성분중 수소와 에틸렌 단량체의 압력비가 0.24가 되게 하고, 82 ℃ 및 5 atm 조건에서 중합을 실시하였으며, 중합전환율이 98 중량%인 시점에서 상기 반응물 전체를 주반응기에 직렬로 연결된 용적이 200 L인 보조반응기로 이동시켰다. 상기 보조반응기에 촉매, 조촉매 및 에틸렌 단량체를 추가적으로 첨가하지 않고, 기체성분을 배출시키는 방법으로 보조반응기의 기상의 수소와 에틸렌 단량체의 압력비가 0.25가 되도록 하고, 78 ℃ 및 1.5 atm 조건에서 주반응기에서 반응되지 않고 남은 에틸렌 단량체 2 중량%를 반응시켜 폴리에틸렌 수지를 제조하였다. In a continuous stirred reactor (CSTR type reactor) in a 200 L main reactor, 40 kg / hr of nucleic acid as solvent, 2 mM Ti / hr of Ziegler-Natta catalyst prepared above, and triethylaluminum 70 mM / as cocatalyst. Injected at a flow rate of hr. 12 kg / hr of ethylene monomer and 2.5 g / hr of hydrogen were added to the molecular weight control agent so that the pressure ratio between hydrogen and ethylene monomer in the gas component of the main reactor was 0.24, and polymerization was carried out at 82 ° C. and 5 atm conditions. At the time when the polymerization conversion rate was 98% by weight, the entire reactant was transferred to a 200 L co-reactor having a volume connected in series with the main reactor. Without adding additional catalyst, cocatalyst and ethylene monomer to the co-reactor, the pressure ratio of hydrogen and ethylene monomer in the gaseous phase of the co-reactor is 0.25, and the main reactor at 78 ° C and 1.5 atm conditions. The polyethylene resin was prepared by reacting 2% by weight of the remaining ethylene monomer without reacting.

<폴리에틸렌 파이프의 제조><Production of Polyethylene Pipes>

상기 제조된 폴리에틸렌 수지와 가교제로 다이터트부틸페록사이드(DTBP, Di- tert-butyl peroxide) 0.6 중량%를 혼합하고, 엥겔 압출기를 이용하여 160 ℃의 조건하에서 폴리에틸렌 파이프를 제조하였다.0.6 wt% of ditertbutyl peroxide (DTBP) was mixed with the prepared polyethylene resin and a crosslinking agent, and a polyethylene pipe was manufactured under the conditions of 160 ° C. using an Engel extruder.

실시예Example 2 2

상기 실시예 1에서 보조반응기의 기상의 수소와 에틸렌의 압력비를 0.34로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. Except that the pressure ratio of hydrogen and ethylene in the gas phase of the auxiliary reactor in Example 1 was adjusted to 0.34 was carried out in the same manner as in Example 1.

비교예Comparative example 1 One

상기 실시예 1에서 보조반응기의 기상의 수소와 에틸렌의 압력비를 0.74로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. Except that the pressure ratio of hydrogen and ethylene in the gas phase of the auxiliary reactor in Example 1 was adjusted to 0.74 was carried out in the same manner as in Example 1.

비교예Comparative example 2 2

상기 실시예 1에서 보조반응기의 기상의 수소와 에틸렌의 압력비를 0.64로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. Except that the pressure ratio of hydrogen and ethylene in the gas phase of the auxiliary reactor in Example 1 was adjusted to 0.64 was carried out in the same manner as in Example 1.

비교예Comparative example 3 3

상기 실시예 1에서 보조반응기의 기상의 수소와 에틸렌의 압력비를 0.54로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. Except that the pressure ratio of hydrogen and ethylene in the gas phase of the auxiliary reactor in Example 1 was adjusted to 0.54 was carried out in the same manner as in Example 1.

상기 실시예 1 내지 2 및 비교예 1 내지 3에서 제조한 파이프의 물성을 하기 의 방법으로 측정하고, 그 결과를 하기의 표 1에 나타내었다.The physical properties of the pipes prepared in Examples 1 to 2 and Comparative Examples 1 to 3 were measured by the following method, and the results are shown in Table 1 below.

* 용융지수(MFR) - ASTM D1238 방법에 의거하여 190 ℃에서 2.16 ㎏ 하중으로 측정하였다. * Melt Index (MFR)-measured at 190 ° C by 2.16 kg load in accordance with ASTM D1238 method.

* 기포수 - 10 m 길이의 파이프 내에 포함되어 있는 기포수를 육안으로 측정하였다. Number of bubbles-The number of bubbles contained in a 10 m long pipe was visually measured.

 

구분division 실시예1 Example 1 실시예2Example 2 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 주반응기의 중합 전환율(%)Main reactor % Polymerization conversion 9898 9898 9898 9898 9898 주반응기의 P_H2/P_C2 P_H 2 / P_C 2 of the main reactor 0.240.24 0.240.24 0.240.24 0.240.24 0.240.24 보조반응기의 P_H2/P_C2 P_H 2 / P_C 2 of the co-reactor 0.250.25 0.340.34 0.740.74 0.640.64 0.540.54 반응기 간 P_H2/P_C2 차이P_H 2 / P_C 2 between reactors Difference 0.010.01 0.10.1 0.50.5 0.40.4 0.30.3 용융지수Melt index 2.32.3 2.22.2 2.42.4 2.32.3 2.22.2 기포수(평균값)Number of bubbles (average value) 33 55 1515 1414 1111

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 가교화된 폴리에틸렌 파이프(실시예 1 및 2)는 주반응기의 P_H2/P_C2와 보조반응기의 P_H2/P_C2의 차이가 큰 경우(비교예 1 내지 3)에 비하여 기포수가 현저히 적은 것을 확인할 수 있었다.As shown in Table 1, the crosslinked polyethylene pipes according to the present invention (Examples 1 and 2) have a large difference between P_H 2 / P_C 2 of the main reactor and P_H 2 / P_C 2 of the secondary reactor (comparative example). It was confirmed that the number of bubbles was remarkably small as compared with 1 to 3).

상기에서 살펴본 바와 같이, 본 발명에 따르면 ⅱ)단계(보조반응기)에서 더 이상의 반응물을 첨가하지 않으므로써 제조 공정이 간단하고, ⅰ)단계(주반응기)와 ⅱ)단계(보조반응기)의 기상의 수소와 에틸렌 단량체의 압력비를 조절하므로써 휘 발성의 저분자량 폴리에틸렌의 생성을 억제하여, 가교파이프 등으로 가공시 기포발생빈도가 현저히 낮은 폴리에틸렌 수지, 이의 제조방법 및 이로부터 제조되는 기포량이 현저히 적어 내압특성이 우수한 가교화된 폴리에틸렌 파이프를 제공하는 효과가 있다.As described above, according to the present invention, the manufacturing process is simple by adding no further reactants in step ii) (secondary reactor), and the gas phase of steps (iii) (main reactor) and ii) (secondary reactor) By controlling the pressure ratio of hydrogen and ethylene monomers, the production of volatile low molecular weight polyethylene is suppressed, and polyethylene resin with a low frequency of foaming when processing with crosslinked pipes, its manufacturing method, and the amount of bubbles produced therefrom have significantly lower pressure resistance characteristics. There is an effect of providing this excellent crosslinked polyethylene pipe.

Claims (12)

연속 교반형 반응기에서 에틸렌 단량체를 분자량 조절제인 수소 하에서 용매로 희석된 촉매와 반응시켜 폴리에틸렌 수지를 제조하는 방법으로서, A method for preparing polyethylene resin by reacting an ethylene monomer with a catalyst diluted in a solvent under hydrogen as a molecular weight regulator in a continuous stirred reactor, ⅰ) 에틸렌 단량체를 촉매와 접촉시켜 중합시키는 단계; 및 ⅱ) 상기 ⅰ)단계의 중합전환율이 95 내지 99.5 중량%인 시점에서 반응기 내의 기체성분을 배출시키고, 미반응된 에틸렌 단량체를 중합시키는 단계;를 포함하며, Iii) contacting the ethylene monomer with a catalyst to polymerize; And ii) discharging the gas component in the reactor at the time when the polymerization conversion rate of step iii) is 95 to 99.5% by weight, and polymerizing the unreacted ethylene monomer. 상기 ⅰ)단계의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2)와 ⅱ)단계의 기상의 수소와 에틸렌의 압력비(P_H2/P_C2) 차이가 0.01 내지 0.2인 것을 특징으로 하는The ⅰ) of the step of vapor phase hydrogen and ethylene pressure ratio (P_H 2 / P_C 2) and ⅱ) in the step of vapor phase hydrogen and ethylene pressure ratio (P_H 2 / P_C 2) the difference, characterized in that 0.01 to 0.2 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항에 있어서, The method of claim 1, 상기 촉매는, 마그네슘과 티타늄의 할로겐화 착물로 이루어진 주촉매와, 주기율표 Ⅱ 또는 Ⅲ족의 유기금속 화합물로 이루어진 조촉매를 포함하는 지글러 나타계 촉매인 것을 특징으로 하는The catalyst is a Ziegler-Natta catalyst comprising a main catalyst consisting of a halogenated complex of magnesium and titanium, and a promoter consisting of an organometallic compound of group II or III of the periodic table. 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 2항에 있어서, The method of claim 2, 상기 지글러 나타계 촉매는, 티타늄 함량이 10 내지 30 중량%이고, Ti+3 전환율이 30 내지 60 %인 것을 특징으로 하는The Ziegler-Natta catalyst, characterized in that the titanium content of 10 to 30% by weight, Ti +3 conversion of 30 to 60% 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항에 있어서, The method of claim 1, 상기 용매는, 탄소수 5 내지 12의 지방족 탄화수소 또는 방향족 탄화수소 용매인 것을 특징으로 하는The solvent is an aliphatic hydrocarbon or aromatic hydrocarbon solvent having 5 to 12 carbon atoms, characterized in that 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항에 있어서, The method of claim 1, 상기 ⅰ)단계는, 기상의 수소와 에틸렌의 압력비(P_H2/P_C2)가 0.1 내지 0.5인 것을 특징으로 하는 Step iii) is characterized in that the pressure ratio (P_H 2 / P_C 2 ) of hydrogen and ethylene in the gas phase is 0.1 to 0.5. 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항에 있어서, The method of claim 1, 상기 ⅱ) 단계는, 기상의 수소와 에틸렌의 압력비(P_H2/P_C2)가 0.11 내지 0.7인 것을 특징으로 하는 Step ii), the pressure ratio of hydrogen and ethylene in the gas phase (P_H 2 / P_C 2 ) is characterized in that 0.11 to 0.7 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 6항에 있어서, The method of claim 6, 상기 기상의 수소와 에틸렌의 압력비는, 기체성분을 배출시키는 것으로 조절됨을 특징으로 하는 The pressure ratio of hydrogen and ethylene in the gas phase is controlled by discharging a gas component. 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항에 있어서, The method of claim 1, 상기 ⅰ)단계의 중합은, 2 내지 10 atm 및 70 내지 90 ℃ 조건에서 실시되며, ⅱ)단계의 중합은 0.2 내지 5 atm 및 70 내지 90 ℃ 조건에서 실시되는 것을 특징으로 하는The polymerization of step iii) is carried out at 2 to 10 atm and 70 to 90 ℃ condition, the polymerization of step ii) is carried out at 0.2 to 5 atm and 70 to 90 ℃ condition 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항에 있어서,The method of claim 1, 상기 폴리에틸렌 수지는, 용융지수가 0.03 내지 0.1인 것을 특징으로 하는The polyethylene resin is characterized in that the melt index is 0.03 to 0.1 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항에 있어서,The method of claim 1, 상기 연속 교반형 반응기는, 상기 ⅰ)단계 중합이 실시되는 주반응기 및 ⅱ)단계 중합이 실시되는 보조반응기가 직렬로 연결되어 있는 것을 특징으로 하는The continuous stirred reactor is characterized in that the main reactor in which the step iii) polymerization is carried out and the auxiliary reactor in which the ii) step polymerization is carried out in series. 폴리에틸렌 수지의 제조방법.Method for producing polyethylene resin. 제 1항 내지 제 10항 중 어느 하나의 항에 따라 제조된 폴리에틸렌 수지.Polyethylene resin prepared according to any one of claims 1 to 10. 제 11항 기재의 폴리에틸렌 수지 및 과산화물 가교제를 반응시켜 제조한 Prepared by reacting the polyethylene resin of claim 11 and a peroxide crosslinking agent 가교화된 폴리에틸렌 파이프.Crosslinked polyethylene pipe.
KR1020070037833A 2007-04-18 2007-04-18 Polyethylene resin, preparation method thereof and cross-linked polyethylene pipe made from the same KR101032210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070037833A KR101032210B1 (en) 2007-04-18 2007-04-18 Polyethylene resin, preparation method thereof and cross-linked polyethylene pipe made from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070037833A KR101032210B1 (en) 2007-04-18 2007-04-18 Polyethylene resin, preparation method thereof and cross-linked polyethylene pipe made from the same

Publications (2)

Publication Number Publication Date
KR20080093723A true KR20080093723A (en) 2008-10-22
KR101032210B1 KR101032210B1 (en) 2011-05-02

Family

ID=40154192

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070037833A KR101032210B1 (en) 2007-04-18 2007-04-18 Polyethylene resin, preparation method thereof and cross-linked polyethylene pipe made from the same

Country Status (1)

Country Link
KR (1) KR101032210B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256159A1 (en) * 2009-05-26 2010-12-01 Borealis AG Polymer composition for crosslinked pipes
EP2256158A1 (en) * 2009-05-26 2010-12-01 Borealis AG Polymer composition for crosslinked articles
KR20180062116A (en) * 2016-11-30 2018-06-08 주식회사 엘지화학 Method for preparing polyolfin
WO2020171624A1 (en) * 2019-02-20 2020-08-27 주식회사 엘지화학 Polyethylene having high degree of cross-linking, and cross-linked polyethylene pipe comprising same
WO2020171623A1 (en) * 2019-02-20 2020-08-27 주식회사 엘지화학 Polyethylene with high pressure resistance and crosslinked polyethylene pipe comprising same
KR20200101872A (en) * 2019-02-20 2020-08-28 주식회사 엘지화학 Polyethylene with high pressure resistance and Crosslinked polyethylene pipe comprising the same
KR20200101873A (en) * 2019-02-20 2020-08-28 주식회사 엘지화학 Polyethylene with high degree of crosslinking and Crosslinked polyethylene pipe comprising the same
US10774204B2 (en) 2016-11-10 2020-09-15 Lg Chem, Ltd. Crosslinked polyethylene composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI96216C (en) 1994-12-16 1996-05-27 Borealis Polymers Oy Process for the production of polyethylene
BE1011333A3 (en) 1997-08-20 1999-07-06 Solvay Method of composition ethylene polymers.
EP1378528B1 (en) * 2002-06-24 2005-04-13 Borealis Technology Oy A process for the production of a linear low-density polyethylene composition
KR101099205B1 (en) * 2006-11-27 2011-12-27 주식회사 엘지화학 Method for preparing polyethylene resin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256158A1 (en) * 2009-05-26 2010-12-01 Borealis AG Polymer composition for crosslinked articles
WO2010136373A1 (en) * 2009-05-26 2010-12-02 Borealis Ag Polymer composition for crosslinked pipes
WO2010136374A1 (en) * 2009-05-26 2010-12-02 Borealis Ag Polymer composition for crosslinked articles
US9562631B2 (en) 2009-05-26 2017-02-07 Borealis Ag Polymer composition for crosslinked articles
EP2256159A1 (en) * 2009-05-26 2010-12-01 Borealis AG Polymer composition for crosslinked pipes
US10774204B2 (en) 2016-11-10 2020-09-15 Lg Chem, Ltd. Crosslinked polyethylene composition
KR20180062116A (en) * 2016-11-30 2018-06-08 주식회사 엘지화학 Method for preparing polyolfin
WO2020171624A1 (en) * 2019-02-20 2020-08-27 주식회사 엘지화학 Polyethylene having high degree of cross-linking, and cross-linked polyethylene pipe comprising same
KR20200101872A (en) * 2019-02-20 2020-08-28 주식회사 엘지화학 Polyethylene with high pressure resistance and Crosslinked polyethylene pipe comprising the same
KR20200101873A (en) * 2019-02-20 2020-08-28 주식회사 엘지화학 Polyethylene with high degree of crosslinking and Crosslinked polyethylene pipe comprising the same
WO2020171623A1 (en) * 2019-02-20 2020-08-27 주식회사 엘지화학 Polyethylene with high pressure resistance and crosslinked polyethylene pipe comprising same
CN113195552A (en) * 2019-02-20 2021-07-30 株式会社Lg化学 Polyethylene having high pressure resistance and crosslinked polyethylene pipe comprising the same
CN113366033A (en) * 2019-02-20 2021-09-07 株式会社Lg化学 Polyethylene having a high degree of crosslinking and crosslinked polyethylene pipe comprising the same
CN113195552B (en) * 2019-02-20 2023-11-21 株式会社Lg化学 Polyethylene having high pressure resistance and crosslinked polyethylene pipe comprising the same

Also Published As

Publication number Publication date
KR101032210B1 (en) 2011-05-02

Similar Documents

Publication Publication Date Title
KR101032210B1 (en) Polyethylene resin, preparation method thereof and cross-linked polyethylene pipe made from the same
AU771298B2 (en) High-stiffness propylene polymers and a process for the preparation thereof
EP2157104B1 (en) Ethylene polymer compositions
EP2144955B1 (en) Bimodal polyethylene resins that have high stiffness and high escr
EP3157966B1 (en) Process for the polymerization of propylene
GB2051833A (en) Process for preparing ethylene polymers
JP5726169B2 (en) Bicyclic organosilicon compounds as electron donors for polyolefin catalysts
EP0580930B1 (en) Process for producing polyethylene having a broad molecular weight distribution
KR101742714B1 (en) Method for preparation of propylene polymer
KR101771174B1 (en) Multistage process for producing low-temperature resistant polypropylene compositions
EP2935354B1 (en) Process for the polymerization of propylene
EP2681273B1 (en) Process for preparing polyethylene blend comprising metallocene produced resins and ziegler-natta produced resins
KR101735447B1 (en) method of preparing polyolefin nanocomposite including dispersed carbon support on the polyolefin and nanocomposite prepared thereby
EP3157964A1 (en) Process for the polymerization of propylene
JP3537333B2 (en) Polyethylene polymer, pipe made of the polymer and joint thereof
JP5313010B2 (en) Polyethylene resin composition and method for producing the same
JPS63301209A (en) Manufacture of ethylene polymer
JP5242482B2 (en) Polyethylene resin composition and method for producing the same
JPH0247484B2 (en) ECHIRENKYOJUGOTAINOSEIZOHOHO
EP1355954A1 (en) Process for the preparation of propylene polymers
KR101715924B1 (en) Preparing method of catalyst for polymerization of olefin and process for polymerization of olefin using the same
CN116082566A (en) Preparation method of bimodal polyethylene resin and obtained bimodal polyethylene resin and tubular product
JP2000026533A (en) High density ethylenic polymer and production thereof
KR20190050061A (en) A method for producing a catalyst composition for polyethylene polymerization
KR20190055465A (en) Method for producing catalyst for polymerization of ethylene and method for producing polyethylene using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 9