KR20080054120A - Enzyme-linked immunosorbent assay method for residual host cell derived proteins in recombinant antibody drug production - Google Patents

Enzyme-linked immunosorbent assay method for residual host cell derived proteins in recombinant antibody drug production Download PDF

Info

Publication number
KR20080054120A
KR20080054120A KR1020060126303A KR20060126303A KR20080054120A KR 20080054120 A KR20080054120 A KR 20080054120A KR 1020060126303 A KR1020060126303 A KR 1020060126303A KR 20060126303 A KR20060126303 A KR 20060126303A KR 20080054120 A KR20080054120 A KR 20080054120A
Authority
KR
South Korea
Prior art keywords
protein
antibody
cell line
production
derived
Prior art date
Application number
KR1020060126303A
Other languages
Korean (ko)
Other versions
KR100850800B1 (en
Inventor
김현일
이용운
손영수
박흥록
구윤모
임상민
정찬희
Original Assignee
이수앱지스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이수앱지스 주식회사 filed Critical 이수앱지스 주식회사
Priority to KR1020060126303A priority Critical patent/KR100850800B1/en
Publication of KR20080054120A publication Critical patent/KR20080054120A/en
Application granted granted Critical
Publication of KR100850800B1 publication Critical patent/KR100850800B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/535Production of labelled immunochemicals with enzyme label or co-enzymes, co-factors, enzyme inhibitors or enzyme substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01007Peroxidase (1.11.1.7), i.e. horseradish-peroxidase

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Water Supply & Treatment (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

An enzyme-linked immunosorbent assay(ELISA) method is provided to detect residual host cell derived proteins inducible abnormal immune responses in patients in production of recombinant antibody drug from a Chinese Hamster Ovary(CHO) cell line by using polyclonal antibody against all proteins derived from host cell, so that stability and safety of use in products are improved. A polyclonal antibody for detecting host cell derived proteins secreted together with a target protein in the production of recombinant protein, anti-GPIIbIIIa antibody, is prepared with proteins separated among proteins of a null cell which does not express the recombinant protein under the same purification conditions as the recombinant protein as immunogen. A method for producing the polyclonal antibody comprises the steps of: (1) removing cells from the cultured medium of null CHO cell through depth filtration to obtain the supernatant; (2) purifying the supernatant under the same conditions as the recombinant protein; and (3) inoculating the purified fraction as a immunogen into an animal and obtaining an antibody from the immunized animal. An ELISA kit for detecting residual host cell derived proteins in production of recombinant antibody drug contains the polyclonal antibody.

Description

재조합 항체의약품의 생산시 생산세포주 유래 단백질 검출을 위한 ELISA 방법{Enzyme-Linked Immunosorbent Assay Method for Residual Host Cell derived Proteins in Recombinant Antibody Drug Production}Enzyme-Linked Immunosorbent Assay Method for Residual Host Cell derived Proteins in Recombinant Antibody Drug Production}

도 1 약 양이온 교환 크로마토그램을 비교한 그림이다. 1silver Figure shows a comparison of weak cation exchange chromatograms.

(a) 표적 단백질: 항-GPIIbIIIa 항체 생산 세포, (a) target protein: anti-GPIIbIIIa antibody producing cells,

(b) 무기능 세포(Null cell) 유래 숙주세포 단백질(b) Null cell derived host cell protein

도 2 래빗(rabbit) 항-HCP IgG 생산시 은 염색된 SDS-PAGE와 간접 웨스턴 블럿 분석 결과를 나타낸 그림이다. 2Is Figure 2 shows the results of SDS-PAGE stained with silver and indirect Western blot analysis for rabbit anti-HCP IgG production.

(a) 은 염색된 SDS-PAGE, (a) silver stained SDS-PAGE,

(b) 전-면역 테스트(pre-immune test), (b) pre-immune test,

(c) 2차 및 3차 면역화된 혈청 테스트(c) Second and Third Immunized Serum Tests

레인 1: 마커, 레인 2: 비환원 HCP, 레인 3: 환원된 HCP, 레인 4: 비-환원된 항-GPIIbIIIa 항체, 레인 5: 항-GPIIbIIIa 항체Lane 1: marker, lane 2: non-reducing HCP, lane 3: reduced HCP, lane 4: non-reduced anti-GPIIbIIIa antibody, lane 5: anti-GPIIbIIIa antibody

도 3은 래빗 항-HCP IgG 생산의 간접적 ELISA 분석. 전-면역 혈청에 대한 면역 혈청 관찰 및 항-표지 단백질 항체 생산 동정 결과를 비교한 그림이다. 3Indirect ELISA Analysis of Rabbit Anti-HCP IgG Production. This figure compares the results of immunoserum observation and anti-labeled protein antibody production on pre-immune serum.

도 4는 HRP 결합된 래빗 IgG 은 염색된 SDS-PAGE 및 효소 기질 반응분석 결 과를 나타낸 그림이다. 4HRP-bound rabbit IgG stained SDS-PAGE and enzyme substrate reaction analysis results.

(a) 은 염색된 SDS-PAGE 분석(a) Silver stained SDS-PAGE analysis

레인 1: 마커, 레인 2, 3: HRP 결합된 래빗 IgG, 레인 4: 래빗 IgG, 레인 5, 6: 활성화된 HRP. Lane 1: marker, lane 2, 3: HRP bound rabbit IgG, lane 4: rabbit IgG, lane 5, 6: activated HRP.

(b) 효소-기질 반응 (b) enzyme-substrate reactions

레인 1: 마커, 레인 2 및 3: HRP 결합된 래빗 IgGLane 1: marker, lane 2 and 3: HRP bound rabbit IgG

도 5는 GFC 컬럼으로 HRP 결합된 래빗 항-HCP IgG의 HPLC 분석결과를 나타낸 그림이다. 5Shows the HPLC analysis of HRP bound rabbit anti-HCP IgG in GFC column.

도 6은 HRP 결합된 래빗 항-HCP IgG의 은 염색된 SDS-PAGE와 웨스턴 블럿 분석결과를 나타낸 그림이다. 6Silver stained SDS-PAGE and Western blot analysis of silver HRP bound rabbit anti-HCP IgG.

(a) 은 염색된 SDS-PAGE 분석(a) Silver stained SDS-PAGE analysis

(b) 래빗 A, B, A+B IgG를 사용한 웨스턴 블럿 분석(b) Western blot analysis using rabbit A, B, A + B IgG

레인 1: 마커, 레인 2: 비-환원된 HCP, 레인 3: 환원된 HCP, 레인 4: 비-환원된 항-GPIIbIIIa 항체, 레인 5: 환원된 항-GPIIbIIIa 항체Lane 1: marker, lane 2: non-reduced HCP, lane 3: reduced HCP, lane 4: non-reduced anti-GPIIbIIIa antibody, lane 5: reduced anti-GPIIbIIIa antibody

도 7 항-GPIIbIIIa 항체 순수분리 과정에서 은 염색된 SDS-PAGE 및 웨스턴 블럿 분석으로 HCP 동정 결과를 나타낸 그림이다. 7silver Silver stained during anti-GPIIbIIIa antibody purification Figure shows the results of HCP identification by SDS-PAGE and Western blot analysis.

(a) 은 염색된 SDS-PAGE 분석(a) Silver stained SDS-PAGE analysis

(b) HRP-래빗 항-HCP IgG을 사용한 웨스턴 블럿 분석(b) Western blot analysis using HRP-rabbit anti-HCP IgG

(c) 웨스턴 블럿 분석, 1차 래빗 IgG 및 2차 페록시다제 표지된 goat 항-래빗 IgG, (c) Western blot analysis, primary rabbit IgG and secondary peroxidase labeled goat anti-rabbit IgG,

(d) 웨스턴 블럿 분석, HRP-래빗 IgG 사용 (d) Western blot analysis, using HRP-rabbit IgG

레인 1 및 레인 9: 마커, 레인 2-8: 항-GPIIbIIIa 항체 순수분리 단계 샘플, 레인 10: 비-환원된 HCPLane 1 and lane 9: marker, lanes 2-8: anti-GPIIbIIIa antibody clarification step sample, lane 10: non-reduced HCP

도 8 HCP 정량을 위한 Sandwich ELISA 분석 결과를 나타낸 그림이다. 8silver The figure shows Sandwich ELISA analysis for HCP quantification.

(a) 항-GPIIbIIIa 항체 정제 과정(a) Anti-GPIIbIIIa Antibody Purification Process

(b) 항-GPIIbIIIa 항체 3 배치 산물(b) Anti-GPIIbIIIa Antibody 3 Batch Product

도 9는 HRP 결합된 IgG 안정성의 ELISA 분석 결과를 나타낸 그림이다. 9Shows the result of ELISA analysis of HRP bound IgG stability.

(a) 안정화제 첨가(a) Stabilizer Addition

(b) 안정화제 첨가하지 않음(b) no stabilizer added

1. Nicholson, I. C. et al., J. Immunol. 163, 6898-6906, 1999Nicholson, IC et al., J. Immunol. 163 , 6898-6906, 1999

2. Lucas, C., et al., J. Immunol. Methods 113, 113-122, 19982. Lucas, C., et al., J. Immunol. Methods 113 , 113-122, 1998

3. Himanen, J. P. et el., Vaccine 11, 970-973, 1993Himanen, JP et el., Vaccine 11 , 970-973, 1993

4. Eaton, L. C. J. Pharm. Biomed. Anal. 7, 633-638, 19894. Eaton, LC J. Pharm. Biomed. Anal. 7 , 633-638, 1989

5. Briggs, J. et al., Biotechniques 9, 598-606, 1990 5. Briggs, J. et al., Biotechniques 9 , 598-606, 1990

6. Kung, V. T. et al., Anal. Biochem. 187, 220-227, 19906. Kung, VT et al., Anal. Biochem . 187 , 220-227, 1990

7. Eaton, L. C., J. Chromatogr. A 705, 105-114, 19957. Eaton, LC, J. Chromatogr . A 705 , 105-114, 1995

8. Robey, F. A., In Methods in Protein Sequence Analysis, K. A. Walsh Eds.: Human Press, Clifton, NJ, pp67-78, 1986 Robey, F. A., In Methods in Protein Sequence Analysis, K. A. Walsh Eds .: Human Press, Clifton, NJ, pp67-78, 1986.

9. Jones, A. J. and J. V. O'Connor, Dev. Biol. Stand. 59, 175-180, 19859. Jones, AJ and JV O'Connor, Dev. Biol. Stand . 59 , 175-180, 1985

10. Anicetti, V. R. et al., Trends. Biotechnol. 7, 342-349, 198910. Anicetti, VR et al., Trends. Biotechnol . 7 , 342-349, 1989

11. Garg, V. K. et al., Bioprocess Technol. 12, 29-54, 199111. Garg, VK et al., Bioprocess Technol . 12 , 29-54, 1991

12. Anicetti, V. R., Analytical Biotechnology: Capillary Electrophoresis and Chromatography, In ACS Symposium Series, Cs. Horvath and J. G. Nikelly Eds: American Chemical Society, Washington DC. No. 434, 127-140, 199012. Anicetti, VR, Analytical Biotechnology: Capillary Electrophoresis and Chromatography, In ACS Symposium Series, Cs. Horvath and JG Nikelly Eds: American Chemical Society, Washington DC. No. 434 , 127-140, 1990

13. Anicetti, V. R. et al., J. Immunol. Methods 91, 213-224, 198613. Anicetti, VR et al., J. Immunol. Methods 91 , 213-224, 1986

14. Bass, R., ICH Topic Q 2 B Validation of Analytical Procedures; Methodology, Step 4 Consensus Guidline 6, ICH-Technical Coordination, 199614. Bass, R., ICH Topic Q 2 B Validation of Analytical Procedures; Methodology, Step 4 Consensus Guidline 6 , ICH-Technical Coordination, 1996

본 발명은 중국 햄스터 난소 세포주에서 재조합 생물의약품 생산시 제조공정에 맞게 생산세포주 유래 단백질을 검출할 수 있는 ELISA 키트 제조에 관한 것으로, 보다 상세하게는 재조합 생물의약품 (목적단백질)의 생산 유전자를 지니지 않는 무기능 세포주(null cell mock) 배양액 중 제조공정의 초기 정제과정 후에도 남아있는 생산세포주 유래 모든 단백질을 얻어 이에 대한 다클론 항체를 제작한 후, 면역학적 반응을 이용하여 생산세포주 유래 단백질을 검출할 수 있는 ELISA 방법 및 그 키트에 관한 것이다. The present invention relates to the production of an ELISA kit that can detect a production cell line-derived protein according to the manufacturing process in the production of recombinant biopharmaceuticals in a Chinese hamster ovary cell line, and more specifically, does not have a gene for producing a recombinant biopharmaceutical (target protein) After production of all cell-derived proteins from the production cell line remaining after the initial purification of the manufacturing process in a null cell mock culture medium, polyclonal antibodies can be prepared, and protein-derived cell-derived proteins can be detected using immunological reactions. ELISA methods and kits thereof.

1990년대 후반부터 유전자 재조합 항체는 신약 개발의 중요한 소재로 부각되기 시작하였다. 현재 Food and Drug Administration(FDA)의 허가를 받아 판매되고 있는 치료용 신약은 11개, 진단 목적의 인체 투여용 항체 신약은 6개 이다(표 1). 항체의약품의 시장규모는 2010년에 5억 달러 수준에 이를 것으로 추정되었으나 이미 2003년에 항체 약품 시장은 20억 달러를 넘어섰고, 그 시장 규모는 기하급수적으로 증가할 것으로 추정되고 있다(1). 이러한 종류의 재조합 생물의약품은 생물학적 제제로의 안전성이 확보 되어야 하며, 최근에는 그 기준이 점차 까다로워져 가고 있다. 안전성에 관련된 요인으로는 생산 중 오염원에 대한 검증이 제일 중요하다고 할 수 있다. 미생물이나, 바이러스, 엔도톡신 등에 의한 오염원 확인 시험은 오래전부터 실시되었다. 최근에는 생산세포주 유래 단백질이나 DNA 등이 제품 중에 얼마나 혼재되어 있는가를 검증하는 항목이 중요하게 되었다. 그 두 가지 항목은 환자에게 면역이상 반응을 일으킬 수 있는 중대한 요인이 되기 때문이다. 생물의약품 내의 잔존하는 오염물질 검출을 위한 상용화된 진단시약들이 판매되고 있으나, 이러한 방법들은 대부분의 오염물질에 대한 검량만 가능할 뿐, 제품에 따른 배양공정이나 정제공정 방법에 따라 변화될 수 있는 가능성을 지닌 process specific contaminant를 위해서는 부적합하다. 때문에 고유의 제품마다의 생산세포주 유래 오염물질을 검량하기 위한 방법이 개발되는 것이 적합하다(7). Since the late 1990s, recombinant antibodies have emerged as an important material for drug development. There are currently 11 new therapeutic drugs for sale, licensed by the Food and Drug Administration (FDA), and 6 new antibodies for human administration for diagnostic purposes (Table 1). The market for antibody drugs is estimated to reach $ 500 million in 2010, but the market for antibody drugs has already exceeded $ 2 billion in 2003, and the market size is expected to increase exponentially (1). Recombinant biopharmaceuticals of this kind have to be secured as biological agents, and in recent years, the criteria are becoming increasingly difficult. The most important factor related to safety is the verification of pollutants during production. Pollutant identification tests by microorganisms, viruses, endotoxins, etc. have been conducted for a long time. In recent years, it has become an important item to verify how mixed a protein or DNA derived from a production cell line is in a product. These two items are important factors that can cause immune dysfunction in patients. Commercially available diagnostic reagents for the detection of residual contaminants in biopharmaceuticals are on the market, but these methods can only be calibrated for most contaminants and may change depending on the cultivation or purification process of the product. Not suitable for process specific contaminants. Therefore, it is appropriate to develop a method for calibrating contaminants derived from production cell lines for each unique product (7).

본 연구에 이용된 생산세포주인 Chinese hamster ovary(CHO) 세포와 다른 제품 및 다른 제조사의 CHO 세포 간에는, 근본적으로 같은 세포주일 수 있으나, 그 생산용 발현 벡터가 다르게 제작되었고, 사용 배지 등의 차이가 있을 수 있다. 따 라서 각 제조사는 자사의 생산세포주 특이적인 숙주유래 단백질 검출법을 효소연결 면역흡착분석(enzyme linked immunosorbent assay, ELISA)나 역치(threshold) 방법 등을 통해 확립해 두어야 한다. 본 연구에서는 ELISA 방법을 통해 그 검출법을 확립하였다. 생산세포주 유래 단백질에 관한 규정은 정확한 수치로 명시되어 있지 않고, “case by case"로 명시되어 있으며(8), 이에 대한 충분한 이론적 근거와 자료를 요구하고 있다(9-11). 이는 1회 투여량(dose), 분석용 또는 진단용 시약으로의 사용과 치료용으로의 사용용도, 발현균주(원핵생물 vs. 진핵생물 또는 비형질전환 vs. 형질전환)의 차이 등을 고려해야 하기 때문이다(12). 일반적으로 재조합 의약품내의 생산세포주 유래 단백질을 통제하기 위한 방법은 은 염색된 SDS-PAGE와 면역블럿, 엄격한 공정인증 제거연구(process validation clearance studies), 그리고 정량적인 공정 특이적(process specific) HCP(Host Cell-derived Protein) 어세이가 개발되는 것이다(9). 이러한 생산세포주 유래 단백질의 검량을 위해서는 특이성이 높은 분석방법이 필요한데, 이에 다클론항체를 사용하게 된다(7). 다클론항체는 고유의 정제 공정 내에서 가장 대표성을 지니는 생산세포주 유래 단백질을 포함하는 공정 특이적 면역원(process-specific immunogen)에 의해 만들어진다(13). 이러한 다클론항체를 이용한 방법 개발 시 샌드위치 방식(13)이 많이 쓰이지만 제한된 것은 아니다. Chinese hamster ovary (CHO) cells, which are used in this study, and CHO cells of other products and other manufacturers, may be essentially the same cell lines, but the expression vectors for production are differently produced, and the media of use are different. There may be. Therefore, each manufacturer should establish its own cell line specific host-derived protein detection method through enzyme linked immunosorbent assay (ELISA) or threshold method. In this study, the detection method was established by ELISA. Regulations on protein derived from production cell lines are not specified in exact figures, but in “case by case” (8) and require sufficient theoretical evidence and data (9-11). Consideration should be given to differences in dose, use as analytical or diagnostic reagents and for therapeutic use, and differences in expression strains (prokaryotes vs. eukaryotes or nontransformation vs. transformation) (12). In general, methods for controlling protein-derived cell line-derived proteins in recombinant drugs include silver-stained SDS-PAGE, immunoblot, strict process validation clearance studies, and quantitative process specific HCPs. Host Cell-derived Protein Assays are being developed (9), which require high specificity assays for the calibration of production-derived cell lines. (7) Polyclonal antibodies are produced by process-specific immunogens that contain proteins derived from production cell lines that are most representative in their own purification processes (13). Sea sandwich method (13) is used a lot but not limited.

이에, 본 발명자들은 중국 햄스터 난소 세포주에서에서 무기능 세포주 배양 및 정제를 통해 대표성 있는 생산세포주 유래 단백질, 즉 목적단백질의 정제공정을 동일하게 거친 숙주 세포주 유래 전체 단백질을 얻고 이를 면역원(immunogen)으로 하는 다클론항체를 생산하여 생산세포주 유래 단백질의 제거를 검증하고 정량화하기 위한 ELISA 방법을 개발함으로써 본 발명을 완성하였다.Accordingly, the present inventors obtain a representative production cell line-derived protein, that is, a host cell line-derived whole protein, which has undergone the same purification process of the target protein through culture and purification of a nonfunctional cell line in a Chinese hamster ovary cell line, which is used as an immunogen. The present invention was completed by developing an ELISA method for producing and producing polyclonal antibodies to verify and quantify the removal of protein derived from the cell line.

표 1: FDA-승인된 항체 약물 리스트Table 1: FDA-Approved Antibody Drug List

Figure 112006091944704-PAT00001
Figure 112006091944704-PAT00001

본 발명의 목적은 중국 햄스터 난소 세포주에서 재조합 생물의약품 생산시 생산세포주 유래 단백질에 대한 항체 및 이를 이용한 ELISA 방법을 제공하는 것이 다.An object of the present invention is to provide an antibody against a cell line-derived protein and an ELISA method using the same in the production of recombinant biopharmaceuticals in Chinese hamster ovary cell lines.

본 발명은 중국 햄스터 난소 세포주(Chinese hamster ovary cell)를 이용한 재조합 단백질 생산시 세포주 유래 단백질 검출용 다클론 항체를 제공한다.The present invention provides a polyclonal antibody for detecting a cell line-derived protein during recombinant protein production using a Chinese hamster ovary cell.

또한, 본 발명은 중국 햄스터 난소 세포주를 이용한 재조합 단백질 생산시 세포주 유래 단백질 검출용 다클론 항체를 생산하는 방법을 제공한다.The present invention also provides a method for producing a polyclonal antibody for detecting cell line-derived protein in the production of recombinant protein using a Chinese hamster ovary cell line.

또한, 본 발명은 상기 다클론 항체를 포함하는 ELISA 키트를 제공한다.The present invention also provides an ELISA kit comprising the polyclonal antibody.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 중국 햄스터 난소 세포주(Chinese hamster ovary cell)를 이용한 재조합 단백질 생산시 세포주 유래 단백질 검출용 다클론항체 및 이의 제조방법을 제공한다. 구체적인 제조방법은 하기의 단계를 포함한다:The present invention provides a polyclonal antibody for detecting a cell line-derived protein and a method for producing the same in recombinant protein production using a Chinese hamster ovary cell. Specific manufacturing methods include the following steps:

1) 재조합 단백질을 발현하지 않는 무기능 중국 햄스터 난소 세포주의 배양배지를 심층여과(depth filtration)를 통해 세포를 제거하고 상등액을 수득하는 단계;1) removing the cells through depth filtration of a culture medium of a nonfunctional Chinese hamster ovary cell line that does not express recombinant protein and obtaining a supernatant;

2) 단계 1의 상등액을 재조합 단백질과 동일한 조건으로 정제하는 단계; 및2) purifying the supernatant of step 1 under the same conditions as the recombinant protein; And

3) 단계 2의 정제된 분획을 면역원으로 이용하여 항체를 수득할 수 있는 동물에 접종하는 단계.3) inoculating an animal capable of obtaining an antibody using the purified fraction of step 2 as an immunogen.

본 발명자들은 목적단백질인 재조합 항 혈전 항체(항-GPIIbIIIa 항체)를 생 산하지 않는 무기능 세포주(Null cell)인 중국 햄스터 난소 세포주(Chinese hamster ovary cell)를 배양하고 목적단백질이 세포 외로 배출되는 단백질이므로 생산세포주 유래 단백질도 세포외로 배출된 것만을 얻기 위해 배양액만을 취한 뒤, 이를 목적단백질의 분리정제 첫 단계인 약 음이온 교환 크로마토 그래피, 약 양이온 교환 크로마토그래피를 순서대로 이용하여 목적단백질과 분리되지 않고 남아있는 무기능 세포주의 생산세포주 유래 단백질을 정제하였다(도 1). 즉, 목적 단백질과 동일한 정제조건으로 분리되는 상기 생산세포주 유래 단백질을 이후의 항체를 만들기 위한 면역원으로 이용하였다. The inventors cultured Chinese hamster ovary cells, which are null cells that do not produce recombinant antithrombogenic antibodies (anti-GPIIbIIIa antibodies), which are proteins of interest, and proteins that are excreted extracellularly. Therefore, the protein derived from the production cell line was also taken only in the culture medium to obtain only the extracellular discharge, and then it was not separated from the target protein by using weak anion exchange chromatography and weak cation exchange chromatography, which are the first steps of purification and purification of the target protein. The remaining cell line derived protein of the nonfunctional cell line was purified (FIG. 1). In other words, the production cell line-derived protein isolated under the same purification conditions as the protein of interest was used as an immunogen for the production of subsequent antibodies.

생산세포주 유래 단백질을 면역원으로 다클론항체를 생산하기 위해 면역원인 무기능 세포주(null cell)의 생산세포주 유래 단백질에 어드쥬번트(adjuvant)를 섞어 래빗 2마리(A, B)에 피하주사하여 다클론항체가 생성되도록 하였다. 이를 컬럼 크로마토그래피를 이용하여 면역 후 혈청 내에 있는 모든 래빗 IgG를 1차 정제하고, 래빗 IgG 중에 생산세포주 유래 단백질과 반응하는 특이적인 항-HCP IgG만을 2차 정제하였다. 정제된 항체에 발색효소 표지 후 이를 웨스턴 블럿(도 2)과 간접적인 샌드위치 ELISA를 통해 항체의 생성정도를 확인하였다. 그 결과, 1 단계 정제 후 래빗 A의 혈청 중 16.9%의 IgG를 얻었고, 래빗 B의 혈청 중 15.8%의 IgG를 얻었다. 다시 2 단계 후 1단계에서 정제된 래빗 A IgG 중 9%, 래빗 B IgG 중 10%의 생산세포주 유래 단백질에 의해 형성된 IgG를 수득하였다(도 3). In order to produce polyclonal antibodies using the cell line-derived protein as an immunogen, the adjuvant is mixed with the cell line-derived protein of a null cell, which is an immunogen, and subcutaneously injected into two rabbits (A and B). Clonal antibodies were generated. This was first purified by column chromatography for all rabbit IgG in the serum after immunization, and only the specific anti-HCP IgG that reacts with the protein derived from the cell line in the rabbit IgG was purified second. After the chromophore labeling on the purified antibody, the degree of antibody production was confirmed by Western blot (FIG. 2) and indirect sandwich ELISA. As a result, 16.9% IgG in the serum of Rabbit A was obtained and 15.8% IgG in the serum of Rabbit B after one step of purification. Again, after 2 steps, IgG formed by protein produced from 9% of rabbit A IgG and 10% of rabbit B IgG, which was purified in step 1, was produced, was obtained (FIG. 3).

또한, 본 발명은 상기 다클론 항체를 포함하는 ELISA 키트를 제공한다.The present invention also provides an ELISA kit comprising the polyclonal antibody.

2단계 정제를 마친 특이적인 래빗 항-HCP IgG를 이용한 직접적인 샌드위치 ELISA 방법을 개발하기 위해 발색효소인 Horse radish peroxidase(HRP)를 생산세포주 유래 단백질과 반응하는 특이적인 항-HCP IgG 항체에 표지한 후, 항체와 발색효소와의 결합을 은 염색된 SDS-PAGE를 통해 크기로 확인하고(도 4), 발색효소와 반응하는 기질 처리를 통해 발색됨을 확인하였다. 또한 반응 전후의 시료의 함량변화를 겔 여과 크로마토그래피 컬럼을 이용한 HPLC 분석을 통해 확인하였다(도 5). In order to develop a direct sandwich ELISA method using a specific rabbit anti-HCP IgG, which has been purified in two stages, the chromophore Horse radish peroxidase (HRP) is labeled with a specific anti-HCP IgG antibody that reacts with a protein derived from a cell line. , The binding of the antibody and the chromophore was confirmed by the size of the silver stained SDS-PAGE (Fig. 4), it was confirmed that the chromophore by the substrate treatment reacted with the chromophore. In addition, the content of the sample before and after the reaction was confirmed by HPLC analysis using a gel filtration chromatography column (FIG. 5).

상기 항체를 이용하여 생산세포주 유래 단백질에 대한 검출정도를 웨스턴 블럿으로 확인한 결과 래빗 A, B의 항체를 함께 사용할 경우, 90% 이상의 생산세포주 유래 단백질에 결합하는 항체가 된 것을 확인하였다(도 6). As a result of detecting the detection degree of the cell line-derived protein by Western blot using the antibody, when the antibodies of Rabbit A and B were used together, it was confirmed that the antibody bound to the protein of the cell line-derived protein of 90% or more (FIG. 6). .

한편, 목적단백질의 생산단계부터 각 정제단계별로 시료를 준비한 후 발색 효소가 표지된 항체를 이용하여 웨스턴 블럿과 샌드위치 ELISA를 수행하여, 목적단백질 1 mg당 생산세포주 유래 단백질(ng)의 함량을 측정하였다. 그 결과, 목적단백질의 컬럼 정제단계에서 생산세포주 유래 단백질이 정성적으로 대부분 제거되는 것이 확인되었다(도 8). Meanwhile, after preparing samples for each purification step from the production of the target protein, Western blot and sandwich ELISA were performed using an antibody labeled with a chromophore to measure the content of protein (ng) produced per cell of the target protein. It was. As a result, in the column purification step of the protein of interest, it was confirmed that most protein-derived cell lines were qualitatively removed (FIG. 8).

본 발명에서 개발된 샌드위치 ELISA 방법의 검증을 위해 ICH 규정(14)에 따라 시험항목을 정하고 시험방법을 계획한 결과, 본 발명의 항-HCP IgG를 사용한 ELISA 방법이 특이성, 정확성, 검출한도, 정량한도에서 더욱 좋은 결과를 보임을 확인할 수 있었다(표 2). In order to verify the sandwich ELISA method developed in the present invention, the test items were determined and the test method was planned according to the ICH Regulation (14). As a result, the ELISA method using the anti-HCP IgG of the present invention was specific, accurate, limit of detection, and quantitative. In the limit, better results were found (Table 2).

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발 명을 예시하는 것일 뿐, 본 발명을 한정하지는 않는다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the present invention, but not to limit the present invention.

<실시예 1> 무기능 세포주 배양Example 1 Nonfunctional Cell Line Culture

본 발명에서 사용한 무기능 세포주(Null cell)는 목적단백질인 재조합 항 혈전 항체(항-GPIIbIIIa 항체)를 생산하는 세포주와 같은 Chinese hamster ovary(CHO) 세포주(DG44, 미국 노스캐롤라이나 주립대학 Chasin 교수로부터 기증)로서, 목적단백질인 항혈전 항체를 코딩하는 유전자가 없는 세포이다. 배양은 목적단백질 생산조건을 동일하게 적용하여 100 L 배양액으로 14일간 유가식 배양하였고, 배양이 끝난 후 20 mM sodium phosphate(pH 7.3)을 이용하여 배양액을 pH 7.3 ± 0.1로 맞추어 주었다. Null cells used in the present invention are donated from Chinese hamster ovary (CHO) cell lines (DG44, Professor Chasin, University of North Carolina State, USA) such as cell lines producing recombinant antithrombogenic antibody (anti-GPIIbIIIa antibody), the protein of interest. ), A cell lacking a gene encoding an antithrombotic antibody as a target protein. The culture was fed incubated for 14 days in 100 L culture solution by applying the same protein production conditions, and the culture was adjusted to pH 7.3 ± 0.1 using 20 mM sodium phosphate (pH 7.3).

<실시예 2> 무기능 세포의 생산세포주 유래 단백질 정제Example 2 Purification of Proteins Derived from Non-functional Cells

목적단백질인 항 GPIIb/IIIa 항체는 세포 외로 분비되는 단백질이므로 생산세포주 유래 단백질도 세포외로 배출된 것만을 얻기 위해 두 차례에 걸친 depth filtration을 통해 세포를 제거하고 상등액을 취하였다(Millistak+, Millipore, USA). AKTA pilot(Amersham biosciences, Sweden)을 이용하여 상등액을 다음과 같이 정제하여, 숙주유래 단백질을 제조하였다. Since the anti-GPIIb / IIIa antibody, a protein of interest, is secreted extracellularly, the cells derived from the producing cell line were also removed and subjected to supernatant two times through depth filtration to obtain only the extracellularly released (Millistak +, Millipore, USA). ). A supernatant was purified using an AKTA pilot (Amersham biosciences, Sweden) as follows to prepare a host-derived protein.

구제척으로, 배양액을 약 음이온 교환 크로마토 그래피(DEAE-Sepharose Fast Flow, Amersham biosciences, Sweden)에 통과시켜 결합하지 않고 흘러나오는 단백질만을 모아 1단계 정제하였다. 1단계 정제용 컬럼은 BPG 140/500(Amersham biosciences, Sweden)에 2.5 L의 고체상을 충진하였고, 평형 용매로는 20 mM sodium phosphate(pH 7.3)를 사용하였다. 2단계 정제는 약 양이온 교환 크로마토그래피(CM-Sepharose Fast Flow, Amersham biosciences, Sweden)를 이용하였고 2단계 정제용 컬럼은 BPG 200/300(Amersham biosciences, Sweden)에 10.7 L의 고체상을 충진하였으며 평형 용매로는 20 mM sodium acetate(pH 5.3)를 사용하였다. 시료 희석 용매는 30 mM sodium acetate(pH 4.5), 탈착 용매로는 20 mM sodium acetate-1 M sodium chloride(pH 5.3)를 사용하였다. 기기는 AKTA pilot(Amersham biosciences, Sweden)을 사용하였고, UNICORN software(Amersham biosciences, Sweden)를 이용해 모니터링하였다.As a rescue, the culture was passed through weak anion exchange chromatography (DEAE-Sepharose Fast Flow, Amersham biosciences, Sweden) to collect only the protein flowing out without binding and purified in one step. The first stage preparative column was filled with 2.5 L solid phase in BPG 140/500 (Amersham biosciences, Sweden) and 20 mM sodium phosphate (pH 7.3) was used as the equilibrium solvent. Two-stage purification was performed using weak cation exchange chromatography (CM-Sepharose Fast Flow, Amersham biosciences, Sweden), and the two-stage purification column was filled with 10.7 L of solid phase in BPG 200/300 (Amersham biosciences, Sweden). 20 mM sodium acetate (pH 5.3) was used. 30 mM sodium acetate (pH 4.5) was used as the sample dilution solvent and 20 mM sodium acetate-1 M sodium chloride (pH 5.3) was used as the desorption solvent. The instrument used an AKTA pilot (Amersham biosciences, Sweden) and monitored using UNICORN software (Amersham biosciences, Sweden).

상기와 같이 목적단백질과 무기능 세포주의 생산세포주 유래 단백질의 약 양이온 교환 크로마토그래피를 이용한 정제를 비교한 결과, 목적단백질이 나오는 분리정제구간(NaCl 농도 0.154 ~ 0.377 M)에서 생산세포주 유래 단백질이 일부 나오는 것을 확인할 수 있었다(도 1). 이러한 이유로 무기능 세포주의 생산세포주 유래 단백질 정제시, 목적단백질과 동일한 조건으로 분리되는 생산세포주 유래 단백질을 정제하여 이를 이후의 항체를 만들기 위한 면역원으로 이용하였다. 약 양이온 교환 크로마토그래피의 정제 결과 0.7 mg/ml의 시료 16 L로 총 11.31 g의 생산세포주 유래 단백질을 얻었다. As a result of comparing the purified protein using the weak cation exchange chromatography of the protein of the target cell and the cell line-derived cell line as described above, the protein from the cell line-derived protein was partially separated from the purified region (NaCl concentration: 0.154 to 0.377 M). It was confirmed that it came out (Fig. 1). For this reason, when the protein cell line-derived protein is purified from a nonfunctional cell line, the cell line-derived protein is purified under the same conditions as the protein of interest, and then used as an immunogen to make an antibody thereafter. Purification of the weak cation exchange chromatography yielded a total of 11.31 g of the cell line derived protein from 16 L of 0.7 mg / ml of the sample.

<실시예 3> 다클론항체 생산Example 3 Polyclonal Antibody Production

생산세포주 유래 단백질을 면역원으로 다클론항체를 생산하기 위한 실험동물 로 래빗(rabbit), New Zealand White 종을 2마리(래빗 A, B, (주)오리엔트바이오 구입)를 사용하였다. 실험에 들어가기 전에 실험동물의 면역전 혈청을 이용해 웨스턴 블럿을 수행하여 실험동물의 면역전 항체의 생성여부를 확인하였다. 그 결과, 실험동물인 래빗의 면역 전 혈청으로 웨스턴 블럿을 수행한 결과, 면역 전 혈청에서는 생산세포주 유래 단백질이나 목적단백질인 항체의약품(항-GPIIbIIIa 항체)에 대한 반응을 볼 수 없었다(도 2b). 실험은 300 g의 수컷 두 마리를 이용하여 2 주간의 안정화 기간을 가진 후 면역원인 생산세포주 유래 단백질에 adjuvant(Sigma, USA)를 50 mg/dose씩 섞어 100 mg/dose로 1주일 간격으로 피하주사하여 3차 면역을 통해 다클론항체가 생성되도록 하였다. The rabbit (rabbit), New Zealand White species to 2 (rabbit A, B, (weeks) purchased Orient Bio) a polyclonal antibody producing cell line-derived proteins as immunogens in experimental animals for the production was used. Before entering the experiment, Western blot was performed using pre-immune sera of the experimental animals to confirm whether the experimental animals were produced. As a result, experimental animals As a result of Western blotting with rabbit pre-immune serum, no response was observed in pre-immune serum to antibody-derived protein (anti-GPIIbIIIa antibody) or protein of interest (FIG. 2B). In the experiment, two 300 g males had a stabilization period of two weeks, and then 50 mg / dose of adjuvant (Sigma, USA) was added to the production cell line-derived protein, which is an immunogen, subcutaneously at 100 mg / dose every week. To generate polyclonal antibodies through tertiary immunity.

<실시예 4> 다클론항체 정제Example 4 Polyclonal Antibody Purification

3차 면역 후 채혈된 혈청은 1단계 정제로 HiTrap rProtein A Fast Flow(Amersham biosciences, Sweden) 컬럼을 이용하여 면역 후 혈청 내에 있는 모든 래빗 IgG를 정제하였다. 평형 용매로 20 mM sodium phosphate(pH 7.0)를 사용하였고, 탈착 용매는 0.1 M glycine-hydrogen chloride(pH 2.7)를 사용하였다. 탈착된 분획의 pH 보정은 1 M Tris-hydrogen chloride(pH 9.0)를 사용하여 시료의 pH를 중성으로 맞추어 주었다. 2단계 정제는 래빗 IgG 중에 생산세포주 유래 단백질(HCP, Host Cell-derived Peptide)과 반응하는 특이적인 항-HCP IgG만을 정제하기 위한 것으로 이를 위해 면역원으로 사용한 단백질을 고정상에 부착시켜 사용하였다. Serum collected after the third immunization was purified using a HiTrap rProtein A Fast Flow (Amersham biosciences, Sweden) column as a first step purification of all rabbit IgG in the post-immune serum. 20 mM sodium phosphate (pH 7.0) was used as the equilibrium solvent, and 0.1 M glycine-hydrogen chloride (pH 2.7) was used as the desorption solvent. PH correction of the desorbed fraction was adjusted to neutral pH by using 1 M Tris-hydrogen chloride (pH 9.0). Two-stage purification was used to purify only specific anti-HCP IgG that reacts with the production cell line derived protein (HCP, Host Cell-derived Peptide) in rabbit IgG.

<실시예 5> 웨스턴 블럿Example 5 Western Blot

항체의 생성과 정제를 확인하기 위한 정성적 분석방법으로 웨스턴 블럿을 사용하였다. 분석에 사용될 각 시료의 단백질 총량은 Modified Lowry protein assay(Pierce, USA)를 사용하여 분석하였다. 분석 시료는 면역원으로 사용된 생산세포주 유래 단백질(Process specific HCP)을 SDS-PAGE를 이용하여 분리한 후, PVDF 막(Invitrogen, USA)으로 단백질을 이동시켰다. 1차 항체로는 래빗의 면역 전 혈청, 면역 후 혈청 및 세포주 유래 단백질에 특이적인 래빗 IgG를 각각 1,000배 희석하여, 1시간 처리하였고, 2차 항체로는 Peroxidase labeled goat 항-래빗 IgG(H+L)(KPL, USA)를 2,500배 희석하여, 1시간 처리하였다. 정제된 항체에 발색효소 표지 후에는 이를 항체로 1,000배 희석하여 처리하였다. 발색효소의 기질로는 TMB membrane peroxidase substrate(KPL, USA)를 이용하였다. 이 때 음성대조군으로 목적 단백질인 항-GPIIb/IIIa 항체를 동시에 실험하였을 때 면역 혈청에 대해 반응하지 않음을 확인할 수 있었다.Western blot was used as a qualitative analysis method to confirm the production and purification of the antibody. The total protein of each sample to be used for analysis was analyzed using a Modified Lowry protein assay (Pierce, USA). Assay samples were separated using SDS-PAGE of protein derived from the cell line (Process specific HCP) used as an immunogen, and then transferred to the PVDF membrane (Invitrogen, USA). The primary antibody was treated with a 1,000-fold dilution of rabbit IgG specific for the rabbit pre-immune serum, post-immune serum and cell line-derived protein, for 1 hour, and the secondary antibody was Peroxidase labeled goat anti-rabbit IgG (H +). L) (KPL, USA) was diluted 2,500-fold and treated for 1 hour. After the chromophore labeling on the purified antibody, it was treated by diluting 1,000-fold with the antibody. TMB membrane peroxidase substrate (KPL, USA) was used as a substrate of the chromosome. At this time, when the anti-GPIIb / IIIa antibody of the target protein was tested at the same time as a negative control group it was confirmed that it does not respond to the immune serum.

확인결과, 3차의 면역과정을 통해 10,000 : 1의 역가를 가지는 면역 후 혈청을 얻을 수 있었으며, 이를 웨스턴 블럿(도 2)과 ELISA를 통해 생산세포주 유래 단백질에 대한 반응을 통해 항체의 생성정도를 확인하였다(도 3). 분석 시료는 면역원으로 사용된 생산세포주 유래 단백질(Process specific HCP)을 고정시킨 ELISA 전용 용기(96-well plate, NUNC)에 1차 항체로는 래빗의 면역 전 혈청, 면역 후 혈 청 및 세포주 유래 단백질에 특이적인 래빗 IgG를 각각 1,000배 희석하여, 1시간 처리하였고, 2차 항체로는 Peroxidase labeled goat 항-래빗 IgG(H+L)(KPL, USA)를 2,500배 희석하여, 1시간 처리 후 ABTS microwell peroxidase substrate(KPL, USA)를 사용하여 발색반응을 유도하였다. 발색 후 ABTS peroxidase stop solution(KPL, USA)을 이용하여 반응을 정지시키고 OD405 nm에서 흡광도를 측정하였다. 대조실험으로는 목적단백질인 항-GPIIb/IIIa 항체를 ELISA 용기에 고정시키고 나머지 방법은 동일하게 진행하였다. 그 결과, 1 단계 정제 후 래빗 A의 혈청 중 16.9%의 IgG를 얻었고, 래빗 B의 혈청 중 15.8%의 IgG를 얻었다. 다시 2 단계 후 1단계에서 정제된 래빗 A IgG 중 9%, 래빗 B IgG 중 10%의 생산세포주 유래 단백질에 의해 형성된 IgG를 수득하였다.As a result, the third immunity process resulted in 10,000 : Serum was obtained after immunization having a titer of 1, and the production of the antibody was confirmed by reaction with the protein cell-derived protein through Western blot (FIG. 2) and ELISA (FIG. 3). Analytical samples were pre-immune serum, post-immune serum and cell line-derived proteins as rabbits as primary antibodies in an ELISA-only container (NUNC) on which a process-specific HCP used as an immunogen was immobilized. The rabbit IgG specific for each was diluted 1,000-fold and treated for 1 hour, and the secondary antibody was diluted 2,500-fold with Peroxidase labeled goat anti-rabbit IgG (H + L) (KPL, USA) and treated with ABTS after 1 hour. Color reaction was induced using a microwell peroxidase substrate (KPL, USA). After color development, the reaction was stopped using ABTS peroxidase stop solution (KPL, USA) and the absorbance was measured at 405 nm. As a control experiment, the target protein, anti-GPIIb / IIIa antibody, was immobilized in an ELISA vessel, and the rest of the procedure proceeded in the same manner. As a result, 16.9% IgG in the serum of Rabbit A was obtained and 15.8% IgG in the serum of Rabbit B after one step of purification. Again, after 2 steps, IgG formed by protein produced from 9% of rabbit A IgG and 10% of rabbit B IgG, which were purified in step 1, was produced.

<실시예 6> 발색효소 표지 Example 6 Coloring Enzyme Labeling

2단계 정제를 마친 특이적인 래빗 항-HCP IgG를 이용한 직접적인 샌드위치 ELISA 방법을 개발하기 위해 Peroxidase labeling kit(Roche, Switzerland)를 이용하여 발색효소인 Horse radish peroxidase(HRP)를 항체에 표지한 후, 항체와 발색효소와의 결합을 은 염색된 SDS-PAGE를 통해 크기로 확인하고(도 4), 발색효소와 반응하는 기질(TMB membrane peroxidase substrate, KPL, USA)) 처리를 통해 발색됨을 확인하였다. 또한 효소 커플링 반응 전후의 세포주 유래단백질 특이적인 래빗 항-HCP IgG 시료 자체의 변화를 겔 여과 크로마토그래피 컬럼인 TSK 3000 column(TOSHO, Japan)을 이용한 HPLC 분석을 통해 반응시료의 함량변화를 분석함으로써 확인하였다(도 5). In order to develop a direct sandwich ELISA method using a specific rabbit anti-HCP IgG after two-step purification, the antibody was labeled with Horse radish peroxidase (HRP) using a Peroxidase labeling kit (Roche, Switzerland). The binding of the chromophore with the silver was confirmed in size through the SDS-PAGE stained (Fig. 4), and the chromogenic enzyme (TMB membrane peroxidase substrate, KPL, USA) was confirmed to be developed through the treatment. In addition, the changes of the cell sample-derived protein specific rabbit anti-HCP IgG samples before and after the enzyme coupling reaction were analyzed by HPLC analysis using a gel filtration chromatography column, TSK 3000 column (TOSHO, Japan). It was confirmed (FIG. 5).

상기 항체를 이용하여 생산세포주 유래 단백질에 대한 검출정도를 웨스턴 블럿으로 확인한 결과 래빗 A, B의 항체를 함께 사용할 경우, 90% 이상의 생산세포주 유래 단백질에 결합하는 항체가 된 것을 확인하였다(도 6). As a result of detecting the detection degree of the cell line-derived protein by Western blot using the antibody, when the antibodies of Rabbit A and B were used together, it was confirmed that the antibody bound to the protein of the cell line-derived protein of 90% or more (FIG. 6). .

<실시예 7> 샌드위치 ELISA Example 7 Sandwich ELISA

정제 후 표지된 항체(HRP 결합된 래빗 항-HCP IgG)를 50 mM 카보네이트 완충용액(pH 9.6)에 녹여 96 웰 플레이트(NUNC, USA)에 100 ml씩 넣고 4℃에서 밤새 코팅하였다. 블로킹은 2% 우태아 혈청을 인산염 완충 식염수(PBS)에 녹인 후 이에 0.05% Tween 20 첨가하여 상온에서 2시간 동안 처리하였다. 발색효소의 기질은 ABTS microwell peroxidase substrate(KPL, USA)를 사용하였고, 발색 후 ABTS peroxidase stop solution(KPL, USA)을 이용하여 반응을 정지시키고 OD405 nm에서 흡광도를 측정하였다. After purification, the labeled antibody (HRP conjugated rabbit anti-HCP IgG) was dissolved in 50 mM carbonate buffer (pH 9.6) and placed in 100 ml of 96 well plate (NUNC, USA) and coated at 4 ° C. overnight. Blocking was performed by dissolving 2% fetal calf serum in phosphate buffered saline (PBS) and adding 0.05% Tween 20 to it for 2 hours at room temperature. As the substrate of the chromophore, ABTS microwell peroxidase substrate (KPL, USA) was used. After color development, the reaction was stopped using ABTS peroxidase stop solution (KPL, USA) and absorbance was measured at OD 405 nm.

<실시예 8> 항체의약품 내의 생산세포주 유래 단백질 함량 측정Example 8 Measurement of Protein Content Derived from Production Cell Line in Antibody Drugs

목적단백질의 생산공정 중 배양단계부터 각 정제단계별로 시료를 준비하여 이의 농도를 목적단백질 기준 1 mg/ml로 동일하게 해주었다 (국내특허 10-2005-0026812 참조)이를 가지고 웨스턴 블럿과 샌드위치 ELISA를 수행하여, 목적단백질( 항-GPIIb/IIIa 항체) 1 mg당 생산세포주 유래 단백질(ng)의 함량을 측정하였다. Samples were prepared for each purification step from the culturing step of the protein production process, and the concentration was equalized to 1 mg / ml based on the target protein (see Korean Patent 10-2005-0026812). The content of the production cell line derived protein (ng) per mg of the target protein (anti-GPIIb / IIIa antibody) was measured.

발색 효소가 표지된 항체를 이용하여 목적단백질의 생산 및 정제단계 중의 생산세포주 유래 단백질을 확인하고 정량한 결과, 웨스턴 블럿 결과를 통해 목적 단백질 (항-GPIIb/IIIa 항체)의 3번째 컬럼 정제단계에서 생산세포주 유래 단백질이 정성적으로 대부분 제거되는 것이 확인되었다(도 8a). 또한 최적화된 조건에서 직접적인 ELISA를 수행한 결과를 통해 3번째 컬럼 정제단계 이후에는 생산세포주 유래 단백질의 함량이 300 ppm 이하가 되고 최종 제품원액 내의 생산세포주 유래 단백질의 함량은 5.8 ppm으로 확인되었다. 항체의약품의 생산 배치(batch) 마다의 정제단계의 재현성을 확인하기 위해 3 개 batch의 항체의약품 제품원액에 대한 실험을 진행한 결과 모두 10 ppm이하의 값으로 나타났다(도 8b).In the third column purification step of the protein of interest (anti-GPIIb / IIIa antibody) in the production and purification of the target protein using the antibody labeled with the chromophore enzyme, the cell line derived protein was identified and quantified. It was confirmed that most of the protein derived from the cell line was qualitatively removed (FIG. 8A). In addition, the result of direct ELISA under the optimized conditions, after the third column purification step, the content of the production cell line-derived protein was 300 ppm or less, and the content of the production cell line-derived protein in the final product stock was 5.8 ppm. In order to confirm the reproducibility of the purification step for each batch of antibody drug production, the experiments were conducted on three batches of antibody drug product stocks, and all of them were found to be 10 ppm or less (FIG. 8B).

<실시예 9> 샌드위치 ELISA 방법 검증Example 9 Sandwich ELISA Method Verification

본 발명에서 개발된 샌드위치 ELISA 방법의 검증을 위해 ICH 규정(14)에 따라 시험항목을 정하고 시험방법을 계획하였다. 시험항목으로는 특이성(specificity), 직선성(linearity), 정확성(accuracy), 병행정밀성(repeatability), 실내재현정밀성(intermediate precision), 검출한도(detection limit), 정량한도(quantitation limit)로 정하고 이는 각각 % 상대표준편차(residual standard deviation), 상관계수(correlation coefficient, R2), % 평균회수율(recovery)로 확인하였다. 이와 함께 면역 후 혈청 정제시 1차 정제 컬럼인 HiTrap rProtein A FF(Amersham Biosciences, Sweden) 컬럼만을 이용해 정제된 래빗 IgG에 발색 효소를 표지한 항체를 이용한 직접적인 ELISA 방법도 함께 이용하여 검증을 수행하였다. In order to verify the sandwich ELISA method developed in the present invention, the test items were determined according to the ICH regulations (14) and the test method was planned. Test items include specificity, linearity, accuracy, repeatability, interior precision, detection limit and quantitation limit. Respective% relative standard deviation, correlation coefficient (R 2 ), and% average recovery were identified. In addition, the verification was performed by using a direct ELISA method using an antibody labeled with a chromophore on rabbit IgG purified using HiTrap rProtein A FF (Amersham Biosciences, Sweden) column, which is a primary purification column for post-immune serum purification.

실험결과를 비교하여 총 2 단계의 정제과정을 통해 얻어진 특이적인 항-HCP IgG를 사용한 ELISA 방법이 특이성, 정확성, 검출한도, 정량한도에서 더욱 좋은 결과를 보임을 확인할 수 있었다(표 2). Comparing the experimental results, it was confirmed that the ELISA method using specific anti-HCP IgG obtained through a total of two steps of purification process showed better results in specificity, accuracy, detection limit, and quantification limit (Table 2).

표 2: 본 발명의 ELISA 시스템의 검증Table 2: Validation of the ELISA System of the Invention

Figure 112006091944704-PAT00002
Figure 112006091944704-PAT00002

1 HRP-래빗 IgG을 사용한 ELISA 시스템 1 HRP-rabbit IgG ELISA system

2 HRP-래빗 항-HCP IgG을 사용한 ELISA 시스템.ELISA system using 2 HRP-rabbit anti-HCP IgG.

<실시예 10> 표지항체의 안정성 시험 Example 10 Stability Test of Labeled Antibody

여러 정제과정과 발색 효소 표지를 통해 제작된 항체(HRP 결합된 래빗 항-HCP IgG)가 어느 정도의 기간 동안 신뢰할 만한 값을 보일 수 있는지 확인하기 위해 항체에 발색효소 표지 이후 1주, 2주, 3주 간격으로 샌드위치 ELISA 방법을 이용해 OD405 nm에서의 흡광도를 측정하여 확인하여 보았다. 또한 안정제(stabilizer, Roche, Switzerland)의 사용 유무에 따른 안정성의 유지 정도를 비교실험을 통해 확인하였다.In order to confirm that the antibodies (HRP-linked rabbit anti-HCP IgG) produced through various purification procedures and chromophore labeling can show reliable values for a certain period of time, 1, 2, At 3 weeks intervals, the absorbance at OD 405 nm was measured using a sandwich ELISA method. In addition, the maintenance of stability according to the use of stabilizers (stabilizer, Roche, Switzerland) was confirmed through a comparative experiment.

그 결과, 발색 효소 표지 후, 시간이 지날수록 민감도는 떨어져 최저농도부터 최고농도까지의 흡광도 차이가 점점 작아짐을 알 수 있었다. 이러한 경향성은 안정제(stabilizer)를 넣은 경우, 확연히 줄어드는 것을 확인할 수 있었다. 실험 결과 안정제를 넣는 경우는 1달 이상 4℃에 보관하여 사용가능함을 알 수 있었다(도 9). As a result, after the chromophore labeling, the sensitivity decreased as time passed, and the difference in absorbance from the lowest concentration to the highest concentration gradually decreased. This tendency was confirmed to decrease significantly when a stabilizer was added. Experimental results show that the stabilizer can be stored and used at 4 ° C. for at least one month (FIG. 9).

상용화된 분석제품들은 발현벡터를 반영하지 않은 숙주세포주 전체 단백질을 항원으로 사용하고 있으며 그 항원 사용 시 목적 단백질의 일련의 정제과정을 거치치 않음으로써 목적 단백질 제품 시 특이적으로 더 노출될 수 있는 숙주세포주 유래단백질에 대한 분석법의 정확성이 떨어질 수 있다. 이는 생산 방법이나 재조합 된 세포의 특성에 따라 달라질 수 있는 고유한 생산세포주 유래 단백질에 대한 분석에는 한계를 보이고 있는 것이다. 따라서, 본 발명의 항체 및 이를 이용한 ELISA 방법은 목적단백질의 생산 유전자를 지니지 않는 무기능 세포주 배양에 의해 목적단백질의 정제공정을 동일하게 거친 숙주 세포주 유래 전체 단백질을 항원으로 이 용함으로써 재조합 생물의약품 생산시, 환자에게 면역이상반응을 일으킬 수 있는 생산세포주 유래의 불순 단백질을 보다 정확하게 검출하여 제품의 안전성을 높이는데 사용될 수 있다. Commercially available analytes use whole host cell lines that do not reflect expression vectors as antigens, and do not go through a series of purification of target proteins to use them. Assays for cell line derived proteins may be less accurate. This shows limitations in the analysis of unique production cell line-derived proteins that may vary depending on the production method or the characteristics of the recombinant cell. Accordingly, the antibody of the present invention and the ELISA method using the same produce recombinant biopharmaceuticals by using the whole protein derived from the host cell line which has undergone the same purification process of the target protein as the antigen by culturing a nonfunctional cell line which does not have the gene of the protein of interest. At the same time, it can be used to improve the safety of the product by detecting more accurately the impurity protein from the production cell line which can cause the immune response to the patient.

Claims (6)

중국 햄스터 난소 세포주(Chinese hamster ovary cell)를 이용한 재조합 단백질 생산시 목적단백질과 함께 분비되는 세포주 유래 단백질 검출용 다클론항체.Polyclonal antibody for detecting cell line-derived protein secreted with the protein of interest when producing recombinant protein using Chinese hamster ovary cell (Chinese hamster ovary cell). 제 1항에 있어서, 재조합 단백질을 발현하지 않는 무기능 세포주(null cell)의 단백질 중 재조합 단백질과 동일한 정제조건으로 분리되는 단백질을 면역원으로 하여 제조되는 것을 특징으로 하는 다클론항체.[Claim 2] The polyclonal antibody according to claim 1, wherein the polyclonal antibody is prepared by using an immunogen as a protein which is isolated under the same purification conditions as that of the recombinant protein among proteins of a null cell which does not express the recombinant protein. 제 1항 또는 제 2항에 있어서, 재조합 단백질은 항-GPIIbIIIa 항체인 것을 특징으로 하는 다클론항체.The polyclonal antibody according to claim 1 or 2, wherein the recombinant protein is an anti-GPIIbIIIa antibody. 1) 재조합 단백질을 발현하지 않는 무기능 중국 햄스터 난소 세포주의 배양배지를 심층여과(depth filtration)를 통해 세포를 제거하고 상등액을 수득하는 단계;1) removing the cells through depth filtration of a culture medium of a nonfunctional Chinese hamster ovary cell line that does not express recombinant protein and obtaining a supernatant; 2) 단계 1의 상등액을 재조합 단백질과 동일한 조건으로 정제하는 단계; 및2) purifying the supernatant of step 1 under the same conditions as the recombinant protein; And 3) 단계 2의 정제된 분획을 면역원으로 이용하여 항체를 수득할 수 있는 동 물에 접종하는 단계를 포함하는 제 1항의 다클론 항체를 생산하는 방법.3) A method of producing the polyclonal antibody of claim 1, comprising inoculating a animal from which the purified fraction of step 2 can be obtained as an immunogen. 제 1항 또는 제 2항의 다클론 항체를 포함하는 중국 햄스터 난소 세포주(Chinese hamster ovary cell)를 이용한 재조합 단백질 생산시 세포주 유래 단백질 검출용 ELISA 키트.An ELISA kit for detecting a cell line-derived protein during recombinant protein production using a Chinese hamster ovary cell comprising the polyclonal antibody of claim 1 or 2. 제 5항에 있어서, 재조합 단백질은 항-GPIIbIIIa 항체인 것을 특징으로 하는 ELISA 키트.6. The ELISA kit of claim 5, wherein the recombinant protein is an anti-GPIIbIIIa antibody.
KR1020060126303A 2006-12-12 2006-12-12 Enzyme-Linked Immunosorbent Assay Method for Residual Host Cell derived Proteins in Recombinant Antibody Drug Production KR100850800B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060126303A KR100850800B1 (en) 2006-12-12 2006-12-12 Enzyme-Linked Immunosorbent Assay Method for Residual Host Cell derived Proteins in Recombinant Antibody Drug Production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060126303A KR100850800B1 (en) 2006-12-12 2006-12-12 Enzyme-Linked Immunosorbent Assay Method for Residual Host Cell derived Proteins in Recombinant Antibody Drug Production

Publications (2)

Publication Number Publication Date
KR20080054120A true KR20080054120A (en) 2008-06-17
KR100850800B1 KR100850800B1 (en) 2008-08-06

Family

ID=39801189

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060126303A KR100850800B1 (en) 2006-12-12 2006-12-12 Enzyme-Linked Immunosorbent Assay Method for Residual Host Cell derived Proteins in Recombinant Antibody Drug Production

Country Status (1)

Country Link
KR (1) KR100850800B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105736A (en) * 2018-05-04 2020-12-18 西格马-奥尔德里奇有限责任公司 Production of recombinant proteins with reduced host cell protein levels
CN114441774A (en) * 2022-02-09 2022-05-06 浙江康佰裕生物科技有限公司 Establishment and application of host protein residue detection method aiming at retrovirus stable producer cell PG13
CN117192107A (en) * 2023-09-11 2023-12-08 福建基诺厚普生物科技有限公司 Detection method and kit for process-specific host cell protein residues

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105736A (en) * 2018-05-04 2020-12-18 西格马-奥尔德里奇有限责任公司 Production of recombinant proteins with reduced host cell protein levels
CN114441774A (en) * 2022-02-09 2022-05-06 浙江康佰裕生物科技有限公司 Establishment and application of host protein residue detection method aiming at retrovirus stable producer cell PG13
CN117192107A (en) * 2023-09-11 2023-12-08 福建基诺厚普生物科技有限公司 Detection method and kit for process-specific host cell protein residues

Also Published As

Publication number Publication date
KR100850800B1 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
Jin et al. Profiling of host cell proteins by two‐dimensional difference gel electrophoresis (2D‐DIGE): Implications for downstream process development
US20080261249A1 (en) Detecting and Quantifying Host Cell Proteins in Recombinant Protein Products
Wolter et al. Assays for controlling host-cell impurities in biopharmaceuticals
WO2016119639A1 (en) Specific antibody for detecting residual protein impurity in recombinant protein extract and detection reagent
CN110684740B (en) Monoclonal antibody of anti-human ubiquitin carboxyl terminal hydrolase-1 (UCH-L1) and application thereof
KR100850800B1 (en) Enzyme-Linked Immunosorbent Assay Method for Residual Host Cell derived Proteins in Recombinant Antibody Drug Production
US20130052669A1 (en) Compositions and methods for reliably detecting and/or measuring the amount of a modified target protein in a sample
CN109748971B (en) ELISA antibody detection kit for duck tembusu virus and application thereof
CN117092344B (en) Kit for detecting staphylococcus aureus protein A and application thereof
CN108103002B (en) Preparation and application of MDCK cell host residual protein
Yuan et al. Preparation and diagnostic use of a novel recombinant single-chain antibody against rabies virus glycoprotein
KR101971224B1 (en) Method of measuring cholesterol by using immunogenic method
Schwertner et al. Are generic HCP assays outdated
US8936915B2 (en) Cleavage sensitive antibodies and methods of use thereof
JP5305259B2 (en) Anti-citrullinated GFAP monoclonal antibody and use thereof
CN110845610B (en) Detection antibody pair aiming at diphtheria toxoid and application thereof
US9213026B2 (en) System for determining unprocessed and partially processed neurotoxin type A
Zhu-Shimoni et al. Trace level analysis of leached Protein A in bioprocess samples without interference from the large excess of rhMAb IgG
Zhang et al. Immunological characterization and verification of recombinant streptococcal protein G
CN110845609B (en) Detection antibody pair aiming at tetanus toxoid and application thereof
Martins et al. Characterization of monoclonal antibodies against altered (T103I) amidase from Pseudomonas aeruginosa
CN116143931B (en) Anti-human IgM antibody and preparation method and application thereof
CN115144597A (en) CHO-S cell residual protein detection kit and preparation method thereof
李倩 et al. Establishment and application of detection method for staphylococcal entertoxin A
EP3177312A1 (en) Method and kit for detecting bacterial infection

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120613

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130520

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140722

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150702

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160708

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170629

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190522

Year of fee payment: 12