KR20080064762A - Ocean vegetation image - Google Patents

Ocean vegetation image Download PDF

Info

Publication number
KR20080064762A
KR20080064762A KR1020080045266A KR20080045266A KR20080064762A KR 20080064762 A KR20080064762 A KR 20080064762A KR 1020080045266 A KR1020080045266 A KR 1020080045266A KR 20080045266 A KR20080045266 A KR 20080045266A KR 20080064762 A KR20080064762 A KR 20080064762A
Authority
KR
South Korea
Prior art keywords
ocean
image
red
color
index
Prior art date
Application number
KR1020080045266A
Other languages
Korean (ko)
Inventor
강용균
Original Assignee
강용균
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강용균 filed Critical 강용균
Priority to KR1020080045266A priority Critical patent/KR20080064762A/en
Publication of KR20080064762A publication Critical patent/KR20080064762A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An ocean vegetation image method is provided to obtain an OVI(Ocean Vegetation Index) from a satellite or an air photo image and to visualize the index, using only red, green, and blue band materials for enabling quantitative calculation of the distribution of the plankton from the OVI. An ocean vegetation image method comprises the steps of; calculating red, green, and blue color indexes of a color image(30); visualizing an ocean vegetation index from the green color index, using a satellite or an air photo image(40,70); overlapping the red, the green, and the blue color indexes with each other to visualize the ocean features(50,80); and visualizing the red tide distribution from the red color index(60,90).

Description

해양식생영상 방법 {Ocean Vegetation Image}Ocean Vegetation Image Method {Ocean Vegetation Image}

도 1은 해양식생영상 제작 논리 흐름도1 is a flow chart of marine vegetation image production

도 2는 본 발명에 사용되는 주요 수식 그림2 is a diagram of the main formula used in the present invention

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

도 2, 도 2의 R, G, B는 각각 적색(red), 녹색(green), 청색(blue)의 밝기2, 2, R, G, and B are red, green, and blue brightness, respectively.

도 2의 I R , I G , I B 는 각각 적색, 녹색, 청색의 색지수(color index0 I R , I G , and I B of FIG. 2 are red, green, and blue color indexes, respectively (color index 0

도 2의 I C , I M , I Y 는 각각 청록(cyan), 자홍(magenta), 황색(yellow) 색지수 I C , I M and I Y in FIG. 2 are cyan, magenta and yellow color indexes, respectively.

Lillesand, T. M. and R. W. Kiefer, 2000, Remote Sensing and Image Interpretation, 4th Ed., John Wiley & Sons, Inc., 724 pp.Lillesand, TM and RW Kiefer, 2000, Remote Sensing and Image Interpretation, 4th Ed., John Wiley & Sons, Inc., 724 pp.

본 발명은 인공위성이나 항공기에 의해 관측된 지표면 칼라(color) 영상자료로부터 해양의 영상을 선명하게 가시화하고, 해양의 플랑크톤 분포를 볼 수 있게 하는 방법에 관한 것이다.The present invention relates to a method of vividly visualizing the image of the ocean from the surface color image data observed by satellites or aircraft and to view the distribution of plankton in the ocean.

해면으로부터의 태양광 반사는 육지보다 훨씬 작으며, 해면의 영상은 육지에 비하여 어둡게 보인다. 해면으로부터의 반사광 정도는 해양 어느 곳이나 비슷하므로 해양의 플랑크톤 분포 같은 특성은 칼라 영상에 거의 나타나지 않는다. 해수는 태양광 근적외선(NIR)을 거의 100% 흡수하므로 해색(ocean color) 탐지에는 가시광선(visible light) 밴드가 주로 활용되며, 공간적인 해수특성의 미소한 차이를 구분하기 위해서 방사해상도(radiometric resolution)가 높은 자료가 사용된다. 해색을 탐사하는 SeaWiFS나 MODIS 위성에서는 가시광선 영역의 여러 개 파장에 대하여 2048 등급 이상의 높은 방사해상도로 탐사한다.The reflection of sunlight from the sea surface is much smaller than on land, and the image of the sea surface is darker than on land. The degree of reflected light from sea level is similar anywhere in the ocean, so characteristics such as the distribution of plankton in the ocean rarely appear in color images. Since seawater absorbs almost 100% of sunlight near infrared rays, visible light bands are mainly used for ocean color detection, and radiometric resolution is used to distinguish minute differences in spatial seawater characteristics. High data) is used. SeaWiFS or MODIS satellites that detect sea color detect high radiation resolutions of 2048 or higher for various wavelengths in the visible range.

해색탐사 위성자료 여러 개 가시광선 밴드를 결합하여 추출되는 대표적인 것은 해양 엽록소(클로로필) 분포이다. 가시광선 자료로서 R(red), G(green), B(blue)만을 포함하고 있는 육상탐사용 위성인 LANDSAT나 SPOT 위성 자료로부터는 해양의 식생분포에 대한 특성을 알아내는 것이 거의 불가능하다. 항공기를 이용한 칼라영상의 R, G, B 자료로부터도 해양의 엽록소 분포를 파악하는 것도 기존 기술로는 거의 불가능하다.Seafaring Exploration Satellite Data The representative extraction of several visible light bands is the distribution of marine chlorophyll (chlorophyll). It is almost impossible to characterize the vegetation distribution of the oceans from LANDSAT or SPOT satellite data, which are land survey satellites containing only R (red), G (green), and B (blue) as visible data. It is also almost impossible to grasp the chlorophyll distribution in the ocean from the R, G, and B data of color images using aircraft.

방사해상도가 아주 좋지 못하면서 가시광선 R, G, B 밴드만을 포함하는 육상용 위성자료나 항공촬영 영상 자료로부터 해양의 엽록소, 부유현탁물, 적조 등의 분포를 선명하게 가시화하는 방법개발이 절실히 요구된다. 본 발명에서 이루고자 하는 기술적인 과제는 아래와 같다.There is an urgent need to develop a method of clearly visualizing the distribution of chlorophyll, suspended suspended solids, and red tide in the ocean from terrestrial satellite data or aerial image data including only visible light R, G, and B bands with very poor radiation resolution. . The technical problem to be achieved in the present invention is as follows.

인공위성 영상에서 해양은 육지에 비하여 어두워서 해양특성의 지역적인 차 이를 쉽게 구분할 수 없다. 이런 영상을 수학적으로 변환(transform)하여 해양의 식물플랑크톤이나 적조 생물의 분포를 가시화할 수 있는 영상을 만든다.In satellite imagery, the ocean is darker than land, and regional differences in marine characteristics cannot be easily distinguished. These images are mathematically transformed to produce images that can visualize the distribution of phytoplankton and red tide organisms in the ocean.

육상에서의 식물활동 정도를 나타내는 정규식생지수(NDVI) 계산에는 가시광선과 근적외선(NIR) 자료가 활용된다. 본 발명에서는 근적외선 자료 사용이 불가능한 해양에서 가시광선 R, G, B 밴드 자료만 사용하여 육상의 NDVI와 유사한 성질을 가지는 해양식생지수(OVI, Ocean Vegetation Index)를 도출하고, 이를 가시화한다.Normal and near-infrared (NIR) data are used to calculate the Normal Vegetation Index (NDVI), which indicates the degree of plant activity on land. In the present invention, by using only visible light R, G, B band data in the ocean where near-infrared data is not available, an OVE (Ocean Vegetation Index) having properties similar to that of land NDVI is derived and visualized.

이하 첨부된 도면에 의해 상세히 설명하면 다음과 같다. 도 1은 본 발명의 구현 절차에 대한 순서도이고, 도 2는 본 발명에 사용되는 주요 수식이다.Hereinafter, described in detail by the accompanying drawings as follows. 1 is a flowchart of an implementation procedure of the present invention, and FIG. 2 is a main formula used in the present invention.

도 1과 도 2를 참조하여 해양식생지수를 계산하고, 해양의 특성을 선명하게 가시화하는 방법에 대한 구체적인 내용은 아래와 같다.Referring to Figures 1 and 2 to calculate the marine vegetation index, the specific details of how to clearly visualize the characteristics of the ocean are as follows.

우선 영상자료 각 화소(pixel)에 대하여 R(red), G(green), B(blue) 자료를 추출한다(20). 각 화소에 대하여 R, G, B 성분의 식생지수 I R , I G , I B 를 도 2의 식 (2)에 의해 계산한다(30). 이 방법으로 계산되는 식생지수는 (-1, +1) 범위의 값이며, 식생지수는 영상이 어두운 화소에서도 (-1, +1) 범위의 값으로 계산된다. R, G, B 성분 색지수 이외에 C(cyan), M(magenta), Y(yellow) 성분 색지수를 활용하고자 할 경우에는 도 2의 식 (4)를 이용하여 계산한다. 각 화소에서 R, G, B, C, M Y의 6개 성분에 대한 색지수를 계산할 수 있는데, 본 발명에서는 이 중에서 R, G, B의 색지수를 주로 활용한다.First, R (red), G (green), and B (blue) data are extracted for each pixel of the image data (20). For each pixel, the vegetation indexes I R , I G , and I B of the R, G, and B components are calculated by equation (2) of FIG. 2 (30). The vegetation index calculated by this method is a value in the range (-1, +1), and the vegetation index is calculated in the range of (-1, +1) even in the dark pixels of the image. In order to utilize the C (cyan), M (magenta), and Y (yellow) component color in addition to the R, G, and B component color indices, the calculation is performed using Equation (4) of FIG. 2. In each pixel, color indices of six components of R, G, B, C, and MY can be calculated. In the present invention, the color indices of R, G, and B are mainly utilized.

도 2의 식 (2)에 의해 계산된 green 색지수 I G 를 해양식생지수(OVI, Ocean Vegetation Index)로 정의한다. 육상 위성자료로부터는 Red와 근적외선(NIR) 밴드 자료를 사용하여 식물 엽록소 활동의 정도를 나타내는 정규식생지수(NDVI)를 활용하는데, 본 발명의 해상 OVI는 육상의 NDVI와 유사한 개념이다. 크기 (-1,+1) 범위의 값으로 계산되는 OVI의 값(32)을 스케일(scale) 변환하여(40) 영상으로 바꾼 해양식생지수 영상을 만든다(70). OVI 자료의 스케일 변환시 해양 OVI 값 분포에 대한 히스토그램(histogram)을 활용하면 보다 해양식생지수 영상에서 해양의 엽록소(플랑크톤) 분포가 보다 선명하게 나타난다.The green color index I G calculated by Equation (2) of FIG. 2 is defined as an ocean vegetation index (OVI). From terrestrial satellite data, Red and NIR band data are used to utilize the Normal Vegetation Index (NDVI), which indicates the degree of plant chlorophyll activity. The marine OVI of the present invention is similar in concept to terrestrial NDVI. An image of the marine vegetation index which is converted into an image by scale-converting (40) the value 32 of the OVI calculated as a value in the range (-1, + 1) is made (70). Using a histogram of the distribution of oceanic OVI values for scale transformation of OVI data results in a clearer distribution of chlorophyll (plankton) in the ocean in ocean vegetation index images.

해양의 R, G, B 성분 색지수(32, 34, 36) I R , I G , I B 를 스케일 변환하여 (50) 각각 Red, Green, Blue의 밝기로 변환한 후, 이들 3개 밴드 밝기 자료를 사용하여 해양특성가시화 영상을 만든다(80). 해양특성영상 제작단계에서의 스케일 변환에 각 밴드의 히스토그램을 활용하면 보다 선명한 영상을 만들 수 있다. 원래의 자연색 RGB 영상에서 해양이 어두운 경우에도 해양특성가시화 영상에서는 각 지역의 해수 특성의 지역적인 차이가 선명하게 나타난다.R, G, and B component color indices (32, 34, 36) I R , I G , and I B are scale-converted (50) to red, green, and blue brightness, respectively, and then these three band brightnesses Data are used to create oceanographic visualizations (80). By using the histogram of each band for scale conversion in the marine characteristic image production step, a clearer image can be made. Even if the ocean is dark in the original natural color RGB image, the regional differences in seawater characteristics of each region are clearly displayed in the ocean characteristic visualization image.

Red 성분 색지수(36)를 스케일 변환하여(60) 적색식물 부영양화 현상인 적조(red tide) 분포에 대한 영상을 만든다(90). 적조분포 영상에서 적조가 효율적으로 보이게 하려면 적조가 있는 지역과 없는 지역이 상당히 다른 밝기의 영상으로 나타나도록 스케일 변환을 해준다.The red component color index 36 is scale-converted (60) to produce an image of a red tide distribution, which is a red plant eutrophication phenomenon (90). To make the red tide look more efficient in the red-tide distribution image, scale it so that the area with and without the red tide appears to be a very different image.

Red 성분 색지수와 Yellow 성분 색지수는 각각 적색과 황색을 포함하는 해양 부유현탁물(suspended sediments)의 분포를 파악하는데 활용될 수 있다. 부유현탁물 분포에 대한 영상제작 방법은 적조분포 영상 제작(90)과 같은 방법을 사용한다.The red component and yellow component color indices can be used to determine the distribution of suspended sediments in the ocean, including red and yellow, respectively. The image production method for the suspended suspension distribution uses the same method as the red tide distribution image production (90).

이상에서 상술한 발명은, 인공위성영상이나 항공촬영영상에서 해양의 엽록소(클로로필), 적조, 부유현탁물 등의 분포를 선명하게 가시화해준다. 기존의 해색위생 자료로부터 해양식생지수와 엽록소의 양 사이의 관계식을 도출하여 사용하면 본 발명의 해양식생지수로부터 해양 부유생물(플랑크톤)의 분포에 대한 정량적(quantitative) 계산을 할 수 있다.The above-described invention clearly visualizes the distribution of chlorophyll (chlorophyll), red tide, suspended suspension, etc. of the ocean in a satellite image or an aerial image. By deriving and using the relationship between the marine vegetation index and the amount of chlorophyll from the existing marine hygiene data, it is possible to quantitatively calculate the distribution of marine suspended organisms (plankton) from the marine vegetation index of the present invention.

Claims (1)

인공위성 원격탐사나 항공촬영에 의한 칼라 영상에서 해양의 특성을 가시화하는데 있어서, 칼라(color) 영상의 적색(red), 녹색(green), 청색(blue)의 색지수(color index)를 계산하는 단계(30), 상기 녹색 색지수로부터 해양식생지수(ocean vegetation index)를 영상화하는 단계(40, 70), 상기 적색, 녹색, 청색 색지수를 결합하여 해양특성을 가시화하는 단계(50, 80), 상기 적색 색지수로부터 적조(red tide) 분포를 영상화하는 단계(60, 90)에 대한 방법 및 상기 방법을 이용하여 제작한 해양식생지수 영상, 해양특성가시화 영상, 해양적조분포 영상에 대한 제작 및 배포.Computing the color index of the red, green, and blue of the color image in visualizing the characteristics of the ocean in the color image by satellite remote sensing or aerial photography (30) imaging the ocean vegetation index from the green color index (40, 70), visualizing the marine characteristics by combining the red, green, and blue color indices (50, 80), Method for imaging red tide distribution from the red color index (60, 90) and production and distribution of marine vegetation index image, marine characteristic visualization image, ocean red tide distribution image produced using the method .
KR1020080045266A 2008-05-14 2008-05-14 Ocean vegetation image KR20080064762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080045266A KR20080064762A (en) 2008-05-14 2008-05-14 Ocean vegetation image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080045266A KR20080064762A (en) 2008-05-14 2008-05-14 Ocean vegetation image

Publications (1)

Publication Number Publication Date
KR20080064762A true KR20080064762A (en) 2008-07-09

Family

ID=39815951

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080045266A KR20080064762A (en) 2008-05-14 2008-05-14 Ocean vegetation image

Country Status (1)

Country Link
KR (1) KR20080064762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019111A1 (en) * 2009-08-13 2011-02-17 (주)비엔티솔루션 Marine information provision system using web 3d and method thereof
KR101116462B1 (en) * 2009-12-15 2012-02-20 연세대학교 산학협력단 Method and apparatus for water quality monitoring using remote sensing technique
KR20160143087A (en) * 2015-06-04 2016-12-14 한국해양과학기술원 Analysis apparatus for oceanographic information, and control method thereof
CN113298086A (en) * 2021-04-26 2021-08-24 自然资源部第一海洋研究所 Red tide multispectral detection method based on U-Net network
CN113484923A (en) * 2021-07-13 2021-10-08 山东省海洋预报减灾中心 Remote sensing monitoring and evaluating method for green tide disasters
KR102674917B1 (en) 2023-09-11 2024-06-13 (주)유에스티21 Chlorophyll-a concentration estimation system using satellite images and method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019111A1 (en) * 2009-08-13 2011-02-17 (주)비엔티솔루션 Marine information provision system using web 3d and method thereof
KR101116462B1 (en) * 2009-12-15 2012-02-20 연세대학교 산학협력단 Method and apparatus for water quality monitoring using remote sensing technique
KR20160143087A (en) * 2015-06-04 2016-12-14 한국해양과학기술원 Analysis apparatus for oceanographic information, and control method thereof
CN113298086A (en) * 2021-04-26 2021-08-24 自然资源部第一海洋研究所 Red tide multispectral detection method based on U-Net network
CN113484923A (en) * 2021-07-13 2021-10-08 山东省海洋预报减灾中心 Remote sensing monitoring and evaluating method for green tide disasters
KR102674917B1 (en) 2023-09-11 2024-06-13 (주)유에스티21 Chlorophyll-a concentration estimation system using satellite images and method thereof

Similar Documents

Publication Publication Date Title
Kerr et al. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data
Jay et al. Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance
Mishra et al. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data
Loisel et al. Challenges and new advances in ocean color remote sensing of coastal waters
Huang et al. Assessment of NIR-red algorithms for observation of chlorophyll-a in highly turbid inland waters in China
Ngoc et al. Coastal and inland water pixels extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI
KR20080064762A (en) Ocean vegetation image
KR20080031702A (en) Method of cloud masking in remote sensing images
Andréfouët et al. Use of in situ and airborne reflectance for scaling-up spectral discrimination of coral reef macroalgae from species to communities
Roznere et al. Real-time model-based image color correction for underwater robots
Zhang et al. A simple and effective method for monitoring floating green macroalgae blooms: a case study in the Yellow Sea
Kabiri et al. Detecting coral bleaching, using QuickBird multi-temporal data: a feasibility study at Kish Island, the Persian Gulf
KR20220026829A (en) Method for detecting a red tide using multispectral images and system thereof
Bongiorno et al. Dynamic spectral-based underwater colour correction
Dierssen Overview of hyperspectral remote sensing for mapping marine benthic habitats from airborne and underwater sensors
Zhang et al. Remote sensing method for detecting green tide using HJ-CCD top-of-atmosphere reflectance
Ji Haze reduction from the visible bands of Landsat TM and ETM+ images over a shallow water reef environment
Pu et al. Developing hyperspectral vegetation indices for identifying seagrass species and cover classes
Åhlén Colour correction of underwater images using spectral data
Doxani et al. Sun glint correction of very high spatial resolution images
Kjerstad Underwater Imaging and the effect of inherent optical properties on image quality
Liu et al. Using a semi-analytical model to retrieve Secchi depth in coastal and estuarine waters
Kolluru et al. Haze correction of hyperspectral imagery over inland waters
Mastrantonis et al. A novel method for robust marine habitat mapping using a kernelised aquatic vegetation index
Streher et al. Sunglint correction in airborne hyperspectral images over inland waters

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application