KR20080030823A - High photocatalytic acitivity of mesoporous tio2 and visible lingt photocatalyst with hydrotheramal treatment and methode of manufacturing thereof - Google Patents

High photocatalytic acitivity of mesoporous tio2 and visible lingt photocatalyst with hydrotheramal treatment and methode of manufacturing thereof Download PDF

Info

Publication number
KR20080030823A
KR20080030823A KR1020060097229A KR20060097229A KR20080030823A KR 20080030823 A KR20080030823 A KR 20080030823A KR 1020060097229 A KR1020060097229 A KR 1020060097229A KR 20060097229 A KR20060097229 A KR 20060097229A KR 20080030823 A KR20080030823 A KR 20080030823A
Authority
KR
South Korea
Prior art keywords
formula
surfactant
titanium dioxide
peo
mesoporous
Prior art date
Application number
KR1020060097229A
Other languages
Korean (ko)
Other versions
KR100884018B1 (en
Inventor
김창근
곽승엽
김동석
Original Assignee
창성엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창성엔지니어링 주식회사 filed Critical 창성엔지니어링 주식회사
Priority to KR1020060097229A priority Critical patent/KR100884018B1/en
Publication of KR20080030823A publication Critical patent/KR20080030823A/en
Application granted granted Critical
Publication of KR100884018B1 publication Critical patent/KR100884018B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A method is provided to mass-produce materials with excellent thermal stabilities even at high temperatures due to their superior crystallinities through a hydrothermal reaction in an inexpensive and environmentally friendly manner after preparing mesoporous TiO2 in a solid form using pure water as a solvent, and materials having high optical activities in ultraviolet region as well as visible light region by doping pores with transition metals such as Cr, Fe, V, Ag and the like are provided. A method of preparing mesoporous TiO2 comprises: a surfactant dissolving step of injecting 3 to 5 weight parts of Pluronic P123 that is a neutral surfactant represented by the formula (PEO)20(PPO)70(PEO)20 into 100 weight parts of water to dissolve the surfactant into water; a sulfuric acid adding step of adding 1 to 2 weight parts of sulfuric acid into a solution prepared by the surfactant dissolving step with respect to 100 weight parts of water; and a titanium precursor stirring step of stirring a precursor titanium isopropoxide represented by the formula Ti(OCH(CH3)CH2CH3)4 and 2,4-pentanedione represented by the formula CH3COCH2COCH3 with the solution prepared by the surfactant dissolving step, wherein the Pluronic P123 that is a neutral surfactant represented by the formula (PEO)20(PPO)70(PEO)20 and the precursor titanium isopropoxide represented by the formula Ti(OCH(CH3)CH2CH3)4 are added in a mole ratio of 1:40 to 80, and the precursor titanium isopropoxide represented by the formula Ti(OCH(CH3)CH2CH3)4 and the 2,4-pentanedione represented by the formula CH3COCH2COCH3 are added in a mole ratio of 1:1 to 10.

Description

가수열반응을 이용한 광활성이 높은 메조기공 이산화티타늄 및 가시광 활성광촉매 그리고 이들의 제조방법{HIGH PHOTOCATALYTIC ACITIVITY OF MESOPOROUS TiO2 AND VISIBLE LINGT PHOTOCATALYST WITH HYDROTHERAMAL TREATMENT AND METHODE OF MANUFACTURING THEREOF}HIGH PHOTOCATALYTIC ACITIVITY OF MESOPOROUS TiO2 AND VISIBLE LINGT PHOTOCATALYST WITH HYDROTHERAMAL TREATMENT AND METHODE OF MANUFACTURING THEREOF}

도 1a는 본 발명에 따른 실시예에서 얻어진 메조기공 이산화티타늄의 SEM 사진을 나타낸다.Figure 1a shows a SEM photograph of the mesoporous titanium dioxide obtained in the embodiment according to the present invention.

도 1b는 본 발명에 따른 실시예에서 얻어진 입자 하나의 메조기공 이산화티타늄을 확대하여 얻어진 SEM 사진을 나타낸다.1B shows an SEM image obtained by enlarging one mesoporous titanium dioxide of one particle obtained in the embodiment according to the present invention.

도 2는 본 발명에 따른 실시예에서 얻어진 메조기공 이산화티타늄의 TEM 사진을 나타낸다. Figure 2 shows a TEM photograph of mesoporous titanium dioxide obtained in the embodiment according to the present invention.

도 3은 본 발명에 따른 실시예에서 얻어진 메조기공 이산화티타늄에의 소성온도별 비표면적분석과 기공 분포 결과를 나타낸 곡선 그래프이다. 3 is a curve graph showing the specific surface area analysis and pore distribution results for different firing temperatures in mesoporous titanium dioxide obtained in the embodiment according to the present invention.

도 4는 본 발명에 따른 실시예에서 얻어진 메조기공 이산화티타늄의 메틸렌 블루 용액의 광분해에 따른 흡광도 변화를 나타낸 그래프이다. Figure 4 is a graph showing the change in absorbance according to the photolysis of the methylene blue solution of mesoporous titanium dioxide obtained in the embodiment according to the present invention.

도 5는 본 발명에 따른 실시예에서 얻어진 전이금속이 도핑된 메조기공 이산화티타늄에 대한 가시광 영역의 흡수도를 나태나는 그래프이다.FIG. 5 is a graph showing absorbance of visible light region with respect to mesoporous titanium dioxide doped transition metal obtained in the embodiment according to the present invention.

본 발명은 자외선 영역뿐만 아니라 가시광선 영역에서의 광활성을 증대시키는 가수열반응을 이용한 광활성이 높은 메조기공 이산화티타늄 및 가시광 활성광촉매 그리고 이들의 제조방법을 제공하는 것이다.The present invention provides a highly active mesoporous titanium dioxide and a visible light active photocatalyst using a hydrothermal reaction to increase the light activity in the visible region as well as the ultraviolet region and a method for producing the same.

일반적으로 메조기공 형성은 실리카(SiO2)물질에서 가장 잘 만들어지는 것으로 알려져 있다. 1992년 Mobil사의 과학자들이 MCM-41이라고 명명한 육방형으로 배열된 메조기공 실리카를 발표한 이래로 활발한 연구가 계속되어 MCM-48, KIT-1, MSU-1, MCM-41 또는 동일한 공간군이지만 기공 크기가 더욱 큰 영역에 속하는 SBA-15 등 메조영역에서 균일한 기공 크기를 갖는 다양한 구조의 메조기공 실리카 분자체들이 합성되었다. 메조기공 실리카는 주로 계면활성제의 집합체를 구조 유도체로 이용하여 만들어지는데, 계면활성제가 이루는 마이셀 표면에 존재하는 실리카가 중합반응을 일으킴에 따라 형성되기 때문에 계면활성제를 변화시키거나 반응 온도와 조성 등 반응조건을 다르게 함으로서 다양한 기공 구조와 크기를 갖는 메조기공 실리카 제조가 가능하다. 이러한 메조기공 실리카 분자체는 흡착제와 촉매로서의 응용 가능성을 보여주었으며 나노구조의 금속, 반도체 물질의 제조 등 여러 분야에 응용될 수 있다는 예가 보고되어졌다. 그러나 광촉매로 잘 알려진 이산화티타늄의 경우에는 코팅형태를 제외하고는 구조가 정확하게 제어된 형태의 메조기공 이산화티타늄 합성이 어려운 실정이다. In general, mesoporous formation is known to be best made from silica (SiO 2) material. Since 1992, scientists at Mobil published the hexagonal array of mesoporous silica, named MCM-41, which has led to active research, leading to the use of MCM-48, KIT-1, MSU-1, MCM-41, or the same space group, but Mesoporous silica molecular sieves of various structures having uniform pore sizes were synthesized in the meso region, such as SBA-15, which belongs to a larger region. Mesoporous silica is mainly made by using aggregates of surfactants as structural derivatives.Since the silica on the surface of the micelle formed by the surfactants is formed by polymerization, the mesoporous silica is used to change the surfactants or to react the reaction temperature and composition. By varying the conditions, it is possible to produce mesoporous silica having various pore structures and sizes. These mesoporous silica molecular sieves have shown application potential as adsorbents and catalysts, and examples have been reported that they can be applied to various fields such as the production of nanostructured metals and semiconductor materials. However, in the case of titanium dioxide, which is well known as a photocatalyst, it is difficult to synthesize mesoporous titanium dioxide having a precisely controlled structure except for a coating form.

따라서 본 발명의 목적은 첫 번째, 순수한 물을 용매로 이용하여 고체 형태의 메조기공 이산화티타늄을 제조한후, 가수열반응을 통하여 결정성이 우수하여 높은 온도에서도 열적 안전성이 뛰어난 물질을 저렴한 비용으로 친환경적으로 대량생산이 가능한 방법으로 제조하는데 있다. Accordingly, an object of the present invention is to prepare a mesoporous titanium dioxide in solid form using pure water as a solvent, and then, by using a hydrothermal reaction, a material having excellent thermal stability even at high temperature at low cost. It is to manufacture in an environment-friendly mass production method.

둘째, 기공내에 크롬(Cr), 철(Fe), 바륨(V) 및 은(Ag) 등의 전이금속을 도핑시킴으로써, 자외선뿐만 아니라 가시광선 영역에서도 높은 광활성을 가지는 물질을 제조하는데 있다. Second, doping transition metals such as chromium (Cr), iron (Fe), barium (V) and silver (Ag) in the pores, to produce a material having a high photoactivity in the visible light region as well as ultraviolet light.

상기와 같은 목적을 달성하기 위한 본 발명은, 하기의 화학식 1인 중성계면활성제인 Pluronic P123과 하기의 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)와 하기의 화학식 3인 2,4-펜탄이온(2, 4-pentanedione)을 이용하며, 상기의 화학식 1과 상기의 화학식 2는 1 : 40 ~ 80의 몰비로, 상기의 화학식 2와 상기의 화학식 3은 1 : 1의 몰비로 구비되는 계면활성제를 이용한 메조기공 이산화티타늄 제조방법을 제공한다.The present invention for achieving the above object, Pluronic P123 which is a neutral surfactant of Formula 1 and the precursor titanium isopropoxide of Formula 2 and 2,4-pentane of Formula 3 An interface using ions (2, 4-pentanedione), wherein Formula 1 and Formula 2 are in a molar ratio of 1:40 to 80, and Formula 2 and Formula 3 are in a molar ratio of 1: 1. It provides a method for producing mesoporous titanium dioxide using an active agent.

(화학식 1)(Formula 1)

(PEO)20(PPO)70(PEO)20(PEO) 20 (PPO) 70 (PEO) 20

(화학식 2)(Formula 2)

Ti(OCH(CH3)CH2CH3)4 Ti (OCH (CH3) CH2CH3) 4

(화학식 3)(Formula 3)

CH3COCH2COCH3 CH3COCH2COCH3

또한 본 발명은, 물 100 중량부에 대해 3 ~ 5 중량부의 하기의 화학식 1인 중성계면활성제인 프르로닉(Pluronic) P123를 넣어 물에 용해시키는 계면활성제 용해단계와; 상기 계면활성제 용해단계에서 생성된 용액에 물 100 중량부에 대해 1 ~ 2 중량부의 황산을 첨가하는 황산 첨가단계와; 상기 계면활성제 용해단계에서 생성된 용액에 하기의 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)와 하기의 화학식 3인 2,4-펜탄이온(2, 4-pentanedione)을 혼합한 티타늄전구체를 넣어 교반단계를 포함하여 제조되며, 상기 화학식 1인 중성계면활성제인 Pluronic P123과 상기 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)는 1 : 40 ~ 80의 몰비로, In another aspect, the present invention, the surfactant dissolution step of dissolving 3 to 5 parts by weight of Pluronic P123, a neutral surfactant of the formula (1) to 100 parts by weight of water to dissolve in water; Sulfuric acid addition step of adding 1 to 2 parts by weight of sulfuric acid based on 100 parts by weight of water to the solution produced in the surfactant dissolving step; A titanium precursor obtained by mixing the precursor titanium isopropoxide represented by Chemical Formula 2 and 2,4-pentane ion represented by Chemical Formula 3 to the solution produced in the surfactant dissolving step It is prepared, including a stirring step, the neutral surfactant Pluronic P123 of Formula 1 and the precursor titanium isopropoxide of Formula 2 (Titanium isopropoxide) in a molar ratio of 1: 40 to 80,

상기 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)와 상기 화학식 3인 2,4-펜탄이온(2, 4-pentanedione)은 1 : 1의 몰비로 구비되는 계면활성제를 이용한 메조기공 이산화티타늄 제조방법을 제공한다.The precursor titanium isopropoxide of formula (2) and 2,4-pentane ions (2,4-pentanedione) of formula (3) are prepared mesoporous titanium dioxide using a surfactant provided in a molar ratio of 1: 1. Provide a method.

(화학식 1)(Formula 1)

(PEO)20(PPO)70(PEO)20(PEO) 20 (PPO) 70 (PEO) 20

(화학식 2)(Formula 2)

Ti(OCH(CH3)CH2CH3)4 Ti (OCH (CH3) CH2CH3) 4

(화학식 3)(Formula 3)

CH3COCH2COCH3 CH3COCH2COCH3

이에 상기 계면활성제 용해단계는 반응온도 조건이 40 ~ 70 ℃로 구비되는 계면활성제를 이용한 메조기공 이산화티타늄 제조방법을 제공한다.Accordingly, the surfactant dissolving step provides a method for producing mesoporous titanium dioxide using a surfactant having a reaction temperature of 40 to 70 ° C.

상기의 제조방법에 의하여 제조되는 메조기공 이산화티타늄을 포함하며, 특히 상기 메조기공 이산화티타늄의 기공 내에 전이금속 Cr, Fe, V, 및 Ag를 포함하는 광활성광촉매를 제공한다.Provided is a photoactive photocatalyst comprising mesoporous titanium dioxide prepared by the above method, in particular the transition metals Cr, Fe, V, and Ag in the pores of the mesoporous titanium dioxide.

Cr, Fe, V, 및 Ag을 메조기공 이산화티타늄에 도핑시키기 위해서는 하기의 화학식 4, 화학식 5, 화학식 6 및 화학식 7을 이용하며, 메조기공 이산화티타늄과 하기의 화학식 4, 화학식 5, 화학식 6 및 화학식 7은 1 : 0.01 ~ 0.07의 몰비로 구비되는 가시광 활성 메조기공 이산화티타늄 제조방법을 제공한다.In order to dope Cr, Fe, V, and Ag in the mesoporous titanium dioxide, the following Chemical Formulas 4, 5, 6, and 7 are used, and the mesoporous titanium dioxide and the following Chemical Formulas 4, 5, 6, and Formula 7 provides a method for producing visible light active mesoporous titanium dioxide, which is provided at a molar ratio of 1: 0.01 to 0.07.

(화학식 4)(Formula 4)

CrCl36H2OCrCl36H2O

(화학식 5)(Formula 5)

FeCl3FeCl3

(화학식 6)(Formula 6)

VCl4VCl4

(화학식 7)(Formula 7)

AgNO3AgNO3

또한 본 발명은 에탄올 100 중량부에 10 중량부의 메조기공 이산화티타늄을 넣어 용해시키는 단계; 에탄올 100 중량부에 하기의 화학식4, 화학식5, 화학식6 및 화학식7과 메조기공 이산화티타늄의 몰비 0.01 ~ 0.07 각각 넣어 기공내에 전이금속을 함침시키는 단계; 회전진공 농축기를 이용하여 에탄올을 제거한 후 400 ℃에서 소성시키는 단계에 의해 얻어지는 전이금속 도핑 메조기공 이산화티타늄의 제조방법을 제공한다.In another aspect, the present invention comprises the steps of dissolving 10 parts by weight of mesoporous titanium dioxide in 100 parts by weight of ethanol; Impregnating transition metals into the pores by adding molar ratios of the following Formulas 4, 5, 6 and 7 to Mesoporous titanium dioxide in 100 parts by weight of ethanol, respectively; Provided is a method for preparing a transition metal-doped mesoporous titanium dioxide obtained by removing ethanol using a rotary vacuum concentrator and calcining at 400 ° C.

(화학식 4)(Formula 4)

CrCl36H2OCrCl36H2O

(화학식 5)(Formula 5)

FeCl3FeCl3

(화학식 6)(Formula 6)

VCl4VCl4

(화학식 7)(Formula 7)

AgNO3AgNO3

이하 본 발명을 첨부되는 도면을 참조하여 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 화학식 1을 가지는 계면활성제를 40℃ 상태에서 물에 녹인 후 화학식 2 및 화학식 3을 가지는 물질을 1 : 1 몰비로 혼합하여 물 용매에 천천히 첨가시킴으로서 졸-겔법을 이용하여 메조기공 이산화티타늄을 제조하는 것에 주된 특징이 있다. The present invention dissolves a surfactant having Formula 1 in water at 40 ° C., and then slowly adds a substance having Formulas 2 and 3 in a 1: 1 molar ratio to a water solvent by slowly adding mesoporous titanium dioxide using a sol-gel method. There is a main feature to the preparation.

(PEO)20(PPO)70(PEO)20 (PEO) 20 (PPO) 70 (PEO) 20

Ti(OCH(CH3)CH2CH3)4 Ti (OCH (CH3) CH2CH3) 4

CH3COCH2COCH3 CH3COCH2COCH3

CrCl36H2OCrCl36H2O

FeCl3FeCl3

VCl4VCl4

AgNO3AgNO3

본 발명에서는 계면활성제와 티타늄 전구체의 상호작용을 원활하게 수행할 수 있도록 황산을 첨가하는데 황산으로부터의 수소이온(H+)은 티타늄 전구체의 가수분해와 축합반응에 대한 속도를 조절하는 역할을 하며 설포네이트기(SO42-)는 계면활성제와 티타늄 전구체가 상호작용으로 상호인력을 가능케 하여 메조기공 형태를 만드는데 결정적인 역할을 한다. 그 작용효과를 구체적으로 설명하면, 수소이온의 경우 티타늄 전구체가 물과 만나 가수분해 되고 중합반응이 일어나면서 6~10 nm 크기의 이산화티타늄을 형성하게 하는데 이러한 산의 농도에 따라 중합반응속도가 다르기 때문에 나노입자 이산화티타늄의 크기는 산의 농도에 따라 달라진다. In the present invention, sulfuric acid is added to facilitate the interaction between the surfactant and the titanium precursor, and hydrogen ions (H +) from the sulfuric acid serve to control the rate of hydrolysis and condensation reaction of the titanium precursor, and sulfonate. The group (SO42-) plays a decisive role in the formation of mesoporous morphologies by enabling the interaction between the surfactant and the titanium precursor. Specifically, in the case of hydrogen ions, the titanium precursor meets with water to hydrolyze and cause a polymerization reaction to form titanium dioxide having a size of 6 to 10 nm. Because of this, the size of the nanoparticle titanium dioxide depends on the concentration of the acid.

또한 이렇게 형성된 6~10 nm 크기의 이산화티타늄은 계면활성제와 상호작용을 이루어 메조기공 물질로 성장하게 되는데 이때 설포네이트기(SO42-)는 이러한 계면활성제와 나노입자 이산화티타늄과의 상호작용을 도와 나노입자가 서로 응집되는 형태로 열적으로 안정한 구형구조의 메조기공 이산화티타늄을 제조할 수 있게 한다. In addition, the formed 6-10 nm titanium dioxide interacts with the surfactant and grows into a mesoporous material. In this case, sulfonate groups (SO42-) help the interaction between the surfactant and the nanoparticle titanium dioxide. It is possible to produce thermally stable mesoporous titanium dioxide in the form of particles agglomerating with each other.

그러므로, 이러한 나노입자의 크기 조절 및 계면활성제와의 상호작용에 의한 최적화된 구형의 메조기공 이산화티타늄을 제조하기 위해서는 계면활성제의 농도조절, 계면활성제와 티타늄 전구체의 몰비 변화, 황산의 농도조절 및 계면활성제가 마이셀 구조를 이루기 위한 반응온도 조절 등 최적화된 조건을 설정하여야 한다. Therefore, in order to prepare optimized spherical mesoporous titanium dioxide by controlling the size of nanoparticles and interacting with the surfactant, the concentration of the surfactant, the change in the molar ratio of the surfactant and the titanium precursor, the concentration of sulfuric acid and the interface Optimized conditions, such as control of the reaction temperature for the activator to achieve the micelle structure, should be set.

계면활성제의 농도조절에서는 물 용매 100 중량부를 기준으로 3 ~ 5 중량부 영역에서만 고체상태의 물질이 얻어지며 3 중량부 이하에서는 낮은 수율의 물질이 얻어지는 반면 5 중량부 이상에서는 고체로 형성되지 않고 겔형태의 물질이 얻어지게 된다. 보다 구체적인 계면활성제의 농도는 4 중량부 이다. In the concentration control of the surfactant, a solid substance is obtained only in a region of 3 to 5 parts by weight based on 100 parts by weight of a water solvent, and a lower yield of a material is obtained at 3 parts by weight or less, whereas a gel is not formed as a solid at 5 parts by weight or more. A form of material is obtained. More specific surfactant concentration is 4 parts by weight.

계면활성제와 티타늄 전구체와의 몰 비 조절에서는 1 : 40과 1 : 80 영역에선 고체상태의 메조기공 물질을 얻을 수 있었으며 1 : 40에서는 낮은 수율의 물질을 얻을 수 있었고 제조시간도 길어지는 반면 1 : 80이상에서는 메조기공 형태의 물질이 얻어지지 않았다. 최적화된 계면활성제와 티타늄 전구체와의 몰 비는 1 : 60이다. 그리고 사용되는 티타늄 전구체는 티타늄 아이소프로폭사이드 와 2,4-펜 탄이온(2, 4-pentanedione)을 1 : 1 몰비로 혼합하였다.In the molar ratio control between the surfactant and the titanium precursor, solid mesoporous materials were obtained in the 1:40 and 1:80 regions, and low yields were obtained in the 1:40, while the production time was longer. Above 80 no mesoporous material was obtained. The molar ratio of the optimized surfactant to the titanium precursor is 1:60. The titanium precursor used was mixed with titanium isopropoxide and 2,4-pentanedione in a 1: 1 molar ratio.

황산의 농도조절에 있어서는 황산을 물 100 중량부에 대해 1 ~ 3 중량부 영역에서 수율이 높은 메조기공 이산화티타늄을 얻을 수 있었다. 1 중량부 이하에서는 메조기공 물질이 얻어지지 않았으며 3 중량부 이상에서는 고체물질이 아닌 겔 형태의 물질을 얻을 수 있었으며, 구형 모양의 메조기공 이산화티타늄을 제조하기 위한 최적조건은 1.5 중량부 이다. In the concentration control of sulfuric acid, mesoporous titanium dioxide having high yield was obtained in the range of 1-3 parts by weight based on 100 parts by weight of water. At 1 part by weight or less, no mesoporous material was obtained. At 3 parts by weight or more, a gel-like material was obtained. The optimum condition for producing spherical mesoporous titanium dioxide was 1.5 parts by weight.

또한, 본 방법에 있어서 반응온도 조절은 매우 중요한 의미를 가진다. 계면활성제로 사용된 Pluronic P123의 구조는 (PEO)20(PPO)70(PEO)20으로 이뤄져 있고 PEO의 경우 40 ℃ 이상에서 물 용매 하에서는 친수성을 가지게 되고 40 ℃이하에서는 소수성을 가지게 된다. 그러므로 40 ℃ 이상에서만 마이셀을 형성할 수 있고, 이러한 마이셀 형성 조건하에서 메조기공 이산화티타늄을 제조할 수 있다. 본 발명에서는 40℃에서 70 ℃영역의 반응온도에서 메조기공 이산화티타늄을 제조할 수 있으며, 최적화된 온도는 55 ℃이다.In addition, the reaction temperature control has a very important meaning in this method. The structure of Pluronic P123 used as a surfactant is composed of (PEO) 20 (PPO) 70 (PEO) 20, and PEO has hydrophilicity under water solvent at 40 ° C or higher and hydrophobicity at 40 ° C or lower. Therefore, micelles can be formed only at 40 ° C. or higher, and mesoporous titanium dioxide can be produced under such micelle formation conditions. In the present invention, it is possible to produce mesoporous titanium dioxide at a reaction temperature of 40 ℃ to 70 ℃ region, the optimized temperature is 55 ℃.

상기 제조한 메조기공 이산화티타늄을 알코올 중량부에 대해 10 중량부를 넣은 후 메조기공 이산화티타늄과 전이금속(염화크롬(Ⅲ)6수화물(CrCl36H2O), 염화철(Ⅲ) FeCl3, 사염화바나듐(VCl4), 질산은(AgNO3)) 중 어느 한가지의 몰비를 1 : 0.01 ~ 0.07로 하여 알코을 100 중량부에 첨가신 후 기공내에 전이금속을 함침시킨다. 보다 구체적인 메조기공 이산화티타늄과 전이금속의 몰비는 1 : 0.03 몰비 이다.10 parts by weight of the prepared mesoporous titanium dioxide is added to the alcohol part, and then the mesoporous titanium dioxide and the transition metal (chromium (III) chloride hydrate (CrCl36H2O), iron chloride (III) FeCl3, vanadium tetrachloride (VCl4) and silver nitrate) The molar ratio of (AgNO3)) is 1: 0.01 to 0.07, and alcohol is added to 100 parts by weight, and the transition metal is impregnated into the pores. More specific molar ratio of mesoporous titanium dioxide and transition metal is 1: 0.03 molar ratio.

상기한 바와 같이 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단, 본 발명은 하기 실시예로 한정되는 것은 아니다. As mentioned above, features of the present invention and other advantages will become more apparent from the embodiments described below. However, the present invention is not limited to the following examples.

(( 실시예Example 1)  One) 메조기공Mesoporous 이산화티타늄의 합성 Synthesis of Titanium Dioxide

뚜껑이 있는 1000 mL 플라스틱 병에, 계면활성제 4 중량부를 100 중량부의 물에 40 ℃ 조건하에서 6시간 이상 용해시킨다. 용해가 끝난 후 1.5 중량부의 황산을 첨가한다. 50 mL 비이커에 티타늄아이소프로폭사이드(Titaniumisopropoxide)와 2,4-펜탄이온(2, 4-pentanedione)을 1 : 1 몰비로 하여 혼합시킨 후, 계면활성제가 들어있는 용매에 넣고 교반기를 이용하여 천천히 교반시킨다. 이때 티타늄아이소프로폭사이드는 계면활성제에 대해 1 : 45 몰비로 하여 넣는다.In a 1000 mL plastic bottle with a lid, 4 parts by weight of the surfactant is dissolved in 100 parts by weight of water for at least 6 hours under 40 ° C. After dissolution, 1.5 parts by weight of sulfuric acid is added. Titanium isopropoxide and 2,4-pentanedione are mixed in a 50 mL beaker in a 1: 1 molar ratio, and then added to a solvent containing a surfactant and slowly stirred using a stirrer. Stir. At this time, titanium isopropoxide is added in a 1:45 molar ratio with respect to the surfactant.

첨가가 끝나면 플라스틱 병의 뚜껑을 닫고 55 ℃ 반응조건하에 교반을 하지 않은 상태에서 2시간을 놓아둔다. 고체가 형성되면 플라스틱 병을 90 ℃ 오븐에 옮긴 후 10시간 이상 방치한다. 반응이 끝난 후 실온에서 온도가 떨어질 때 까지 방치한 후 여과기를 이용하여 합성물을 거른 후 300 mL의 증류수로 충분히 세척한다. 얻어진 생성물을 80℃ 오븐에 넣고 2시간 이상 건조시킨다. 건조된 시료는 계면활성제를 제거하기 위하여 350℃ 또는 400℃에서 5시간 동안 소성 시킨다. After the addition, close the lid of the plastic bottle and leave it for 2 hours without stirring under the reaction condition of 55 ℃. Once the solid is formed, the plastic bottle is transferred to a 90 ° C. oven and left for at least 10 hours. After the reaction, the mixture was allowed to stand at room temperature until the temperature dropped, and the mixture was filtered using a filter and washed thoroughly with 300 mL of distilled water. The obtained product is put into an 80 degreeC oven and dried for 2 hours or more. The dried sample is baked at 350 ° C. or 400 ° C. for 5 hours to remove the surfactant.

(( 실시예Example 2) 전이금속이  2) transition metal 도핑된Doped 메조기공Mesoporous 이산화티타늄의 합성 Synthesis of Titanium Dioxide

상기 제조된 메조기공 이산화티타늄을 20 mL 의 에탄올 용매에 녹인 후 도핑시키고자 하는 전이금속의 양을 첨가한다. Cr의 경우 CrCl3?6H2O, Fe의 경우 FeCl3, V의 경우 VCl4, 은의 경우 AgNO3를 이용하여 메조기공 이산화티타늄과 전이금속들의 몰비를 1 : 0.03으로 하여 녹인 후, 전이금속 용액이 기공 속으로 충분히 함침시킬 수 있도록 교반한 후 회전진공 농축기를 이용하여 에탄올 용매를 완전히 제거한다. 전이금속의 결정화도를 증대시키기 위해서 400 ℃ 오분에서 5시간 동안 소성시킨다. After dissolving the prepared mesoporous titanium dioxide in 20 mL of ethanol solvent, the amount of the transition metal to be doped is added. CrCl3 ~ 6H2O for Cr, FeCl3 for V, VCl4 for V, and AgNO3 for silver to melt the molar ratio of mesoporous titanium dioxide and transition metals to 1: 0.03, and then the transition metal solution is sufficiently impregnated into the pores. After stirring, the ethanol solvent is completely removed using a rotary vacuum concentrator. In order to increase the crystallinity of the transition metal, it is calcined at 400 ° C. for 5 minutes for 5 hours.

메조기공Mesoporous 이산화티타늄의 구조분석 Structural Analysis of Titanium Dioxide

본 발명의 메조기공 이산화티타늄의 SEM을 이용하여 형성된 구조 형태를 분석하였고, TEM 사진을 통하여 메조기공을 확인하였으며, 비표면적과 기공분포를 측정하였고, 메조기공 이산화티타늄의 광분해 효율 및 전이금속 도핑 메조기공 이산화티타늄의 가시광 영역 흡수도를 확인하였다.The structure of the mesoporous titanium dioxide of the present invention was analyzed by SEM, the mesopores were identified through TEM photographs, the specific surface area and pore distribution were measured, the photolysis efficiency of the mesoporous titanium dioxide, and the transition metal doping mesos. The absorbance of visible light region of pore titanium dioxide was confirmed.

(시험예 1) 메조기공 이산화티타늄 의 SEM 측정Test Example 1 SEM Measurement of Mesoporous Titanium Dioxide

실시예 1을 대상으로 합성된 메조기공 이산화티타늄은 주사 전자 현미경(Scanning Electron Microscopy, SEM)으로 구조를 분석하였다. 주사 전자 현미경 분석을 위해서 0.03 g의 메조기공 이산화티타늄을 아세톤 20 g에 분산시키고 30분간 초음파 처리하여 분산용액을 제조하였다. 도 1a에서는 구형의 메조기공 이산화티타늄이 합성된 것을 보여주고 있으며, 도 1b는 구형의 메조기공 이산화티타늄 한개를 확대하여 얻어진 사진을 보여주고 있으며, 메조기공이 형성되어 있다는 것을 알 수 있다. Mesoporous titanium dioxide synthesized in Example 1 was analyzed by Scanning Electron Microscopy (SEM). For scanning electron microscopic analysis, 0.03 g of mesoporous titanium dioxide was dispersed in 20 g of acetone and sonicated for 30 minutes to prepare a dispersion solution. FIG. 1A shows that spherical mesoporous titanium dioxide is synthesized. FIG. 1B shows a photograph obtained by enlarging one spherical mesoporous titanium dioxide, and it can be seen that mesopores are formed.

(시험예 2) 메조기공 이산화티타늄 의 TEM 측정Test Example 2 TEM Measurement of Mesoporous Titanium Dioxide

실시예 1을 대상으로 합성된 메조기공 이산화티타늄의 기공크기 및 배열 구 조를 조사하기 위하여 전자 현미경으로 특성 분석하였다. 투과 전자 현미경 상은 Phillips CM20 apparatus (100 kV)를 이용하여 얻었다. 투과 전자 현미경 분석을 위해서 0.03 g의 메조기공 이산화티타늄을 아세톤 20 g에 분산시키고 30분간 초음파 처리하여 분산용액을 제조하였다. 탄소막 처리된 구리 그리드를 분석용액과 수초간 접촉시킨 후 실온에서 건조시켜 TEM(Transmission Electron Microcope, 투과전자현미경) 시편을 준비하였다. 도 2에서는 불규칙한 배열 구조의 메조기공이 형성되어 있다는 것을 보여주고 있다. In order to investigate the pore size and arrangement of the mesoporous titanium dioxide synthesized in Example 1, it was characterized by an electron microscope. Transmission electron microscopy images were obtained using a Phillips CM20 apparatus (100 kV). For transmission electron microscopic analysis, 0.03 g of mesoporous titanium dioxide was dispersed in 20 g of acetone and sonicated for 30 minutes to prepare a dispersion solution. The carbon film-treated copper grid was contacted with the analytical solution for several seconds and dried at room temperature to prepare a TEM (Transmission Electron Microcope) specimen. Figure 2 shows that the mesopores of irregular arrangement structure is formed.

(시험예 3) 메조기공 이산화티타늄의 비표면적 및 기공분포 측정(Test Example 3) Measurement of specific surface area and pore distribution of mesoporous titanium dioxide

실시예1을 대상으로 합성된 메조기공 이산화티타늄의 비표면적과 기공크기를 조사하기 위해서 표면적 및 기공분포를 측정하였다. 표면적 및 기공분포는 ASAP 2000 분석장비를 이용하여 분석하였으며, 0.05 g의 시료를 10-6 토르에서 10시간 동안 진공으로 한 후 분석하였다. 도 3a 는 온도별로 소성하였을 때의 메조기공 이산화티타늄의 비표면적과 도 3b는 이에 따른 기공크기의 변화를 보여주고 있다. In order to investigate the specific surface area and pore size of mesoporous titanium dioxide synthesized in Example 1, the surface area and pore distribution were measured. Surface area and pore distribution were analyzed using an ASAP 2000 analyzer, and 0.05 g of the sample was analyzed after 10 hours of vacuum at 10-6 Torr. Figure 3a shows the specific surface area of mesoporous titanium dioxide when firing by temperature and Figure 3b shows the change in pore size accordingly.

(시험예 4) 메조기공 이산화티타늄의 광분해 분석Test Example 4 Photolysis Analysis of Mesoporous Titanium Dioxide

실시예 1을 대상으로 합성된 메조기공 이산화티타늄의 광분해 효과를 분석하기 위하여 메틸렌블루 용액을 이용하여 측정하였다. 25 mL의 물에 25 mg의 메틸렌블루를 용해시킨 용액에 25 mg의 메조기공 이산화티타늄을 넣은 후 자외선 영역에서 메틸렌블루의 광분해 효율을 측정하였다. 일정기간에 일정량의 메틸렌블루용액 을 취하여 자외선-가시광선 분광광도계를 이용하여 흡광도를 측정하였다. 도 4는 자외선 노출시간에 따른 메틸렌블루용액의 흡광도 변화이다.In order to analyze the photodegradation effect of the mesoporous titanium dioxide synthesized in Example 1 was measured using a methylene blue solution. 25 mg of mesoporous titanium dioxide was added to a solution of 25 mg of methylene blue dissolved in 25 mL of water, and then the photolysis efficiency of methylene blue was measured in the ultraviolet region. A certain amount of methylene blue solution was taken over a period of time and absorbance was measured using an ultraviolet-visible spectrophotometer. 4 is a change in absorbance of the methylene blue solution according to the ultraviolet exposure time.

(시험예 5) 전이금속 도핑 메조기공 이산화티타늄의 가시광 광흡수 분석Test Example 5 Analysis of Visible Light Absorption of Transition Metal Doped Mesopores Titanium Dioxide

실시예 2을 대상으로 합성된 전이금속 도핑 메조기공 이산화티타늄의 가시광선 영역의 흡수도 실험을 측정하였다. 전이금속별로 도핑된 메조기공 이산화티타늄을 얇은 판에 밀착시킨 후 자외선-가시광선 분광광도계의 반사각을 이용하여 자외선 영역에서의 빛 흡수도를 측정하였다. 도 5는 자외선 영역에서의 메조기공 이산화티타늄과 전이금속별 몰비 1 : 0.03에서의 자외선 영역 흡수도이다.The absorbance experiment of visible light region of the transition metal-doped mesoporous titanium dioxide synthesized in Example 2 was measured. The mesoporous titanium dioxide doped with each transition metal was brought into close contact with a thin plate, and the light absorption in the ultraviolet region was measured using the reflection angle of the ultraviolet-visible spectrophotometer. FIG. 5 is an ultraviolet region absorption diagram at a molar ratio 1: 0.03 of mesoporous titanium dioxide and transition metal in the ultraviolet region.

상기한 바와 같이 본 발명은 높은 온도에서도 기공이 무너지지 않도록 메조기공 이산화티타늄을 제조하며. 이러한 메조기공 이산화티타늄은 비표면적이 매우 높아서 광촉매로서의 활용가치가 매우 높을 뿐만 아니라 기공 내에 전이금속을 도핑 시킨 후 고온으로 소성시킬 수 있어, 전이금속의 결정성을 높여주고 결과적으로 자외선 영역뿐만 아니라 가시광선 영역에서도 광활성을 가지는 물질을 제조하였으며, 이를 이용하여 악취물질 및 VOC(휘발성유기화합물) 등을 효과적으로 제거할 수 있는 촉매로 활용될 수 있는 효과가 있다. As described above, the present invention produces mesoporous titanium dioxide so that the pores do not collapse even at high temperatures. The mesoporous titanium dioxide has a very high specific surface area, which is very useful as a photocatalyst and can be sintered at high temperature after doping the transition metal in the pores, thereby increasing the crystallinity of the transition metal and consequently not only the visible region but also the visible region. A material having photoactivity was also prepared in the light ray region, and it can be used as a catalyst that can effectively remove odorous substances and VOCs (volatile organic compounds).

Claims (5)

화학식 1인 중성계면활성제인 Pluronic P123과 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)와 화학식 3인 2,4-펜탄이온(2, 4-pentanedione)을 이용하며,Pluronic P123 (neutral surfactant of Formula 1), precursor titanium isopropoxide (Formula 2), and 2,4-pentane ion (2,4-pentanedione) of Formula 3, 화학식 1과 화학식 2는 1 : 40 ~ 80의 몰비로, 화학식 2와 화학식 3은 1 : 1 ~ 10의 몰비로 구비되는 것을 특징으로 하는 메조기공 이산화티타늄 제조방법.Formula 1 and Formula 2 is a molar ratio of 1: 40 to 80, Formula 2 and Formula 3 is a method for producing mesoporous titanium dioxide, characterized in that provided in a molar ratio of 1: 1 to 10. (화학식 1)(Formula 1) (PEO)20(PPO)70(PEO)20(PEO) 20 (PPO) 70 (PEO) 20 (화학식 2)(Formula 2) Ti(OCH(CH3)CH2CH3)4 Ti (OCH (CH3) CH2CH3) 4 (화학식 3)(Formula 3) CH3COCH2COCH3 CH3COCH2COCH3 물 100 중량부에 대해 3 ~ 5 중량부의 화학식 1인 중성계면활성제인 Pluronic P123를 넣어 물에 용해시키는 계면활성제 용해단계와;A surfactant dissolving step of dissolving 3 to 5 parts by weight of Pluronic P123, which is a neutral surfactant represented by Chemical Formula 1, in 100 parts by weight of water; 상기 계면활성제 용해단계로 이루어진 용액에 물 100 중량부에 대해 1 ~ 2 중량부의 황산을 첨가하는 황산 첨가단계와;Sulfuric acid addition step of adding 1 to 2 parts by weight of sulfuric acid based on 100 parts by weight of water to the solution consisting of dissolving the surfactant; 상기 계면활성제 용해단계로 이루어진 용액에 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)와 화학식 3인 2,4-펜탄이온(2, 4-pentanedione)을 교반하는 티타늄전구체 교반단계를 포함하여 제조되며,Preparation comprising a titanium precursor stirring step of stirring the precursor titanium isopropoxide of formula (2) and 2,4-pentane ion (2,4-pentanedione) of formula 3 in the solution consisting of the surfactant dissolving step , 화학식 1인 중성계면활성제인 Pluronic P123과 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)은 1 : 40 ~ 80의 몰비로,Pluronic P123, a neutral surfactant of Formula 1, and the precursor titanium isopropoxide of Formula 2 are in a molar ratio of 1:40 to 80, 화학식 2인 전구체 티타늄아이소프로폭사이드(Titanium isopropoxide)와 화학식 3인 2,4-펜탄이온(2, 4-pentanedione)은 1 : 1 ~ 10의 몰비로 구비되는 것을 특징으로 하는 메조기공 이산화티타늄 제조방법.Precursor titanium isopropoxide of formula (2) and 2,4-pentane ions (2,4-pentanedione) of formula 3 is prepared mesoporous titanium dioxide, characterized in that provided in a molar ratio of 1: 1 to 10 Way. (화학식 1)(Formula 1) (PEO)20(PPO)70(PEO)20(PEO) 20 (PPO) 70 (PEO) 20 (화학식 2)(Formula 2) Ti(OCH(CH3)CH2CH3)4 Ti (OCH (CH3) CH2CH3) 4 (화학식 3)(Formula 3) CH3COCH2COCH3 CH3COCH2COCH3 제 1 항 또는 제 2항에 있어서, The method according to claim 1 or 2, 상기 계면활성제 용해단계는The surfactant dissolving step 반응온도 조건이 40 ~ 70 ℃으로 구비되는 것을 특징으로 하는 메조기공 이산화티타늄 제조방법.Mesoporous titanium dioxide production method characterized in that the reaction temperature conditions are provided at 40 ~ 70 ℃. 제 1 항 또는 제 3항의 제조방법에 의하여 제조되는 메조기공 이산화티타늄을 포함하는 것을 특징으로 하는 광활성광촉매.A photoactive photocatalyst comprising mesoporous titanium dioxide prepared by the process according to claim 1. 제 4항에 있어서,The method of claim 4, wherein 상기 메조기공 이산화티타늄의 기공 내에 전이금속 Cr, Fe, V 및 Ag를 포함하는 것을 특징으로 하는 가시광활성광촉매.Visible photoactive photocatalyst, characterized in that containing the transition metals Cr, Fe, V and Ag in the pores of the mesoporous titanium dioxide.
KR1020060097229A 2006-10-02 2006-10-02 HIGH PHOTOCATALYTIC ACITIVITY OF MESOPOROUS TiO2 AND VISIBLE LINGT PHOTOCATALYST WITH HYDROTHERAMAL TREATMENT AND METHODE OF MANUFACTURING THEREOF KR100884018B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060097229A KR100884018B1 (en) 2006-10-02 2006-10-02 HIGH PHOTOCATALYTIC ACITIVITY OF MESOPOROUS TiO2 AND VISIBLE LINGT PHOTOCATALYST WITH HYDROTHERAMAL TREATMENT AND METHODE OF MANUFACTURING THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060097229A KR100884018B1 (en) 2006-10-02 2006-10-02 HIGH PHOTOCATALYTIC ACITIVITY OF MESOPOROUS TiO2 AND VISIBLE LINGT PHOTOCATALYST WITH HYDROTHERAMAL TREATMENT AND METHODE OF MANUFACTURING THEREOF

Publications (2)

Publication Number Publication Date
KR20080030823A true KR20080030823A (en) 2008-04-07
KR100884018B1 KR100884018B1 (en) 2009-02-17

Family

ID=39532720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060097229A KR100884018B1 (en) 2006-10-02 2006-10-02 HIGH PHOTOCATALYTIC ACITIVITY OF MESOPOROUS TiO2 AND VISIBLE LINGT PHOTOCATALYST WITH HYDROTHERAMAL TREATMENT AND METHODE OF MANUFACTURING THEREOF

Country Status (1)

Country Link
KR (1) KR100884018B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176387A (en) * 2011-03-02 2011-09-07 东莞宏威数码机械有限公司 Methods for preparing porous spherical titanium dioxide paste and sensitized photo-anode
CN102800495A (en) * 2012-08-10 2012-11-28 奇瑞汽车股份有限公司 Method, optical anode and battery of titanium dioxide film electrode growing in situ
DE102011103504A1 (en) 2011-06-04 2012-12-06 Gmbu E.V., Fachsektion Dresden Photoactive textile material produced by coating a pre-treated textile material with a nanocrystalline titania sol containing a noble metal salt and a chelating agent, useful as photocatalyst to degrade organic substances in waste water
CN103769066A (en) * 2012-10-18 2014-05-07 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of titanium dioxide photocatalyst
CN108339572A (en) * 2018-02-25 2018-07-31 赵焕 A kind of polypropylene-base photochemical catalyst and preparation method thereof
CN111243867A (en) * 2020-01-20 2020-06-05 南昌航空大学 Preparation method of acid-treated dye-sensitized solar cell photo-anode
CN113410484A (en) * 2021-06-23 2021-09-17 大连交通大学 Platinum nanowire catalyst and preparation method thereof
KR20210154276A (en) * 2020-06-11 2021-12-21 한국기초과학지원연구원 Thermal stable porous titanium oxide with improved visible light activity, and method of manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101450389B1 (en) 2012-05-25 2014-10-14 (주)엘지하우시스 Photocatalyst, method for preparing the same and photocatalyst device
KR101804599B1 (en) * 2013-10-22 2017-12-06 (주)엘지하우시스 Method for preparing photocatalyst and photocatalyst prepared therefrom
KR101758427B1 (en) 2014-04-04 2017-07-17 (주)엘지하우시스 Photocatalyst and method for preparing the same
CN104549518B (en) * 2015-01-22 2017-02-01 陕西师范大学 Ag-AgCl-polyhydroxymethyl acrylamide microgel photocatalytic composite material and preparation method thereof
KR102639365B1 (en) 2022-03-30 2024-02-21 건국대학교 글로컬산학협력단 Method for producing titanium dioxide-copper(ⅰ) oxide nanocomposite
KR20240054562A (en) 2022-10-19 2024-04-26 건국대학교 산학협력단 Method for producing catalyst for glycerol oxidation reaction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421243B1 (en) * 2000-12-01 2004-03-12 (주) 에이엔티케미칼 The fabrication method of highly crystalline and dispersive photocatalyst of anatase-type titanium oxidesol by way of hydrothermal treatment
KR100354817B1 (en) * 2001-03-09 2002-10-05 (주)이앤비코리아 Method and Device for Manufacturing TiO2 Sol Used in Normal Temperature
KR100443260B1 (en) * 2001-10-30 2004-08-04 한국화학연구원 Preparation of high efficient photocatalyst for reduction of carbon dioxide to form fuels
KR100625252B1 (en) * 2004-09-14 2006-09-20 (주)선한엠엔티 A neutral TiO2 colloid solution for preparing the mesoporous TiO2 thin film and A preparation method thereof
US20060110317A1 (en) 2004-11-23 2006-05-25 Carmine Torardi Mesoporous amorphous oxide of titanium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176387A (en) * 2011-03-02 2011-09-07 东莞宏威数码机械有限公司 Methods for preparing porous spherical titanium dioxide paste and sensitized photo-anode
DE102011103504A1 (en) 2011-06-04 2012-12-06 Gmbu E.V., Fachsektion Dresden Photoactive textile material produced by coating a pre-treated textile material with a nanocrystalline titania sol containing a noble metal salt and a chelating agent, useful as photocatalyst to degrade organic substances in waste water
CN102800495A (en) * 2012-08-10 2012-11-28 奇瑞汽车股份有限公司 Method, optical anode and battery of titanium dioxide film electrode growing in situ
CN102800495B (en) * 2012-08-10 2016-06-01 奇瑞汽车股份有限公司 The method of in-situ upgrowth titanic oxide thin film electric pole, light anode, battery
CN103769066A (en) * 2012-10-18 2014-05-07 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of titanium dioxide photocatalyst
CN108339572A (en) * 2018-02-25 2018-07-31 赵焕 A kind of polypropylene-base photochemical catalyst and preparation method thereof
CN111243867A (en) * 2020-01-20 2020-06-05 南昌航空大学 Preparation method of acid-treated dye-sensitized solar cell photo-anode
KR20210154276A (en) * 2020-06-11 2021-12-21 한국기초과학지원연구원 Thermal stable porous titanium oxide with improved visible light activity, and method of manufacturing the same
CN113410484A (en) * 2021-06-23 2021-09-17 大连交通大学 Platinum nanowire catalyst and preparation method thereof

Also Published As

Publication number Publication date
KR100884018B1 (en) 2009-02-17

Similar Documents

Publication Publication Date Title
KR100884018B1 (en) HIGH PHOTOCATALYTIC ACITIVITY OF MESOPOROUS TiO2 AND VISIBLE LINGT PHOTOCATALYST WITH HYDROTHERAMAL TREATMENT AND METHODE OF MANUFACTURING THEREOF
CN102583255B (en) Method for preparing mesoporous composite transition metal oxide
CN1724145A (en) Nano Titanium dioxide/fluorite photocataly tic material and preparation process thereof
CN106881126B (en) A kind of bismuth tungstate/bismuth phosphate heterojunction photocatalyst and its preparation method and application
Shi et al. Synthesis of highly porous SiO2–(WO3) x· TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization
Cao et al. Three-dimensional hierarchical CeO 2 nanowalls/TiO 2 nanofibers heterostructure and its high photocatalytic performance
CN1486929A (en) Prepn of mesoporous spherical nano Sio2 particle
Wang et al. Effects of surfactants on the morphology and properties of TiO2
Liu et al. Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity
CN108927201B (en) AgBr/g-C3N4Preparation method and application of composite powder
WO2020042125A1 (en) Lithium bismuthate-bismuth oxide photocatalytic material and preparation method thereof
Zhu et al. Solvothermal synthesis of highly active Bi 2 WO 6 visible photocatalyst
Wang et al. ZnO/γ-Bi 2 MoO 6 heterostructured nanotubes: Electrospinning fabrication and highly enhanced photoelectrocatalytic properties under visible-light irradiation
CN1214978C (en) Ordered mesoporous molecnlar sieve material with wltrahigh hydrothermal stability and synthesis method thereof
US8075867B2 (en) Method for manufacturing a nanoporous framework and a nanoporous framework thus produced
Motevalli et al. Synthesis of Ag–AgO/Al 2 O 3 nanocomposite via a facile two-step method for photodegradation of methylene blue
KR100488100B1 (en) Mesoporous transition metal oxide thin film and powder and preparation thereof
Li et al. Facile design of F-doped TiO 2/gC 3 N 4 heterojunction for enhanced visible-light photocatalytic activity
KR100836710B1 (en) Method for preparing nano particle powder of titanium dioxide for dye-sensitized solar cell by sol-gel combustion hybrid method
Marra et al. Structural and photocatalytic properties of sol–gel-derived TiO2 samples prepared by conventional and hydrothermal methods using a low amount of water
Elgh et al. Controlling anatase and rutile polymorph selectivity during low-temperature synthesis of mesoporous TiO 2 films
CN1274593C (en) Preparation method of silicon oxide uniwafer material with ordered hole
Sun et al. Controllable preparation of three-dimensional porous WO 3 with enhanced visible light photocatalytic activity via a freeze-drying method
KR100780275B1 (en) Titanium Dioxide Photo-Catalyst and method of manufacturing the same
Liu et al. Facile preparation of spherical TiO 2 inverse opals with enhanced visible-light photodegradation of methylene blue

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140210

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170210

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190211

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200310

Year of fee payment: 12