KR20080016057A - The coordinate displacement system which uses the length displacement sensor - Google Patents

The coordinate displacement system which uses the length displacement sensor Download PDF

Info

Publication number
KR20080016057A
KR20080016057A KR1020060077639A KR20060077639A KR20080016057A KR 20080016057 A KR20080016057 A KR 20080016057A KR 1020060077639 A KR1020060077639 A KR 1020060077639A KR 20060077639 A KR20060077639 A KR 20060077639A KR 20080016057 A KR20080016057 A KR 20080016057A
Authority
KR
South Korea
Prior art keywords
length
displacement
coordinate
sensor
slope
Prior art date
Application number
KR1020060077639A
Other languages
Korean (ko)
Inventor
정용호
Original Assignee
정용호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정용호 filed Critical 정용호
Priority to KR1020060077639A priority Critical patent/KR20080016057A/en
Publication of KR20080016057A publication Critical patent/KR20080016057A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/30Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes

Abstract

A coordinate displacement system using a length displacement sensor is provided to check movement direction of a slope in real time by installing length displacement sensors at three points and adopting the second rule of cosine to calculate coordinate displacement. A length displacement sensor, in which a moveable point(102), a fixing unit(103), and wires(104) are arranged in a triangle shape, detects length displacement. The second rule of cosine is applied to the detected length displacement to calculate the change of an inner angle. The changed inner angle is calculated into coordinate displacement so that a user can monitor movement direction and displacement of a slope(101).

Description

길이변위센서를 이용한 좌표변위장치{The coordinate displacement system which uses the length displacement sensor}The coordinate displacement system which uses the length displacement sensor

도 1은 간단한 현장 설치 예를 나타낸 도면1 shows a simple field installation example

도 2는 좌표변위계의 고정점과 측정점에 설치되는 장치를 나타낸 도면2 is a view showing an apparatus installed at a fixed point and a measuring point of the coordinate displacement system

도 3은 고정점의 측정부를 상세히 나타낸 도면Figure 3 is a view showing in detail the measuring portion of the fixed point

도 4는 좌표변위계의 이론적 좌표 계산원리를 나타낸 도면4 is a diagram illustrating a theoretical coordinate calculation principle of a coordinate displacement system.

본 발명은 사면의 거동을 좌표이동으로 판단하는 시스템에 관한 것으로 상세하게는 길이변위 센서를 삼각형으로 배치하여 길이변화를 측정하고 이를 코사인 제2법칙을 이용하여 지점의 위치를 좌표이동량으로 표시하여 재해를 모니터링 하는 사면 재해 모니터링 시스템의 관리에 관한 것이다.The present invention relates to a system for determining the behavior of a slope by coordinate movement. Specifically, a length displacement sensor is disposed in a triangle to measure a change in length, and the position of the point is represented by a coordinate movement amount using a second law of cosine to cause disaster. Is to manage the slope monitoring system.

일반적으로 사면의 재해감시 시스템은 재해발생의 판단근거를 조기에 정보화하고 물리적인 정보를 바탕으로 재해발생가능성을 미리 차단하거나 인적, 물적 피해를 줄이는 시스템이다.In general, the disaster monitoring system of slopes is an early system that informs the basis of judgment on the occurrence of a disaster and blocks the possibility of a disaster in advance or reduces human and material damage based on physical information.

종래의 사면의 지점별 움직임을 파악하기 위해 와이어를 길이변위센서에 연결하여 양단지점에 고정하여 절대거리변화를 측정하여 원격지의 데이터서버로 데이터를 전송한다.In order to grasp the movement of each slope of the conventional slope, the wire is connected to the length displacement sensor and fixed at both ends to measure the absolute distance change and transmit the data to the remote data server.

이러한 시스템은 와이어의 이동지점이 고정단을 축으로 좌우이동한 변위량을 측정하는것이 불가능하다. 따라서 사면의 움직임이 정확한 방향성을 갖지 못함으로써 거동 량과 방향이 불확실하게 된다. 이로써 적절한 보강시기와 보강공법 및 보강범위를 판단하는 데 있어 근거자료로 사용되기 어려운 단점이 있다.In such a system, it is not possible to measure the displacement amount of the movement point of the wire to the fixed end axis. Therefore, the movement of the slope does not have the correct direction and the amount of movement and the direction are uncertain. As a result, it is difficult to use as a basis for determining the appropriate reinforcement timing, reinforcement method and reinforcement range.

본 발명은 이러한 문제를 해결하기 위해 고안된 것으로, 그 목적은 사면현장의 측정데이터를 분석하여 이상상황 발생 시 실시간으로 사면의 지점별 거동방향을 제공하는 데 있다.The present invention has been devised to solve such a problem, and an object thereof is to analyze the measurement data of the slope site and to provide a point-by-point behavior direction of the slope in real time when an abnormal situation occurs.

상기의 목적을 달성하기 위해 인터넷을 기반으로 하는 원격제어소프트웨어와 전국망 무선통신이 가능한 CDMA모듈호환형 계측장비를 제공한다. 그리고 삼각형의 길이변위를 감지하기 위한 각 설치 시스템을 제공하는 것을 목적으로 한다.In order to achieve the above object, there is provided a CDMA module compatible measurement equipment capable of wireless control over the Internet and nationwide wireless communication. And it aims to provide each installation system for detecting the length displacement of a triangle.

상기한 목적을 이루기 위하여 본 발명에서는, 코사인 제2법칙을 이용하여 사면의 이동지점 움직임을 분석하기 위해 길이변위센서, 거리를 연장하기 위한 와이어, 장력을 일정하게 유지시켜주기 위한 중력식 추, 각 지점을 고정하기 위한 말뚝을 필요로 한다. 첫째, 사면의 규모와 분석목적을 감안하여 센서의 수량과 규격을 산출하고 산출된 자재가 준비되면 고정지점과 이동지점을 설정하고 말뚝을 설치한 뒤 설치된 말뚝의 위치를 측량기를 통해 위치좌표데이터를 확보한다. 둘째, 해당위치에 센서를 세팅하고 최종적으로 일정장력을 주기 위해 와이어에 10kg의 중력식 추를 단다. 장력상태에 따라 추의 무게를 더하거나 뺄 수 있다. 셋째, 무선기반 계측기를 센서의 측정용 케이블에 연결하고 초기값을 읽어 둔다. 읽어둔 초기값은 앞에서 확보된 위치좌표와 함께 프로그램상에서 초기값으로 저장된다. In order to achieve the above object, in the present invention, a length displacement sensor, a wire for extending the distance, a gravity weight for maintaining a constant tension, and each point for analyzing the movement point movement of the slope using the second law of cosine You need a stake to fix it. First, in consideration of the size of the slope and the purpose of analysis, the quantity and size of the sensor is calculated, and when the calculated material is prepared, the fixed point and moving point are set, the pile is installed, and the position of the pile is installed. Secure. Second, set the sensor at the corresponding position and put a 10kg gravity weight on the wire to give a final tension. Weight can be added or subtracted depending on the tension. Third, connect the wireless-based instrument to the measurement cable of the sensor and read the initial value. The initial value read is saved as initial value in the program together with the position coordinate secured earlier.

상기한 목적을 이루기 위하여 본 발명에서는, 길이변위측정 장치에서 데이터를 추출하는 측정기부; 측정기에서 데이터를 취합한 후 PDA또는 인터넷망으로 데이터를 전송하는 무선로거 부; 공급된 데이터를 통해 분석제어하는 원격소프트웨어를 포함하는 무인 측정시스템을 제공한다. 이하에서 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예에 대하여 상세히 설명한다.In order to achieve the above object, the present invention, measuring unit for extracting data from the length displacement measuring device; A wireless logger for collecting data from a measuring instrument and transmitting the data to a PDA or an Internet network; It provides an unmanned measurement system that includes remote software that analyzes and controls the supplied data. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 간단한 현장 설치 예를 나타낸 도면이다. 현장에 설치를 구성하는 이동지점(102)와 고정단(103), 그리고 인장선(104)구성되어 있다. 작업순서는 다음과 같다.1 is a view showing a simple site installation example. It is composed of a moving point 102, a fixed end 103, and a tension line 104 constituting the installation on site. The work flow is as follows:

사면(101)에 붕락이나 슬라이딩이 예상되는 이동지점(102)과 고정단(103)을 설정하고 인장선(104)의 케이블길이를 확정하고 기타 부속장치 등을 준비한다. 설치가 완료되면 이동지점(102)과 고정단(103)을 측량하여 좌표값을 읽고 동시에 길이변위센서(305)의 초기값을 확보한다. 확보된 값들은 프로그램에 입력하여 초기값을 기록한다.Set the moving point 102 and the fixed end 103 is expected to collapse or sliding on the slope 101, determine the cable length of the tension line 104, and prepare other accessories and the like. After the installation is completed, the moving point 102 and the fixed end 103 are surveyed to read the coordinate values and at the same time to secure an initial value of the length displacement sensor 305. The obtained values are entered into the program and the initial values are recorded.

도 2는 좌표변위계의 고정단과 이동지점에 설치되는 장치를 나타낸 도면이다. 고정단과 이동지점에 설치되는 장치에는 고정단에는 센서측정부(201), 고정바(202), 앵커부(203)이고 이동지점에는 회전고리(204), 앵커부(205)로 구성되어 있다. 작업순서는 다음과 같다.2 is a view showing an apparatus installed at a fixed end and a moving point of the coordinate displacement system. In the fixed end and the device installed at the moving point, the fixed end is composed of a sensor measuring unit 201, a fixed bar 202, an anchor part 203, and the moving point is composed of a rotation ring 204 and an anchor part 205. The work flow is as follows:

[도 1]과 같이 고정단(103)에는 앵커부(203)를 설치할 수 있도록 하고 설치된 앙카는 시멘트 모르타르로 공극을 메워 미세한 움직임이 없도록 한다. 앵커부(203)와 고정바(202) 그리고 센서측정부(201)은 일체이므로 앵커부(203)이 고정되면 움직임이 발생하지 않는다. 이동지점(102)에 설치되는 앵커부(205)도 고정단(103)의 설치와 동일하게 한다. 여기서 회전고리(204)는 인장선(104)과 연결되며 인장선(104)이 당겨지면 당겨지는 방향으로 회전하여 긴장상태를 유지한다. 고리가 회전하는 것은 이론적으로 고정단(104)과 이동지점(102)이 정확한 삼각형을 이루도록 함으로써 이론적으로 만족하는 결과를 가져오게 된다.As shown in FIG. 1, the anchoring end 203 may be installed at the fixed end 103, and the anchors may be filled with cement mortar to prevent fine movement. Since the anchor part 203, the fixing bar 202, and the sensor measuring part 201 are integrated, the movement does not occur when the anchor part 203 is fixed. The anchor portion 205 installed at the moving point 102 is also the same as the installation of the fixed end 103. The rotation ring 204 is connected to the tension line 104 and when the tension line 104 is pulled to rotate in the pulling direction to maintain the tension state. Rotation of the ring theoretically results in a theoretically satisfied result by making the fixed end 104 and the point of movement 102 form an exact triangle.

도 3은 고정점의 측정부를 상세히 나타낸 도면이다. 고정지점에서 센서를 측정하기 위해 도레부(301), 인장선(302), 중력 추(303), 센서로드(304), 길이센서(305), 가이드로드(306), 추가이드(307), 센서고정부(308)로 구성되어 있다. 작업순서는 다음과 같다.3 is a view showing in detail the measuring unit of the fixed point. In order to measure the sensor at the fixed point, the claw 301, tension line 302, gravity weight 303, sensor rod 304, length sensor 305, guide rod 306, additional guide 307, The sensor fixing part 308 is comprised. The work flow is as follows:

고정단(103)이 설치되면 도레부(301)에 중력 추(303)를 설치한다. 설치할 때의 길이조정은 이동지점(102)에서 하게 되고 길이가 고정되면 중력 추(303)는 가이드로드(306)에 끼워 넣는다. 중력 추(303)는 인장선(302)의 길이에 따라 무게를 가감 할 수 있다. 다음은 길이센서(305)를 센서고정부(308)에 설치하고 셋팅을 완료한다. 전반적인 길이변위 경로를 보면 이동지점(102)이 평면상에 움직임이 발생하면 인장선(302)이 길이변화가 나타나고 연결된 중력 추(303)가 움직이고 연결된 센서로드(304)는 길이변화를 길이센서(305)에 그대로 전달된다. 여기서 중력식 추(307)는 이동 또는 대기시에 길이방향 변위이외에 움직임을 억제하도록 추가이드(307)가 가이드로드(306)를 따라 움직이도록 되어있다.When the fixed end 103 is installed, the gravity weight 303 is installed in the toe portion 301. The length adjustment at the time of installation is made at the moving point 102, and when the length is fixed, the gravity weight 303 is inserted into the guide rod 306. The gravity weight 303 may add or subtract weight according to the length of the tensile line 302. Next, the length sensor 305 is installed in the sensor fixing part 308 to complete the setting. Looking at the overall length displacement path, when the movement point 102 moves on the plane, the tension line 302 shows a change in length, the connected gravity weight 303 moves, and the connected sensor rod 304 changes the length change in the length sensor ( 305). Here, the gravity weight 307 is configured to move the additional guide 307 along the guide rod 306 so as to suppress movement in addition to the longitudinal displacement during movement or standby.

도 4는 좌표변위계의 이론적 좌표 계산원리를 나타낸 도면이다. 이론적 계산 원리는 다음과 같다.4 is a diagram showing the theoretical coordinate calculation principle of the coordinate displacement system. The theoretical calculation principle is as follows.

[도 4]는 [도 1]에 설치된 좌표이동센서 중 한개의 예를 설명한 것으로 초기상태를 실선으로 하고 변위가 발생한 상태를 파선으로 하여 그려졌다. 가장 먼저 설치된 지점의 초기 좌표는 측량을 통해 확보되었으며 점 a, b, c로 나타내어졌다. 점 a, b, c는 삼각형을 나타내고 있으며 각 선분의 길이는 좌표값을 이용하여 삼각함수의 공표된 수식으로 구하고 내각 θ1은 코사인 제 2 법칙으로 구할 수 있다. 다음은 변위가 발생한 점 d를 예로 설명하면 이동지점(102)이 점 d로 이동하면 길이센서(305)에의해 감지되고 변화된 길이를 알 수 있다. 그렇게 되면 초기 값 길이에서 변화된 변위량을 가감하면 현재의 길이가 된다. 이때 θ2는 코사인 제 2 법칙으로 동일하게 구할 수 있다. 따라서 이동한 좌표를 알 수 있게 된다. FIG. 4 illustrates one example of the coordinate shift sensor installed in FIG. 1, and the initial state is drawn as a solid line, and the state where the displacement occurs as a broken line. The initial coordinates of the first installed point were obtained by surveying and are represented by points a, b, and c. Points a, b, and c represent triangles, and the length of each segment can be obtained from the published equation of the trigonometric function using coordinate values, and the internal angle θ1 can be obtained from the second law of cosine. Next, a point d at which displacement has occurred will be described as an example, and when the moving point 102 moves to the point d, the length detected by the length sensor 305 may be known. Then, by subtracting or changing the displacement amount from the initial value length, it becomes the current length. In this case, θ2 can be obtained in the same way using the second law of cosine. Therefore, the coordinates moved can be known.

상술한 바와 같이, 본 발명에 의한 좌표이동장치 의하면, 사면 등 지점의 거동을 평면상의 좌표이동으로 모니터링 할 뿐만 아니라 사면에 이용하면 사면의 붕락 범위와 방향을 예측하여 정확한 안전확보에 신속히 대처할 수 있고 길이 센서를 광섬유로 사용하는 경우 동적인 측정이 가능하여 콘크리트 구조물의 피로 정도를 좌표 이동상태로 나타내므로 공학적으로 판단할 수 있고 기후 등 환경적 영향 없이 안정된 데이터를 얻을 수 있다. 또한, 24시간 무인자동측정을 시행하여 측정인원에 따른 가격상승을 없애 시스템관리비용을 저렴하게 하는데 효과가 있다.As described above, according to the coordinate shifting apparatus according to the present invention, not only the behavior of a point such as a slope can be monitored by coordinate movement on a plane, but also used on a slope, the slope range and direction of the slope can be predicted to quickly cope with accurate safety. When the length sensor is used as an optical fiber, dynamic measurement is possible, and the fatigue degree of the concrete structure is represented by the coordinate movement state, so that it can be judged by engineering and stable data can be obtained without environmental influence such as climate. In addition, it is effective to reduce the system management cost by eliminating the price increase according to the number of people by performing 24-hour unmanned automatic measurement.

Claims (5)

좌표이동장치가 평면상에 좌표데이터를 출력하고 모니터링 하는데 있어서 길이변위를 각도로 환산할 수 있도록 응용된 장치와 계산 알고리즘.Apparatus and calculation algorithm applied for converting length displacement into angle in outputting and monitoring coordinate data on a plane. 제1항에 있어 길이변위측정에서 인장선의 인장을 스프링을 이용하지 않고 영구적인 인장력을 이용하는 중력식 추.The gravity weight according to claim 1, wherein in the length displacement measurement, the tension of the tension line is used for permanent tension without using a spring. 제1항에 있어 길이변위측정에서 추의 흔들림을 방지하는 로드가이드와 추가이드 장치.The rod guide and the additional guide device of claim 1, which prevents shaking of the weight in the length displacement measurement. 제1항에 있어 인장선을 삼각형 형태를 유지시켜주는 이동지점의 회전도레 장치.The device of claim 1, wherein the moving point rotates the tension line to maintain a triangular form. 제1항에 있어 고정단의 회전을 방지하기 위하여 앵커부를 두개를 사용하고 이론적 밑변의 길이 변화를 방지하는 고정단 장치.The fixed end device of claim 1, wherein two anchor parts are used to prevent rotation of the fixed end, and a length change of the theoretical base is prevented.
KR1020060077639A 2006-08-17 2006-08-17 The coordinate displacement system which uses the length displacement sensor KR20080016057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060077639A KR20080016057A (en) 2006-08-17 2006-08-17 The coordinate displacement system which uses the length displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060077639A KR20080016057A (en) 2006-08-17 2006-08-17 The coordinate displacement system which uses the length displacement sensor

Publications (1)

Publication Number Publication Date
KR20080016057A true KR20080016057A (en) 2008-02-21

Family

ID=39384237

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060077639A KR20080016057A (en) 2006-08-17 2006-08-17 The coordinate displacement system which uses the length displacement sensor

Country Status (1)

Country Link
KR (1) KR20080016057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506606A (en) * 2018-12-11 2019-03-22 重庆大学 A kind of prediction side slope faces the linear speed counting backward technique of sliding time
CN111735419A (en) * 2020-08-06 2020-10-02 北京大成国测科技有限公司 Slope horizontal displacement monitoring system and method thereof
WO2021031659A1 (en) * 2019-08-16 2021-02-25 湖南联智科技股份有限公司 Device for collecting safety monitoring data of side slope employing beidou data communication network

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506606A (en) * 2018-12-11 2019-03-22 重庆大学 A kind of prediction side slope faces the linear speed counting backward technique of sliding time
CN109506606B (en) * 2018-12-11 2020-10-09 重庆大学 Linear speed reciprocal method for predicting slope critical slip time
WO2021031659A1 (en) * 2019-08-16 2021-02-25 湖南联智科技股份有限公司 Device for collecting safety monitoring data of side slope employing beidou data communication network
CN111735419A (en) * 2020-08-06 2020-10-02 北京大成国测科技有限公司 Slope horizontal displacement monitoring system and method thereof

Similar Documents

Publication Publication Date Title
CN204514375U (en) A kind of anchored slope distortion intelligent monitor system
KR101531890B1 (en) assembly for displacement meter
Ariznavarreta-Fernández et al. Measurement system with angular encoders for continuous monitoring of tunnel convergence
JP2006195650A (en) Slope collapse monitoring/prediction system
JP2020519798A (en) Precast segment for tunnels and method of making and monitoring such precast segment
US20220058307A1 (en) Equipment state detection device, equipment state detection method, and program
KR101317629B1 (en) Displacement monitoring device and method thereof for rock masses
JP7375156B2 (en) Measuring system, measuring method and interval determination method
KR20140131125A (en) method for measuring of tunnel displacement using embedded displacement meter
JP6366588B2 (en) System for measuring the dynamic displacement of a structure relative to a reference in real time and method of use thereof
KR20080016057A (en) The coordinate displacement system which uses the length displacement sensor
CN105157999B (en) Appraisal procedure based on Distributed Optical Fiber Sensing Techniques pile integrality and lateral displacement
KR20190000356A (en) Displacement determination apparatus of tunnel
KR20180057155A (en) Displacement determination apparatus of tunnel
KR101129870B1 (en) Method for remotely monitoring variety facilities using sensors
Salamak et al. Displacements of cable-stayed bridge measured with the use of traditional and modern techniques
JP2022061704A (en) Inclination measuring device and displacement measuring method for steel material, and displacement measuring method for mountain retention wall
Zhu et al. New improvement of the combined optical fiber transducer for landslide monitoring
JP4105123B2 (en) Structure displacement / deformation detection system using optical fiber sensor
JP2000046528A (en) Distortion measuring method using optical fiber sensor
JP6190596B2 (en) Retaining wall monitoring system and monitoring method
KR20110136140A (en) Structure for measuring of radial movements and convergence of tunnel and method using the same
JP3725513B2 (en) Structure displacement / deformation detector using optical fiber cable
CN109357648A (en) Array displacement sensor and settlement measuring device
KR101044605B1 (en) System for managing configuration of long span bridge cable using location-based system, and method for the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application