KR20080028247A - Production method of methane gas from olive mill waste - Google Patents
Production method of methane gas from olive mill waste Download PDFInfo
- Publication number
- KR20080028247A KR20080028247A KR20060093833A KR20060093833A KR20080028247A KR 20080028247 A KR20080028247 A KR 20080028247A KR 20060093833 A KR20060093833 A KR 20060093833A KR 20060093833 A KR20060093833 A KR 20060093833A KR 20080028247 A KR20080028247 A KR 20080028247A
- Authority
- KR
- South Korea
- Prior art keywords
- sludge
- olive
- treatment plant
- methane gas
- anaerobic
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 239000002699 waste material Substances 0.000 title claims abstract description 79
- 240000007817 Olea europaea Species 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000010802 sludge Substances 0.000 claims abstract description 97
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 96
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 48
- 239000007789 gas Substances 0.000 claims abstract description 47
- 244000005700 microbiome Species 0.000 claims abstract description 46
- 230000029087 digestion Effects 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000010865 sewage Substances 0.000 claims description 47
- 239000007788 liquid Substances 0.000 claims description 46
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 230000014759 maintenance of location Effects 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000012163 sequencing technique Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 230000000813 microbial effect Effects 0.000 claims description 2
- 239000010841 municipal wastewater Substances 0.000 abstract 5
- 238000004065 wastewater treatment Methods 0.000 abstract 5
- 238000012258 culturing Methods 0.000 abstract 1
- 238000002203 pretreatment Methods 0.000 abstract 1
- 241000894006 Bacteria Species 0.000 description 16
- 150000007524 organic acids Chemical class 0.000 description 11
- 150000008442 polyphenolic compounds Chemical class 0.000 description 8
- 235000013824 polyphenols Nutrition 0.000 description 8
- 238000004062 sedimentation Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000004006 olive oil Substances 0.000 description 5
- 235000008390 olive oil Nutrition 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000010801 sewage sludge Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- CFFZDZCDUFSOFZ-UHFFFAOYSA-N 3,4-Dihydroxy-phenylacetic acid Chemical compound OC(=O)CC1=CC=C(O)C(O)=C1 CFFZDZCDUFSOFZ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 241001148470 aerobic bacillus Species 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- IWYDHOAUDWTVEP-UHFFFAOYSA-N mandelic acid Chemical compound OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 125000001477 organic nitrogen group Chemical group 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 2
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 241000202974 Methanobacterium Species 0.000 description 1
- 241000203353 Methanococcus Species 0.000 description 1
- 241000205276 Methanosarcina Species 0.000 description 1
- 241000207836 Olea <angiosperm> Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
- C02F11/04—Anaerobic treatment; Production of methane by such processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/32—Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
- C02F2103/322—Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters from vegetable oil production, e.g. olive oil production
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
도 1은 본 발명의 하나의 예를 나타낸 공정도이다.1 is a process chart showing one example of the present invention.
도 2는 본 발명의 하나의 예에 의한 운전시간에 따른 메탄발생량을 나타낸 그래프이다.2 is a graph showing the amount of methane generated according to the operation time according to an example of the present invention.
본 발명은 올리브폐액를 이용한 메탄가스생산방법에 관한 것으로서, 더욱 상세하게는 올리브폐액을 전처리 없이 혐기성소화를 시킬 수 있고, 메탄가스를 높은 수율로 생산할 수 있으며, 올리브 폐액과 2차슬러지를 동시에 처리할 수 있는 올리브폐유를 이용한 메탄가스생산방법에 관한 것이다.The present invention relates to a methane gas production method using an olive waste liquid, and more particularly, can be anaerobic digestion of olive waste liquid without pretreatment, can produce methane gas in high yield, and to simultaneously process the olive waste liquid and secondary sludge It relates to a methane gas production method using olive waste oil.
지중해 연안에서 전세계 소요량의 98%가량의 올리브유가 생산되고 있으며, 그 양은 연간 약 177만톤이나 된다. 올리브유 생산량의 약 2배가 폐액으로 생산된다고 보면 이 지역에서의 폐액 생산량은 약 350만톤 가량이다. 올리브유 생산량이 가장 큰 지역이 스페인(602,000 ton)이며, 이탈리아(451,000 ton), 그리스(332,000 ton), 튜니지아(173,000 ton), 터키(92,000 ton), 시리아(81,000 ton), 모로 코(46,000 ton)등이 주요 생산국이다. 이 외에도 호주, 미국, 레바논 등지에서 소량 생산되고 있다. 올리브 생산 지역은 대체적으로 사막성 기후를 가지고 있어 강우량이 매우 적고 기온이 높은 것이 특징이다. 이 지역으로부터 생산되는 올리브유는 세계 각국에 수출되며, 그 생산량은 늘어날 전망이다.Around 98% of the world's requirements are produced on the Mediterranean coast, which is about 1.77 million tons per year. About twice as much olive oil is produced as waste, and the region produces about 3.5 million tons of waste. The largest regions of olive oil production are Spain (602,000 ton), Italy (451,000 ton), Greece (332,000 ton), Tunisia (173,000 ton), Turkey (92,000 ton), Syria (81,000 ton) and Morocco (46,000 ton) ) Is a major producer. In addition, small quantities are produced in Australia, the United States, and Lebanon. Olive-producing areas generally have a desert climate, characterized by very low rainfall and high temperatures. Olive oil from this region is exported to countries around the world, and its production is expected to increase.
올리브유(Olive oil)는 올리브 열매를 수확하여 고압으로 짓눌러 기름과 물을 추출하여 고속원심분리를 통해 회수한다. 이 과정에서 생산되는 고체 폐기물은 낙타나 양의 먹이로 이용되어 문제가 없으나 올리브 폐액(OWM; olive mill wastewater)은 상기 올리브유추출과정에서 발생하는 주된 폐기물이며, 이 폐기물의 처리가 큰 문제가 되고 있다. 올리브 폐액은 유기물 함량이 CODcr 기준으로 150,000mg/L이고, 폴리페놀(polyphenol)의 농도가 10,000mg/L가량을 나타낸다. 올리브 폐액의 유기물 함량이 상당히 높아 혐기성 소화에 의한 에너지 생산이 해결책이 될 수 있으나, 카테콜, 4-히드록시벤조익산, 2-(3,4-디히드록시)페닐에탄올, 3,4-디히드록시페닐 아세트산 등의 폴리페놀을 함유하고 있어 전처리 없이 혐기성 소화를 하는 것은 어렵다는 문제점이 있었다.Olive oil is harvested from olives and crushed under high pressure to extract oil and water and recovered through high-speed centrifugation. The solid waste produced in this process is not a problem because it is used as a camel or sheep food, but olive mill wastewater (OWM) is the main waste generated in the olive oil extraction process, and the disposal of this waste is a big problem. . Olive waste liquid has an organic content of 150,000mg / L based on CODcr and a polyphenol concentration of about 10,000mg / L. The organic content of olive waste liquor is quite high and energy production by anaerobic digestion can be a solution, but catechol, 4-hydroxybenzoic acid, 2- (3,4-dihydroxy) phenylethanol, 3,4-di Since polyphenols such as hydroxyphenyl acetic acid are contained, it is difficult to perform anaerobic digestion without pretreatment.
따라서, 자외선(UV), 펜톤산화(fenton oxidation), 오존처리, 전기분해 등의 방법으로 전처리를 하고 있으나, 이러한 방법을 이용하면, 독성물질뿐만 아니라 독성이 없는 유기물도 제거되므로 후속의 혐기발효에 의한 가스생산량이 감소한다는 문제점과 비용이 고가라는 문제점이 있었다. 또한, 커다란 웅덩이에 폐액을 넣고 장기간 증발시킨 후에 잔재물을 연료로 사용하는 방법이 가장 흔히 사용하는 방법이었으나, 이러한 웅덩이 저장법(Lagoon)은 냄새가 나며, 특히 토양으로 침투되어 지하수 오염의 가능성이 있다는 문제점이 있었다.Therefore, pretreatment is carried out by UV, fenton oxidation, ozone treatment, electrolysis, etc. However, this method removes not only toxic substances but also non-toxic organic substances. There was a problem that the gas production is reduced and the cost is expensive. In addition, the method of using the residue as fuel after the long-term evaporation of waste liquid in a large pond was the most commonly used method. However, this pond storage method (Lagoon) is odorous, especially penetrates into the soil and may cause groundwater contamination. There was this.
따라서, 본 발명이 이루고자 하는 기술적 과제는 올리브 폐액을 전처리 없이 혐기성소화를 시켜 메탄가스를 높은 수율로 생산할 수 있는 올리브폐액을 이용한 메탄가스생산방법을 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to provide a methane gas production method using the olive waste liquid that can be produced in a high yield by performing anaerobic digestion of olive waste liquid without pretreatment.
본 발명은 상기 기술적 과제를 달성하기 위하여,The present invention to achieve the above technical problem,
(a) 질소공급원을 포함하는 도시하수처리장의 2차슬러지를 혐기성 조건에서 선택배양하여 혐기성 미생물 농축슬러지를 생산하는 단계;(a) selective culture of secondary sludge in an urban sewage treatment plant including a nitrogen source under anaerobic conditions to produce anaerobic microorganism concentrated sludge;
(b) 상기 혐기성미생물농축슬러지에 상기 질소공급 원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 주입하여 혼합하는 단계; 및(b) injecting and mixing the secondary sludge and the olive waste solution of the municipal sewage treatment plant including the nitrogen supply source to the anaerobic microorganism concentrated sludge; And
(c) 상기 (b)단계의 혼합물을 혐기성소화하여 메탄가스 및 유출수를 발생시키는 단계를 포함하는 올리브폐액을 이용한 메탄가스생산방법을 제공한다.(c) providing a methane gas production method using an olive waste liquid comprising the step of anaerobic digestion of the mixture of step (b) to generate methane gas and effluent.
본 발명의 일 실시예에 의하면, 상기 (a)단계는 20~32일간 행할 수 있다.According to an embodiment of the present invention, step (a) may be performed for 20 to 32 days.
본 발명의 다른 실시예에 의하면, 상기 (a)단계 및 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지는 고형질함량 기준으로 전체질소함량이 1.5~15중량%일 수 있다.According to another embodiment of the present invention, the total sludge content of the sludge in the municipal sewage treatment plant including the nitrogen source of steps (a) and (b) may be 1.5 to 15% by weight based on the solid content. .
본 발명의 또 다른 실시예에 의하면, 상기 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 주입하기 전에 상기 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 교반하는 단계를 더 포함할 수 있다.According to another embodiment of the present invention, the secondary sludge and olive of the municipal sewage treatment plant including the nitrogen source before injecting the second sludge and the olive waste liquid in the municipal sewage treatment plant including the nitrogen source of step (b) The method may further include stirring the waste liquid.
본 발명의 또 다른 실시예에 의하면, 상기 (c)단계의 상기 유출수의 일부를 상기 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 교반하는 단계로 반송하는 단계를 더 포함할 수 있다.According to another embodiment of the present invention, the method may further include the step of returning a portion of the effluent of step (c) to the step of stirring the secondary sludge and the olive waste liquid of the municipal sewage treatment plant including the nitrogen source. have.
본 발명의 또 다른 실시예에 의하면, 상기 (a)단계 및 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지는 액상슬러지 또는 건조슬러지일 수 있다.According to another embodiment of the present invention, the secondary sludge of the municipal sewage treatment plant including the nitrogen source of steps (a) and (b) may be liquid sludge or dry sludge.
본 발명의 또 다른 실시예에 의하면, 상기 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지 : 올리브폐액의 주입비는 부피비로 8.5:1~10.5:1일 수 있다.According to another embodiment of the present invention, the injection ratio of the secondary sludge: olive waste solution of the municipal sewage treatment plant including the nitrogen source of step (b) may be 8.5: 1 ~ 10.5: 1 by volume ratio.
본 발명의 또 다른 실시예에 의하면, 상기 (a)단계, (b)단계 및 (c)단계는 연속회분식반응(Sequencing Batch Reaction)공정에 의해 행할 수 있다.According to another embodiment of the present invention, the steps (a), (b) and (c) may be performed by a sequencing batch reaction process.
본 발명의 또 다른 실시예에 의하면, 상기 (c)단계의 혐기성소화는 수리학적체류시간(hydraulic retention time; HRT) 8~12일, 혼합액혼탁고형물(Mixed Liquor Suspended Solid; MLSS) 20,000~30,000mg/L, pH 7~8 및 온도 25~35℃에서 행할 수 있다.According to another embodiment of the present invention, the anaerobic digestion of step (c) is 8-12 days of hydraulic retention time (HRT), Mixed Liquor Suspended Solid (MLSS) 20,000-30,000mg / L, pH 7-8 and temperature 25-35 degreeC can be performed.
이하 첨부된 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
본 발명에 따른 올리브폐액을 이용한 메탄가스생산방법은 도 1에서 보는 바와 같이 실선으로 표시된 (a) 질소공급원을 포함하는 도시하수처리장의 2차슬러지를 혐기성 조건에서 선택배양하여 혐기성 미생물 농축슬러지를 생산하는 단계; (b) 상기 혐기성 미생물 농축슬러지에 상기 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 주입하여 혼합하는 단계; 및 (c) 상기 (b)단계의 혼합물을 혐기성소화하여 메탄가스 및 유출수를 발생시키는 단계를 포함하는 것을 특징으로 한다.In the methane gas production method using the olive waste liquid according to the present invention, the anaerobic microorganism concentrated sludge is produced by selectively cultivating the secondary sludge of the municipal sewage treatment plant including the nitrogen source indicated in solid line under anaerobic conditions as shown in FIG. Making; (b) injecting and mixing the secondary sludge and the olive waste solution of the municipal sewage treatment plant including the nitrogen source to the anaerobic microorganism concentrated sludge; And (c) anaerobic digestion of the mixture of step (b) to generate methane gas and effluent.
도시하수처리는 크게 (1) 폐수내의 비교적 큰 고형물체를 걸러서 제거하는 스크린, (2) 모래와 더러운 덩어리의 혼합체인 그릿(grit)을 침전 제거시키는 침사지, (3) 폐수내의 침전가능한 고형물질을 침전 제거하는 1차침전지, (4) 1차 침전지에서 침전되지 않는 유기물질이 미생물의 세포로 합성되며 합성된 미생물이 잘 침전될 수 있도록 하는 포기조, (5) 포기조에서 합성된 미생물을 침전제거시키는 2차침전지, (6)주로 염소를 주입하여 병원성 미생물을 사멸시키는 소독의 단계를 거치며, 상기 2차 침전지에서 침전된 슬러지를 2차 슬러지라고 부르며, 주로 미생물로 구성된다. 활성슬러지 처리과정에서 생성된 2차슬러지를 활성슬러지라고도 한다. 상기의 2차 슬러지는 주로 미생물로 이루어지므로 그 구성이 C5H7O2N 등으로 표시할 수 있다. 즉 상기 2차 슬러지는 질소함량이 높아 혐기성소화시 혐기성균들을 위한 질소원으로 작용할 수 있으며, 상기 2차 슬러지 자체가 다양한 미생물로 이루어져 있으므로 혐기성반응을 위한 종균으로 작용할 수 있다.Municipal sewage treatment consists of (1) screens for filtering out relatively large solids in the wastewater, (2) sedimentation for sedimenting and removing grit, a mixture of sand and dirty mass, and (3) sedimentable solids in the wastewater. Primary sedimentation cell for sedimentation removal, (4) Aeration tank where organic material that does not precipitate in primary sedimentation basin is synthesized into cells of microorganism, and the microorganism can be precipitated well. Secondary sedimentation battery, (6) mainly through the disinfection step of killing pathogenic microorganisms by injecting chlorine, sludge precipitated in the secondary sedimentation basin is called secondary sludge, mainly composed of microorganisms. Secondary sludge produced during activated sludge treatment is also called activated sludge. Since the secondary sludge mainly consists of microorganisms, the composition thereof may be represented by C 5 H 7 O 2 N or the like. That is, the secondary sludge may act as a nitrogen source for anaerobic bacteria at the time of anaerobic digestion, and the secondary sludge may act as a spawn for the anaerobic reaction because the secondary sludge itself is composed of various microorganisms.
상기 (a)단계에서 도시하수처리장의 2차슬러지는 주로 호기성균이나 임의성균(산소의 유무에 관계 없이 성장하는 미생물)으로 구성되며, 공기를 주입하지 않는 혐기성소화(anaerobic digestion)에 의해, 임의성 내지 혐기성의 유기산균 및 메탄균이 번식하게 된다. 상기의 번식은 생태계의 천이과정으로, 혐기성환경을 유지하게 됨에 따라 그에 적합한 미생물이 우점종을 차지하게 되는 과정을 이용한 것이다. 즉, 도시하수처리장의 2차슬러지는 호기성균이 우점상태이나, 폭기 등으로 산소공급을 하지 않고, 혐기성 상태를 유지하게 되면, 그에 적합한 혐기성균들이 우점종이 되는 것이다. 이 과정을 상세히 살펴보면 혐기성소화는 여러종류의 박테리아에 의해 일어나며, 크게 유기산균과 메탄균으로 나뉜다. 임의성 내지 혐기성의 유기산균이 유기물을 분해시켜 유기산과 알코올을 생성하며 이때 CO2, 아세톤, H2 등이 소량 발생된다. 이 단계의 반응을 제1단계소화라 하며, 형태상으로 Methanobacterium, Methanococcus , Methanosarcina , Methanospirillium의 4속으로 분류되는 메탄균이 상기 제1단계소화에서 생성된 유기산을 분해시켜 CH4 및 CO2 등의 가스물질을 생성하며 이때 NH3, H2S, 메르캅탄 등도 일부 발생한다. 유기물질이 기체로 전환하기 위해서는 유기산균과 메탄균의 적절한 활동이 요구된다. 즉, 제1단계소화에서는 제2단계소화에 필요한 양분인 유기산이 생성되며 제2단계소화에서는 유기산을 분해시킴으로써 유기산의 축적으로 pH가 저하되는 것을 방지한다. 또한 유기산균은 메탄균을 위하여 양분을 생산할뿐 아니라 산화물을 소모시켜 환원제를 생성하므로서 완전혐기성 상태를 만든다. 상기의 (a)단계를 거쳐 질소공급원을 포함하는 도시하수처리장의 2차슬러지가 메탄균 등의 혐기성 미생물 농축슬러지가 되며, (b)단계에서 상기 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액이 주입되는 경우 메탄균 등의 혐기성 미생물이 우점종이 되어 있어 (c)단 계의 혐기성소화가 원활하게 일어나게 되고, 결과적으로 메탄가스의 발생이 증가하게 된다.In the step (a), the secondary sludge of the municipal sewage treatment plant is mainly composed of aerobic bacteria or random bacteria (microorganisms growing with or without oxygen), and by anaerobic digestion without injecting air, To anaerobic organic acid bacteria and methane bacteria. The breeding process is a process of transition of the ecosystem, using a process in which a suitable microorganism occupies the dominant species as it maintains the anaerobic environment. That is, the secondary sludge in the city sewage treatment plant is a predominant aerobic bacteria, but if the oxygen supply to maintain the anaerobic state without aeration or aeration, suitable anaerobic bacteria will be the dominant species. Looking at this process in detail, anaerobic digestion is caused by various kinds of bacteria, and is largely divided into organic acid bacteria and methane bacteria. Random to anaerobic organic acid bacteria decompose organic materials to produce organic acids and alcohols, where a small amount of CO 2 , acetone, H 2, etc. are generated. The reaction of this stage is called the first stage digestion, and methane bacteria classified in the fourth genus of Methanobacterium, Methanococcus , Methanosarcina , and Methanospirillium decompose the organic acid generated in the first stage digestion, such as CH 4 and CO 2 . Generates gaseous substances, and some NH 3 , H 2 S, mercaptan, etc. are also generated. The conversion of organic matter to gas requires the proper activity of organic acids and methane. That is, in the first stage digestion, an organic acid that is a nutrient necessary for the second stage digestion is generated, and in the second stage digestion, the organic acid is decomposed to prevent the pH from being lowered by the accumulation of the organic acid. In addition, organic acids produce nutrients for methane, as well as consume oxides to form a reducing agent, creating a completely anaerobic state. Through the above step (a), the secondary sludge of the municipal sewage treatment plant including the nitrogen source becomes an anaerobic microorganism concentrated sludge such as methane, and the secondary sludge of the municipal sewage treatment plant including the nitrogen source in step (b). And when the olive waste solution is injected, anaerobic microorganisms such as methane bacteria are the dominant species, so that anaerobic digestion of step (c) occurs smoothly, and as a result, the generation of methane gas increases.
올리브폐액의 물성은 보고된 바에 의하면, pH 4.5~5.9, COD(Chemical Oxygen Demand) 40~200(g/L), BOD(Biochemical Oxygen Demand) 20~110(g/L), P 800~1,100(mg/L), K 7,200(mg/L), Ca 700(mg/L), Mg 400(mg/L), Na 900(mg/L), Fe 70(mg/L), Cl 300(mg/L), 총탄수화물 1~8중량%(건조중량기준), 유기질소 0.28~2중량%(건조중량기준), 유기산 0.5~1중량%(건조중량기준), 폴리알콜1~1.5중량%(건조중량기준), 탄닌 0.37~1%중량(건조중량기준), 폴리페놀 0.5~2.4중량%(건조중량기준), 그리스(grease) 0.03~1중량%(건조중량기준)이다.The physical properties of olive waste are reported to be pH 4.5-5.9, COD (Chemical Oxygen Demand) 40-200 (g / L), BOD (Biochemical Oxygen Demand) 20-110 (g / L), P 800-1,100 ( mg / L), K 7,200 (mg / L), Ca 700 (mg / L), Mg 400 (mg / L), Na 900 (mg / L), Fe 70 (mg / L), Cl 300 (mg / L), 1-8% by weight of total carbohydrates (based on dry weight), 0.28-2% by weight of organic nitrogen (based on dry weight), 0.5-1% by weight of organic acid (based on dry weight), 1-1.5% by weight of polyalcohol (dry) By weight), tannins 0.37-1% by weight (dry weight), polyphenols 0.5-2.4% by weight (dry weight), grease (0.03-1% by weight).
실측한 결과 올리브폐액에는 CODcr가 150g/L로 혐기성미생물의 생장에 필요한 탄소는 충분하나, 유기질소 0.16중량%(건조중량기준)로 질소는 부족한 상태이며, 독성물질인 폴리페놀(카테콜, 4-히드록시벤조익산, 2-(3,4-디히드록시)페닐에탄올, 3,4-디히드록시페닐 아세트산 등)이 10g/L로 다량 존재한다. 상기 (b)단계에서 상기 혐기성미생물농축슬러지에 상기의 질소공급원을 포함하는 도시하수처리장의 2차슬러지를 올리브폐액과 함께 공급함으로써, 혐기성미생물의 성장에 필요하나 올리브폐액에는 부족한 질소를 공급할 수 있다. 또한 상기의 질소공급원을 포함하는 도시하수처리장의 2차슬러지에 포함된 다량의 수분에 의해 고농도의 폴리페놀을 희석하는 작용에 의해 미생물이 분해할 수 있는 정도의 농도가 되거나 2차슬러지에 포함된 탈질미생물이나 탈황산미생물 등에 의한 폴리페놀분해작용, 또는 상기 작용의 복합작용 등에 의해 폴리페놀의 독성작용을 억제할 수 있으며, 도시하수처리장 의 2차슬러지 자체에 다양한 미생물이 존재하므로 혐기성소화의 종균으로 사용할 수 있다. 즉, 올리브폐액의 혐기성소화를 위해 질소공급원을 포함하는 도시하수처리장의 2차슬러지를 사용할 수 있다. 또한, 혐기성소화에 의해 도시하수처리장의 2차슬러지도 분해할 수 있으므로, 도시하수처리장의 2차슬러지 자체도 처리할 수 있다. 따라서 본 발명에 의할 경우 올리브폐액뿐만 아니라, 도시하수처리장의 폐기물이라 할 수 있는 2차슬러지도 아울러 처리할 수 있다. 결과적으로 올리브폐액을 혐기성소화할 수 있게 되어 올리브폐액을 이용한 메탄가스의 생산이 가능할 것이다.As a result, the olive waste liquid has 150g / L of CODcr, which is enough carbon for the growth of anaerobic microorganisms, but lacks nitrogen as 0.16% by weight (dry weight) of organic nitrogen, and it is a toxic polyphenol (catechol, 4). Hydroxybenzoic acid, 2- (3,4-dihydroxy) phenylethanol, 3,4-dihydroxyphenyl acetic acid, and the like) are present in large amounts at 10 g / L. In step (b), by supplying the secondary sludge of the municipal sewage treatment plant including the nitrogen source to the anaerobic microorganism concentrated sludge together with the olive waste liquid, nitrogen necessary for the growth of the anaerobic microorganism can be supplied to the olive waste liquid. . In addition, by the action of diluting a high concentration of polyphenols by a large amount of water contained in the secondary sludge of the municipal sewage treatment plant including the nitrogen source, the concentration is such that microorganisms can be decomposed or contained in the secondary sludge. Polyphenol decomposition by denitrification microorganisms or desulfurization microorganisms, or a combination of the above actions can inhibit the toxic effects of polyphenols, and various microorganisms are present in the secondary sludge of the municipal sewage treatment plant. Can be used as That is, the secondary sludge of the municipal sewage treatment plant including a nitrogen source may be used for the anaerobic digestion of olive waste. In addition, the secondary sludge of the municipal sewage treatment plant can be decomposed by anaerobic digestion, so that the secondary sludge itself of the municipal sewage treatment plant can be treated. Therefore, according to the present invention, not only the olive waste liquid, but also secondary sludge, which can be referred to as waste in urban sewage treatment plants, can be treated. As a result, it will be possible to anaerobic digestion of the olive waste liquid will be able to produce methane gas using the olive waste liquid.
상기 (a)단계는 20~32일간 행할 수 있으며, 20일 미만의 경우는 올리브폐액을 혐기성소화하여 메탄가스를 생산하기 위한 메탄균의 형성이 불충분할 염려가 있으며, 32일 초과의 경우는 메탄균 형성을 위해 불필요한 기간이 경과하여 운전조건에 악영향을 미칠 염려가 있다.Step (a) may be carried out for 20 to 32 days, less than 20 days may be insufficient anaerobic digestion of olive waste liquid to form methane bacteria to produce methane gas, methane if more than 32 days Unnecessary period of time for the formation of germs may occur, which may adversely affect the operating conditions.
상기 (a)단계 및 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지는 고형질함량 기준으로 전체질소함량이 1.5~15중량%일 수 있으며, 1.5중량%미만일 경우는 혐기성미생물성장에 적합하지 않을 염려가 있고, 15중량%초과일 경우도 혐기성미생물성장에 적합하지 않을 염려가 있다.The secondary sludge of the municipal sewage treatment plant including the nitrogen source of steps (a) and (b) may be 1.5 to 15 wt% based on solid content, and less than 1.5 wt% of anaerobic microorganisms. There is a concern that it may not be suitable for growth, and even if it exceeds 15% by weight, there is a fear that it may not be suitable for anaerobic microbial growth.
도 1의 점선상자에서 보는 바와 같이, 상기 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 주입하기 전에 상기 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 교반하는 단계를 더 포함할 수 있으며, 상기 질소공급원을 포함하는 도시하수처리장의 2차 슬러지 및 올리브폐액을 교반하여 상기 혐기성 미생물 농축슬러지에 주입함으로써, 균일한 반응을 일 으킬 수 있어 혐기성소화를 안정적으로 할 수 있다.As shown in the dotted box of Figure 1, the secondary sludge and olive of the municipal sewage treatment plant including the nitrogen source before injecting the second sludge and the olive waste solution of the municipal sewage treatment plant including the nitrogen source of step (b) The method may further include stirring the waste liquid, and injecting the secondary sludge and the olive waste liquid from the municipal sewage treatment plant including the nitrogen source into the anaerobic microorganism concentrated sludge, which may cause a uniform reaction to anaerobic digestion. Can be stabilized.
도 1의 점선부에서 보는 바와 같이, 상기 (c)단계의 상기 유출수의 일부를 상기 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 교반하는 단계로 반송하는 단계를 더 포함할 수 있다. 상기 유출수는 혐기성소화를 거쳐 그 내부에 혐기성소화에 필요한 각종 유기물질과 미생물을 포함하므로, 상기 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 교반하는 단계로 반송함으로써, 이후 올리브폐액의 혐기성소화를 돕는 효과를 나타낸다.As shown in the dotted line of Figure 1, the step of returning a portion of the effluent of step (c) to the step of stirring the secondary sludge and olive waste liquid of the municipal sewage treatment plant including the nitrogen supply source have. Since the effluent contains various organic substances and microorganisms necessary for anaerobic digestion through anaerobic digestion, the effluent is returned to the step of stirring the secondary sludge and the olive waste liquid in the municipal sewage treatment plant including the nitrogen source, and then the olive waste liquid. Has the effect of helping anaerobic digestion.
상기 (a)단계 및 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지는 액상슬러지 또는 건조슬러지일 수 있다. 통상의 2차슬러지는 수분함량이 95~99%정도로 높은 값을 나타내므로, 사용상의 편의 등을 위해 건조슬러지를 사용할 수 있으며, 상기 건조슬러지는 슬러지건조상 등에서 건조된 상태의 슬러지로, 슬러지에 함유된 수분함량의 20~90%가 제거된 상태의 슬러지를 의미한다.Secondary sludge of the municipal sewage treatment plant including the nitrogen source of steps (a) and (b) may be liquid sludge or dry sludge. Since the normal secondary sludge exhibits a high value of about 95 to 99% of moisture, dry sludge can be used for convenience of use, and the dry sludge is sludge dried in a sludge dry phase or the like. It means sludge in which 20 to 90% of the water content is removed.
상기 (b)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지 : 올리브폐액의 주입비는 부피비로 8.5:1~10.5:1일 수 있으며, 올리브폐액 1부피에 대하여 도시하수처리장의 2차슬러지 8.5부피 미만인 경우는 올리브폐액의 농도가 높아 폴리페놀에 의한 독성 또는 질소공급원의 부족으로 혐기성미생물의 성장이 제한될 염려가 있고, 올리브폐액 1부피에 대하여 도시하수처리장의 2차슬러지 10.5부피 초과인 경우는 올리브폐액이 희석되어 혐기성미생물의 성장에 필요한 탄소공급원의 부족으로 혐기성미생물의 성장이 제한될 염려가 있으며, 반응조의 부피가 필요 이상으로 커지는 염려가 있다.Secondary sludge of the municipal sewage treatment plant including the nitrogen source of step (b): the injection ratio of the olive waste liquid may be 8.5: 1 ~ 10.5: 1 by volume ratio, the secondary of the municipal sewage treatment plant for one volume of olive waste liquid If the sludge is less than 8.5 volume, the concentration of olive waste liquid is high, which may limit the growth of anaerobic microorganisms due to the toxicity of polyphenols or the lack of nitrogen source, and more than 10.5 volume of secondary sludge in urban sewage treatment plant for 1 volume of olive waste liquid In the case of, the olive waste liquid is diluted, which may limit the growth of anaerobic microorganisms due to the lack of a carbon source necessary for the growth of anaerobic microorganisms, and there is a concern that the volume of the reactor becomes larger than necessary.
상기 (a), (b) 및 (c)단계는 연속회분식반응(Sequencing Batch Reaction)공정에 의해 행할 수 있다. 상기 연속회분식반응공정은 (1) 하폐수 유입(fill), (2) 반응(react), (3) 침전(settle), (4) 배출(draw)의 연속공정을 기본골격으로 하며, 휴지기를 둘 수 있다. 즉, 본발명의 (a)단계에서 질소공급원을 포함하는 도시하수처리장의 2차슬러지를 별도의 산소를 공급하지 않아 혐기성 조건을 만족하는 상태의 연속회분식반응조에 유입하고, 교반 등으로 반응시키며, 일정시간 경과 후 침전시켜 상등수를 유출수로 배출시키고 메탄가스는 포집하는 공정을 연속적으로 연속회분식반응조에서 일어나도록 함으로써 도시하수처리장의 2차슬러지의 수리학적 체류시간(HRT)를 일정하게 유지하며, 메탄균 등의 혐기성미생물이 우점종이 된 상태의 혐기성 미생물이 농축된 상태의 슬러지 즉, 혐기성 미생물 농축슬러지를 생산할 수 있다. 상기의 혐기성 미생물 농축슬러지를 만들어줌으로써, 추후 연속회분식반응조에 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 주입하여도 혐기성반응을 일으켜 메탄가스를 발생시킬 수 있다. 또한, 하나의 반응조에서 유입, 혐기성반응, 침전, 배출이 연속적으로 일어나도록 하여 공간을 경제적으로 사용할 수 있다는 장점이 있다. 그리고, 상기 연속회분식반응조에서 상기 혐기성 미생물 농축슬러지에 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액을 주입하여 혼합하는 (b)단계를 거치고, 그 후 (c)단계를 연속적으로 상기 연속회분식반응조에서 거치도록 함으로써, 하나의 반응조 내에서 일정량의 질소공급원을 포함하는 도시하수처리장의 2차슬러지 및 올리브폐액의 유입, 상기 혐기성소화액과의 혼합액의 혐기성반응, 상기 혐기성반응에 의해 생성된 혐기성 미생물 군의 침전, 상기 침전 후 상등수인 유출수의 배출이 연속적으로 일어나도록 하여, 반응조내에 일정한 유량을 유지하며, 반응조 내에 메탄균 등의 혐기성미생물의 침전량을 늘려주게 되어, 메탄형성을 시스템이 허락하는 수준까지 증가시킬 수 있다.Steps (a), (b) and (c) can be performed by a sequencing batch reaction process. The continuous batch reaction process includes (1) wastewater inflow (fill), (2) reaction, (3) sediment, and (4) continuous process of draw. Can be. That is, in the step (a) of the present invention, the secondary sludge of the municipal sewage treatment plant including the nitrogen supply source is not supplied with oxygen and introduced into a continuous batch reaction tank satisfying anaerobic conditions, and reacted by stirring or the like. After a certain period of time, the sediment is discharged into the effluent and the methane gas is collected in a continuous batch reactor to continuously maintain the hydraulic retention time (HRT) of the secondary sludge in the municipal sewage treatment plant. The anaerobic microorganisms in which the anaerobic microorganisms, such as bacteria, are predominant, can produce sludges in which the anaerobic microorganisms are concentrated. By making the anaerobic microorganism concentrated sludge, the secondary sludge and olive waste solution of the municipal sewage treatment plant including a nitrogen source may be injected into the continuous batch reactor in the future to generate an anaerobic reaction to generate methane gas. In addition, the inflow, anaerobic reaction, precipitation, discharge in one reactor has the advantage that the space can be used economically. In the continuous batch reactor, the anaerobic microorganism concentrated sludge is injected and mixed with the secondary sludge and the olive waste solution of the municipal sewage treatment plant including a nitrogen source, followed by step (c). By passing through a continuous batch reactor, inflow of secondary sludge and olive waste liquor in an urban sewage treatment plant containing a certain amount of nitrogen source in one reactor, anaerobic reaction of the mixed liquid with the anaerobic digestion, and anaerobic reaction Precipitation of anaerobic microorganism group, discharge of effluent, which is the supernatant after the precipitation, occur continuously, maintain a constant flow rate in the reaction tank, increase the amount of precipitation of anaerobic microorganisms such as methane bacteria in the reaction tank, the system allows the formation of methane You can increase it to a level that does.
상기 (c)단계의 혐기성소화는 수리학적체류시간(hydraulic retention time; HRT) 8~12일, 혼합액혼탁고형물(Mixed Liquor Suspended Solid; MLSS) 20,000~30,000mg/L, pH 7~8 및 온도 25~35℃에서 행할 수 있다. 상기 (c)단계의 혐기성소화시 운전조건은 상기 (a)단계의 질소공급원을 포함하는 도시하수처리장의 2차슬러지를 혐기성 조건에서 선택배양하여 혐기성 미생물 농축슬러지를 생산할 경우도 동일하게 적용할 수 있다.Anaerobic digestion of step (c) is 8-12 days of hydraulic retention time (HRT), Mixed Liquor Suspended Solid (MLSS) 20,000-30,000mg / L, pH 7-8 and temperature 25 It can carry out at -35 degreeC. The operating conditions for anaerobic digestion of step (c) may be equally applicable to the production of anaerobic microorganism concentrated sludge by selectively cultivating the secondary sludge of the municipal sewage treatment plant including the nitrogen source of step (a) under anaerobic conditions. have.
상기 수리학적체류시간이 8일 미만인 경우는 혐기성소화기간이 짧아 올리브폐액이 충분히 분해되지 않을 염려가 있고, 12일 초과인 경우는 불필요하게 운전기간이 길어질 염려가 있기 때문이다.If the hydraulic retention time is less than 8 days, the anaerobic digestion period is short, and there is a fear that the olive waste liquid may not be sufficiently decomposed, and if it is more than 12 days, the operation period may be unnecessarily longer.
상기 혼합액혼탁고형물(Mixed Liquor Suspended Solid; MLSS)이 20,000mg/L 미만인 경우는 메탄균 등의 혐기성 미생물양이 적어 혐기성소화가 불충분하게 일어날 염려가 있고, 30,000mg/L초과인 경우는 메탄균 등의 혐기성 미생물양이 지나치게 많아져 미생물 성장에 악영향을 끼칠 염려가 있기 때문이다.When the mixed liquor suspended solids (MLSS) is less than 20,000 mg / L, the amount of anaerobic microorganisms such as methane is low, so that anaerobic digestion may be insufficient, and in the case of more than 30,000 mg / L, This is because the amount of anaerobic microorganisms may increase, which may adversely affect the growth of microorganisms.
상기 pH가 7미만이거나, 8초과인 경우는 메탄균 등의 혐기성 미생물의 성장이 어려울 염려가 있다. 그 이유는 메탄균 등이 pH에 민감하기 때문이며, 메탄가스의 생산령을 증가시키기 위해선 적절한 pH 범위에서 혐기성소화를 할 필요가 있다.If the pH is less than 7 or more than 8, growth of anaerobic microorganisms such as methane bacteria may be difficult. The reason is that methane is sensitive to pH, and in order to increase the production of methane gas, it is necessary to perform anaerobic digestion in an appropriate pH range.
상기 온도가 25℃미만이거나 35℃초과인 경우도 메탄균 등의 혐기성 미생물 의 성장이 어려울 염려가 있다.Even when the temperature is less than 25 ℃ or above 35 ℃, growth of anaerobic microorganisms such as methane bacteria may be difficult.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세히 설명하지만, 본 발명이 이에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments, but the present invention is not limited thereto.
실시예 1Example 1
하수슬러지(중랑하수처리장에서 수집한 2차 활성슬러지, 대한민국)를 570mL/day로 연속회분식혐기성소화조(Sequencing batch anaerobic digester)에 수리학적체류시간(hydraulic retention time; HRT) 10일, 24시간 운전주기로 28일간 주입하여, 혐기성 조건에서 상기 하수슬러지를 선택배양하여 혐기성 미생물 농축슬러지를 생산하였다. 상기 하수슬러지의 주입은 상기 연속회분식혐기성소화조가 혼합중인 상태에서 약 12시간 동안 하수슬러지를 주입하고, 주입이 끝난 후 6시간 동안 재혼합하였다. 그 후, 6시간 동안 침전시켰다. 상기 주입은 30분간 주입하고, 2시간 30분간 휴식하는 과정을 반복하여 이루어졌다. 상기 연속회분식혐기성소화조에서 배출되는 메탄가스의 양을 측정하여, 운전경과일 29일부터 50일까지는 상기 올리브폐액 30ml/d를 상기 하수슬러지 570mL/d와 교반조에서 혼합한 후 펌프로 연속회분식혐기성반응조(Sequencing batch anaerobic digester)에 수리학적체류시간(hydraulic retention time; HRT) 10일, 24시간 운전주기로 주입하여 반응시켰다. 연속회분식혐기성소화조가 혼합중인 상태에서 상기 혼합액을 약 12시간 동안 주입하고, 주입이 끝난 후 6시간 동안 재혼합하였다. 그 후, 6시간 동안 침전시켰다. 상기 올리브폐액과 하수슬러지의 주입은 30분간 주입하고, 2시간 30분간 휴식 하는 과정을 반복하여 이루어졌다. 이후 동일한 방식으로 운전경과시간 51~70일까지는 올리브폐액의 주입량을 40ml/d로 증가시켰으며, 71~90일까지는 60ml/d로 증가시켰다. 결과적으로 20일간의 혐기성 미생물 농축슬러지를 생산하는 기간을 포함하여 총 90일간 매일 가스발생량을 측정하여 폐수주입량을 증가시켰으며, 메탄가스발생량이 안정된 시기인 90일에서의 유입슬러지양은 570mL/d이고 올리브폐액은 60mL/d로 부피비로 9.5:1이었다. 또한, 기간별 운전조건은 표 1에 나타내었으며, 메탄가스발생량이 안정된 시기인 운전기간 90일 경과시 연속회분식혐기성반응조 운전조건은 MLSS 24,000mg/L, pH 7.6, 온도 35℃이었다.Sewage sludge (Second activated sludge collected from Jungnang Sewage Treatment Plant, Korea) at 570 mL / day in a sequencing batch anaerobic digester with a 10-hour, 24-hour operation cycle of hydraulic retention time (HRT) Injected for 28 days, the sewage sludge was selectively cultured under anaerobic conditions to produce anaerobic microorganism concentrated sludge. The sewage sludge was injected for about 12 hours while the continuous batch anaerobic digester was being mixed and remixed for 6 hours after the injection was completed. Thereafter, it was precipitated for 6 hours. The injection was made by injecting 30 minutes and repeating the rest for 2
시험예 1Test Example 1
발생가스조성분석Generated gas composition analysis
실시예 1의 메탄가스의 발생이 안정된 구간인 71~90일 구간에서 가스발생량을 메탄, 이산화탄소, 수소, 질소, 황화수소에 대하여 gas chromatography(Shimazue, Japan)로 측정하였으며, 그 결과 평균적으로 발생가스는 메탄 65%, 이산화탄소 31%, 수소 3.6%, 질소 0.3%, 황화수소 0.06%의 부피비를 갖는 것으로 나타났다. 상기의 결과로부터 본 발명에 따른 메탄가스생산방법은 높은 수율로 메탄가스를 생산할 수 있다.Gas generation amount was measured by gas chromatography (Shimazue, Japan) for methane, carbon dioxide, hydrogen, nitrogen, hydrogen sulfide in the 71-90 days, the stable generation of methane gas of Example 1, the average generated gas It has a volume ratio of 65% of methane, 31% of carbon dioxide, 3.6% of hydrogen, 0.3% of nitrogen, and 0.06% of hydrogen sulfide. From the above results, the methane gas production method according to the present invention can produce methane gas in high yield.
시험예 2Test Example 2
메탄가스분석Methane gas analysis
실시예 1의 운전기간 전체에 대하여 메탄가스 발생량을 매일 가스부피측정법으로 측정하여 그 결과를 도 2에 나타내었다. 순응단계에서 20일경과 및 28일 경과시점에서 메탄가스 발생량이 감소하는 경향을 나타낸다. 이러한 현상은 메탄균이 번성함에 따라 유기물 특히 탄소원의 고갈 때문으로 판단된다. 도 2에서 보는 바와 같이 메탄가스발생율이 증가하지 않는 시기인 50일, 70일에 각각 올리브폐액의 주입량을 증가시켜 줌으로써, 메탄가스생산량을 증가시킬 수 있으며, 90일 경과시 안정적으로 메탄가스가 발생하는 것으로 보인다. 상기의 메탄가스발생율이 증가하지 않는 시기 또한 메탄균이 번성함에 따라 유기물 특히 탄소원이 고갈되기 때문으로 판단되며, 해당 시기에 탄소원이 되는 올리브폐액을 공급함으로써 메탄가스발생율을 다시 증가시켜 안정적으로 메탄가스를 발생시킬 수 있다고 판단된다. 상기의 결과로부터 본 발명에 따른 메탄가스생산방법에 의할 경우 안정적으로 메탄가스를 생산할 수 있음을 알 수 있다.The amount of methane gas generated over the entire operation period of Example 1 was measured by gas volume measurement method and the results are shown in FIG. 2. In the acclimatization phase, methane gas generation tends to decrease after 20 days and 28 days. This phenomenon is believed to be due to the depletion of organic materials, especially carbon sources, as methane bacteria thrive. As shown in FIG. 2, by increasing the amount of olive waste solution injected at 50 days and 70 days when methane generation rate does not increase, methane gas production can be increased, and methane gas is generated stably after 90 days. Seems to do. The time when the methane gas generation rate does not increase is also considered to be due to the depletion of organic matter, especially carbon sources, as methane bacteria thrive. It is determined that can be generated. It can be seen from the above results that the methane gas production method according to the present invention can stably produce methane gas.
상기에서 살펴본 바와 같이, 본 발명에 따른 올리브폐액을 이용한 메탄가스생산방법은 올리브 폐액을 전처리 없이 혐기성소화를 시킬 수 있고, 메탄가스를 높은 수율로 생산할 수 있으며, 올리브 폐액과 2차슬러지를 동시에 처리할 수 있다. 또한 하나의 반응조에서 혐기성소화가 가능하여 공간적으로 유리하며, 혐기성소화 후 생산된 유출수는 독성물질이 제거되어 농업용으로 사용할 수 있다.As described above, the methane gas production method using the olive waste liquid according to the present invention can be anaerobic digestion of olive waste liquid without pretreatment, can produce methane gas in high yield, and simultaneously process the olive waste liquid and the secondary sludge can do. In addition, it is possible to anaerobic digestion in one reactor, spatially advantageous, and the effluent produced after anaerobic digestion can be used for agriculture by removing toxic substances.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060093833A KR20080028247A (en) | 2006-09-26 | 2006-09-26 | Production method of methane gas from olive mill waste |
PCT/KR2006/005503 WO2008038860A1 (en) | 2006-09-26 | 2006-12-15 | Production method of methane gas from olive mill waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060093833A KR20080028247A (en) | 2006-09-26 | 2006-09-26 | Production method of methane gas from olive mill waste |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080028247A true KR20080028247A (en) | 2008-03-31 |
Family
ID=39230283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20060093833A KR20080028247A (en) | 2006-09-26 | 2006-09-26 | Production method of methane gas from olive mill waste |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20080028247A (en) |
WO (1) | WO2008038860A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100916154B1 (en) * | 2009-02-05 | 2009-09-08 | 임현지 | Anaerobic digestion method of the milk waste |
CN112960880A (en) * | 2021-03-12 | 2021-06-15 | 桂林理工大学 | Method for improving methane production of anaerobic co-digestion waste oil and sludge based on carbon cloth addition |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT105738B (en) * | 2011-05-31 | 2013-10-29 | Nac De En E Geol Lab | PROCESS FOR THE TREATMENT OF ORGANIC INHIBITOR / TOXIC EFFLUENTS AND THE PRODUCTION OF BIOFUELS THROUGH OBTAINING AN ADAPTED MICROBIAL CONSORTIUM |
EP2682470A1 (en) * | 2012-07-05 | 2014-01-08 | IS Forschungsgesellschaft mbH | Method for generating biogas from processing remnants of fruits or roots or tubers or unprocessed fruits or roots or tubers as initial substrate to be fermented in a biogas reactor |
SG11201703227UA (en) * | 2014-10-21 | 2017-05-30 | Univ Nanyang Tech | Process for detoxification of high strength wastewater |
JP7049159B2 (en) * | 2018-03-30 | 2022-04-06 | 大和ハウス工業株式会社 | Methane fermentation method |
CN117228917B (en) * | 2023-10-25 | 2024-02-09 | 同济大学 | Method for realizing enrichment of methane-producing functional flora by anaerobic digestion through pretreatment-hydrothermal carbon regulation and control |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19829673C2 (en) * | 1998-07-03 | 2003-02-27 | Michael Knobloch | Process and plant for the treatment of wastewater from oilseed and grain processing |
-
2006
- 2006-09-26 KR KR20060093833A patent/KR20080028247A/en not_active Application Discontinuation
- 2006-12-15 WO PCT/KR2006/005503 patent/WO2008038860A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100916154B1 (en) * | 2009-02-05 | 2009-09-08 | 임현지 | Anaerobic digestion method of the milk waste |
CN112960880A (en) * | 2021-03-12 | 2021-06-15 | 桂林理工大学 | Method for improving methane production of anaerobic co-digestion waste oil and sludge based on carbon cloth addition |
Also Published As
Publication number | Publication date |
---|---|
WO2008038860A1 (en) | 2008-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Da Ros et al. | Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: an integrated approach for sustainable wine production | |
US6616844B2 (en) | Method for treating high-concentrated organic wastewater using bio-maker | |
US9039897B2 (en) | Method and system for treating wastewater and sludges by optimizing sCO2 for anaerobic autotrophic microbes | |
AU2010327284B2 (en) | Sludge treatment method and apparatus thereof and application to wastewater bio-treatment | |
KR100815017B1 (en) | Method For Purifying Leachate of Landfill and Dewatering Water of Food Waste | |
CA2785538C (en) | Improved digestion of biosolids in wastewater | |
Sobhi et al. | Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local environmental conditions: A critical review | |
Huynh et al. | Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater | |
KR20080028247A (en) | Production method of methane gas from olive mill waste | |
JP6662424B2 (en) | Anaerobic digestion method and apparatus for sewage sludge | |
KR100807219B1 (en) | Purification apparatus and method for high organic wastewater | |
Choi et al. | Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater | |
KR20140004989A (en) | Hybrid thermophilic anaerobic digestion process for the combined treatment of food-waste and pig-manure. | |
Qi et al. | Effect of solid-liquid separation on food waste fermentation products as external carbon source for denitrification | |
JP4017657B1 (en) | Treatment method of wastewater containing organic matter | |
KR100274534B1 (en) | Nitrogen and phosphorus removal methods with using fermented organic wastes | |
Dokulilová et al. | PRIMARY AND ACTIVATED SLUDGE BIOGAS PRODUCTION: EFFECT OF TEMPERATURE. | |
US8298416B2 (en) | Apparatus for deodorizing sewage treatment plant sludge by using native microorganisms | |
Rodríguez et al. | Anaerobic co-digestion of winery wastewater | |
CN112759430A (en) | Method for treating and comprehensively utilizing pig raising wastes | |
KR101306805B1 (en) | The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater | |
KR100314744B1 (en) | Nitrogen & Phosphorous Removing Methods from Waste Water with using Organic Wastes | |
KR100312819B1 (en) | Advanced Waste Water Treatmant Methods with using Organic Wastes | |
KR20050023060A (en) | The system & equipment for treating food waste and waste water, by using complex process with anaerobic and aerobic microbe | |
Matokwe et al. | Characterization of acidogenesis occurring on rainbow trout (Oncorhynchus mykiss) sludge by indigenous Alcaligenes faecalis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |