KR20080064249A - Catalyst for ultra high molecular weight polyethylene polymerization, method for preparing the same and polymerization method of ultra high molecular weight polyethylene using the same - Google Patents
Catalyst for ultra high molecular weight polyethylene polymerization, method for preparing the same and polymerization method of ultra high molecular weight polyethylene using the same Download PDFInfo
- Publication number
- KR20080064249A KR20080064249A KR1020070000926A KR20070000926A KR20080064249A KR 20080064249 A KR20080064249 A KR 20080064249A KR 1020070000926 A KR1020070000926 A KR 1020070000926A KR 20070000926 A KR20070000926 A KR 20070000926A KR 20080064249 A KR20080064249 A KR 20080064249A
- Authority
- KR
- South Korea
- Prior art keywords
- molecular weight
- weight polyethylene
- high molecular
- catalyst
- magnesium
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/642—Component covered by group C08F4/64 with an organo-aluminium compound
- C08F4/6421—Titanium tetrahalides with organo-aluminium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/642—Component covered by group C08F4/64 with an organo-aluminium compound
- C08F4/6423—Component of C08F4/64 containing at least two different metals
- C08F4/6425—Component of C08F4/64 containing at least two different metals containing magnesium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/646—Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
- C08F4/6465—Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/01—High molecular weight, e.g. >800,000 Da.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
본 발명은 초고분자량 폴리에틸렌 중합용 촉매 및 초고분자량 폴리에틸렌 중합 방법에 관한 것이며, 보다 상세하게는 초고분자량 폴리에틸렌 중합용 마그네슘을 포함하는 담지체에 지지된 티타늄 고체 착물 촉매, 이의 제조방법 및 이를 이용하여 겉보기 밀도가 높고, 입자 분포가 좁아서 큰 입자나 미세입자가 적은 초고분자량 폴리에틸렌을 중합하는 방법에 관한 것이다.The present invention relates to a catalyst for ultra-high molecular weight polyethylene polymerization and to a method for polymerization of ultra-high molecular weight polyethylene, and more particularly, to a titanium solid complex catalyst supported on a support including magnesium for ultra-high molecular weight polyethylene polymerization, a method for preparing the same, and an appearance thereof. The present invention relates to a method for polymerizing ultra-high molecular weight polyethylene having a high density and a narrow particle distribution with a small number of large particles or fine particles.
초고분자량 폴리에틸렌은 폴리에틸렌 수지의 한 종류로서 분자량이 최소 106g/mol 이상인 폴리에틸렌을 가리키며, ASTM 4020에서는 “데카하이드로나프탈렌 용액 100ml에 0.05%로 함유된 경우 135℃하에서 상대점도가 2.30 내지 그 이상의 값을 가지는 선형 폴리에틸렌”이라 정의되어 있다. 초고분자량 폴리에틸렌은 범용 폴리에틸렌에 비해 분자량이 굉장히 크기 때문에, 강성, 내마모성, 내환경응력 균 일성, 자기 윤활성, 내화학 약품성 및 전기적 물성 등이 뛰어난 특징을 갖고 있다.이와 같은 우수한 물성들로 인하여 초고분자량 폴리에틸렌은 범용 원료로부터 얻어지는 고품질의 특수 소재라고 할 수 있다.Ultra high molecular weight polyethylene is a kind of polyethylene resin and refers to polyethylene having a molecular weight of at least 10 6 g / mol or more, and according to ASTM 4020, “when 0.05% is contained in 100 ml of decahydronaphthalene solution, the relative viscosity at 135 ° C. is 2.30 or more. Linear polyethylene ” Ultra-high molecular weight polyethylene has much higher molecular weight than general-purpose polyethylene, so it has excellent characteristics such as rigidity, abrasion resistance, environmental stress uniformity, self-lubrication, chemical resistance, and electrical properties. Polyethylene is a high quality special material obtained from a general-purpose raw material.
중합공정을 거쳐 제조된 초고분자량 폴리에틸렌은 분자량이 커서 범용 폴리에틸렌과 같이 펠렛화 할 수 없기 때문에 파우더로 생산 판매되며, 중합체 파우더의 크기 및 분포가 매우 중요하다. 중합공정, 중합체의 입자 분포 및 미세 입자 존재 여부 등이 촉매의 중요한 특성이라고 할 수 있다.Ultra-high molecular weight polyethylene produced through the polymerization process is produced and sold as a powder because the molecular weight is large and can not be pelletized like general purpose polyethylene, the size and distribution of the polymer powder is very important. The polymerization process, the particle distribution of the polymer and the presence or absence of fine particles are important properties of the catalyst.
마그네슘을 포함하고 티타늄에 기초를 둔 많은 올레핀 중합 촉매 및 촉매 제조 방법이 보고되어 왔다. 특히, 위에서 언급한 겉보기 밀도가 높은 올레핀 중합 촉매를 얻기 위해 마그네슘 용액을 이용한 방법이 많이 알려져 있다. 탄화수소 용매의 존재 하에서 마그네슘 화합물을 알코올, 아민, 환상 에테르 및 유기 카르복시산 등과 같은 전자공여체와 반응시켜 마그네슘 용액을 얻는 방법이 있는데, 알코올을 사용한 경우는 미국 특허 제3,642,746호, 제4,336,360호, 제4,330,649호, 제5,106,807호에 기재되어 있다.Many olefin polymerization catalysts and methods based on titanium have been reported, including magnesium and based on titanium. In particular, many methods using magnesium solution are known to obtain the above-mentioned apparently high density olefin polymerization catalyst. In the presence of a hydrocarbon solvent, a magnesium compound is reacted with an electron donor such as an alcohol, an amine, a cyclic ether, and an organic carboxylic acid to obtain a magnesium solution. In the case of using an alcohol, US Pat. , 5,106,807.
그리고, 이 액상 마그네슘 용액을 사염화티타늄과 같은 할로겐 화합물과 반응시켜 마그네슘 담지 촉매를 제조하는 방법이 잘 알려져 있다. 이와 같은 촉매는 높은 중합체의 겉보기 밀도를 제공하나, 촉매의 활성면이나 수소 반응성면에서 개선되어야 할 점이 있다. 환상 에테르인 테트라하이드로퓨란은 마그네슘 화합물의 용매로 미국 특허 제4,477,639호, 제4,518,706호에 기재되어 있다.In addition, a method of preparing a magnesium supported catalyst by reacting the liquid magnesium solution with a halogen compound such as titanium tetrachloride is well known. Such catalysts provide a high polymer apparent density, but there is a need to improve in terms of the active or hydrogen reactivity of the catalyst. Tetrahydrofuran, a cyclic ether, is described in US Pat. Nos. 4,477,639 and 4,518,706 as solvents of magnesium compounds.
미국 특허 제4,847,227호, 제4,816,433호, 제4,829,037호, 제4,970,186호 및 제5,130,284호에는 마그네슘 알콕사이드 및 디알킬 프탈레이트와 같은 전자공여체 및 염화티타늄 화합물을 반응시켜 중합 활성이 우수하며, 제조된 중합체의 겉보기 밀도가 향상된 올레핀 중합 촉매를 제조하는 방법을 기재하고 있다.U.S. Patent Nos. 4,847,227, 4,816,433, 4,829,037, 4,970,186, and 5,130,284 react with electron donors, such as magnesium alkoxides and dialkyl phthalates, and titanium chloride compounds to provide excellent polymerization activity. A method for preparing an olefin polymerization catalyst with improved density is described.
미국 특허 제5,459,116호에는 적어도 하나의 히드록시기를 가지는 에스테르류를 전자공여체로 포함하는 마그네슘 용액과 티타늄 화합물을 접촉 반응시켜 담지 티타늄 고체 촉매를 제조하는 방법을 기재하고 있다. 이 방법을 이용하여 중합 활성이 우수하고, 겉보기 밀도가 높은 중합체를 제조할 수 있는 촉매를 얻을 수 있지만, 중합체의 분포면에서 개선해야 할 여지가 있다.U.S. Patent No. 5,459,116 describes a method for producing a supported titanium solid catalyst by contact reaction of a magnesium solution comprising a ester having at least one hydroxy group as an electron donor with a titanium compound. By using this method, a catalyst capable of producing a polymer having excellent polymerization activity and high apparent density can be obtained, but there is room for improvement in terms of the polymer distribution.
위에서 살펴본 바와 같이, 제조 공정이 간단하면서도, 높은 중합 활성을 가지면서 촉매 입자의 크기를 조절할 수 있으며, 특히 중합체의 입자 분포가 좁은 초고분자량 폴리에틸렌 제조용 촉매의 개발이 요구되고 있다.As described above, while the production process is simple, it is possible to control the size of the catalyst particles while having a high polymerization activity, in particular, the development of a catalyst for producing ultra-high molecular weight polyethylene with a narrow particle distribution of the polymer is required.
본 발명의 목적은 높은 촉매 활성을 가지고, 중합된 폴리머의 겉보기 밀도가 높으며, 중합체의 입자 분포가 좁은 초고분자량 폴리에틸렌 중합용 촉매를 제공하는 것이다.It is an object of the present invention to provide a catalyst for ultra high molecular weight polyethylene polymerization having high catalytic activity, high apparent density of polymerized polymer, and narrow particle distribution of polymer.
또한, 상기 초고분자량 폴리에틸렌 중합용 촉매를 이용하여 초고분자량 폴리에틸렌을 중합하는 방법을 제공하는 것도 본 발명의 또 다른 목적이다.In addition, another object of the present invention is to provide a method for polymerizing ultra high molecular weight polyethylene using the ultra high molecular weight polyethylene polymerization catalyst.
상기 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the above technical problem,
1) 마그네슘 알코올레이트와 할로겐화 티타늄을 반응시켜 마그네슘 담체를 형성하는 단계; 및1) reacting magnesium alcoholate with titanium halide to form a magnesium carrier; And
2) 상기 마그네슘 담체, 유기 금속 화합물 및 유기 실란 화합물을 반응시키는 단계2) reacting the magnesium carrier, the organometallic compound, and the organosilane compound
를 포함하는 초고분자량 폴리에틸렌 중합용 촉매의 제조방법을 제공한다.It provides a method for producing an ultra-high molecular weight polyethylene polymerization catalyst comprising a.
또한, 본 발명은 상기 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 의해 제조된 초고분자량 폴리에틸렌 중합용 촉매를 제공한다.The present invention also provides a catalyst for ultra high molecular weight polyethylene polymerization prepared by the method for preparing a catalyst for ultra high molecular weight polyethylene polymerization.
또한, 본 발명은 상기 초고분자량 폴리에틸렌 중합용 촉매를 이용한 초고분자량 폴리에틸렌 중합 방법을 제공한다.The present invention also provides an ultrahigh molecular weight polyethylene polymerization method using the ultrahigh molecular weight polyethylene polymerization catalyst.
이하에서 상세히 설명한다.It will be described in detail below.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 1) 단계의 마그네슘 알코올레이트는 하기 화학식 1로 표시되는 화합물을 사용할 수 있다.In the preparation method of the ultrahigh molecular weight polyethylene polymerization catalyst according to the present invention, the magnesium alcoholate of step 1) may be a compound represented by the following formula (1).
상기 화학식 1에서,In Chemical Formula 1,
R1은 수소, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기를 나타내며;R1 represents hydrogen or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms;
X는 OR2, 할로겐원소, (SO4)1/2OH, (CO3)1/2 또는 (PO4)1/ 3 를 나타내고;X is OR2, halogen atoms, (SO 4) 1/2 OH, (CO 3) 1/2 or (PO 4) shows a 1/3;
상기 R2는 수소, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기를 나 타낸다.R2 represents hydrogen or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
상기 화학식 1로 표시되는 마그네슘 알코올레이트로는 Mg(OC2H5)2, Mg(O-i-C3H7)2, Mg(O-n-C3H7)2, Mg(O-n-C4H9)2, Mg(OCH3)(OC2H5), Mg(OC2H5)(O-n-C3H7) 또는 Mg(OCH3)Cl이 바람직하며, Mg(OC2H5)2, Mg(O-i-C3H7)2 또는 Mg(O-n-C3H7)2이 더욱 바람직하나, 이에만 한정되는 것은 아니다.As magnesium alcoholate represented by Formula 1, Mg (OC 2 H 5 ) 2 , Mg (OiC 3 H 7 ) 2 , Mg (OnC 3 H 7 ) 2 , Mg (OnC 4 H 9 ) 2 , Mg (OCH 3 ) (OC 2 H 5 ), Mg (OC 2 H 5 ) (OnC 3 H 7 ) or Mg (OCH 3 ) Cl is preferred, Mg (OC 2 H 5 ) 2 , Mg (OiC 3 H 7 ) 2 Or Mg (OnC 3 H 7 ) 2 is more preferred, but is not limited thereto.
상기 마그네슘 알코올레이트는 순수 형태 또는 지지체에 부착된 형태로 사용될 수 있으며, 그 사용 형태에 특별한 제한은 없다.The magnesium alcoholate may be used in pure form or in a form attached to the support, and there is no particular limitation on the use form.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 1) 단계의 마그네슘 알코올레이트는 상기 화학식 1로 표시되는 화합물과 함께, 마그네슘을 제외한 1족, 2족, 13족 및 14족에 속하는 원소를 더 포함하는 복합 마그네슘 알코올레이트를 사용할 수 있다. 이와 같은 복합 마그네슘 알코올레이트는 [Mg(O-i-C3H7)42, [Al2(O-i-C3H7)82H5]62H5]32(O-i-C4H9)82(O-sec-C4H9)6(OC2H5)를 사용할 수 있으나, 이에만 한정되는 것은 아니다.In the method for producing a catalyst for ultra-high molecular weight polyethylene polymerization according to the present invention, the magnesium alcoholate of step 1) together with the compound represented by the formula (1), to Group 1, 2, 13 and 14 except magnesium Complex magnesium alcoholate which further contains the element to which it belongs can be used. Such complex magnesium alcoholates are [Mg (OiC 3 H 7 ) 42 , [Al 2 (OiC 3 H 7 ) 82 H 5 ] 62 H 5 ] 32 (OiC 4 H 9 ) 82 (O-sec-C 4 H 9 ) 6 (OC 2 H 5 ) can be used, but is not limited thereto.
상기 복합 마그네슘 알코올레이트는 마그네슘 알코올레이트를 포함하는 2종 이상의 상이한 금속 알코올레이트를 불활성화 탄화수소계 용매 내에서 반응시키는 방법; 마그네슘을, 마그네슘 알코올레이트를 제외한 금속 알코올레이트의 알코올성 용액 내에서 용해시키는 방법; 또는 마그네슘을 포함하는 2종 이상의 상이한 금속을 알코올 내에서 함께 용해시키는 방법과 같은 다양한 방법을 통해서 제조할 수 있다.The composite magnesium alcoholate is a method of reacting two or more different metal alcoholates including magnesium alcoholate in an inactivated hydrocarbon solvent; A method of dissolving magnesium in an alcoholic solution of a metal alcoholate except magnesium alcoholate; Or through a variety of methods, such as dissolving two or more different metals, including magnesium, together in alcohol.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 1) 단계의 할로겐화 티타늄은 사염화 티타늄을 사용할 수 있다.In the method for preparing a catalyst for ultra-high molecular weight polyethylene polymerization according to the present invention, titanium tetrachloride may be used as the titanium halide in step 1).
상기 마그네슘 알코올레이트에 대한 할로겐화 티타늄의 몰비(Ti/Mg)는 0.9 내지 5, 바람직하게는 1.4 내지 3.5이다. 마그네슘 알코올레이트에 대한 할로겐화 티타늄의 몰비가 0.9 미만인 경우에는 촉매의 활성점 형성이 너무 작아지는 문제가 있고, 5를 초과하는 경우에는 마그네슘 담체 위에 결합될 수 있는 티타늄양보다 너무 과량으로 들어가서 촉매 제조의 경제성에 나쁜 영향을 미치게 될 우려가 있어 바람직하지 않다.The molar ratio (Ti / Mg) of titanium halide to magnesium alcoholate is 0.9 to 5, preferably 1.4 to 3.5. If the molar ratio of titanium halide to magnesium alcoholate is less than 0.9, there is a problem that the active site formation of the catalyst is too small. If the molar ratio of titanium is greater than 5, the amount of the titanium halide is too much greater than the amount of titanium that can be bound on the magnesium carrier, thereby causing It is not desirable because it may adversely affect the economics.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 1) 단계의 마그네슘 담체를 형성하는 단계는 불활성 탄화수소계 용매 내에서 수행할 수 있다.In the preparation method of the ultrahigh molecular weight polyethylene polymerization catalyst according to the present invention, the step of forming the magnesium carrier of step 1) may be performed in an inert hydrocarbon solvent.
상기 불활성 탄화수소계 용매는 부탄, 펜탄, 헥산, 펩탄, 이소-옥탄, 시클로헥산 또는 메틸시클로헥산과 같은 지방족 탄화수소; 톨루엔 또는 크실렌과 같은 방향족 탄화수소; 또는 산소, 황화합물 및 수분을 제거한 수소화 디젤오일 분획 또는 가솔린 분획을 사용할 수 있다.The inert hydrocarbon solvent may be an aliphatic hydrocarbon such as butane, pentane, hexane, peptane, iso-octane, cyclohexane or methylcyclohexane; Aromatic hydrocarbons such as toluene or xylene; Or a hydrogenated diesel oil fraction or gasoline fraction from which oxygen, sulfur compounds, and water have been removed.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 1) 단계의 마그네슘 담체를 형성하는 단계는 할로겐화 티타늄, 예를 들어 TiCl3과 마그네슘 담체는 같은 입체구조를 가지고 있으며, 개별적인 이온 거리와 격자거리가 거의 비슷해서 결합하기에 유리한 조건을 가졌으며, 이들이 반응시 마그 네슘 담체의 [100]축과 [110]축에 할로겐화 티타늄이 흡착된다. 그 후 반응이 더 진행되어 촉매 활성화점이 생성된다.In the method of preparing a catalyst for ultra-high molecular weight polyethylene polymerization according to the present invention, the step of forming the magnesium carrier of step 1) is a titanium halide, for example, TiCl 3 and magnesium carrier have the same stereostructure, and individual ion distance Since the lattice distances are close to each other, they have favorable conditions for bonding, and when they react, titanium halides are adsorbed on the [100] and [110] axes of the magnesium carrier. The reaction then proceeds further to produce a catalyst activation point.
이와 같은 반응 공정은 20 내지 200℃의 온도범위하에 0.5 내지 50bar의 압력하에 반응시킬 수 있다. 상기 반응온도가 20℃ 미만인 경우에는 충분한 담체 형성이 곤란하고, 200℃를 초과하는 경우에는 담체와 반응하는 물질사이에 너무 높은 에너지 교환으로 불완전한 담체를 형성할 수 있는 문제가 있어 바람직하지 않다. 또한, 상기 압력이 0.5bar 미만인 경우에는 충분한 담체 형성이 곤란하고, 50bar를 초과하는 경우에는 담체의 모폴로지가 깨져서 촉매를 제조할 때 입도가 불균일해지는 문제가 있어 바람직하지 않다.Such a reaction process can be reacted under a pressure of 0.5 to 50 bar under a temperature range of 20 to 200 ℃. If the reaction temperature is less than 20 ℃ is difficult to form a sufficient carrier, if it exceeds 200 ℃ there is a problem that can form an incomplete carrier by too high energy exchange between the carrier and the reacting material is not preferred. In addition, when the pressure is less than 0.5bar, it is difficult to form a sufficient carrier, and when the pressure exceeds 50bar, the morphology of the carrier is broken so that the particle size becomes uneven when preparing a catalyst, which is not preferable.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 2) 단계의 유기 금속 화합물은 1족, 2족 또는 13족에 속하는 금속을 포함할 수 있다.In the method for preparing a catalyst for ultra-high molecular weight polyethylene polymerization according to the present invention, the organometallic compound of step 2) may include a metal belonging to Group 1, Group 2 or Group 13.
상기 유기 금속 화합물은 유기 알루미늄 화합물을 사용할 수 있다. 그 예로서는 트리알킬 알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 알루미늄 디알킬 할라이드 또는 알킬 알루미늄 세스퀴할라이드가 바람직하다.The organometallic compound may be an organoaluminum compound. Examples thereof are trialkyl aluminum, dialkyl aluminum halides, alkyl aluminum dihalides, aluminum dialkyl halides or alkyl aluminum sesquihalides.
보다 구체적으로는, 상기 유기 금속 화합물은 Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(i-C4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2, Al(i-C4H9)(C12H25)2, Al(i-C4H9)2H, Al(i-C4H9)3, (C2H5)2AlCl, (i-C3H9)2AlCl 또는 (C2H5)3Al2Cl3이 더욱 바람직하나, 이에만 한정되는 것은 아니다.More specifically, the organometallic compound may be Al (C 2 H 5 ) 3 , Al (C 2 H 5 ) 2 H, Al (C 3 H 7 ) 3 , Al (C 3 H 7 ) 2 H, Al ( iC 4 H 9 ) 2 H, Al (C 8 H 17 ) 3 , Al (C 12 H 25 ) 3 , Al (C 2 H 5 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) 2 H, Al (iC 4 H 9 ) 3 , (C 2 H 5 ) 2 AlCl, (iC 3 H 9 ) 2 AlCl or (C 2 H 5 ) 3 Al 2 Cl 3 is more preferred, but is not limited thereto.
상기 유기 금속 화합물은 유기 알루미늄 화합물의 혼합물도 사용할 수 있다. 보다 구체적으로는 주기율표 제1족, 제2족 또는 제13족에 속하는 유기 금속 화합물, 특히 상이한 유기 알루미늄 화합물의 혼합물을 사용할 수 있다.The organometallic compound may also be a mixture of organoaluminum compounds. More specifically, it is possible to use organometallic compounds belonging to the group 1, 2 or 13 of the periodic table, in particular mixtures of different organoaluminum compounds.
그 예로서는 Al(C2H5)3 및 Al(i-C4H9)3의 혼합물; Al(C2H5)3 및 (C8H17)3의 혼합물; Al(C4H9)2H 및 Al(C8H17)3의 혼합물; Al(i-C4H9)3 및 Al(C8H17)3의 혼합물; Al(C2H5)3 및 Al(C12H25)3의 혼합물; Al(i-C4H9)3 및 Al(C12H25)3의 혼합물; Al(C2H5)3 및 Al(C16H33)3의 혼합물; 또는 Al(C3H7)3 및 Al(C18H37)2(i-C4H9)의 혼합물이 바람직하다.Examples thereof include a mixture of Al (C 2 H 5 ) 3 and Al (iC 4 H 9 ) 3 ; A mixture of Al (C 2 H 5 ) 3 and (C 8 H 17 ) 3 ; A mixture of Al (C 4 H 9 ) 2 H and Al (C 8 H 17 ) 3 ; A mixture of Al (iC 4 H 9 ) 3 and Al (C 8 H 17 ) 3 ; A mixture of Al (C 2 H 5 ) 3 and Al (C 12 H 25 ) 3 ; A mixture of Al (iC 4 H 9 ) 3 and Al (C 12 H 25 ) 3 ; A mixture of Al (C 2 H 5 ) 3 and Al (C 16 H 33 ) 3 ; Or a mixture of Al (C 3 H 7 ) 3 and Al (C 18 H 37 ) 2 (iC 4 H 9 ).
특히, 유기 알루미늄 화합물로서 무-염소(chlorine-free)화합물을 사용하는 것이 더욱 바람직하다. 본 발명에 적합한 무-염소 화합물은 탄소수 1 내지 6을 갖는 탄화수소 라디칼, 바람직하게는 Al(i-C4H9)3 또는 Al(i-C4H9)2H 및 탄소수 4 내지 20의 올레핀, 더욱 바람직하게는 이소프렌과 알루미늄 트리알킬 또는 알루미늄 디알킬 할라이드와의 반응 생성물이다. 언급될 수 있는 예는 알루미늄 이소프레닐이다.In particular, it is more preferable to use a chlorine-free compound as the organoaluminum compound. Non-chlorine compounds suitable for the present invention are hydrocarbon radicals having 1 to 6 carbon atoms, preferably Al (iC 4 H 9 ) 3 or Al (iC 4 H 9 ) 2 H and olefins having 4 to 20 carbon atoms, more preferably Is the reaction product of isoprene with aluminum trialkyl or aluminum dialkyl halide. An example that may be mentioned is aluminum isoprenyl.
다른 적합한 무-염소 알루미늄 유기 화합물은 탄소수 1 내지 16의 탄화수소기를 갖는 트리알킬 알루미늄 또는 일반식 알루미늄 디알킬 할라이드이며, 이의 예로는 Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(i-C4H9)3, Al(i-C4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2 및 Al(i-C4H9)(C12H25)2를 들 수 있다.Other suitable chlorine-free aluminum organic compounds are trialkyl aluminum or general aluminum dialkyl halides having hydrocarbon groups of 1 to 16 carbon atoms, examples of which include Al (C 2 H 5 ) 3 , Al (C 2 H 5 ) 2 H , Al (C 3 H 7 ) 3 , Al (C 3 H 7 ) 2 H, Al (iC 4 H 9 ) 3 , Al (iC 4 H 9 ) 2 H, Al (C 8 H 17 ) 3 , Al ( C 12 H 25 ) 3 , Al (C 2 H 5 ) (C 12 H 25 ) 2, and Al (iC 4 H 9 ) (C 12 H 25 ) 2 .
상기 할로겐화 티타늄에 대한 유기 금속 화합물의 몰비(금속/Ti)는 0.1 내지 2, 바람직하게는 0.5 내지 1.5이다.The molar ratio (metal / Ti) of the organometallic compound to the titanium halide is 0.1 to 2, preferably 0.5 to 1.5.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 2) 단계의 유기 실란 화합물로는 하기 화학식 2로 표시되는 화합물을 사용할 수 있다.In the method of preparing a catalyst for ultrahigh molecular weight polyethylene polymerization according to the present invention, as the organosilane compound of step 2), a compound represented by the following Chemical Formula 2 may be used.
상기 화학식 2에서, R3, R4, R5, 및 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알킬렌기, 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기, 치환 또는 비치환된 탄소수 5 내지 30의 시클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기를 나타낸다.In Formula 2, R3, R4, R5, and R6 are the same as or different from each other, and each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkylene group having 2 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 30 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
상기 화학식 2로 표시되는 유기 실란 화합물로는 시클로헥실메틸디메톡시실란, 디메톡시디페닐실란, 메틸트리에톡시실란, 메틸트리클로로실란, 페닐트리메틸실란, 페닐트리에톡시실란, 디시클로펜틸디메톡시실란, 페닐메틸디메톡시실란, 비닐메틸디에톡시실란, 비닐메틸디메톡시실란, 디이소프로필디메톡시실란, 디세컨더리부틸디메톡시실란, 디시클로헥실디메톡시실란, 이소부틸이소프로필디메톡시실란, 이소부틸세컨더리부틸디메톡시실란, 이소부틸시클로펜틸디메톡시실란, 이소프로필세컨더리부틸디메톡시실란, 이소프로필시클로펜틸디메톡시실란, 이소프로필시클로 실란, 디메틸디이소프로펜옥시실란, 디페닐디메톡시실란, 디페닐실란, 도데실트리에톡시실란, 이소부틸트리에톡시실란, 이소부틸트리메톡시실란, 메틸시클로펜틸디메톡시실란 등이 바람직하다.As the organosilane compound represented by the formula (2), cyclohexylmethyldimethoxysilane, dimethoxydiphenylsilane, methyltriethoxysilane, methyltrichlorosilane, phenyltrimethylsilane, phenyltriethoxysilane, dicyclopentyldimethoxy Silane, phenylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldimethoxysilane, diisopropyldimethoxysilane, disecondarybutyldimethoxysilane, dicyclohexyldimethoxysilane, isobutylisopropyldimethoxysilane, iso Butyl secondary butyl dimethoxysilane, isobutyl cyclopentyldimethoxysilane, isopropyl secondary butyldimethoxysilane, isopropylcyclopentyldimethoxysilane, isopropylcyclo silane, dimethyldiisopropeneoxysilane, diphenyldimethoxysilane, Diphenylsilane, dodecyltriethoxysilane, isobutyltriethoxysilane, isobutyltrimethoxysilane, methylcyclopentyldimethoxy This silane is preferred.
상기 할로겐화 티타늄에 대한 유기 실란 화합물의 몰비(Si/Ti)는 0.1 내지 120이 바람직하고, 더욱 바람직하게는 0.1 내지 100이다. 상기 몰비가 0.1 미만인 경우에는 좁은 분자량의 효과를 보기 힘들다는 문제가 있고, 120을 초과하는 경우에는 촉매의 활성점을 다 없애버리기 때문에 중합시 낮은 활성을 가져올 수 있는 문제가 있어 바람직하지 않다.The molar ratio (Si / Ti) of the organosilane compound to titanium halide is preferably 0.1 to 120, more preferably 0.1 to 100. If the molar ratio is less than 0.1, there is a problem that it is difficult to see the effect of a narrow molecular weight, if it exceeds 120 there is a problem that can bring a low activity during polymerization because it eliminates the active point of the catalyst is not preferred.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매의 제조방법에 있어서, 상기 2) 단계의 유기 실란 화합물과 유기 금속 화합물의 상기 마그네슘 담체와의 반응은 유기 금속 화합물을 먼저 마그네슘 함유 담체와 반응시킨 후, 이어서 상기 유기 실란 화합물을 상기 마그네슘 담체와 반응시킬 수 있다.In the method for preparing a catalyst for ultra-high molecular weight polyethylene polymerization according to the present invention, the reaction between the organosilane compound of step 2) and the magnesium carrier of the organometallic compound is followed by first reacting the organometallic compound with a magnesium-containing carrier, and then The organosilane compound may be reacted with the magnesium carrier.
본 발명에 따른 촉매는 초고분자량 폴리에틸렌의 중합에 사용되는 경우에, 촉매 입자의 형태가 조절되고, 중합 활성이 높으며, 분자량 분포가 좁은 초고분자량 폴리에틸렌의 형성을 가능하게 한다.When the catalyst according to the present invention is used for the polymerization of ultra high molecular weight polyethylene, the shape of the catalyst particles is controlled, the polymerization activity is high, and the formation of ultra high molecular weight polyethylene with a narrow molecular weight distribution is possible.
또한, 본 발명에 따른 촉매는 조촉매로서 하나 이상의 유기 알루미늄 화합물, 바람직하게는 트리알킬알루미늄과 함께 사용될 수 있다.The catalyst according to the invention can also be used with at least one organoaluminum compound, preferably trialkylaluminum, as cocatalyst.
한편, 상기와 같은 초고분자량 폴리에틸렌의 중합 공정의 예로서, 현탁액 중합은 지글러 저압 가공에 통상적으로 사용되는 불활성 분산 매질, 예를 들어 지방족 또는 지환족 탄화수소 내에서 수행되며, 부탄, 펜탄, 헥산, 헵탄, 이소옥탄, 사 이클로헥산 및 메틸사이클로헥산은 이러한 탄화수소의 예로 언급될 수 있다. 또한, 산소, 황 화합물 및 수분을 제거시킨 가솔린 분획 또는 수소화시킨 디젤 오일 분획을 사용하는 것도 가능하다. 기체상 중합은 직접 수행되거나 또는 현탁액 가공에서 촉매의 예비중합 후에 수행될 수 있다. 중합체의 분자량은 수소의 양으로 조절된다.On the other hand, as an example of such a polymerization process of ultra high molecular weight polyethylene, suspension polymerization is carried out in an inert dispersion medium commonly used in Ziegler low pressure processing, for example aliphatic or alicyclic hydrocarbons, butane, pentane, hexane, heptane , Isooctane, cyclohexane and methylcyclohexane may be mentioned as examples of such hydrocarbons. It is also possible to use gasoline fractions which have been deoxygenated, sulfur compounds and water or hydrogenated diesel oil fractions. The gas phase polymerization can be carried out directly or after the prepolymerisation of the catalyst in suspension processing. The molecular weight of the polymer is controlled by the amount of hydrogen.
이하, 본 발명을 하기 실시예를 들어 설명하기로 하되, 본 발명의 범위가 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to the following examples, but the scope of the present invention is not limited only to the following examples.
<< 실시예Example >>
<< 비교예Comparative example 1> 1>
1) 촉매의 제조1) Preparation of Catalyst
마그네슘 담체의 헥산 현탁액에 TiCl4를 마그네슘에 대한 티타늄의 몰비(Ti/Mg) = 0.95이 되게 첨가하고 반응 혼합물을 85℃로 가열한 다음, 5시간 30분 동안 교반된 고체침전물을 상온에서 헥산으로 5회 세척하였다. 그 후 트리에틸알루미늄을 0.5의 몰비로 반응시켰다. 이때 Ti3 + 비율은 40%였다.TiCl 4 was added to a hexane suspension of magnesium carrier such that the molar ratio of titanium to magnesium (Ti / Mg) = 0.95 and the reaction mixture was heated to 85 ° C., and the solid precipitate precipitated at room temperature for 5 hours 30 minutes was added to hexane. Wash five times. Triethylaluminum was then reacted at a molar ratio of 0.5. At this time, the Ti 3 + ratio was 40%.
2) 중합2) polymerization
에틸렌의 중합은 교반기와 온도조절 자켓이 구비된 2리터 스틸 반응기에서 The polymerization of ethylene was carried out in a 2-liter steel reactor equipped with a stirrer and a temperature controlled jacket.
수행되었다. 고압반응기를 오븐에 말린 후 뜨거운 상태로 조립한 후 질소와 진공을 교대로 4회 조작하여 반응기 안을 질소 분위기로 만들었다. 탄화수소 용매로서 n-헥산 1,000ml가 사용되었고, 조촉매로 2mmol의 Al(C2H5)3이 사용되었다. 중 합은 헥산 1,000ml를 반응기에 넣은 후, 반응기의 온도를 80℃로 올리고 반응기압이 128psi가 되도록 에틸렌 압력을 채운 후 2시간 동안 중합을 실시하였다. 반응 중 에틸렌이 소모된 만큼 지속적으로 에틸렌을 반응기에 공급하도록 기압을 유지하였다. 중합이 끝난 후 반응기의 온도를 상온으로 내리고, 생성된 중합체는 분리수집하고, 50℃의 진공오븐에서 최소한 4시간 동안 건조하여 백색 분말의 초고분자량 폴리에틸렌을 얻었다.Was performed. After drying the autoclave in an oven and assembling it in a hot state, nitrogen and vacuum were alternately operated four times to make the reactor into a nitrogen atmosphere. 1,000 ml of n-hexane was used as a hydrocarbon solvent, and 2 mmol of Al (C 2 H 5 ) 3 was used as a promoter. Polymerization was carried out for 2 hours after putting the hexane 1,000ml into the reactor, the temperature of the reactor was raised to 80 ℃ and the ethylene pressure to the reactor pressure is 128psi. Atmospheric pressure was maintained to continuously supply ethylene to the reactor as ethylene was consumed during the reaction. After the polymerization was completed, the temperature of the reactor was lowered to room temperature, and the resulting polymer was collected and separated, and dried in a vacuum oven at 50 ° C. for at least 4 hours to obtain an ultra high molecular weight polyethylene of white powder.
중합 활성(kg 폴리에틸렌/g 촉매)은 사용한 촉매량(g)당 생성된 중합체의 무게(kg)비로 계산하였다. 중합체의 평균 입자 크기는 레이저 입자 분석기를 이용하여 측정하였고, 중합체의 입자 분포도는 (d90-d10)/d50로 계산하였다. 여기서 d10, d50, d90은 각각 10%, 50%, 90%에서의 입자 크기를 의미하며, d50은 중간 입자 크기로 정의된다. 중합 결과는 중합체의 겉보기 밀도 및 고유점도와 함께 하기 표 1에 나타내었다.Polymerization activity (kg polyethylene / g catalyst) was calculated as the weight (kg) ratio of the resulting polymer per gram of catalyst used. The average particle size of the polymer was measured using a laser particle analyzer, and the particle distribution of the polymer was calculated as (d90-d10) / d50. Where d10, d50 and d90 are the particle sizes at 10%, 50% and 90%, respectively, and d50 is defined as the median particle size. The polymerization results are shown in Table 1 below with the apparent density and intrinsic viscosity of the polymer.
겉보기 밀도는 HJ-6010 기계로 측정하였고, 고유점도는 Ubbelohde 점도계를 이용하여 측정하였다. 고유점도 값을 이용하여 분자량을 계산하였다. Margolies equation을 사용하여 계산한 결과는 표1에 나타내었다.Apparent density was measured with a HJ-6010 instrument and intrinsic viscosity was measured using a Ubbelohde viscometer. The molecular weight was calculated using the intrinsic viscosity value. The results calculated using the Margolies equation are shown in Table 1.
<< 실시예Example 1> 1>
상기 비교예 1에서 얻어진 촉매에 시클로헥실메틸디메톡시실란을 촉매 내에 함유된 티타늄에 대한 알콕시실란의 몰비(Si/Ti) = 10이 되게 첨가하여 상온에서 2시간 동안 교반한 것 이외에는 상기 비교예 1과 동일한 방법으로 수행되었다. 에틸렌 중합결과는 하기 표 1에 나타낸 바와 같다.Comparative Example 1, except that cyclohexylmethyldimethoxysilane was added to the catalyst obtained in Comparative Example 1 such that the molar ratio of alkoxysilane to titanium contained in the catalyst (Si / Ti) = 10 was stirred at room temperature for 2 hours. Was performed in the same manner as The ethylene polymerization results are shown in Table 1 below.
<< 실시예Example 2> 2>
상기 실시예 1에서 시클로헥실메틸디메톡시실란 대신 페닐트리에톡시실란을 사용한 것 이외에는 상기 실시예 1과 동일한 방법으로 중합이 수행되었다. 중합결과는 하기 표 1에 나타낸 바와 같다.The polymerization was carried out in the same manner as in Example 1, except that phenyltriethoxysilane was used instead of cyclohexylmethyldimethoxysilane in Example 1. The polymerization results are shown in Table 1 below.
<< 실시예Example 3> 3>
상기 실시예 1에서 시클로헥실메틸디메톡시실란 대신 페닐트리메틸실란을 사용한 것 이외에는 상기 실시예 1과 동일한 방법으로 중합이 수행되었다. 중합결과는 하기 표 1에 나타낸 바와 같다.The polymerization was carried out in the same manner as in Example 1, except that phenyltrimethylsilane was used instead of cyclohexylmethyldimethoxysilane in Example 1. The polymerization results are shown in Table 1 below.
<< 실시예Example 4> 4>
상기 실시예 1에서 시클로헥실메틸디메톡시실란 대신 메틸트리에톡시실란을 사용한 것 이외에는 상기 실시예 1과 동일한 방법으로 중합이 수행되었다. 중합결과는 하기 표 1에 나타낸 바와 같다.The polymerization was carried out in the same manner as in Example 1, except that methyltriethoxysilane was used instead of cyclohexylmethyldimethoxysilane in Example 1. The polymerization results are shown in Table 1 below.
<< 실시예Example 5> 5>
상기 실시예 1에서 시클로헥실메틸디메톡시실란 대신 디메톡시디페닐실란을 사용한 것 이외에는 상기 실시예 1과 동일한 방법으로 중합이 수행되었다. 중합결과는 하기 표 1에 나타낸 바와 같다.The polymerization was carried out in the same manner as in Example 1, except that dimethoxydiphenylsilane was used instead of cyclohexylmethyldimethoxysilane in Example 1. The polymerization results are shown in Table 1 below.
<< 실시예Example 6> 6>
실시예 1에서 시클로헥실메틸디메톡시실란을 상온에서 반응시키는 대신 70℃에서 처리한 것 이외에는 상기 실시예 1과 동일한 방법으로 중합이 수행되었다. 중합결과는 하기 표 1에 나타낸 바와 같다.In Example 1, the polymerization was carried out in the same manner as in Example 1, except that the cyclohexylmethyldimethoxysilane was treated at 70 ° C. instead of reacting at room temperature. The polymerization results are shown in Table 1 below.
<< 실시예Example 7> 7>
상기 실시예 1에서 시클로헥실메틸디메톡시실란을 촉매 내에 함유된 티타늄에 대한 알콕시실란의 몰비(Si/Ti) = 1이 되게 첨가하여 처리한 것 이외에는 상기 실시예 1과 동일한 방법으로 중합이 수행되었다. 중합결과는 하기 표 1에 나타낸 바와 같다.The polymerization was carried out in the same manner as in Example 1, except that cyclohexylmethyldimethoxysilane was added in Example 1 to treat a molar ratio (Si / Ti) = 1 of the alkoxysilane to titanium contained in the catalyst. . The polymerization results are shown in Table 1 below.
<< 실시예Example 8> 8>
상기 실시예 1에서 시클로헥실메틸디메톡시실란을 촉매 내에 함유된 티타늄에 대한 알콕시실란의 몰비(Si/Ti) = 100이 되게 첨가하여 처리한 것 이외에는 상기 실시예 1과 동일한 방법으로 중합이 수행되었다. 중합결과는 하기 표 1에 나타낸 바와 같다.The polymerization was carried out in the same manner as in Example 1, except that cyclohexylmethyldimethoxysilane was added in Example 1 so that the molar ratio of alkoxysilane to titanium contained in the catalyst (Si / Ti) = 100 was added. . The polymerization results are shown in Table 1 below.
<< 실시예Example 9> 9>
상기 비교예 1에서 얻어진 촉매로 중합할 때 시클로헥실메틸디메톡시실란을 촉매 내에 함유된 티타늄에 대한 알콕시실란의 몰비(Si/Ti) = 100이 되게 조촉매에 첨가하는 것 이외에는 상기 비교예 1과 동일한 방법으로 수행되었다. 에틸렌 중합결과는 하기 표 1에 나타낸 바와 같다.When polymerizing with the catalyst obtained in Comparative Example 1, cyclohexylmethyldimethoxysilane was added to the cocatalyst so that the molar ratio (Si / Ti) = 100 of the alkoxysilane to titanium contained in the catalyst was added to the promoter. It was done in the same way. The ethylene polymerization results are shown in Table 1 below.
상기 표 1의 결과로부터 알 수 있는 바와 같이, 본 발명에 따른 유기 실란 화합물을 사용한 실시예 1 내지 9의 경우는 비교예 1의 경우와 비교하여 활성이 높아졌음을 확인할 수 있었다. 또한, 비교예 1에 비해서 실시예에서는 모두 겉보기 밀도가 높아졌으며, 고유점도가 높아짐으로 인하여 분자량을 높이는 결과를 가져왔다. 중합 후 얻어지는 반응물의 입자 분포가 좁아지게 됨으로써 결국 물성 가공에 유동성을 확보할 수 있는 장점을 가지게 된다.As can be seen from the results of Table 1, it can be seen that in Examples 1 to 9 using the organosilane compound according to the present invention, the activity was increased compared to the case of Comparative Example 1. In addition, in Example compared with the comparative example 1, all the apparent density became high, and the intrinsic viscosity became high, resulting in the result which raises molecular weight. Since the particle distribution of the reactants obtained after the polymerization is narrowed, it has the advantage of ensuring fluidity in the physical processing.
본 발명에 따른 초고분자량 폴리에틸렌 중합용 촉매는 높은 중합 활성과 겉보기 밀도가 높으며, 특히 분자량 분포가 좁은 초고분자량 폴리에틸렌 중합체를 제조할 수 있다.The ultrahigh molecular weight polyethylene polymerization catalyst according to the present invention has a high polymerization activity and a high apparent density, and in particular, an ultrahigh molecular weight polyethylene polymer having a narrow molecular weight distribution can be prepared.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070000926A KR101144513B1 (en) | 2007-01-04 | 2007-01-04 | Catalyst for ultra high molecular weight polyethylene polymerization, method for preparing the same and polymerization method of ultra high molecular weight polyethylene using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070000926A KR101144513B1 (en) | 2007-01-04 | 2007-01-04 | Catalyst for ultra high molecular weight polyethylene polymerization, method for preparing the same and polymerization method of ultra high molecular weight polyethylene using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080064249A true KR20080064249A (en) | 2008-07-09 |
KR101144513B1 KR101144513B1 (en) | 2012-05-11 |
Family
ID=39815585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070000926A KR101144513B1 (en) | 2007-01-04 | 2007-01-04 | Catalyst for ultra high molecular weight polyethylene polymerization, method for preparing the same and polymerization method of ultra high molecular weight polyethylene using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101144513B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101305620B1 (en) * | 2011-03-08 | 2013-09-09 | 대한유화공업 주식회사 | Polyethylene resin with high-strength, method for manufacturing the polyethylene resin, and polyethylene fiber using the polyethylene resin |
WO2014102813A1 (en) | 2012-12-31 | 2014-07-03 | Reliance Industries Limited | Heterogeneous ziegler-natta catalyst system and a process for olefin polymerization using the same |
KR20180074946A (en) * | 2016-12-26 | 2018-07-04 | 한화토탈 주식회사 | The preparation method of ultra high molecular weight polyethylene |
US10544243B2 (en) | 2014-02-17 | 2020-01-28 | Reliance Industries Limited | Heterogeneous Ziegler-Natta catalyst composition, a process for its preparation and a process for polymerizing olefin using the same |
CN116462786A (en) * | 2022-01-18 | 2023-07-21 | 韩华道达尔能源有限公司 | Polymerization method of ultra-high molecular weight polyethylene and preparation method of catalyst thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230069618A (en) | 2021-11-12 | 2023-05-19 | 주식회사 에스피씨아이 | Metallocene compound for polymerization of ultra-high molecular weight polyolefin and method for producing ultra-high molecular weight polyolefin polymer using the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100351386B1 (en) * | 2000-04-24 | 2002-09-05 | 삼성종합화학주식회사 | Catalyst for preparation of ultra high molecular weight polyethylene and preparation method of ultra high molecular weight polyethylene using the same |
-
2007
- 2007-01-04 KR KR1020070000926A patent/KR101144513B1/en active IP Right Grant
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101305620B1 (en) * | 2011-03-08 | 2013-09-09 | 대한유화공업 주식회사 | Polyethylene resin with high-strength, method for manufacturing the polyethylene resin, and polyethylene fiber using the polyethylene resin |
WO2014102813A1 (en) | 2012-12-31 | 2014-07-03 | Reliance Industries Limited | Heterogeneous ziegler-natta catalyst system and a process for olefin polymerization using the same |
KR20150103696A (en) * | 2012-12-31 | 2015-09-11 | 릴라이언스 인더스트리즈 리미티드 | Heterogeneous ziegler-natta catalyst system and a process for olefin polymerization using the same |
EP2938642A4 (en) * | 2012-12-31 | 2016-09-14 | Reliance Ind Ltd | Heterogeneous ziegler-natta catalyst system and a process for olefin polymerization using the same |
US10544243B2 (en) | 2014-02-17 | 2020-01-28 | Reliance Industries Limited | Heterogeneous Ziegler-Natta catalyst composition, a process for its preparation and a process for polymerizing olefin using the same |
KR20180074946A (en) * | 2016-12-26 | 2018-07-04 | 한화토탈 주식회사 | The preparation method of ultra high molecular weight polyethylene |
KR101882110B1 (en) * | 2016-12-26 | 2018-07-25 | 한화토탈 주식회사 | The preparation method of ultra high molecular weight polyethylene |
CN116462786A (en) * | 2022-01-18 | 2023-07-21 | 韩华道达尔能源有限公司 | Polymerization method of ultra-high molecular weight polyethylene and preparation method of catalyst thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101144513B1 (en) | 2012-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1276776B1 (en) | Catalyst for producing an ultra high molecular weight polyethylene and method for producing an ultra high molecular weight polyethylene using the same | |
KR100572935B1 (en) | Polyolefin catalysts for polymerizing propylene and methods of making and using them. | |
RU2375378C1 (en) | Catalyst component for ethylene polymerisation, production thereof and catalyst containing this component | |
CA2388704C (en) | An improved catalyst for homo- and co-polymerization of olefin | |
KR101144513B1 (en) | Catalyst for ultra high molecular weight polyethylene polymerization, method for preparing the same and polymerization method of ultra high molecular weight polyethylene using the same | |
RU2615153C2 (en) | Catalyst for polymerisation of olefins and preparation method thereof | |
EP2007820A1 (en) | Method for polymerization and copolymerization of olefin | |
US7651969B2 (en) | Catalyst system for producing ethylene (co) polymer with improved branch distribution | |
KR101049662B1 (en) | Ultra high molecular weight polyethylene polymerization catalyst and preparation method of ultra high molecular weight polyethylene using the same | |
WO2011144431A1 (en) | Process for the preparation of ultra high molecular weight polyethylene | |
US7193022B2 (en) | Method of polymerization and copolymerization of ethylene | |
KR100430848B1 (en) | Improved Olefin Polymerization and Copolymerization Catalysts | |
KR20100100433A (en) | A method for preparation of catalyst for ethylene (co)polymerization | |
EP1358221B1 (en) | Method for producing ethylene home-and co-polymer | |
US20040157726A1 (en) | Catalyst system for ethylene (co)polymerization | |
CN109912736B (en) | External electron donor for olefin polymerization catalyst, catalyst system and preparation method of polyolefin | |
KR101339603B1 (en) | A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same | |
US10822438B2 (en) | Catalyst system for enhanced stereo-specificity of olefin polymerization and method for producing olefin polymer | |
KR20090092023A (en) | A preparation method of catalyst for ethylene (co)polymerization | |
JP2004526014A (en) | Catalyst composition for olefin polymerization and method for preparing the same | |
KR100827539B1 (en) | A method for producing a solid vanadium titanium catalyst for ehtylene homo- and copolymerization | |
CN116023542B (en) | Catalyst component, catalyst and preparation method and application thereof | |
CN114456286B (en) | Catalyst system for olefin polymerization and application thereof | |
KR20070093219A (en) | Process for preparing a catalyst for olefinpolymerization | |
KR101688976B1 (en) | Preparing method of catalyst for polymerization of polyethylene and process for polymerization of polyethylene using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150416 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170328 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180418 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190401 Year of fee payment: 8 |