KR20070119939A - 3d structural nano devices having zinc oxide type nano wires and devices using it - Google Patents

3d structural nano devices having zinc oxide type nano wires and devices using it Download PDF

Info

Publication number
KR20070119939A
KR20070119939A KR1020060054521A KR20060054521A KR20070119939A KR 20070119939 A KR20070119939 A KR 20070119939A KR 1020060054521 A KR1020060054521 A KR 1020060054521A KR 20060054521 A KR20060054521 A KR 20060054521A KR 20070119939 A KR20070119939 A KR 20070119939A
Authority
KR
South Korea
Prior art keywords
conductive thin
thin film
zinc oxide
dimensional structure
nanowires
Prior art date
Application number
KR1020060054521A
Other languages
Korean (ko)
Other versions
KR100793417B1 (en
Inventor
정명근
명재민
윤일구
정민창
Original Assignee
정명근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명근 filed Critical 정명근
Priority to KR1020060054521A priority Critical patent/KR100793417B1/en
Publication of KR20070119939A publication Critical patent/KR20070119939A/en
Application granted granted Critical
Publication of KR100793417B1 publication Critical patent/KR100793417B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A nano device with a three-dimensional structure is provided to have a three dimensional structure of conductive thin film/zinc oxide-based nanowires/conductive thin film applicable to good photoelectronic devices and gas-detecting devices. A nano device with a three-dimensional structure includes: a first conductive thin film(1) formed on a substrate(4); many zinc oxide-based nanowires(3) which are grown on the first conductive thin film in a columnar form; and a second conductive thin film(2) which is formed on the ends of the nanowires so as to face the first conductive thin film. The many nanowires are connected in parallel between the first and second conductive thin films.

Description

산화아연계 나노선을 구비한 3차원 구조를 갖는 나노 소자 및 이를 이용한 장치{3D structural nano devices having zinc oxide type nano wires and devices using it}3D structural nano devices having zinc oxide type nano wires and devices using it}

도 1은 본 발명에 따른 n+-타입의 반도체 박막/산화아연계 나노선/n+-타입의 반도체 박막의 3차원 구조를 갖는 나노 소자의 제조 공정을 개략적으로 도시한 공정도 및 구조 도이다.1 is n + according to the invention is also a process diagram schematically showing a manufacturing process of a nano device with a three-dimensional structure of the semiconductor thin film of the type and structure Fig Oh semiconductor thin film / oxide linkage type nano / n + .

도 2a 및 2b는 본 발명에 따른 n+-타입의 반도체 박막/산화아연계 나노선/n+-타입의 반도체 박막의 3차원 구조를 갖는 나노 소자의 주사전자현미경사진(SEM:Scanning Electron Microscopy)으로 도 2a는 n+-타입의 반도체 박막/산화아연계 나노선/n+-타입의 반도체 박막 3차원 구조를 갖는 나노 소자를 45도 각도에서 관찰한 주사전자현미경사진이고, 도 2b는 산화아연계 나노선 위에 n+-타입의 반도체 박막이 결합하는 과정을 순차적으로 관찰한 주사전자현미경사진이다.Figures 2a and 2b are n + in accordance with the present invention a scanning electron micrograph of a nano device with a three-dimensional structure of a type semiconductor thin film-type of the semiconductor thin film / zinc oxide based nanowire / n + (SEM: Scanning Electron Microscopy) 2A is a scanning electron micrograph of a nano device having a three-dimensional structure of n + -type semiconductor thin film / zinc oxide nanowire / n + -type semiconductor thin film at a 45 degree angle, and FIG. Scanning electron micrographs sequentially observe the bonding process of n + -type semiconductor thin films on interconnected nanowires.

도 3은 본 발명에 따른 n+-타입의 반도체 박막/산화아연계 나노선/n+-타입의 반도체 박막의 3차원 구조를 갖는 나노 소자의 자외선 검출 특성을 보여주는 전류 변화 그래프이다.N + 3 is in accordance with the present invention is a current graph showing the change in UV detection characteristics of the nano-elements having a three-dimensional structure of a type of the semiconductor thin-type semiconductor thin film / zinc oxide based nanowire / n +.

<도면의 주요 부분에 관한 부호의 설명><Explanation of symbols on main parts of the drawings>

1 - 제 1 전도성 박막 2 - 제 2 전도성 박막 1-first conductive thin film 2-second conductive thin film

3 - 산화아연계 나노선 4 - 기판3-Zinc Oxide Nanowire 4-Substrate

5 - 전극5-electrode

본 발명은 다수의 나노선의 양 단에 전기적 전도성이 우수한 전도성 박막을 결합하여 구성된 3차원 구조를 갖는 나노 소자, 이를 이용한 장치에 관한 것이다. 특히 전극으로 이용되는 전도성 박막 위에 수직으로 배열된 나노선을 형성하고, 다시 형성된 나노선 위에 전극으로 이용되는 전도성 박막을 결합한 3차원 구조를 갖는 소자에 관한 것이다.The present invention relates to a nano device having a three-dimensional structure formed by combining a conductive thin film having excellent electrical conductivity at both ends of a plurality of nanowires, and an apparatus using the same. In particular, the present invention relates to a device having a three-dimensional structure in which nanowires vertically arranged on a conductive thin film used as an electrode and a conductive thin film used as an electrode are combined on the formed nanowire.

상온에서 3.3eV의 넓은 밴드 갭 에너지와 60 meV의 큰 여기자(exciton) 결합 에너지를 갖는 것으로 알려진 산화아연은, 375~420nm의 파장을 갖는 발광소자 및 광검출 소자로 응용이 기대되는 물질이다. 또한, 산화아연의 결정립계에 산소가 흡착 또는 탈착될 경우 산화아연의 전기적 특성이 변하기 때문에, 산화아연을 이용한 기체 검출 소자 제작이 가능하다. 최근에는 알루미늄(Al), 갈륨(Ga)을 산화아연에 도핑하여 전기적 전도성이 우수한 투명 전극을 개발하고 이를 액정 디스플레이(LCD:Liquid Crystal Display) 소자와 플라스마 디스플레이 패널(PDP:Plasma Display Panel)에 적용하기 위한 연구가 진행되고 있다. 하지만, 광전자 소자 또는 가스 검출 소자의 능동형 물질로 기존의 산화아연 박막 구조를 이용할 경우, 결정학적 특성 등이 우수한 나노선 구조를 이용할 경우와 비교하여 그 효율이 낮다.Zinc oxide, which is known to have a wide band gap energy of 3.3 eV and a large exciton bonding energy of 60 meV at room temperature, is a material that is expected to be used as a light emitting device and a light detecting device having a wavelength of 375 to 420 nm. In addition, since the electrical properties of zinc oxide change when oxygen is adsorbed or desorbed on the grain boundaries of zinc oxide, it is possible to fabricate a gas detection device using zinc oxide. Recently, aluminum (Al) and gallium (Ga) are doped with zinc oxide to develop transparent electrodes with excellent electrical conductivity and applied to liquid crystal display (LCD) devices and plasma display panels (PDP). Research is underway. However, when the existing zinc oxide thin film structure is used as the active material of the optoelectronic device or the gas detection device, the efficiency is lower than that when the nanowire structure having excellent crystallographic properties is used.

최근에는 나노선이 갖는 우수한 결정학적 특성, 양자역학적 특성, 크기 특성을 소자에 응용하기 위해, 산화아연(ZnO) 나노선, 질화 갈륨(GaN) 나노선을 합성하고 이를 기판에 분산하여 소자화하는 기술을 이용하고 있다. 하지만, 나노선을 분산하고 전극을 형성하는 기존의 기술은 1개의 나노선을 검출용 능동 물질로 이용하기 때문에 광 에너지 또는 나노선 표면에서의 대기 물질과 화학적 반응 등의 외부 환경 변화에 의해 발생 된 나노선 내부의 전기적 신호 변화가 매우 작다. 또한, 나노선을 소자화하기 위해서는 나노 크기의 1차원 나노 구조를 각각 제어해야하기 때문에 기존의 반도체 기술을 이용한 대량 생산 등에 한계가 있다.Recently, in order to apply excellent crystallographic, quantum mechanical, and size characteristics of nanowires to a device, a technology of synthesizing zinc oxide (ZnO) nanowires and gallium nitride (GaN) nanowires and dispersing them on a substrate Is using. However, the existing technology of dispersing nanowires and forming electrodes uses one nanowire as an active material for detection, which is caused by external environmental changes such as light energy or chemical reactions with atmospheric substances on the surface of nanowires. The electrical signal change inside the nanowire is very small. In addition, in order to device nanowires, since nanoscale one-dimensional nanostructures must be controlled respectively, there is a limit to mass production using existing semiconductor technology.

따라서, 본 발명의 목적은 기존의 반도체 공정에서 사용되고 있는 스퍼터법(sputter)과 유기금속 화학증착법(Metal Organic Chemical Vapor Deposition)을 이용하여 우수한 광전자 소자 및 가스 검출 소자 등에 응용될 수 있는 전도성 박막/산화아연계 나노선/전도성 박막의 3차원 구조를 갖는 나노 소자를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to use a sputtering method and a metal organic chemical vapor deposition method used in a conventional semiconductor process, and a conductive thin film / oxidation which can be applied to excellent optoelectronic devices and gas detection devices. An object of the present invention is to provide a nano device having a three-dimensional structure of a zinc-based nanowire / conductive thin film.

본 발명의 또 다른 목적은, 기존의 나노선을 이용한 소자 구조와 비교하여 광에너지, 가스 등의 화학적 변화를 전기적 신호로 효과적으로 변환하기 위해 병렬로 연결된 각각의 산화아연계 나노선의 표면이 외부 환경에 노출되는 구조인 전도 성 박막/산화아연계 나노선/전도성 박막의 3차원 구조를 갖는 나노 소자를 제공하는 것이다.Another object of the present invention is to compare the surface of each zinc oxide-based nanowires connected in parallel to the external environment in order to effectively convert chemical changes of light energy, gas, etc. into electrical signals as compared to the device structure using the conventional nanowires. It is to provide a nano-device having a three-dimensional structure of the conductive thin film / zinc oxide nanowire / conductive thin film that is an exposed structure.

상기 목적을 달성하기 위해, 본 발명은 스퍼터법 또는 유기금속 화학기상 증착법으로 기판(4) 위에 제 1 전도성 박막(1)을 합성하고, 그 위에 유기금속 화학기상 증착법을 이용하여 산화아연계 나노선(3)을 성장시키고, 산화아연계 나노선(3) 위에 스퍼터법 또는 유기금속 화학기상 증착법을 이용하여 제 2 전도성 박막(2)을 합성하여 제 1 전도성 박막(1)/산화아연계 나노선(3)/제 2 전도성 박막(2) 3차원 구조를 갖는 나노 소자를 제공한다.In order to achieve the above object, the present invention synthesizes the first conductive thin film 1 on the substrate 4 by the sputtering method or organometallic chemical vapor deposition method, and using the organometallic chemical vapor deposition method on the zinc oxide nanowires (3) was grown, and the second conductive thin film (2) was synthesized by sputtering or organometallic chemical vapor deposition on the zinc oxide nanowire (3) to form the first conductive thin film (1) / zinc oxide nanowire. (3) / Second conductive thin film (2) A nano device having a three-dimensional structure is provided.

기판 위에 형성된 제 1 전도성 박막(1); 제 1 전도성 박막 상에 주상형으로 성장된 다수의 산화아연계 나노선(3); 및 제 1 전도성 박막과 마주보도록 산화아연계 나노선의 끝단에 형성된 제 2 전도성 박막(2); 으로 이루어진 3차원 구조를 갖는 나노 소자를 제공한다. A first conductive thin film 1 formed on the substrate; A plurality of zinc oxide-based nanowires 3 grown in columnar shape on the first conductive thin film; And a second conductive thin film 2 formed at an end of the zinc oxide nanowire to face the first conductive thin film. It provides a nano device having a three-dimensional structure consisting of.

다수의 산화아연계 나노선(3)은, 제 1 및 제 2 전도성 박막(1, 2) 사이에서 병렬로 연결되며, 산화아연의 결정립계에 산소가 흡착 또는 탈착될 경우 산화아연의 전기적 특성이 변하는 성질을 이용하기 위해, 제 1 및 제 2 전도성 박막(1, 2)과 결합된 끝단을 제외한 주상 부분이 대기에 완전히 노출되도록 형성되는 것이 바람직하다.The plurality of zinc oxide nanowires 3 are connected in parallel between the first and second conductive thin films 1 and 2, and the electrical properties of the zinc oxide change when oxygen is adsorbed or desorbed at the grain boundaries of the zinc oxide. In order to take advantage of the properties, it is preferred that the columnar portions, except for the ends combined with the first and second conductive thin films 1, 2, are formed to be completely exposed to the atmosphere.

제 1 및 제 2 전도성 박막(1, 2)은, 스퍼터법 또는 유기금속 화학기상 증착 법에 의해 합성되는 n+-타입 반도체 박막인 것이 바람직하다. 더욱 바람직하게는 형성된 제 1 및 제 2 전도성 박막(1, 2)은, 스퍼터법에 의해 합성되는 경우 III-족 물질을 도핑하고, 유기금속 화학기상 증착법에 의해 합성되는 경우, 높은 과포화 조건에서 결정립이 연결되는 다결정(polycrystalline) 구조로 합성되어, 결정립계에 존재하는 결함에 의해 높은 전기 전도성을 갖도록 한다.It is preferable that the 1st and 2nd conductive thin films 1 and 2 are n + -type semiconductor thin films synthesize | combined by the sputtering method or the organometallic chemical vapor deposition method. More preferably, the formed first and second conductive thin films 1 and 2 are doped with a group III-material when synthesized by the sputtering method, and crystallized under high supersaturation conditions when synthesized by the organometallic chemical vapor deposition method. It is synthesized into this connected polycrystalline structure, so as to have high electrical conductivity due to defects present in grain boundaries.

또한, 3차원 구조를 갖는 나노 소자를 이용하여, 제 1 전도성 박막(1)/산화아연계 나노선(3)/제 2 전도성 박막(2)의 3차원 구조를 갖는 나노 소자; 제 1 및 제 2 전도성 박막에 부착된 전극(5); 전극과 연결되고, 전류 변화 측정 장치를 구비한 회로; 로 이루어진 것을 특징으로 하는 검출 장치를 제공한다.In addition, by using a nano-element having a three-dimensional structure, the nano-element having a three-dimensional structure of the first conductive thin film (1) / zinc oxide-based nanowire (3) / second conductive thin film (2); Electrodes 5 attached to the first and second conductive thin films; A circuit connected to the electrode and having a current change measuring device; It provides a detection device, characterized in that consisting of.

이하 첨부한 도면을 참조하여 본 발명에 대해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명에 따른 제 1 전도성 박막(1)/산화아연계 나노선(2)/제 2 전도성 박막(3) 3차원 구조를 갖는 나노 소자는 스퍼터법 또는 유기금속 화학기상 증착법을 이용하여 성장 온도가 250~350°C인 높은 과포화 조건(high supersaturation condition)에서 전기 전도성이 우수한 n+-타입 반도체로 기판(4) 위에 제 1 전도성 박막(1)을 합성하고, 그 위에 유기금속 화학기상 증착법을 이용하여 성장 온도가 550~700°C이고 성장 압력이 1~3 torr인 낮은 과포화 조건(low supersaturaion condition)에서 산화아연계 나노선(3)을 성장시킨다. 산화아연계 나노선(3) 위에 스퍼터법 또는 유기금속 화학기상 증착법을 이용하여 다시 높은 과포화 조건에서 전기 전도성이 우수한 n+-타입 반도체로 제 2 전도성 박막(2)을 합성하여, 제 1 전 도성 박막(1)/산화아연계 나노선(3)/제 2 전도성 박막(2)의 3차원 구조를 갖는 나노 소자를 제조한다.The nano device having a three-dimensional structure of the first conductive thin film (1) / zinc oxide nanowire (2) / second conductive thin film (3) according to the present invention has a growth temperature using a sputtering method or an organometallic chemical vapor deposition method. Synthesis of the first conductive thin film 1 on the substrate 4 with an n + -type semiconductor having excellent electrical conductivity at a high supersaturation condition of 250-350 ° C., and using an organometallic chemical vapor deposition method thereon. To grow zinc oxide nanowires 3 under low supersaturaion conditions with a growth temperature of 550-700 ° C. and a growth pressure of 1-3 torr. The second conductive thin film 2 is synthesized by an n + -type semiconductor having excellent electrical conductivity under high supersaturation conditions by sputtering or organometallic chemical vapor deposition on the zinc oxide-based nanowire 3 to obtain a first conductivity. A nano device having a three-dimensional structure of a thin film (1) / zinc oxide nanowire (3) / second conductive thin film (2) is manufactured.

본 발명에 따른, 산화아연계 나노선(3)의 양쪽 끝단을 병렬로 연결하는 두 개의 전도성 박막(1, 3)은 스퍼터법 또는 유기금속 화학기상 증착법으로 합성된 전기 전도성이 우수한 n+-타입 반도체 박막이다. n+-타입 반도체 박막은 스퍼터법을 이용하는 경우, III-족 물질이 도핑된 AlZnO, GaZnO, InSbO 타깃을 사용하여 AlZnO, GaZnO, InSnO 박막을 합성하고, 유기금속 화학기상 증착법을 이용하는 경우, 아연 전구체로 디에틸아연(Zn(C2H5)2), 디에틸아연(Zn(CH3)2) 등을 이용할 수 있고, 아연을 산화시키기 위한 산소 함유 기체로 O2, N2O, NO2 등을 이용할 수 있다.According to the present invention, the two conductive thin films 1 and 3 connecting both ends of the zinc oxide nanowire 3 in parallel are n + -type having excellent electrical conductivity synthesized by sputtering or organometallic chemical vapor deposition. It is a semiconductor thin film. When the n + -type semiconductor thin film is sputtered, the AlZnO, GaZnO and InSnO thin films are synthesized using AlZnO, GaZnO, and InSbO targets doped with group III-materials, and zinc precursors are used when organometallic chemical vapor deposition is used. Diethylzinc (Zn (C 2 H 5 ) 2) , diethyl zinc (Zn (CH 3 ) 2 ), and the like, and O 2 , N 2 O, NO 2 as an oxygen-containing gas for oxidizing zinc. Etc. can be used.

산화아연계 나노선(3) 위에 합성한 전기적 특성이 우수한 n+-타입 반도체 박막은 다수의 산화아연계 나노선(3)의 끝단에서 합성된 결정립이 연결된 다결정(polycrystalline) 박막이다. 산화아연계 나노선(3)은 결정 성장을 위한 핵으로 이용될 수 있고, 높은 과포화 조건에서 공급되는 원료 물질은 각각의 산화아연계 나노선 위에서 결정립을 형성한다. 이 같은 다결정 박막은 결정립계에 존재하는 결함 등에 의해 높은 전기 전도성을 갖게 되거나, III-족 물질을 도핑하여 전기 전도성이 우수한 n+-타입 반도체 박막을 형성하게 된다. 그러므로 산화아연계 나노선(3)의 양쪽 끝에 전기 전도성이 우수한 n+-타입 반도체 박막 구조를 연결한 제 1 전도성 박막(1)/산화아연계 나노선(3)/제 2 전도성 박막(2) 3차원 구조를 갖는 나노 소 자의 전기 전도성은 산화아연계 나노선(3)의 전기적 저항 변화에 의해 결정된다. 또한, 산화아연계 나노선(3) 위에 합성된 제 2 전도성 박막(2)의 경우, 박막을 구성하는 물질이 산화아연계 나노선(3)의 표면 등에 증착하지 않고 산화아연계 나노선(3)의 끝단에서 합성되기 때문에 대기에 완전히 노출된 산화아연의 표면 특성을 이용한 소자 구현이 가능하다.The n + -type semiconductor thin film having excellent electrical properties synthesized on the zinc oxide nanowire 3 is a polycrystalline thin film in which crystal grains synthesized at the ends of the plurality of zinc oxide nanowires 3 are connected. The zinc oxide nanowires 3 can be used as nuclei for crystal growth, and raw materials supplied at high supersaturation conditions form grains on each zinc oxide nanowire. Such a polycrystalline thin film may have high electrical conductivity due to defects in grain boundaries, or may be doped with a III-group material to form an n + -type semiconductor thin film having excellent electrical conductivity. Therefore, the first conductive thin film (1) / zinc oxide-based nanowires (3) / second conductive thin film (2) having n + -type semiconductor thin film structures having excellent electrical conductivity at both ends of the zinc oxide nanowires (3) The electrical conductivity of nanoparticles having a three-dimensional structure is determined by the change in electrical resistance of the zinc oxide nanowires (3). In addition, in the case of the second conductive thin film 2 synthesized on the zinc oxide nanowire 3, the material constituting the thin film does not deposit on the surface of the zinc oxide nanowire 3 or the like. It is synthesized at the end of) so that the device can be realized by using the surface characteristics of zinc oxide completely exposed to the atmosphere.

산화아연계 나노선(3)은 단결정의 우수한 결정성을 가지기 때문에 결정 결함에 의한 전자의 농도가 106cm이하로 낮고, 높은 전기저항을 갖기 때문에 자외선 등의 광 에너지에 노출되거나 산화아연계 나노선(3) 표면의 화학 반응에 의한 전자 또는 정공의 농도 변화에 따라 전기 전도성의 변화가 크다. 또한, 산화아연계 나노선(3)의 합성 온도에 의해 산화아연계 나노선(3)의 지름을 30~80nm로 제어할 수 있으며, 산화아연계 나노선(3)의 지름이 작고 길이가 길수록 자외선 검출 및 분위기 가스 검출 성능이 우수한 것을 확인할 수 있다.Since zinc oxide nanowires (3) have excellent crystallinity of single crystals, the concentration of electrons due to crystal defects is lower than 10 6 cm and high electrical resistance, so that they are exposed to light energy such as ultraviolet rays or zinc oxide-based nanowires. The electrical conductivity changes greatly with the concentration change of electrons or holes due to the chemical reaction on the surface of the route 3. In addition, the diameter of the zinc oxide nanowires 3 can be controlled to 30 to 80 nm by the synthesis temperature of the zinc oxide nanowires 3, and the smaller and longer the diameter of the zinc oxide nanowires 3 is. It can be confirmed that the ultraviolet ray detection and the atmosphere gas detection performance are excellent.

산화아연계 나노선(3)은 대기압의 수소가스 분위기 내에서의 후 열처리 공정 등을 이용하여 산화아연 표면의 특성을 변화시켜 분위기 가스 등에 의한 전기 전도성의 변화를 방지할 수 있다. 동시에 후 열처리 공정을 통해 유기 물질의 흡착이 유리하도록 표면 특성을 제어할 수 있다. The zinc oxide-based nanowire 3 can change the characteristics of the zinc oxide surface by using a post-heat treatment process in an atmosphere of hydrogen gas at atmospheric pressure, thereby preventing a change in electrical conductivity caused by the atmosphere gas. At the same time, the surface properties can be controlled to facilitate the adsorption of organic materials through a post heat treatment process.

제조된 제 1 전도성 박막(1)/산화아연계 나노선(3)/제 2 전도성 박막(2) 3차원 구조를 갖는 나노 소자의 제 1 및 제 2 전도성 박막(1, 2)에 각각 전극(5)을 부착시켜 전압을 걸고 산화아연계 나노선(3)을 통과하여 흐르는 전류량의 변화를 측 정함으로써, 새로운 형태의 다수의 산화아연계 나노선(3)을 이용한 검출 장치를 제작할 수 있다.The first conductive thin film (1) / zinc oxide-based nanowire (3) / second conductive thin film (2) of the manufactured first electrode and the second conductive thin film (1, 2) of the nano device having a three-dimensional structure, respectively, 5) by attaching a voltage and measuring a change in the amount of current flowing through the zinc oxide nanowire 3, a detection device using a new type of zinc oxide nanowire 3 can be fabricated.

이하 본 발명을 하기 실시 예에 의거하여 좀 더 상세하게 설명하고자 한다. 단, 하기 실시 예는 본 발명을 예시하기 위한 것일 뿐 본 발명을 한정하지는 않는다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention and do not limit the present invention.

실시 예 1: 전도성 박막/산화아연계 나노선/전도성 박막 3차원 구조를 갖는 소자 제조Example 1: Fabrication of a device having a three-dimensional structure of a conductive thin film / zinc oxide nanowire / conductive thin film

도 1의 구조를 제조하기 위해, 상온에서 3 wt% 알루미늄이 도핑된 산화아연 타깃을 스퍼터링하여 전기적 전도성이 우수한 AlZnO 박막을 증착하고, 샤워기 형상의 노즐을 통해 반응가스를 공급할 수 있는 유기금속 화학기상 증착기에 디에틸아연과 산소를 각각 5~33㎛ol/min, 20~25 sccm 공급하고, 500~650°C의 성장 온도와 1~3 torr의 성장 압력을 유지하여 증착된 AlZnO 박막 위에 수직으로 배열된 산화아연 나노선을 성장시키고, 다시 나노선 위에 상온에서 3 wt% 알루미늄이 도핑된 산화아연 타깃을 스퍼터링하여 전기적 전도성이 우수한 다결정 AlZnO 박막을 증착하여 산화아연계 전도성 박막/나노선/전도성 박막의 3차원 구조를 갖는 소자를 제조한다.In order to manufacture the structure of FIG. 1, an AlZnO thin film having excellent electrical conductivity is deposited by sputtering a zinc oxide target doped with 3 wt% aluminum at room temperature, and an organometallic chemical vapor phase capable of supplying a reaction gas through a shower nozzle. Diethyl zinc and oxygen were supplied to the evaporator at 5 ~ 33㎛ol / min, 20 ~ 25 sccm, respectively, and maintained vertically on the deposited AlZnO thin film at a growth temperature of 500 ~ 650 ° C and a growth pressure of 1 ~ 3 torr. The zinc oxide-based conductive thin film / nanowire / conductive thin film is grown by growing an arrayed zinc oxide nanowire, and then sputtering a zinc oxide target doped with 3 wt% aluminum on the nanowire at room temperature to deposit a polycrystalline AlZnO thin film having excellent electrical conductivity. A device having a three-dimensional structure of is manufactured.

합성된 산화아연계 전도성 박막/나노선/전도성 박막의 3차원 구조를 갖는 소자를 주사전자현미경으로 관찰한 결과를 도 2a에 나타내었다. 나노선의 지름과 길이는 각각 50nm, 700nm로 관찰되었다.A device having a three-dimensional structure of the synthesized zinc oxide-based conductive thin film / nanowire / conductive thin film is shown in FIG. 2A. The diameter and length of the nanowires were observed at 50nm and 700nm, respectively.

또한, 나노선 위에 박막이 합성되는 형상을 관찰하기 위해, 스퍼터 시간에 따라 나노선 위에 합성되는 박막의 형상을 주사전자현미경으로 관찰한 결과를 도 2b에 나타내었다.In addition, in order to observe the shape of the thin film synthesized on the nanowires, the results of observing the shape of the thin film synthesized on the nanowires according to the sputtering time with a scanning electron microscope is shown in Figure 2b.

실시 예 2: 전도성 박막/산화아연계 나노선/전도성 박막 3차원 구조를 갖는 소자를 이용한 자외선 검출 소자의 제작Example 2 Fabrication of Ultraviolet Detection Device Using Device Having 3D Structure of Conductive Thin Film / Zinc Oxide Nanowire / Conductive Thin Film

전도성 박막/산화아연계 나노선/전도성 박막의 3차원 구조를 갖는 나노 소자의 산화아연계 나노선 양쪽 끝단에 연결된 전도성 박막에 각각 전극을 형성하여 도 1의 소자 구조를 제작한다. 산화아연 나노선의 밴드 갭 에너지에 해당하는 377nm보다 짧은 파장을 갖는 350~370nm 파장의 자외선 광선을 전도성 박막/산화아연계 나노선/전도성 박막 3차원 구조를 갖는 나노 소자에 조사할 경우, 도 3에서 나타난 것과 같이 산화아연계 나노선을 통해 흐르는 전류의 량이 자외선을 조사하기 전과 비교하여 3배 증가하는 것을 관찰할 수 있고, 자외선 조사 후 1초 이내에 전류량이 급속하게 증가하는 것을 확인할 수 있다.The device structure of FIG. 1 is manufactured by forming electrodes on conductive thin films connected to both ends of a zinc oxide nanowire having a three-dimensional structure of a conductive thin film / zinc oxide nanowire / conductive thin film. When irradiating UV light having a wavelength of 350 to 370 nm having a wavelength shorter than 377 nm corresponding to the band gap energy of the zinc oxide nanowire to the nano device having the conductive thin film / zinc oxide nanowire / conductive thin film three-dimensional structure, As shown, it can be observed that the amount of current flowing through the zinc oxide-based nanowire increases three times as compared to before irradiation with ultraviolet rays, and the current amount rapidly increases within one second after irradiation with ultraviolet rays.

본 발명에 따른, 제 1 전도성 박막/산화아연계 나노선/제 2 전도성 박막 3차원 구조를 갖는 나노 소자는, 다수의 산화아연계 나노선을 기존의 박막 증착 기술만을 이용하여 제조할 수 있다. 또한, 다수의 산화아연계 나노선 표면이 모두 대기에 노출되어 있기 때문에, 산화아연계 나노선을 이용한 다양한 검출 소자 개발에 응용이 가능하다.According to the present invention, a nano device having a first conductive thin film / zinc oxide-based nanowire / second conductive thin film three-dimensional structure can be manufactured using a plurality of zinc oxide-based nanowires only using a conventional thin film deposition technique. In addition, since the surface of many zinc oxide nanowires are all exposed to the atmosphere, it is possible to apply them to the development of various detection devices using zinc oxide nanowires.

Claims (7)

기판 위에 형성된 제 1 전도성 박막;A first conductive thin film formed on the substrate; 제 1 전도성 박막 상에 주상형으로 성장된, 다수의 산화아연계 나노선; 및A plurality of zinc oxide based nanowires grown in columnar shape on the first conductive thin film; And 제 1 전도성 박막과 마주보도록 나노선의 끝단에 형성된 제 2 전도성 박막; 으로 이루어진 3차원 구조를 갖는 나노 소자.A second conductive thin film formed at an end of the nanowire so as to face the first conductive thin film; Nano device having a three-dimensional structure consisting of. 제1항에 있어서,The method of claim 1, 다수의 나노선은, 제 1 및 제 2 전도성 박막 사이에서 병렬로 연결된 것을 특징으로 하는 3차원 구조를 갖는 나노 소자.A plurality of nanowires, the nano device having a three-dimensional structure, characterized in that connected in parallel between the first and second conductive thin film. 제2항에 있어서,The method of claim 2, 다수의 나노선은, 산화아연의 결정립계에 산소가 흡착 또는 탈착될 경우 산화아연의 전기적 특성이 변하는 성질을 이용하기 위해, 제 1 및 제 2 전도성 박막과 결합된 끝단을 제외한 주상 부분이 대기에 노출되도록 형성된 것을 특징으로 하는 3차원 구조를 갖는 나노 소자.Many nanowires are exposed to the atmosphere, except for the ends combined with the first and second conductive thin films, in order to take advantage of the property that the electrical properties of zinc oxide change when oxygen is adsorbed or desorbed at the grain boundaries of zinc oxide. Nano device having a three-dimensional structure, characterized in that formed to be. 제1항에 있어서,The method of claim 1, 제 1 및 제 2 전도성 박막은, 스퍼터법 및 유기금속 화학기상 증착법 중에서 선택된 어느 한 방법에 의해 합성된 n+-타입 반도체 박막인 것을 특징으로 하는 3차원 구조를 갖는 나노 소자.The first and second conductive thin films are nanodevices having a three-dimensional structure, characterized in that the n + -type semiconductor thin film synthesized by any one selected from a sputtering method and an organometallic chemical vapor deposition method. 제4항에 있어서,The method of claim 4, wherein 제 1 및 제 2 전도성 박막은, 스퍼터법에 의해 합성되는 경우 III-족 물질을 도핑하여 높은 전기 전도성을 갖는 것을 특징으로 하는 3차원 구조를 갖는 나노 소자.The first and second conductive thin films have a three-dimensional structure, characterized in that when synthesized by the sputtering method doped the group III-material has a high electrical conductivity. 제4항에 있어서,The method of claim 4, wherein 제 1 및 제 2 전도성 박막은, 유기금속 화학기상 증착법에 의해 합성되는 경우, 높은 과포화 조건에서 결정립이 연결되는 다결정(polycrystalline) 구조로 합성되어, 결정립계에 존재하는 결함에 의해 높은 전기 전도성을 갖는 것을 특징으로 하는 3차원 구조를 갖는 나노 소자.When the first and second conductive thin films are synthesized by an organometallic chemical vapor deposition method, the first and second conductive thin films are synthesized in a polycrystalline structure in which crystal grains are connected under high supersaturation conditions, and thus have high electrical conductivity due to defects present at grain boundaries. Nano device having a three-dimensional structure characterized in. 제1항 내지 제6항 중 어느 한 항에 3차원 구조를 갖는 나노 소자; 제 1 및 제 2 전도성 박막에 부착된 전극; 전극과 연결되고, 전류 변화 측정 장치를 구비한 회로; 로 이루어진 것을 특징으로 하는 검출 장치.Nano device having a three-dimensional structure of any one of claims 1 to 6; Electrodes attached to the first and second conductive thin films; A circuit connected to the electrode and having a current change measuring device; Detection apparatus characterized in that consisting of.
KR1020060054521A 2006-06-16 2006-06-16 3D structural nano devices having zinc oxide type nano wires and devices using it KR100793417B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060054521A KR100793417B1 (en) 2006-06-16 2006-06-16 3D structural nano devices having zinc oxide type nano wires and devices using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060054521A KR100793417B1 (en) 2006-06-16 2006-06-16 3D structural nano devices having zinc oxide type nano wires and devices using it

Publications (2)

Publication Number Publication Date
KR20070119939A true KR20070119939A (en) 2007-12-21
KR100793417B1 KR100793417B1 (en) 2008-01-11

Family

ID=39137989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060054521A KR100793417B1 (en) 2006-06-16 2006-06-16 3D structural nano devices having zinc oxide type nano wires and devices using it

Country Status (1)

Country Link
KR (1) KR100793417B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976865B1 (en) * 2008-04-28 2010-08-23 한국기계연구원 Wavelength detection appratus and fabricating method thereof
KR101219247B1 (en) * 2010-09-14 2013-01-07 전북대학교산학협력단 A crystal growing method of ZnO nanorods for Superconductor Devices
WO2013141469A1 (en) * 2012-03-22 2013-09-26 한국표준과학연구원 Method of forming upper electrode of nanowire array and nanowire array with upper electrode formed

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI220319B (en) 2002-03-11 2004-08-11 Solidlite Corp Nano-wire light emitting device
KR100621918B1 (en) * 2004-06-10 2006-09-14 학교법인 포항공과대학교 Light emitting device comprising conductive nanorod as transparent electrode
US7569905B2 (en) 2004-12-20 2009-08-04 Palo Alto Research Center Incorporated Systems and methods for electrical contacts to arrays of vertically aligned nanorods
KR100720101B1 (en) * 2005-08-09 2007-05-18 삼성전자주식회사 Top-emitting Light Emitting Devices Using Nano-structured Multifunctional Ohmic Contact Layer And Method Of Manufacturing Thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976865B1 (en) * 2008-04-28 2010-08-23 한국기계연구원 Wavelength detection appratus and fabricating method thereof
KR101219247B1 (en) * 2010-09-14 2013-01-07 전북대학교산학협력단 A crystal growing method of ZnO nanorods for Superconductor Devices
WO2013141469A1 (en) * 2012-03-22 2013-09-26 한국표준과학연구원 Method of forming upper electrode of nanowire array and nanowire array with upper electrode formed
CN104246912A (en) * 2012-03-22 2014-12-24 韩国标准科学研究院 Method of forming upper electrode of nanowire array and nanowire array with upper electrode formed
CN104246912B (en) * 2012-03-22 2016-11-02 韩国标准科学研究院 Form the method for the upper electrode of nano-wire array and there is the nano-wire array of the upper electrode formed
US9520211B2 (en) 2012-03-22 2016-12-13 Korea Research Institute Of Standards And Science Method of forming upper electrode of nanowire array

Also Published As

Publication number Publication date
KR100793417B1 (en) 2008-01-11

Similar Documents

Publication Publication Date Title
JP6502605B2 (en) Transistor
KR101939450B1 (en) Forming method of metal oxide layer on graphene, metal oxide layer on graphene formed thereby and electronic device comprising the metal oxide layer on graphene
KR20160124017A (en) Monolayer films of semiconducting metal dichalcogenides, methods of making same, and uses of same
Waseem et al. Effect of crystal orientation of GaN/V2O5 core-shell nanowires on piezoelectric nanogenerators
Hoye et al. Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition
Hong et al. Shape‐Controlled Nanoarchitectures Using Nanowalls
KR101137632B1 (en) Manufacturing method of metal oxide nanostructure and electronic device having the same
EP2912208B1 (en) Method to grow nanometer sized structures by pulsed laser deposition
CN109056057B (en) Preparation method of large-size single-crystal gallium oxide nanosheet
Labis et al. Pulsed laser deposition growth of 3D ZnO nanowall network in nest-like structures by two-step approach
KR101458629B1 (en) MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER
KR100793417B1 (en) 3D structural nano devices having zinc oxide type nano wires and devices using it
KR100499274B1 (en) Manufacturing method for ZnO based hetero-structure nanowires
Wu et al. Realization and manipulation of ZnO nanorod arrays on sapphire substrates using a catalyst-free metalorganic chemical vapor deposition technique
KR100851499B1 (en) The process for manufacturing zno nanorod and nanowall
KR100849685B1 (en) Preparation method of selective nanowire using patterning of seed layer
Kim et al. Structural transition from MgZnO nanowires to ultrathin nanowalls by surface separation: growth evolution and gas sensing properties
Lee et al. Synthesis and photoluminescence properties of hydrothermally-grown ZnO nanowires on the aerosol-deposited AZO seed layer
KR20140101227A (en) Method for forming nano crystalline and manufacturing of organic light emitting display device including the same
WO2021032947A1 (en) Method and composition
Rahman et al. Inexpensive and highly controlled growth of zinc oxide nanowire: Impacts of substrate temperature and growth time on synthesis and physical properties
Kim et al. Low-temperature growth and characterization of epitaxial ZnO nanorods by metalorganic chemical vapor deposition
KR20130001357A (en) Radial type nanorods and manufacturing method of the same
TWI242611B (en) Substrate having a zinc oxide nanowire array normal to its surface and fabrication method thereof
Geetha Fabrication of Zinc Oxide Based Nanostructures for Light Emission and Gas Sensing Applications.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101230

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee