KR20070117537A - An expression vector encoding coronavirus-like particle - Google Patents

An expression vector encoding coronavirus-like particle Download PDF

Info

Publication number
KR20070117537A
KR20070117537A KR1020077014517A KR20077014517A KR20070117537A KR 20070117537 A KR20070117537 A KR 20070117537A KR 1020077014517 A KR1020077014517 A KR 1020077014517A KR 20077014517 A KR20077014517 A KR 20077014517A KR 20070117537 A KR20070117537 A KR 20070117537A
Authority
KR
South Korea
Prior art keywords
gene
expression vector
promoter
dna
coronavirus
Prior art date
Application number
KR1020077014517A
Other languages
Korean (ko)
Other versions
KR100915980B1 (en
Inventor
루엔 후
Original Assignee
디엔에이 셔틀 바이오팜 컴퍼니, 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디엔에이 셔틀 바이오팜 컴퍼니, 엘티디. filed Critical 디엔에이 셔틀 바이오팜 컴퍼니, 엘티디.
Priority to KR1020077014517A priority Critical patent/KR100915980B1/en
Publication of KR20070117537A publication Critical patent/KR20070117537A/en
Application granted granted Critical
Publication of KR100915980B1 publication Critical patent/KR100915980B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers

Abstract

The present invention provides an expression vector encoding coronavirus-like particles, which comprises two transcriptional units, wherein the first unit comprises genes encoding membrane M protein and envelope E protein from coronavirus, while the second unit comprises SpikeCT coding gene from coronavirus. Said expression vector is useful for cloning viral genes from Type I membrane fusion mechanism, and also is useful as DNA vaccine candidate.

Description

코로나바이러스-유사 입자를 인코딩하는 발현 벡터{AN EXPRESSION VECTOR ENCODING CORONAVIRUS-LIKE PARTICLE}Expression vectors encoding coronavirus-like particles {AN EXPRESSION VECTOR ENCODING CORONAVIRUS-LIKE PARTICLE}

본 발명은 재조합 DNA 기술 분야(recombinant DNA technology),보다 구체적으로는 DNA 백신 분야와 관련된다. 특히 본 발명은 DAN 백신 후보군으로서, 클래스 I의 바이러스성 융합 단백질 유전자(the Class I viral fusion protein gene)를 클로닝하기 위한, 바이러스 유사 입자를 인코딩하는 새로운 발현 벡터와 관련된다.The present invention relates to the field of recombinant DNA technology, and more specifically to the field of DNA vaccines. In particular, the present invention relates to a novel expression vector encoding a virus like particle for cloning the Class I viral fusion protein gene, as a DAN vaccine candidate.

예방 접종(vaccination)은 지난 30년간 바이러스성 질환을 제어하는데 중요한 역할을 수행하여 왔다. 예방 접종은 면역학이라는 단순한 원리에 기초한다. 일단 감염체(infectious agent)에 노출되면, 동물은 동일한 감염체에 의한 감염으로부터 보호하기 위한 면역 반응을 시작한다. 예방 접종의 목적은 동물로 하여금 감염 전에 방어 기전을 증가시키는 것을 유도하는 데 있다. 종래에는 면역원(immunogen)으로서 바이러스의 약독화된 생균 또는 사균형태의 바이러스를 사용하여 이러한 예방 접종을 수행하여 왔다. 이러한 과거의 접근 방식이 성공할 수 있었던 것은 선천적 항원의 존재 및 자연 감염(natural infection)에서 획득된 완전한 범위의 면역 반응을 이끌어내는 약독화된 바이러스의 능력에 부분적으로 기인한다. 그러나, 전통적인 백신 방법은 항상 어느 정도의 잠재적인 한계가 있다. 약독 화된 변형체(strains)는 잠재되어 있다가 보다 병독성(virulent)이 있거나 또는 비-면역원성(non-immunogenic)으로 변이될 수 있다; 부적절하게 불활성화된 백신은 예방하려고 의도했던 그 질병을 유발할 수도 있다.Vaccination has played an important role in controlling viral diseases for the last 30 years. Vaccination is based on the simple principle of immunology. Once exposed to an infectious agent, the animal begins an immune response to protect against infection by the same infectious agent. The purpose of vaccination is to induce animals to increase their defense mechanisms before infection. This vaccination has conventionally been carried out using an attenuated live or dead form of the virus as an immunogen. The success of this past approach is due in part to the presence of innate antigens and the ability of the attenuated virus to elicit the full range of immune responses obtained from natural infection. However, traditional vaccine methods always have some potential limitations. Attenuated strains can be latent and more virulent or non-immunogenic; Improperly inactivated vaccines may cause the disease intended to be prevented.

재조합 DNA 기술은, 면역원으로서 완전한 감염체 대신 규정 항원(defined antigen)을 사용하는 것을 기초로 한 백신을 개발하게 하여, 종래의 백신의 몇몇 한계를 제거하는 가능성을 제시한다. 이는 화학적으로 합성되고, 면역 반응성 항원결정인자(epitopes)로 구성된 펩티드 백신; 재조합 이종 세포(recombinant heterologous cells)에서 바이러스성 단백질의 발현으로 형성된 아단위백신(subunit vaccine) 백신 및 하나 또는 다수 규정 항원을 전달(presentation)하기 위한 생 바이러스 벡터의 사용을 포함한다. 펩티드와 아단위백신은 모두 잠재적 한계를 가지고 있다. 주된 문제는 유전공학적 단백질의 변형이 그들의 천연 환경에서 항원의 그것을 모방한다는 것을 확신하기가 어렵다는 점이다. 적당한 항원보강제(adjuvant)와 펩티드의 경우에 있어서 캐리어 단백질은 면역 반응을 증가시키는데 사용되어야 한다. 또한, 이러한 백신은 주로 체액성 반응(humoral resoponse)을 유도하고, 그 결과 효과적인 면역을 유발하는데 실패하게 된다.Recombinant DNA technology has led to the development of vaccines based on the use of defined antigens instead of complete infectious agents as immunogens, offering the possibility of eliminating some of the limitations of conventional vaccines. It is a chemically synthesized, peptide vaccine composed of immunoreactive epitopes; Subunit vaccine vaccines formed by expression of viral proteins in recombinant heterologous cells and the use of live viral vectors for presenting one or multiple regulatory antigens. Both peptides and subunit vaccines have potential limitations. The main problem is that it is difficult to be convinced that modifications of genetic engineering proteins mimic that of antigens in their natural environment. In the case of suitable adjuvants and peptides, carrier proteins should be used to increase the immune response. In addition, these vaccines mainly induce humoral resoponse, and thus fail to elicit effective immunity.

많은 다른 방법이 새로운 유전 정보를 타겟 셀에 도입하도록 개발되어왔다. 현재로, DNA를 타겟 셀에 도입하는 가장 효과적인 방법은 재조합 바이러스성 백터라고 불리는 변형 바이러스에 의한 것이다. 가장 자주 사용되는 바이러스성 벡터 시스템은 레트로바이러스류(retroviruses), 아데노바이러스류(adenoviruses), 헤르페스바이러스류(herpes viruses) 또는 아데노바이러스 관련 바이러스류(AAV, adeno-associated viruses)이다. 모든 시스템은 그들 고유의 장단점을 가지고 있다. 몇몇 벡터 시스템은 그들의 DNA를 숙주 세포 게놈으로 통합시키는 능력을 보유하고 있으며 다른 벡터시스템은 그러하지 않다. 다른 시스템에서는 여전히 불가능하지만, 몇몇 벡터 시스템으로부터 바이러스성 유전자(gene)는 완전히 제거될 수 있다. 몇몇 벡터 시스템은 비보에서 매우 좋은 전달 특성을 가지고 있다. 몇몇 벡터 타입은 매우 쉽게 대용량을 생산할 수 있으나, 다른 벡터 타입은 생산해내기 어렵다.Many other methods have been developed to introduce new genetic information into target cells. Currently, the most effective way to introduce DNA into target cells is by a modified virus called a recombinant viral vector. The most frequently used viral vector systems are retroviruses, adenoviruses, herpes viruses or adeno-associated viruses (AAV). All systems have their own advantages and disadvantages. Some vector systems have the ability to integrate their DNA into the host cell genome, while others do not. While still impossible in other systems, viral genes can be completely removed from some vector systems. Some vector systems have very good propagation characteristics in Vivo. Some vector types can produce very large capacities very easily, while others are difficult to produce.

코로나바이러스는 그들 외피(envelopes) 내에 3개 도는 4개의 단백질을 전달한다. M 단백질은 가장 풍부히 존재하는 구성성분이다. 작은 E 단백질은 소량이기는 하나 필수적인 바이러스 구성성분이다. 발병기전(pathogenesis)에서 S 단백질의 중요성은 바이러스의 도입 및 바이러스의 번식 양자에 있어서, 그들의 생물학적 기능(biologic function)과 조화된다( Collins , A. R., et al ., 1982, Virology 119 : 358-371 ; Williams , R. K., et al ., 1991, Proc . Natl . Acad . Sci . USA 88 : 5533-5536). 비리온(virion) 외피에서 발현될 때 S 단백질은 세포성 수용체와 결합하고, 바이러스가 도입될 때 바이러스와 세포막(cell membrane)의 융합을 유도한다. 감염에 잇따라, 감염된 세포의 형질 막(plasma membrane) 위에서 발현된 S 단백질은 세포 융합을 유도한다. S 단백질은 항체를 중화시키는 타겟( Collins , A. R., et al ., 1982, Virology 119:358-371) 및 세포-매개된(cell-mediated) 면역의 인듀서 ( Bergmann , C. C., et al ., 1996, J. Gen . Virol . 77:315-325; Castro , R. F., and S. Perlman , 1995, J. Virol . 69 : 8127-8131)로서 바이러스성 감염에 대한 면역 반응에서 중요한 역할을 한다. M과 E 단백질은 바이러스 집합을 위한 최소한의 단백질 유닛이다( Baudoux, P., et al ., 1998, J. Virol . 72 : 8636-8643 ; Bos , E. C., 1996, Virology 218 : 52-60 ; de Haan , C. A. M., et al ., 1998, J. Virol . 72 : 6838-6850 ; Godeke , G.-J., et al ., 2000, J. Virol . 74 : 1566-1571 ; Vennema, H., et al ., 1996, EMBO J. 15 : 2020-2028). 양자는 통합된 막(integral membrane) 단백질이다. M 및 E 단백질 모두가 발현되는 것은 바이러스-유사 입자(VLP)를 유발하는데 충분하다. S 단백질이 M 및 E 단백질과 함께 발현될 때, S 단백질은 아마도 진정 변형(authentic conformation)과 함께 VLP에 결합된다. 이는 마우스 간염 바이러스 (MHV , mouse hepatitis virus )( Bos , E. C., 1996, Virology 218 : 52-60 ; de Haan , C. A. M., et al., 1998, J. Virol . 72 : 6838-6850 ; Vennema , H., et al., 1996, EMBO J. 15 : 2020-2028), 전달성 위장염 바이러스(transmissible gastroenteritis virus ( Baudoux, P., et al ., 1998, J. Virol . 72 : 8636-8643)) 및 고양이 감염성 복막염 바이러스( feline infectious peritonitis virus ( Godeke , G.-J., et al ., 2000, J. Virol . 74:1566-1571))에 있어서 증명되어 왔다. 코로나바이러스의 막은 기본적으로 측면으로 M 단백질과 상호작용하는 밀한 매트릭스로 구성되는데, 이는 여러 경우 발아(budding)를 위한 E 단백질을 필요로하고, 이용할 수 있다면, 카르복실기 말단과 스파이크(spike)의 트랜스막 영역(transmembrane region)을 통해 M과 특정 상호작용을 함으로써 S 및 HE 당단백질(glycoprotein)이 그 안으로 통합된다( de Haan , C. A. M., 1999, J. Virol . 73 : 7441-7452 ; Nguyen, V.-P., and B. G. Hogue . 1997, J. Virol . 71 : 9278-9284; Opstelten , D.-J. E., et al ., 1995, J. Cell Biol . 131 : 339-349 ; Vennema , H., et al ., 1996, EMBO J. 15 : 2020-2028). 이러한 스파이크를 포함한 VLP는 진정 바이러스와 동일한 감염성을 가지고 세포를 감염시킬 수 있다( Bos , E. C., 1996, Virology 218 : 52-60). 그러나, 어떤 효과적인 DNA 벡터라 할지라도 DNA 백신으로 개발된 것은 아니다. Coronaviruses deliver three or four proteins in their envelopes. M protein is the most abundant component. Small E proteins are small but essential viral components. The importance of S proteins in pathogenesis harmonizes with their biologic functions, both in the introduction and viral propagation of viruses ( Collins , AR, et. al ., 1982, Virology 119 : 358-371 ; Williams , RK, et al ., 1991, Proc . Natl . Acad . Sci . USA 88 : 5533-5536 ). When expressed in a virion envelope, the S protein binds to cellular receptors and induces fusion of the virus and cell membranes when the virus is introduced. Following infection, S protein expressed on the plasma membrane of infected cells induces cell fusion. S proteins are targets that neutralize antibodies ( Collins , AR, et. . al, 1982, Virology 119: 358-371) and cell-mediated (cell-mediated) immune inducer (Bergmann, CC, et al., 1996, J. Gen. Virol . 77: 315-325; Castro , RF, and S. Perlman , 1995, J. Virol . 69 : 8127-8131 ) and plays an important role in the immune response to viral infections. M and E proteins are the smallest protein units for viral aggregation ( Baudoux, P., et al ., 1998, J. Virol . 72 : 8636-8643 ; Bos , EC, 1996, Virology 218 : 52-60 ; de Haan , CA M., et al ., 1998, J. Virol . 72 : 6838-6850 ; Godeke , G.-J., et al ., 2000, J. Virol . 74 : 1566-1571 ; Vennema, H., et al ., 1996, EMBO J. 15 : 2020-2028 ). Both are integrated membrane proteins. Expression of both M and E proteins is sufficient to induce virus-like particles (VLP). When the S protein is expressed with the M and E proteins, the S protein binds to the VLP, perhaps with authentic conformation. This mouse hepatitis virus (MHV, mouse hepatitis virus) ( Bos, EC, 1996, Virology 218: 52-60; de Haan , CA M., et al., 1998, J. Virol . 72 : 6838-6850 ; Vennema , H., et al., 1996, EMBO J. 15 : 2020-2028) , transmissible gastroenteritis virus gastroenteritis virus ( Baudoux, P., et al ., 1998, J. Virol . 72 : 8636-8643) and feline infectious peritonitis virus ( feline infectious peritonitis virus ( Godeke , G.-J., et al ., 2000, J. Virol . 74: 1566-1571) . The membrane of the coronavirus consists essentially of a dense matrix that laterally interacts with the M protein, which in many cases requires an E protein for budding and, if available, the transmembrane of the carboxyl end and the spike. Specific interactions with M through the transmembrane region integrate S and HE glycoproteins into it ( de Haan , CA M., 1999, J. Virol . 73 : 7441-7452 ; Nguyen, V.-P., and BG Hogue . 1997, J. Virol . 71 : 9278-9284; Opstelten , D.-JE, et al ., 1995, J. Cell Biol . 131 : 339-349 ; Vennema , H., et al ., 1996, EMBO J. 15 : 2020-2028 ). VLPs containing these spikes can infect cells with the same infectivity as a true virus ( Bos , EC, 1996, Virology 218 : 52-60 ). However, no effective DNA vector was developed as a DNA vaccine.

따라서, VLP의 표면에서 기능성 바이러스성 융합 단백질 유전자를 나타낼 수 있는 바이러스-유사 입자를 인코딩하는 효과적인 DNA 벡터를 개발할 필요성이 있고, 이들 VLP는 바이러스성 질병에 대항한 잠재적인 백신으로서 가장 탁월한 후보가 될 것이다.Thus, there is a need to develop effective DNA vectors encoding virus-like particles capable of expressing functional viral fusion protein genes on the surface of VLPs, which will be the most excellent candidates for potential vaccines against viral diseases. will be.

발명의 구성Composition of the Invention

본 발명은, DNA 백신 후보군으로서, 클래스 I의 바이러스성 융합 단백질 유전자(the Class I viral fusion protein gene)를 클로닝하기 위한 발현 벡터와 관련되며, 상기 발현 벡터는The present invention relates to an expression vector for cloning the Class I viral fusion protein gene as a DNA vaccine candidate, wherein the expression vector is

ⅰ) 코로나바이러스의 막 단백질 유전자(membrane protein gene, M 단백질 유전자), 코로나바이러스의 외피 단백질 유전자(envelope protein gene, E 단백질 유전자) 및 내부 리보솜 도입 사이트(IRES, internal ribosome entry sites) 서열을 포함하는 제1 전사 유닛(transcription unit)으로서, 상기 IRES는 상기 막 단백질 유전자와 상기 외피 단백질 유전자의 연접부위(junction)로 삽입되는 제1 전사 유닛;Iii) the membrane protein gene (M protein gene) of the coronavirus, the envelope protein gene (E protein gene) of the coronavirus and the internal ribosome entry sites (IRES) sequence. A first transcription unit, said IRES comprising: a first transcription unit inserted into a junction of said membrane protein gene and said envelope protein gene;

ⅱ) 상기 막 단백질 유전자에 작동하도록 결합되는 제1 진핵 프로모터(eukaryotic promotor)로서, 상기 M 단백질 유전자의 상부(upstream)에 위치하고, 상기 제1 전사 유닛의 발현을 유도하는 제1 진핵 프로모터;Ii) a first eukaryotic promoter coupled to act on said membrane protein gene, said first eukaryotic promoter located upstream of said M protein gene and inducing expression of said first transcriptional unit;

ⅲ) 코로나바이러스의 스파이크CT(spikeCT) 유전자와 클로닝 및 클래스 I 바이러스성 융합 단백질 유전자의 인-프레임(in-frame) 삽입(insertion) 또는 클로닝을 위한 다수의 클로닝 싸이트(MCS, multiple cloning site)를 포함하는 제2 전사 유닛으로서, 상기 MCS는 스파이크CT 유전자의 시작 부분에 위치하고, 제한 효소 절단 싸이트(restriction enzymes cutting sites)를 가지고 있는 제2 전사 유닛; 및Iii) multiple cloning sites (MCSs) for the cloning of spikena genes of coronaviruses and for in-frame insertion or cloning of class I viral fusion protein genes. A second transcription unit comprising, the MCS is located at the beginning of the Spike CT gene, the second transcription unit having restriction enzymes cutting sites (restriction enzymes cutting sites); And

ⅳ) 스파이크CT 유전자에 작동하도록 결합된 제2 진핵 프로모터로서, 상기 스파이크CT 유전자의 상부에 위치하고 제2 전사 유닛의 발현을 유도하는 제2 진핵 프로모터를 포함하되,Iii) a second eukaryotic promoter coupled to operate on a SpikeCT gene, the second eukaryotic promoter located on top of the SpikeCT gene and inducing expression of a second transcriptional unit,

상기 제1 진핵 프로모터는 상기 제2 진핵 프로보터보다 강력한 전사 활성(transcription activity)을 가진다.The first eukaryotic promoter has a stronger transcription activity than the second eukaryotic promoter.

발명의 상세한 설명Detailed description of the invention

결손(defective), 비자기(non-self) 전파성 바이러스 입자(propagating viral particles)로 자기 조립(self assembly)이 가능하여 바이러스성 폴리펩티드를 인코딩하는 유전자는 DNA 바이러스의 게노믹 DNA(genomic DNA) 또는 RNA 바이러스의 게노믹 cDNA, 또는 유전자를 포함하는 유효한 서브게노믹 클론(subgenomic clones)으로부터 얻어질 수 있다. 이러한 유전자는 바이러스성 캡시드(capsid) 단백질(즉, 바이러스성 단백질 껍질(shell)을 포함하는 단백질) 및 레트로바이러스와 같이 외피가 있는 바이러스의 경우 바이러스성 외피 당단백질을 인코딩하는 것을 포함한다. 바이러스-유사 입자는 병원균 바이러스(pathogenic viruses)에 대항한 예방접종(vaccination)을 위해서나 감염된 개체에서 면역 반응을 강화시키는 것과 같은 치료적인 목적을 위해서 또는 세포독성이 있는 약물과 같은 치료 약물을 타겟하는 곳으로 전달하기 위해, 특정 셀 타입에의 면역원(immunogen)으로서 분리되고 사용될 수 있다.Genes that encode viral polypeptides can be self-assembled into defective, non-self propagating viral particles, so that the gene that encodes the viral polypeptide is the genomic DNA or RNA of the DNA virus. Genomic cDNA of the virus, or valid subgenomic clones containing genes can be obtained. Such genes include encoding viral envelope glycoproteins for viral capsid proteins (ie, proteins comprising viral protein shells) and for enveloped viruses such as retroviruses. Virus-like particles can be used for vaccination against pathogenic viruses, for therapeutic purposes such as enhancing an immune response in an infected individual, or for targeting therapeutic drugs such as cytotoxic drugs. To be delivered to the human body, it can be isolated and used as an immunogen to a particular cell type.

본 발명은 DNA 백신 후보군으로서, 클래스 I 바이러스성 융합 단백질 유전자를 클로닝하기 위한 발현 벡터를 제공한다. 상기 발현 벡터는,The present invention provides an expression vector for cloning a class I viral fusion protein gene as a DNA vaccine candidate. The expression vector is,

코로나바이러스의 막 단백질 유전자(M 단백질 유전자), 코로나바이러스의 외피 단백질 유전자(E 단백질 유전자) 및 내부 리보솜 도입 사이트(IRES) 서열을 포함하는 제1 전사 유닛으로서, 상기 IRES는 상기 막 단백질 유전자와 상기 외피 단백질 유전자의 연접부위로 삽입되는 제1 전사 유닛;A first transcription unit comprising a membrane protein gene (M protein gene) of the coronavirus, an envelope protein gene (E protein gene) of the coronavirus and an internal ribosomal introduction site (IRES) sequence, wherein the IRES is the membrane protein gene and the A first transcription unit inserted into a junction of the envelope protein gene;

상기 막 단백질 유전자에 결합되는 제1 진핵 프로모터로서, 상기 M 단백질 유전자의 상부에 위치하고, 상기 제1 전사 유닛의 발현을 유도하는 제1 진핵 프로모터;A first eukaryotic promoter coupled to said membrane protein gene, said first eukaryotic promoter positioned above said M protein gene and inducing expression of said first transcriptional unit;

코로나바이러스의 스파이크CT 유전자, 및 클래스 I의 바이러스성 융합 단백질 유전자의 인-프레임 삽입 또는 클로닝을 위한 다수의 클로닝 싸이트(MCS)를 포함하는 제2 전사 유닛으로, 상기 MCS는 스파이크CT 유전자의 시작부분에 위치하고, 제한 효소 절단 싸이트를 가지고 있는 제2 전사 유닛; 및A second transcription unit comprising a SpikeCT gene of Coronavirus and a plurality of cloning sites (MCS) for in-frame insertion or cloning of a Class I viral fusion protein gene, wherein the MCS is the beginning of the SpikeCT gene. A second transcription unit located at and having a restriction enzyme cleavage site; And

상기 스파이크CT 유전자에 작동하도록 결합된 제2 진핵 프로모터로서, 상기 스파이크CT 유전자의 상부에 위치하고 제2 전사 유닛의 발현을 유도하는 제2 진핵 프로모터를 포함하되,A second eukaryotic promoter coupled to act on said SpikeCT gene, said second eukaryotic promoter located on top of said SpikeCT gene and inducing expression of a second transcription unit,

상기 제1 진핵 프로모터는 상기 제2 진핵 프로모터보다 강력한 전사 활성을 가진다.The first eukaryotic promoter has a stronger transcriptional activity than the second eukaryotic promoter.

본 발명에 따르면, 발현 벡터는 코로나바이러스의 막 단백질 유전자(M 단백질 유전자), 코로나바이러스의 외피 단백질 유전자(E 단백질 유전자) 및 내부 리보솜 도입 사이트(IRES) 서열을 포함하는 제1 전사 유닛을 포함하되, 상기 IRES는 상기 막 단백질 유전자와 상기 외피 단백질 유전자의 연접부위로 삽입된다.According to the invention, the expression vector comprises a first transcription unit comprising a membrane protein gene (M protein gene) of the coronavirus, an envelope protein gene (E protein gene) of the coronavirus and an internal ribosomal introduction site (IRES) sequence. The IRES is inserted into the junction of the membrane protein gene and the envelope protein gene.

본 발명에 따르면, 본 발명의 외피 단백질 유전자는 코로나바이러스의 외피 단백질(E 단백질)을 인코딩한다. E 단백질은 작고, 외피-의존적인 단백질이다. E 단백질은 소량이나 필수적인 바이러스 구성성분이다. 세포 내에 이것이 축적되고, 중간 구획(intermediate compartment, IC)의 막의 응집(coalescence)을 유도하여, 전형적인 구조를 형성하게 된다. 단백질의 분절은 알려지지 않은 막 구조에서 세포외적으로 나타나기도 한다. 바람직하게, 본 발명의 코로나바이러스는 돼지, 인간 또는 조류 코로나바이러스이다. 보다 바람직하게는 코로나 바이러스는 돼지 TGEV 코로나바이러스, 인간 229E 코로나 바이러스 또는 인간 SARS 바이러스이다. 보다 바람직하게, 본 발명의 E 단백질은 서열 번호 1에서 표시된 바와 같은 서열을 가진다.According to the present invention, the envelope protein gene of the present invention encodes the envelope protein (E protein) of coronavirus. E proteins are small, envelope-dependent proteins. E proteins are small but essential viral components. It accumulates in the cell and induces coalescence of the membrane of the intermediate compartment (IC), forming a typical structure. Segments of proteins may appear extracellularly in unknown membrane structures. Preferably, the coronaviruses of the invention are swine, human or avian coronaviruses. More preferably the corona virus is swine TGEV coronavirus, human 229E corona virus or human SARS virus. More preferably, the E protein of the present invention has a sequence as shown in SEQ ID NO: 1.

사스(SARS SARSSARS ) E 유전자의 코드화 서열(서열 번호: 1)) The coding sequence of the E gene (SEQ ID NO: 1)

ATGGCATACT CTTTTGTGTC TGAGGAAACT GGCACTCTGA TCGTGAACTC TGTACTGCTGATGGCATACT CTTTTGTGTC TGAGGAAACT GGCACTCTGA TCGTGAACTC TGTACTGCTG

TTTCTCGCTT TTGTGGTATT CCTGCTGGTC ACTCTCGCTA TCCTCACTGC TCTTCGTCTGTTTCTCGCTT TTGTGGTATT CCTGCTGGTC ACTCTCGCTA TCCTCACTGC TCTTCGTCTG

TGTGCCTACT GTTGTAATAT CGTGAACGTG TCTCTGGTTA AGCCTACTGT GTATGTGTAT TGTGCCTACT GTTGTAATAT CGTGAACGTG TCTCTGGTTA AGCCTACTGT GTATGTGTAT

TCTCGTGTGA AAAATCTCAA TTCTTCTGAA GGAGTTCCCG ATCTGCTGGT CTAGTCTCGTGTGA AAAATCTCAA TTCTTCTGAA GGAGTTCCCG ATCTGCTGGT CTAG

본 발명에 따르면, 본 발명의 막 단백질 유전자는 코로나바이러스의 막 단백질(M 단백질)을 인코딩한다. M 단백질은 가장 풍부한 구성성분이다. 이는 하나의 짧은 아미노-말단의 엑토도메인(ectodomain), 3개의 연속적인 트랜스막 도메인 (transmembrane domains) 및 비리온의 내부 쪽(또는 세포질(cytoplasm) 내부에)에 하나의 긴 카르복실기-말단의 도메인으로 구성된 타입 Ⅲ 당단백질이다. 바람직하게는, 본 발명의 코로나바이러스는 돼지, 인간 또는 조류 코로나바이러스이다. 보다 바람직하게는 코로나바이러스는 돼지 TGEV 코로나바이러스, 인간 229E 코로나 바이러스 또는 인간 SARS 바이러스이다. 보다 바람직하게, 본 발명의 M 단백질은 서열 번호 2에서 표시된 바와 같은 서열을 가진다.According to the present invention, the membrane protein gene of the present invention encodes the membrane protein (M protein) of coronavirus. M protein is the most abundant component. It is one short amino-terminal ectodomain, three consecutive transmembrane domains, and one long carboxyl-terminal domain inside the virion (or inside the cytoplasm). It is composed of type III glycoproteins. Preferably, the coronaviruses of the invention are swine, human or avian coronaviruses. More preferably the coronavirus is swine TGEV coronavirus, human 229E corona virus or human SARS virus. More preferably, the M protein of the present invention has a sequence as shown in SEQ ID NO: 2.

사스 M 유전자의 코드화 서열 (서열 번호: 2) Coding Sequence of the SARS M Gene (SEQ ID NO: 2)

ATGGCAGATA ACGGCACTAT TACTGTGGAG GAACTGAAAC AACTGCTGGA ACAATGGAAC ATGGCAGATA ACGGCACTAT TACTGTGGAG GAACTGAAAC AACTGCTGGA ACAATGGAAC

CTCGTAATCG GCTTTCTCTT TCTGGCTTGG ATTATGTTGT TACAGTTTGC GTATTCTAATCTCGTAATCG GCTTTCTCTT TCTGGCTTGG ATTATGTTGT TACAGTTTGC GTATTCTAAT

CGTAACCGTT TCCTCTACAT TATTAAGCTC GTTTTCCTGT GGTTGTTGTG GCCTGTAACTCGTAACCGTT TCCTCTACAT TATTAAGCTC GTTTTCCTGT GGTTGTTGTG GCCTGTAACT

CTTGCTTGCT TTGTGCTTGC TGCTGTCTAT CGTATCAACT GGGTTACTGG TGGTATTGCTCTTGCTTGCT TTGTGCTTGC TGCTGTCTAT CGTATCAACT GGGTTACTGG TGGTATTGCT

ATCGCTATGG CTTGTATTGT AGGCTTGATG TGGCTGTCTT ATTTCGTTGC TTCTTTCCGTATCGCTATGG CTTGTATTGT AGGCTTGATG TGGCTGTCTT ATTTCGTTGC TTCTTTCCGT

CTGTTTGCTC GTACTCGCTC TATGTGGTCC TTTAATCCTG AGACTAATAT CCTGCTGAATCTGTTTGCTC GTACTCGCTC TATGTGGTCC TTTAATCCTG AGACTAATAT CCTGCTGAAT

GTTCCGCTCC GTGGTACTAT CGTTACTAGA CCGCTGATGG AATCTGAACT GGTTATTGGTGTTCCGCTCC GTGGTACTAT CGTTACTAGA CCGCTGATGG AATCTGAACT GGTTATTGGT

GCCGTCATTA TCCGTGGTCA TTTGCGTATG GCTGGTCACT CTCTGGGTCG TTGCGATATTGCCGTCATTA TCCGTGGTCA TTTGCGTATG GCTGGTCACT CTCTGGGTCG TTGCGATATT

AAGGATCTGC CAAAGGAAAT CACTGTAGCC ACTTCTCGTA CTCTGTCTTA CTATAAACTCAAGGATCTGC CAAAGGAAAT CACTGTAGCC ACTTCTCGTA CTCTGTCTTA CTATAAACTC

GGTGCATCGC AACGTGTGGG AACTGATTCG GGCTTCGCTG CGTATAATCG TTATCGTATTGGTGCATCGC AACGTGTGGG AACTGATTCG GGCTTCGCTG CGTATAATCG TTATCGTATT

GGCAACTATA AACTGAACAC CGACCACGCA GGCTCTAATG ACAACATCGC TCTCCTCGTT GGCAACTATA AACTGAACAC CGACCACGCA GGCTCTAATG ACAACATCGC TCTCCTCGTT

CAGTGACAGTGA

본 발명에 따르면, 코로나바이러스 외피의 조립(assembly)을 위해, 오직 M 단백질과 E 단백질만이 필요하다( Cornelis A. M. de Haan et al ., Journal of Virology, June 2000, p. 4967-4978). 이러한 단백질을 코드화하는 유전자의 세포내 발현은 진정한 비리온과 크기와 모양 면에서 유사한 바이러스 유사 입자(viruslike particles, VLPs)의 형성과 방출을 유발한다.According to the invention, only M and E proteins are required for the assembly of the coronavirus envelope ( Cornelis AM de Haan et al ., Journal of Virology, June 2000, p. 4967-4978) . Intracellular expression of genes encoding these proteins results in the formation and release of viruslike particles (VLPs) that are similar in size and shape to true virions.

본 발명에 따르면, 제1 전사 유닛은 M 유전자와 E 유전자의 연접부위(junction)로 삽입되는 내부 리보솜 도입 사이트(IRES, internal ribosome entry sites) 서열을 포함한다. IRES는 디- 또는 폴리시트로닉 mRNA로부터 두개 이상의 유전암호해독(translation)이 가능하도록 한다. IRES 유닛은 이후 원래의 코드화 서열의 말단에서 벡터로 삽입되게 될 하나 이상의 추가적인 코드화 서열(coding sequences)의 5´말단에 융합되고, 따라서 코드화 서열은 IRES에 의해 다른 것과 분리된다. 본 발명에 따르면 어떤 IRES 유도체도 본 발명의 플라스미드 구성(plasmind construct)에 또한 사용될 수 있다. IRES 서열은 리보솜 등(ribosomal machinery)이 단일 전사(single transcript) 내에서 두번째 사이트로부터 유전암호해독을 개시하는 것을 가능하게 한다.According to the invention, the first transcription unit comprises an internal ribosome entry site (IRES) sequence inserted into the junction of the M gene and the E gene. IRES allows for more than one genetic translation from di- or polycittronic mRNA. The IRES unit is then fused to the 5 ′ end of one or more additional coding sequences that will be inserted into the vector at the end of the original coding sequence, so that the coding sequence is separated from the other by the IRES. According to the invention any IRES derivative may also be used in the plasmind construct of the invention. IRES sequences enable ribosomal machinery to initiate genetic decryption from the second site within a single transcript.

본 발명에 따르면, 본 발명의 발현 벡터는 막 단백질 유전자에 작동하도록 결합되어 M 단백질 유전자의 상부에 위치하고, 제1 전사 유닛의 발현을 유도하는 제1 진핵 프로모터를 포함한다. 바람직하게, 제1 진핵 프로모터는 CMV, SV40, RSV, HIV-1 LTR, 하이브리드 베타-액틴/CMV 프로모터 인핸서(hybrid Beta-actin/CMV promoter enhancer), 근육 특이 데스민(muscle-specific desmin), 크레아틴 키나제(creatine kinase), 베타-액틴 프로모터(beta-Actin promoter), EF1알파(EF1alpha)와 같은 다른 유비퀴터스 발현 프로모터(ubiquitous expression promoter)와 같은 바이러스에서 유도된 프로모터(viral derived promoter)이다.According to the present invention, the expression vector of the present invention comprises a first eukaryotic promoter that is linked to operate on a membrane protein gene and is located on top of the M protein gene and induces expression of a first transcription unit. Preferably, the first eukaryotic promoter is CMV, SV40, RSV, HIV-1 LTR, hybrid beta-actin / CMV promoter enhancer, muscle-specific desmin, creatine It is a viral derived promoter, such as creatine kinase, beta-Actin promoter, and other ubiquitous expression promoters such as EF1alpha.

본 발명에 따르면, 제2 전사 유닛은 제한 효소 절단 사이트(restriction enzymes cutting sites)를 가지고 있는 다수의 클로닝 사이트(multiple cloning site(MCS))를 포함하며, 상기 MCS는 스파이크CT 유전자의 시작부분에 위치한다. 상기 스파이크CT 유전자는 M 단백질 인터랙션 도메인(M protein interaction domain)과 상호 작용하는데, 이는 코로나바이러스의 스파이크 단백질의 트랜스막 세그멘트(segment)에 나란한 방향족 잔류기가 풍부한 영역(aromatic residue-rich region)의 상부에 위치하는 C-말단 헵타드 리핏(C-terminal heptad repeat)을 인코딩한다.다수의 클로닝 사이트는 몇 개의 제한 효소 절단 사이트를 가지고 있다. 제한 효소 절단 사이트는 이에 제한되는 것은 아니나, SmaI, BsaB I, EcoR V 및 BspE I를 포함한다. MCS는 스파이크CT 유전자의 시작부분에 위치하고, 클래스 I 바이러스성 융합 단백질 유전자의 인-프레임 삽입 또는 클로닝에 사용될 수 있다. 클래스 I 바이러스성 융합 단백질 유전자는 이에 제한되는 것은 아니나 HIV의 gp160, 인플루엔자 바이러스의 HA 및 사스 바이러스의 스파이크를 포함한다. 클래스 I 바이러스성 단백질 유전자는 코로나바이러스, HIV 및 인플루엔자 바이러스를 포함하는 클래스 I 바이러스성 융합 메커니즘을 채택한 바이러스로부터 유도된다. 융합 단백질 유전자는 본 발명의 클로닝/발현 벡터 안으로 삽입되어 클로닝되고, DNA 백신의 후보군으로 사용된다. 바람직하게, 스파이크CT 유전자는 서열 번호 3에서 표시된 서열을 가진다.According to the invention, the second transcription unit comprises a multiple cloning site (MCS) having restriction enzymes cutting sites, wherein the MCS is located at the beginning of the spike CT gene. do. The SpikeCT gene interacts with the M protein interaction domain, which is located on top of an aromatic residue-rich region parallel to the transmembrane segment of the spike protein of coronavirus. It encodes a C-terminal heptad repeat located. Many cloning sites have several restriction enzyme cleavage sites. Restriction enzyme cleavage sites include, but are not limited to, SmaI, BsaB I, EcoR V and BspE I. MCS is located at the beginning of the SpikeCT gene and can be used for in-frame insertion or cloning of class I viral fusion protein genes. Class I viral fusion protein genes include, but are not limited to, gp160 of HIV, HA of influenza viruses, and spikes of SARS virus. Class I viral protein genes are derived from viruses employing class I viral fusion mechanisms including coronavirus, HIV and influenza viruses. Fusion protein genes are inserted into the cloning / expression vectors of the invention to be cloned and used as candidates for DNA vaccines. Preferably, the SpikeCT gene has the sequence shown in SEQ ID NO: 3.

스파이크CT 유전자의 코드화 서열 (서열 번호: 3)Coding Sequence of the SpikeCT Gene (SEQ ID NO: 3)

GATATCTCCGGA ATCAATGCGA GCGTAGTGAA CATCCAGAAAGATATCTCCGGA ATCAATGCGA GCGTAGTGAA CATCCAGAAA

GAGATTGACC GTTTGAATGA AGTTGCTAAA AATCTGAATG AACCTCTGAT TGACCTCCAAGAGATTGACC GTTTGAATGA AGTTGCTAAA AATCTGAATG AACCTCTGAT TGACCTCCAA

GAACTCGGCA AATATGAGCA ATACATTAAA TGGCCTTGGT ATGTCTGGTT GGGTTTCATCGAACTCGGCA AATATGAGCA ATACATTAAA TGGCCTTGGT ATGTCTGGTT GGGTTTCATC

GCAGGTCTCA TCGCTATCGT TATGGTGACT ATTCTGCTGT GTTGTATGAC TTCTTGTTGCGCAGGTCTCA TCGCTATCGT TATGGTGACT ATTCTGCTGT GTTGTATGAC TTCTTGTTGC

TCTTGTCTGA AAGGTGCGTG TTCTTGTGGT TCTTGTTGTA AGTTTGATGA GGATGATTCTTCTTGTCTGA AAGGTGCGTG TTCTTGTGGT TCTTGTTGTA AGTTTGATGA GGATGATTCT

GAGCCAGTTC TGAAGGGTGT GAAGCTGCAT TATACCTAGT TCGAAGAGCCAGTTC TGAAGGGTGT GAAGCTGCAT TATACCTAGT TCGAA

본 발명에 따르면, 본 발명의 발현 벡터는 바이러스 유사 입자를 생산하고 클래스 I 바이러스의 기능성 융합 유전자를 바이러스 유사 입자 표면에서 발현시킬 수 있다. 따라서, 여기에 제한되는 것은 아니나 스파이크CT의 시작 부분에 위치한 SmaI, BsaB I, EcoR V 및 BspE I을 포함하는 몇몇 제한 효소 절단 사이트(다수의 클로닝 사이트, MCS)가 있고, 이들 사이트는 본 발명의 클로닝/발현 벡터로 클래스 I 바이러스성 융합 단백질 유전자를 삽입하거나 클로닝 하는데 사용될 수 있고, 이후 DNA 백신 후보군으로 사용된다. 클래스 I 바이러스성 융합 메커니즘(Class I viral fusion mechanism)을 채택한 바이러스는 여기에 제한되는 것은 아니나 코로나바이러스, HIV, 인플루엔자 바이러스 등을 포함한다.According to the present invention, the expression vectors of the present invention can produce virus like particles and express functional fusion genes of class I viruses on the surface of virus like particles. Thus, there are several restriction enzyme cleavage sites (multiple cloning sites, MCS), including but not limited to SmaI, BsaB I, EcoR V and BspE I, which are located at the beginning of SpikeCT, and these sites are of the invention. The cloning / expression vector can be used to insert or clone a class I viral fusion protein gene and then be used as a DNA vaccine candidate. Viruses employing Class I viral fusion mechanisms include, but are not limited to, coronaviruses, HIV, influenza viruses, and the like.

본 발명에 따르면 제2 프로모터는 스파이크CT 유전자의 상부에 위치하고, 제2 전사 유닛의 발현을 유도한다. 바람직하게, 제2 진핵 프로모터는 CMV, SV40, RSV, HIV-1 LTR, 하이브리드 베타-액틴/CMV 프로모터 인핸서, 근육 특이 데스민, 크레아틴 키나제), 베타-액틴 프로모터, EF1알파와 같은 다른 유비퀴터스 발현 프로모터와 같은 바이러스에서 유도된 프로모터이다. 가장 바람직하게, 제2 진핵 프로모터는 pCMV, SV40, 베타-액틴 및 EF1알파 프로모터이다.According to the invention the second promoter is located on top of the SpikeCT gene and induces the expression of the second transcription unit. Preferably, the second eukaryotic promoter is CMV, SV40, RSV, HIV-1 LTR, hybrid beta-actin / CMV promoter enhancer, muscle specific desmin, creatine kinase), beta-actin promoter, other ubiquitous such as EF1alpha. Promoters derived from viruses such as expression promoters. Most preferably, the second eukaryotic promoters are the pCMV, SV40, beta-actin and EF1 alpha promoters.

본 발명에 따르면 본 발명의 전사 유닛은 폴리A 시그널을 포함한다. 당업자는 어떤 전사도 폴리A 시그널을 가지고 있다는 것을 인지할 수 있다. 바람직하게, 본 발명의 전사 유닛은 BGH 폴리A 시그널을 포함한다.According to the invention the transfer unit of the invention comprises a polyA signal. One skilled in the art can recognize that any transcription has a polyA signal. Preferably, the transcription unit of the invention comprises a BGH polyA signal.

본 발명에 따르면, 발현 벡터는 숙주 세포(host cell)에서 전파 플라스미드(propagation plasmid)를 위한 복제 기점(replication origin)을 더 포함한다. 복제 기점의 결정은 숙주 세포의 유형에 따라 결정된다.According to the invention, the expression vector further comprises a replication origin for propagation plasmids in the host cell. The origin of replication is determined by the type of host cell.

본 발명에 따르면, 본 발명의 발현 벡터는 선택 표지(selection marker)로서 항생제-내성이 있는 유전자를 더 포함한다.According to the present invention, the expression vector of the present invention further comprises an antibiotic-resistant gene as a selection marker.

본 발명에 따르면 본 발명의 발현 벡터는 자발적으로 바이러스-유사 입자를 형성할 수 있다. 바이러스-유사 입자는 바이러스 감염에 대항하여 백신 후보군으로 사용될 수 있다. 바이러스-유사 입자는 바이러스의 유전적 물질이 부족하다. 따라서 이러한 입자는 감염성(infectious ability)를 가지고 있지는 않다. 본 발명의 발현 벡터는 동물에게 투여될 수 있고 숙주 세포로 핵산전달감염시켜(transfected) 바이러스-유사 물질을 생산할 수 있다.According to the present invention the expression vector of the present invention can spontaneously form virus-like particles. Virus-like particles can be used as vaccine candidates against viral infections. Virus-like particles lack the genetic material of the virus. Thus, these particles do not have infectious ability. The expression vector of the invention can be administered to an animal and can be transfected with a host cell to produce virus-like material.

대부분의 바이러스는 소수의 단백질로 구성되는데, 이들 간에는 구조적 제한만이 작용한다. 사실 이러한 소수의 단백질을 사용하여, 바이러스는 높은 반복 표면(repetitive surface), 준결정 구조(quasi-crystalline)를 생성하도록 강요된다. 이렇게 높은 반복 항원은 효과적으로 B 세포 수용체와 교차결합되어, B 세포 수용체와 효과적으로 교차결합되고, B 세포 내에서 강한 활성 시그널을 일으킨다. 반대로, 자기-항원은 보통 고도로 조직되지 않고, 특히 B 세포에 접근가능한 것도 아니다. 따라서 B 세포는 항원 조직을 감염성 있는 비자기를 위한 표지로서 사용한다. 바이러스 유사 입자(VLPs)는 바이러스의 표면과 같이 반복적이고 조직화된 표면을 나타내기 때문에, 바이러스 유사 입자에 의존한 백신은 이러한 기초적인 현상을 이용한다. 결과적으로, 바이러스와 마찬가지로 VLP는 항원보강제(adjuvants)가 존재하지 않아도 강한 B 세포 반응(B cell responses) 촉발시킬 수 있다. 이러한 원리에 기초하여, 세포 내에서 본 발명의 발현 벡터의 발현을 통해 생성된 바이러스-유사 입자는 바이러스 질병에 대한 백신 후보군으로서 사용될 수 있다.Most viruses consist of a few proteins, with only structural limitations between them. In fact using these few proteins, the virus is forced to produce high repetitive surfaces, quasi-crystalline. This high repeat antigen effectively crosslinks the B cell receptor, effectively crosslinks the B cell receptor, and produces a strong activity signal in the B cell. In contrast, self-antigens are usually not highly organized and are not particularly accessible to B cells. Thus, B cells use antigenic tissue as a marker for infectious nonmagnetic. Since virus like particles (VLPs) represent a repetitive and organized surface like the surface of a virus, vaccines that rely on virus like particles take advantage of this fundamental phenomenon. As a result, VLPs, like viruses, can trigger strong B cell responses even in the absence of adjuvants. Based on this principle, virus-like particles produced through the expression of the expression vectors of the present invention in cells can be used as vaccine candidates for viral diseases.

도 1은 본 발명의 발현 벡터의 바람직한 실시예의 플라스미드 지도를 나타낸다.1 shows a plasmid map of a preferred embodiment of the expression vector of the invention.

PCRPCR 에 의해 합성된 E 유전자E gene synthesized by

중합효소 연쇄 반응(polymerase chain reaction , PCR)을 사스 바이러스의 E 유전자를 합성하는데 사용하였다. 사스 E 유전자의 PCR 주형(template)(0.1 pmole)은 하기에 기재된 프라이머(primer)의 혼합체이고 PCR 반응은 KOD 태그 폴리머라제(Taq polymerase (Novagene.com))를 사용하여 인니스(Innis et al )에 의해 설명된 기본 PCR 방법을 사용해서 수행하였다(PCR protocols. A guide to methods and applications, 1990, Academic Press).Polymerase chain reaction (PCR) was used to synthesize E gene of SARS virus. The PCR template of the SARS E gene (0.1 pmole) is a mixture of primers described below and the PCR reaction is carried out using an Innis et al . Using KOD tag polymerase (Taq polymerase (Novagene.com)). It was performed using the basic PCR method described by (PCR protocols. A guide to methods and applications, 1990, Academic Press).

PCR 프라이머는 하기에 기재된 바와 같다.:PCR primers are as described below:

E1LE1L

5'-ACC ATG GCA TAC TCT TTT GTG TCT GAG GAA ACT G-3'* (서열 번호: 4)5'-ACC ATG GCA TAC TCT TTT GTG TCT GAG GAA ACT G-3 '* (SEQ ID NO: 4)

E2LE2L

5'-ACA GCA GTA CAG AGT TCA CGA TCA GAG TGC CAG TTT CCT CAG ACA CAA AAG-3' (서열 번호: 5)5'-ACA GCA GTA CAG AGT TCA CGA TCA GAG TGC CAG TTT CCT CAG ACA CAA AAG-3 '(SEQ ID NO: 5)

E3LE3L

5'-TGA CCA GCA GGA ATA CCA CAA AAG CGA GAA ACA GCA GTA CAG AGT TCA CGA-3' (서열 번호: 6)5'-TGA CCA GCA GGA ATA CCA CAA AAG CGA GAA ACA GCA GTA CAG AGT TCA CGA-3 '(SEQ ID NO: 6)

E4LE4L

5'-GCA CAC AGA CGA AGA GCA GTG AGG ATA GCG AGA GTG ACC AGC AGG AAT ACC ACA-3' (서열 번호: 7)5'-GCA CAC AGA CGA AGA GCA GTG AGG ATA GCG AGA GTG ACC AGC AGG AAT ACC ACA-3 '(SEQ ID NO: 7)

E5LE5L

5'-ACC AGA GAC ACG TTC ACG ATA TTA CAA CAG TAG GCA CAC AGA CGA AGA GCA G-3' (서열 번호: 8)5'-ACC AGA GAC ACG TTC ACG ATA TTA CAA CAG TAG GCA CAC AGA CGA AGA GCA G-3 '(SEQ ID NO: 8)

E6LE6L

5'-GAT TTT TCA CAC GAG AAT ACA CAT ACA CAG TAG GCT TAA CCA GAG ACA CGT TCA CGA T-3'* (서열 번호: 9)5'-GAT TTT TCA CAC GAG AAT ACA CAT ACA CAG TAG GCT TAA CCA GAG ACA CGT TCA CGA T-3 '* (SEQ ID NO: 9)

E7LE7L

5'-TCT AGA CCA GCA GAT CGG GAA CTC CTT CAG AAG AAT TGA GAT TTT TCA CAC GAG AAT ACA CA-3' (서열 번호: 10)5'-TCT AGA CCA GCA GAT CGG GAA CTC CTT CAG AAG AAT TGA GAT TTT TCA CAC GAG AAT ACA CA-3 '(SEQ ID NO: 10)

E8LE8L

5'-TCT AGA CCA GCA GAT CGG GA-3' (서열 번호: 11)5'-TCT AGA CCA GCA GAT CGG GA-3 '(SEQ ID NO: 11)

DNA 주형은 95℃에서 3분간 변성되었다. PCR조건은 아래에 기재된 바와 같다:DNA template was denatured for 3 minutes at 95 ℃. PCR conditions are as described below:

3 단계씩 10 사이클을 수행한 제1 First cycle in 10 steps in 3 steps PCRPCR 반응 reaction

1. 어닐링(annealing): 58℃에서 20 초간1. Annealing: 20 seconds at 58 ° C

2. 신장(extension): 72℃에서 40초간2. Extension: 72 seconds at 72 ℃

3. 변성(denaturation): 95℃에서 1 분간3. Denaturation: 1 minute at 95 ° C

3 단계씩의 20 사이클을 수행한 제2 2nd 20 cycles of 3 steps PCRPCR 반응 reaction

1. 변성(denaturation): 95℃에서 1 분간Denaturation: 1 minute at 95 ° C

2. 어닐링(annealing): 62℃에서 20 초간2. Annealing: 20 seconds at 62 ° C

3. 신장(extension): 72℃에서 40초간3. Extension: 40 seconds at 72 ℃

E 유전자 산물의 두 가닥(double-stranded) 완전 길이(full-length)의 결과 물을 1.2 % 아가로스 겔에서 분석하였고, QIA퀵 PCR 정제 킷(Qiagen Inc.)에서 정제하였다. 이후 pGEM(T) 벡터(Promega Co.)와 결찰하여 pGEM(T)/EA + 클론(clones)을 얻었다. E 유전자의 서열은 서열 번호: 1에서 표시된다.The resulting double-stranded full-length product of the E gene product was analyzed on a 1.2% agarose gel and purified on a QIAQuick PCR Purification Kit (Qiagen Inc.). After ligating with a pGEM (T) vector (Promega Co.) to obtain a pGEM (T) / E A + clone (clones). The sequence of the E gene is shown in SEQ ID NO: 1.

스플라이싱Splicing -오버(-over( splicingsplicing -- overover )에 의해 합성된 M 유전자M gene synthesized by

사스 바이러스의 M 유전자는 사스 M 유전자의 PCR 주형(0.1 pmole)이 하기에 기재된 프라이머(primer)의 혼합체라는 점을 제외하고는 상기에서 언급한 PCR 방법과 유사한 방법으로 합성되었고, PCR 반응은 KOD 태그 폴리머라제(Taq polymerase (Novagene.com))를 사용하였다.The M gene of SARS virus was synthesized by a method similar to the above-mentioned PCR method except that the PCR template of the SARS M gene (0.1 pmole) was a mixture of primers described below. Polymerase (Taq polymerase (Novagene.com)) was used.

PCR 프라이머는 하기에 기재된 바와 같다:PCR primers are as described below:

M1-1UM1-1U

5'-TGA TCA TGG CAG ATA ACG GCA C-3' (서열 번호: 12)5'-TGA TCA TGG CAG ATA ACG GCA C-3 '(SEQ ID NO: 12)

M1UM1U

5'-TGA TCA TGG CAG ATA ACG GCA CTA TTA CTG TGG AGG A-3' (서열 번호: 13)5'-TGA TCA TGG CAG ATA ACG GCA CTA TTA CTG TGG AGG A-3 '(SEQ ID NO: 13)

M1LM1L

5'-GTT CCA TTG TTC CAG CAG TTG TTT CAG TTC CTC CAC AGT AAT AGT GCC G-3' (서열 번호: 14)5'-GTT CCA TTG TTC CAG CAG TTG TTT CAG TTC CTC CAC AGT AAT AGT GCC G-3 '(SEQ ID NO: 14)

M2LM2L

5'-AAG CCA GAA AGA GAA AGC CGA TTA CGA GGT TCC ATT GTT CCA GCA GTT G-3' (서열 번호: 15)5'-AAG CCA GAA AGA GAA AGC CGA TTA CGA GGT TCC ATT GTT CCA GCA GTT G-3 '(SEQ ID NO: 15)

M3LM3L

5'-AGA ATA CGC AAA CTG TAA CAA CAT AAT CCA AGC CAG AAA GAG AAA GCC GA-3' (서열 번호: 16)5'-AGA ATA CGC AAA CTG TAA CAA CAT AAT CCA AGC CAG AAA GAG AAA GCC GA-3 '(SEQ ID NO: 16)

M4LM4L

5'-CGA GCT TAA TAA TGT AGA GGA AAC GGT TAC GAT TAG AAT ACG CAA ACT GTA ACA ACA-3' (서열 번호: 17)5'-CGA GCT TAA TAA TGT AGA GGA AAC GGT TAC GAT TAG AAT ACG CAA ACT GTA ACA ACA-3 '(SEQ ID NO: 17)

M5LM5L

5'-CAA GAG TTA CAG GCC ACA ACA ACC ACA GGA AAA CGA GCT TAA TAA TGT AGA GGA AA-3' (서열 번호: 18)5'-CAA GAG TTA CAG GCC ACA ACA ACC ACA GGA AAA CGA GCT TAA TAA TGT AGA GGA AA-3 '(SEQ ID NO: 18)

M6LM6L

5'-TTG ATA CGA TAG ACA GCA GCA AGC ACA AAG CAA GCA AGA GTT ACA GGC CAC AAC A-3' (서열 번호: 19)5'-TTG ATA CGA TAG ACA GCA GCA AGC ACA AAG CAA GCA AGA GTT ACA GGC CAC AAC A-3 '(SEQ ID NO: 19)

M7LM7L

5'-CAA GCC ATA GCG ATA GCA ATA CCA CCA GTA ACC CAG TTG ATA CGA TAG ACA GCA GCA A-3' (서열 번호: 20)5'-CAA GCC ATA GCG ATA GCA ATA CCA CCA GTA ACC CAG TTG ATA CGA TAG ACA GCA GCA A-3 '(SEQ ID NO: 20)

M8LM8L

5'-AAC GAA ATA AGA CAG CCA CAT CAA GCC TAC AAT ACA AGC CAT AGC GAT AGC AAT AC-3' (서열 번호: 21)5'-AAC GAA ATA AGA CAG CCA CAT CAA GCC TAC AAT ACA AGC CAT AGC GAT AGC AAT AC-3 '(SEQ ID NO: 21)

M9LM9L

5'-ACA TAG AGC GAG TAC GAG CAA ACA GAC GGA AAG AAG CAA CGA AAT AAG ACA GCC ACA TC-3' (서열 번호: 22)5'-ACA TAG AGC GAG TAC GAG CAA ACA GAC GGA AAG AAG CAA CGA AAT AAG ACA GCC ACA TC-3 '(SEQ ID NO: 22)

M10UM10U

5'-TCC TGC TGA ATG TTC CGC TC-3' (서열 번호: 23)5'-TCC TGC TGA ATG TTC CGC TC-3 '(SEQ ID NO: 23)

M10LM10L

5'-GAG CGG AAC ATT CAG CAG GAT ATT AGT CTC AGG ATT AAA GGA CCA CAT AGA GCG AGT ACG AGC AA-3' (서열 번호: 24)5'-GAG CGG AAC ATT CAG CAG GAT ATT AGT CTC AGG ATT AAA GGA CCA CAT AGA GCG AGT ACG AGC AA-3 '(SEQ ID NO: 24)

M11LM11L

5'-CAT CAG CGG TCT AGT AAC GAT AGT ACC ACG GAG CGG AAC ATT CAG CAG GA-3' (서열 번호: 25)5'-CAT CAG CGG TCT AGT AAC GAT AGT ACC ACG GAG CGG AAC ATT CAG CAG GA-3 '(SEQ ID NO: 25)

M12LM12L

5'-ACC ACG GAT AAT GAC GGC ACC AAT AAC CAG TTC AGA TTC CAT CAG CGG TCT AGT AAC GAT-3' (서열 번호: 26)5'-ACC ACG GAT AAT GAC GGC ACC AAT AAC CAG TTC AGA TTC CAT CAG CGG TCT AGT AAC GAT-3 '(SEQ ID NO: 26)

M13LM13L

5'-ATA CGC AAA TGA CCA CGG ATA ATG ACG GCA C-3' (서열 번호: 27)5'-ATA CGC AAA TGA CCA CGG ATA ATG ACG GCA C-3 '(SEQ ID NO: 27)

M14LM14L

5'-AAC GAC CCA GAG AGT GAC CAG CCA TAC GCA AAT GAC CAC GGA TAA-3'(서열 번호: 28)5'-AAC GAC CCA GAG AGT GAC CAG CCA TAC GCA AAT GAC CAC GGA TAA-3 '(SEQ ID NO: 28)

M15LM15L

5'-TAC AGT GAT TTC CTT TGG CAG ATC CTT AAT ATC GCA ACG ACC CAG AGA GTG-3' (서열 번호: 29)5'-TAC AGT GAT TTC CTT TGG CAG ATC CTT AAT ATC GCA ACG ACC CAG AGA GTG-3 '(SEQ ID NO: 29)

M16LM16L

5'-CCG AGT TTA TAG TAA GAC AGA GTA CGA GAA GTG GCT ACA GTG ATT TCC TTT GGC AGA-3' (서열 번호: 30)5'-CCG AGT TTA TAG TAA GAC AGA GTA CGA GAA GTG GCT ACA GTG ATT TCC TTT GGC AGA-3 '(SEQ ID NO: 30)

M17LM17L

5'-CGA AGC CCG AAT CAG TTC CCA CAC GTT GCG ATG CAC CGA GTT TAT AGT AAG ACA GAG T-3' (서열 번호: 31)5'-CGA AGC CCG AAT CAG TTC CCA CAC GTT GCG ATG CAC CGA GTT TAT AGT AAG ACA GAG T-3 '(SEQ ID NO: 31)

M18LM18L

5'-CAG TTT ATA GTT GCC AAT ACG ATA ACG ATT ATA CGC AGC GAA GCC CGA ATC AGT TCC C-3' (서열 번호: 32)5'-CAG TTT ATA GTT GCC AAT ACG ATA ACG ATT ATA CGC AGC GAA GCC CGA ATC AGT TCC C-3 '(SEQ ID NO: 32)

M19LM19L

5'-GAG AGC GAT GTT GTC ATT AGA GCC TGC GTG GTC GGT GTT CAG TTT ATA GTT GCC AAT ACG AT-3' (서열 번호: 33)5'-GAG AGC GAT GTT GTC ATT AGA GCC TGC GTG GTC GGT GTT CAG TTT ATA GTT GCC AAT ACG AT-3 '(SEQ ID NO: 33)

M20LM20L

5'-TCA CTG AAC GAG GAG AGC GAT GTT GTC ATT AGA G-3' (서열 번호: 34)5'-TCA CTG AAC GAG GAG AGC GAT GTT GTC ATT AGA G-3 '(SEQ ID NO: 34)

PCR 조건은 본질적으로 상기에서 언급한 바와 같다. M 유전자 산물의 두가닥(double-stranded) 완전 길이(full-length)의 결과물을 1.0 % 아가로스 겔에서 분석하였고, QIA퀵 PCR 정제 또는 겔 추출 킷(Qiagen Inc.)에서 정제하였으며 이후 pGEM(T)벡터(Promega Co.)와 결찰하여 pGEM(T)/MA + 클론(clones)을 얻었다. M 유전자의 서열은 서열 번호: 2에서 표시된다.PCR conditions are essentially as mentioned above. Double-stranded full-length products of the M gene product were analyzed on 1.0% agarose gel, purified on QIAQuick PCR purification or gel extraction kit (Qiagen Inc.) and then pGEM (T L) was ligated with the vector (Promega Co.) to obtain pGEM (T) / M A + clones. The sequence of the M gene is shown in SEQ ID NO: 2.

헵타드(heptad) 영역 2를 인코딩하는 스파이크CT 유전자와 PCR에 의해 합성된 사스바이러스의 스파이크 단백질 유전자의 막 도메인(transmembrane domain).The transmembrane domain of the SpikeCT gene encoding heptad region 2 and the Spike protein gene of SARS virus synthesized by PCR.

PCR 방법과 조건, PCR 산물의 정제 및 클로닝은 상기 언급한 방법과 같다. 스파이크CT 유전자의 DNA 주형(0.1 pmole)은 하기에 기재된 프라이머의 혼합물이다. PCR methods and conditions, purification and cloning of PCR products are the same as those mentioned above. The DNA template (0.1 pmole) of the SpikeCT gene is a mixture of primers described below.

PCR 프라이머는 하기에 기재된 바와 같다.PCR primers are as described below.

스파이크CTup-EcoRVSpike CTup-EcoRV

5’-GAT ATC TCC GGA ATC AAT GCG AGC GT-3' (서열 번호: 35)5'-GAT ATC TCC GGA ATC AAT GCG AGC GT-3 '(SEQ ID NO: 35)

DI-1U/BspE IDI-1U / BspE I

5’-5’-TCC GGA ATC AAT GCG AGC GTA GTG AAC ATC CAG AA-3’(서열 번호: 36)5'-5'-TCC GGA ATC AAT GCG AGC GTA GTG AAC ATC CAG AA-3 ”(SEQ ID NO: 36)

DI-1LDI-1L

5’-GCA ACT TCA TTC AAA CGG TCA ATC TCT TTC TGG ATG TTC ACT ACG CTC-3’ (서열 번호: 37)5'-GCA ACT TCA TTC AAA CGG TCA ATC TCT TTC TGG ATG TTC ACT ACG CTC-3 '(SEQ ID NO: 37)

DI-2LDI-2L

5’-ATC AGA GAT TCA TTC AGA TTT TTA GCA ACT TCA TTC AAA CGG TCA-3’ (서 열 번호: 38)5'-ATC AGA GAT TCA TTC AGA TTT TTA GCA ACT TCA TTC AAA CGG TCA-3 '(SEQ ID NO: 38)

DI-3LDI-3L

5-TCA TAT TTG CCG AGT TCT TGG AGG TCA ATC AGA GAT TCA TTC AGA TTT TTA-3' (서열 번호: 39)5-TCA TAT TTG CCG AGT TCT TGG AGG TCA ATC AGA GAT TCA TTC AGA TTT TTA-3 '(SEQ ID NO: 39)

DI-4L5'-CAA GGC CAT TTA ATG TAT TGC TCA TAT TTG CCG AGT TCT TGG A-3' (서열 번호: 40)DI-4L5'-CAA GGC CAT TTA ATG TAT TGC TCA TAT TTG CCG AGT TCT TGG A-3 '(SEQ ID NO: 40)

DI-5LDI-5L

5'-ACC TGC GAT GAA ACC CAA CCA GAC ATA CCA AGG CCA TTT AAT GTA TTG CT-3' (서열 번호: 41)5'-ACC TGC GAT GAA ACC CAA CCA GAC ATA CCA AGG CCA TTT AAT GTA TTG CT-3 '(SEQ ID NO: 41)

DI-6LDI-6L

5'-CAG AAT AGT CAC CAT AAC GAT AGC GAT GAG ACC TGC GAT GAA ACC CAA CC-3' (서열 번호: 42)5'-CAG AAT AGT CAC CAT AAC GAT AGC GAT GAG ACC TGC GAT GAA ACC CAA CC-3 '(SEQ ID NO: 42)

DI-7LDI-7L

5'-AGA GCA ACA AGA AGT CAT ACA ACA CAG CAG AAT AGT CAC CAT AAC GAT AG-3' (서열 번호: 43)5'-AGA GCA ACA AGA AGT CAT ACA ACA CAG CAG AAT AGT CAC CAT AAC GAT AG-3 '(SEQ ID NO: 43)

DI-8LDI-8L

5'-ACC ACA AGA ACA CGC ACC TTT CAG ACA AGA GCA ACA AGA AGT CAT ACA AC-3' (서열 번호: 44)5'-ACC ACA AGA ACA CGC ACC TTT CAG ACA AGA GCA ACA AGA AGT CAT ACA AC-3 '(SEQ ID NO: 44)

DI-9LDI-9L

5'-GAA TCA TCC TCA TCA AAC TTA CAA CAA GAA CCA CAA GAA CAC GCA CCT TT- 3' (서열 번호: 45)5'-GAA TCA TCC TCA TCA AAC TTA CAA CAA GAA CCA CAA GAA CAC GCA CCT TT- 3 '(SEQ ID NO: 45)

DI-10LDI-10L

5'-GCT TCA CAC CCT TCA GAA CTG GCT CAG AAT CAT CCT CAT CAA ACT TAC A-3' (서열 번호: 46)5'-GCT TCA CAC CCT TCA GAA CTG GCT CAG AAT CAT CCT CAT CAA ACT TAC A-3 '(SEQ ID NO: 46)

DI-11LDI-11L

5'-CCT AGG TAT AAT GCA GCT TCA CAC CCT TCA GAA CT-3' (서열 번호: 47)5'-CCT AGG TAT AAT GCA GCT TCA CAC CCT TCA GAA CT-3 '(SEQ ID NO: 47)

스파이크CTdn-BstB ISpike CTdn-BstB I

5'- TTC GAACT AGG TAT AAT GCA GCT TCA C -3' (서열 번호: 48)5'- TTC GAA CT AGG TAT AAT GCA GCT TCA C -3 '(SEQ ID NO: 48)

PCR 조건은 상기에서 언급한 바와 같다. 두가닥(double-stranded)의 SCT 320 유전자 산물(The resultant double-stranded SCT320 gene products)을 키아젠/PCR 정제 킷(Qiagen Inc.)에서 정제하였고 pGEM-T 벡터(Promega Co.)와 크로닝하여 pGEM(T)/스파이크CT(EcoRV/BstBI)를 얻었다. pGEM(T)/스파이크CT(EcoRV/BstBI) 플라스미드는 사스 코로나바이러스의 스파이크 단백질의 막 부분과 나란한 방향족 잔류기가 풍부한 영역의 상부에 위치하는 C-말단 헵타드 리핏을 인코딩하는 유전자를 포함한다. "SCT320" 유전자의 코드화 서열은 서열 번호 3에서 표시된 바와 같다.PCR conditions are as mentioned above. The resultant double-stranded SCT320 gene products were purified on Qiagen / PCR purification kit (Qiagen Inc.) and then cloned with pGEM-T vector (Promega Co.). pGEM (T) / Spike CT (EcoRV / BstBI) was obtained. pGEM (T) / Spike CT (EcoRV / BstBI) The plasmid contains a gene encoding a C-terminal heptad refit located on top of a region rich in aromatic residues parallel to the membrane portion of the spike protein of SARS coronavirus. The coding sequence of the "SCT320" gene is as shown in SEQ ID NO: 3.

본 발명의 발현 벡터의 구조(Structure of Expression Vector of the Present Invention ConstructionConstruction ))

DNA의 조작(manipulation)은 콜드 스프링 하버 연구소 익스프레스(Cold Spring Harbor Laboratory Express)의 러셀(Sambrook and Russell et al) 저 "「분 자 클로닝 제3판(Molecular cloning third edition)」"에 의해 소개되었다. 제한 효소, T4DNA 리가제, 클레나우 효소(Klenow enzyme)는 뉴 잉글랜드 바이오랩으로부터 사들였고, 제조자의 추천에 따라 수행되었다.Manipulation of DNA was introduced by "Molecular cloning third edition" by Sambrook and Russell et al, Cold Spring Harbor Laboratory Express. Restriction enzymes, T4DNA ligase, Klenow enzyme were purchased from New England Biolab and performed according to the manufacturer's recommendations.

I. I. pCMVpCMV 프로모터-유도된 사스 M 유전자 플라스미드의 구조( Structure of the promoter-derived SARS M gene plasmid constructionconstruction ))

pGEM(T)/M 클론은 T7 및 SP6 프로모터 프라이머와 함께 PCR의 DNA 주형으로 사용되었고, PCR 조건은 어닐링 온도에서 50℃에서 20초간 고정되었다는 점을 제외하면, 상기에서 언급한 조건과 동일하다. M 유전자 PCR 산물은 QIA퀵 PCR 정제 킷(QIAquick PCR purification kit (Qiagen Inc.))으로 정제되었고 Bcl I 과 NotI로 다이제스트되어(digested) 사스 M 유전자를 포함하는 DNA 삽입부를 얻었다. pEGFP-N1 플라스미드(Clontech Co.)를 BglⅡ, Not I 로 다이제스트하였다. Bgl II, Not I로 다이제스트된 결과물인 pEGEP-N1 플라스미드는 Bcl I , Not I로 다이제스트된 사스 M DNA 삽입부와 리게이션시키기 위한 DNA 벡터를 제공하여, pN1/M DNA 플라스미드를 얻었다. pN1/M DNA 플라스미드는 NheI 및 Not I와 다이제스트되어, 사스 M 유전자를 포함하는 DNA 삽입부(insert)를 얻었다. pACT/M DNA 플라스미드는 Bgl II 및 Asp 718와 다이제스트되어 CMV 프로모터와 사스 M 유전자를 포함하는 DNA 삽입부를 얻었다.pCDNA3.1(+) 플라스미드(Invitrogen Co.)는 BglII와 Asp718로 다이제스트되었다. BglII, Asp718 다이제스트된 결과물인 pCDNA3.1(+)DNA 벡터는 BglII, Asp718로 다이제스트된 CMW 프로모터 및 사스 M 유전자 삽입부를 포함하는 DNA와 리게이션되어, pCDNA 3.1+M DNA 플라스미드를 얻었다.The pGEM (T) / M clone was used as a DNA template for PCR with T7 and SP6 promoter primers, and the PCR conditions were the same as mentioned above except that the PCR conditions were fixed at 50 ° C. for 20 seconds at the annealing temperature. The M gene PCR product was purified with a QIAquick PCR purification kit (Qiagen Inc.) and digested with Bcl I and NotI to obtain a DNA insert containing SARS M gene. pEGFP-N1 plasmid (Clontech Co.) was digested with BglII, Not I. The resulting pEGEP-N1 plasmid digested with Bgl II, Not I provided a DNA vector for ligation with SARS M DNA insert digested with Bcl I, Not I to obtain a pN1 / M DNA plasmid. The pN1 / M DNA plasmid was digested with NheI and Not I to obtain a DNA insert containing the SARS M gene. The pACT / M DNA plasmid was digested with Bgl II and Asp 718 to obtain a DNA insert containing the CMV promoter and SARS M gene. The pCDNA3.1 (+) plasmid (Invitrogen Co.) was digested with BglII and Asp718. The resulting pCDNA3.1 (+) DNA vector digested with BglII, Asp718 was ligated with DNA comprising the CMW promoter and SARS M gene insert digested with BglII, Asp718 to obtain a pCDNA 3.1 + M DNA plasmid.

II. IRES-II. IRES- SARSSARS E 유전자 플라스미드 조작( E gene plasmid manipulation ( ConstructingConstructing ))

pIRES2-EGFP (Clontech Co.)는 Xho I와 Nco I로 다이제스트되어 "IRES" DNA 삽입부가 되었다. GL3베이직 벡터(GL3basic vector)(Promega Co.) Xho I와 Nco I로 다이제스트되었다. pGL3basic DNA로 다이제스트된 Xho I, Nco I은 T4 DNA 리가제(ligase)(NEB Co.)를 사용하여 Xho I, Nco I 다이제스트된 IRES DNA 삽입부와 리게이션되었다. 리게이션 혼합물은 E. coli DH5α구성 세포로 형질 전환되어(transformed) pGL3B/IRES-루시퍼라제 DNA 플라스미드(pGL3B/IRES-luciferase DNA plasmid)를 얻었다. 제2 알라닌 도입 뮤턴트(second Alanine insertion mutant)가 있는 사스 E 유전자를 포함하는 T/EA + 클론은 NcoI와 XbaI로 다이제스트되어, 사스 E 유전자 DNA 삽입부를 얻었다. pGL3B/IRES-루시퍼라제 DNA 플라스미드는 NcoI와 XbaI로 다이제스트되었다. pGL3B/IRES-루시퍼라제 DNA 벡터로 다이제스트된 Nco I, Xba I는 사스 EA + 유전자 DNA 삽입부로 다이제스트된 Nco I, Xba I과 리게이션되었고, pGL3B/IRES-EA + DNA 플라스미드가 되었다.pIRES2-EGFP (Clontech Co.) was digested with Xho I and Nco I to become the "IRES" DNA insert. GL3basic vector (Promega Co.) digested with Xho I and Nco I. Xho I, Nco I digested with pGL3basic DNA was ligated with Xho I, Nco I digested IRES DNA insert using T4 DNA ligase (NEB Co.). The ligation mixture was transformed with E. coli DH5α constitutive cells to obtain the pGL3B / IRES-luciferase DNA plasmid (pGL3B / IRES-luciferase DNA plasmid). T / E A + clones containing SARS E gene with a second Alanine insertion mutant were digested with NcoI and XbaI to obtain SARS E gene DNA insert. The pGL3B / IRES-luciferase DNA plasmid was digested with NcoI and XbaI. Nco I, Xba I digested with pGL3B / IRES-luciferase DNA vector was ligated with Nco I, Xba I digested with SARS E A + gene DNA insert and became a pGL3B / IRES-E A + DNA plasmid.

III. III. pCMVpCMV -유도된 M+E 유전자 발현 플라스미드(-Induced M + E gene expression plasmid ( pCMVpCMV -driven gene expression plasmid)의 구조(코로나바이러스-유사 입자(-driven gene expression plasmids (coronavirus-like particles ( CoCo ronarona VV irusirus -- LL ike ike PP article)(article) ( CoVLPCoVLP ) 발현 벡터)Expression vector)

pGL3B/IRES-EA + DNA 플라스미드는 BamHI와 XbaI와 다이제스트되어 IRES와 사스 EA + 유전자를 포함하는 DNA 삽입부를 얻었다. pCDNA3.1+M DNA 플라스미드는 BamH I, Xba I와 다이제스트되었다. pCDNA3.1+M DNA 플라스미드로 다이제스트된 BamH I, Xba I 결과물은 IRES와 SARS EA + 융합된 유전자를 포함하는 DNA 삽입부로 다이제스트된 BamH I, Xba I와 리게이션되어, pCDNA3.1+M/IRES-EA + 플라스미드를 얻었다.The pGL3B / IRES-E A + DNA plasmid was digested with BamHI and XbaI to obtain a DNA insert containing the IRES and SARS E A + genes. The pCDNA3.1 + M DNA plasmid was digested with BamH I, Xba I. BamH I, Xba I results digested with pCDNA3.1 + M DNA plasmid were ligated with BamH I, Xba I digested with DNA inserts containing IRES and SARS E A + fused genes, resulting in pCDNA3.1 + M / IRES-E A + plasmid was obtained.

IV. 본 발명의 DNA 벡터의 조작IV. Manipulation of the DNA Vector of the Invention

pGEM(T)/ 스파이크CT (EcoRV/BstBI) 플라스미드는 사스 코로나 바이러스의 스파이크 단백질의 막 부분과 나란한 방향족 잔류기가 풍부한 영역의 상부에 위치하는 C-말단 헵타드 리핏을 인코딩하는 유전자를 포함하는데, 이는 Spe I로 다이제스트되고 클레나우(Klenow) 효소 및 dNTP에 의해 충진(filled-in)되었다. 1.2%의 아가로스 겔 위에서 분리된 후, DNA 조각은 QIA퀵 겔 추출 킷(QIAquick gel extraction kit (QIAGEN. Com.))으로 정제되었고, BstB I에 의해 더 다이제스트되었다. 결과물인 "스파이크CT" 유전자 조각은 DNA 삽입부로 사용되었고, BsaB I, BstB I와 함께 다이제스트된 pCDNA3.1+M/IRES-EA +DNA 벡터 플라스미드와 리게이션되었으며, 겔로 정제되었다. E. coli DH5알파 세포로 형질전환된 후에, 소위 CoVLP-클로닝 벡터라고 불리는 본 발명의 DNA 벡터를 얻었다. "스파이크CT" 유전자의 시작 부분에 위치하는 SmaI, BsaB I, EcoR V, BspE I를 포함하는 여러 개의 제한 효소 절단면(다수의 클로닝 사이트(multiple cloning site), MCS)가 있고, 이러한 사이트는 클로닝 또는 본 발명의 벡터 내에서의 스파이크CT 유전자와 함께 인-프레임 융합된 클래스 I 바이러스성 융합 단백질 유전자로 사용될 수 있고, 이후 결과 DNA 플라스미드는 DNA 백신 후보군으로 사용될 수 있다. CoVLP-클로닝 벡터의 지도는 도 1에 예시되어 있다. CoVLP-클로닝 벡터는 서열 번호:49에서 표시된 바와 같다. The pGEM (T) / SpikeCT (EcoRV / BstBI) plasmid contains a gene encoding a C-terminal heptad refit located on top of a region rich in aromatic residues parallel to the membrane portion of the spike protein of SARS corona virus, which is Digested with Spe I and filled-in with Klenow enzyme and dNTP. After separation on 1.2% agarose gel, DNA fragments were purified with a QIAquick gel extraction kit (QIAGEN. Com.) And further digested by BstB I. The resulting “spikeCT” gene fragment was used as DNA insert, ligated with pCDNA3.1 + M / IRES-E A + DNA vector plasmid digested with BsaB I, BstB I and purified by gel. After transformation into E. coli DH5 alpha cells, a so-called CoVLP-cloning vector of the present DNA vector was obtained. There are several restriction enzyme cleavage sites (multiple cloning sites, MCS), including SmaI, BsaB I, EcoR V, and BspE I, which are located at the beginning of the "SpikeCT" gene, which can be cloned or It can be used as a class I viral fusion protein gene in-frame fused with the SpikeCT gene in the vector of the invention, and the resulting DNA plasmid can then be used as a DNA vaccine candidate. A map of the CoVLP-cloning vector is illustrated in FIG. 1. CoVLP-cloning vector is as shown in SEQ ID NO: 49.

CoVLP-클로닝 벡터의 DNA 서열(pCDNA3.1+M+IRES-E+스파이크CT) (서열 번호: 49)DNA sequence of CoVLP-cloning vector (pCDNA3.1 + M + IRES-E + spike CT) (SEQ ID NO: 49)

GACGGATCGG GAGATCTTCA ATATTGGCCA TTAGCCATAT TATTCATTGG TTATATAGCA TAAATCAATA TTGGCTATTG GCCATTGCAT ACGTTGTATC TATATCATAA TATGTACATT TATATTGGCT CATGTCCAAT ATGACCGCCA TGTTGGCATT GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA CGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACACCAA TGGGCGTGGA TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTGCGA TCGCCCGCCC CGTTGACGCA AATGGGCGGT AGGCGTGTAC GGTGGGAGGT CTATATAAGC AGAGCTCGTT TAGTGAACCG TCAGATCACT AGAAGCTTTA TTGCGGTAGT TTATCACAGT TAAATTGCTA ACGCAGTCAG TGCTTCTGAC ACAACAGTCT CGAACTTAAG CTGCAGTGAC TCTCTTAAGG TAGCCTTGCA GAAGTTGGTC GTGAGGCACT GGGCAGGTAA GTATCAAGGT TACAAGACAG GTTTAAGGAG ACCAATAGAA ACTGGGCTTG TCGAGACAGA GAAGACTCTT GCGTTTCTGA TAGGCACCTA TTGGTCTTAC TGACATCCAC TTTGCCTTTC TCTCCACAGG TGTCCACTCC CAGTTCAATT ACAGCTCTTA AGGCTAGAGT ACTTAATACG ACTCACTATA GGCTAGCGCT ACCGGACTCA GATCATGGCA GATAACGGCA CTATTACTGT GGAGGAACTG AAACAACTGC TGGAACAATG GAACCTCGTA ATCGGCTTTC TCTTTCTGGC TTGGATTATG TTGTTACAGT TTGCGTATTC TAATCGTAAC CGTTTCCTCT ACATTATTAA GCTCGTTTTC CTGTGGTTGT TGTGGCCTGT AACTCTTGCT TGCTTTGTGC TTGCTGCTGT CTATCGTATC AACTGGGTTA CTGGTGGTAT TGCTATCGCT ATGGCTTGTA TTGTAGGCTT GATGTGGCTG TCTTATTTCG TTGCTTCTTT CCGTCTGTTT GCTCGTACTC GCTCTATGTG GTCCTTTAAT CCTGAGACTA ATATCCTGCT GAATGTTCCG CTCCGTGGTA CTATCGTTAC TAGACCGCTG ATGGAATCTG AACTGGTTAT TGGTGCCGTC ATTATCCGTG GTCATTTGCG TATGGCTGGT CACTCTCTGG GTCGTTGCGA TATTAAGGAT CTGCCAAAGG AAATCACTGT AGCCACTTCT CGTACTCTGT CTTACTATAA ACTCGGTGCA TCGCAACGTG TGGGAACTGA TTCGGGCTTC GCTGCGTATA ATCGTTATCG TATTGGCAAC TATAAACTGA ACACCGACCA CGCAGGCTCT AATGACAACA TCGCTCTCCT CGTTCAGTGA AATCACTAGT GCGGCCGCAG GTACCGAGCT CGGATCCGCC CCTCTCCCTC CCCCCCCCCT AACGTTACTG GCCGAAGCCG CTTGGAATAA GGCCGGTGTG CGTTTGTCTA TATGTTATTT TCCACCATAT TGCCGTCTTT TGGCAATGTG AGGGCCCGGA AACCTGGCCC TGTCTTCTTG ACGAGCATTC CTAGGGGTCT TTCCCCTCTC GCCAAAGGAA TGCAAGGTCT GTTGAATGTC GTGAAGGAAG CAGTTCCTCT GGAAGCTTCT TGAAGACAAA CAACGTCTGT AGCGACCCTT TGCAGGCAGC GGAACCCCCC ACCTGGCGAC AGGTGCCTCT GCGGCCAAAA GCCACGTGTA TAAGATACAC CTGCAAAGGC GGCACAACCC CAGTGCCACG TTGTGAGTTG GATAGTTGTG GAAAGAGTCA AATGGCTCTC CTCAAGCGTA TTCAACAAGG GGCTGAAGGA TGCCCAGAAG GTACCCCATT GTATGGGATC TGATCTGGGG CCTCGGTGCA CATGCTTTAC ATGTGTTTAG TCGAGGTTAA AAAAACGTCT AGGCCCCCCG AACCACGGGG ACGTGGTTTT CCTTTGAAAA ACACGATGAT AATATGGCCA CAACCATGGC ATACTCTTTT GTGTCTGAGG AAACTGGCAC TCTGATCGTG AACTCTGTAC TGCTGTTTCT CGCTTTTGTG GTATTCCTGC TGGTCACTCT CGCTATCCTC ACTGCTCTTC GTCTGTGTGC CTACTGTTGT AATATCGTGA ACGTGTCTCT GGTTAAGCCT ACTGTGTATG TGTATTCTCG TGTGAAAAAT CTCAATTCTT CTGAAGGAGT TCCCGATCTG CTGGTCTAGA GGGCCCGTTT AAACCCGCTG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT GTTTGCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC TGTCCTTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT GCGGTGGGCT CTATGGCTTC TGAGGCGGAA AGAACCAGCT GGGGCTCTAG GGGGTATCCC CACGCGCCCT GTAGCGGCGC ATTAAGCGCG GCGGGTGTGG TGGTTACGCG CAGCGTGACC GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTTAGG GTTCCGATTT AGTGCTTTAC GGCACCTCGA CCCCAAAAAA CTTGATTAGG GTGATGGTTC ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG AACAACACTC AACCCTATCT CGGTCTATTC TTTTGATTTA TAAGGGATTT TGCCGATTTC GGCCTATTGG TTAAAAAATG AGCTGATTTA ACAAAAATTT AACGCGAATT AATTCTGTGG AATGTGTGTC AGTTAGGGTG TGGAAAGTCC CCAGGCTCCC CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCAGG TGTGGAAAGT CCCCAGGCTC CCCAGCAGGC AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA TAGTCCCGCC CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC CGCCCCATGG CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC TCTGCCTCTG AGCTATTCCA GAAGTAGTGA GGAGGCTTTT TTGGAGGCCT AGGCTTTTGC AAAAAGCTCC CGGGAGCTTG TATATCCATT TTCGGATCTG ATCAAGAGAC AGGATGACTA GTGATTGATA TCTCCGGAAT CAATGCGAGC GTAGTGAACA TCCAGAAAGA GATTGACCGT TTGAATGAAG TTGCTAAAAA TCTGAATGAA CCTCTGATTG ACCTCCAAGA ACTCGGCAAA TATGAGCAAT ACATTAAATG GCCTTGGTAT GTCTGGTTGG GTTTCATCGC AGGTCTCATC GCTATCGTTA TGGTGACTAT TCTGCTGTGT TGTATGACTT CTTGTTGCTC TTGTCTGAAA GGTGCGTGTT CTTGTGGTTC TTGTTGTAAG TTTGATGAGG ATGATTCTGA GCCAGTTCTG AAGGGTGTGA AGCTGCATTA TACCTAGTTC GAAATGACCG ACCAAGCGAC GCCCAACCTG CCATCACGAG ATTTCGATTC CACCGCCGCC TTCTATGAAA GGTTGGGCTT CGGAATCGTT TTCCGGGACG CCGGCTGGAT GATCCTCCAG CGCGGGGATC TCATGCTGGA GTTCTTCGCC CACCCCAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGTAT ACCGTCGACC TCTAGCTAGA GCTTGGCGTA ATCATGGTCA TAGCTGTTTC CTGTGTGAAA TTGTTATCCG CTCACAATTC CACACAACAT ACGAGCCGGA AGCATAAAGT GTAAAGCCTG GGGTGCCTAA TGAGTGAGCT AACTCACATT AATTGCGTTG CGCTCACTGC CCGCTTTCCA GTCGGGAAAC CTGTCGTGCC AGCTGCATTA ATGAATCGGC CAACGCGCGG GGAGAGGCGG TTTGCGTATT GGGCGCTCTT CCGCTTCCTC GCTCACTGAC TCGCTGCGCT CGGTCGTTCG GCTGCGGCGA GCGGTATCAG CTCACTCAAA GGCGGTAATA CGGTTATCCA CAGAATCAGG GGATAACGCA GGAAAGAACA TGTGAGCAAA AGGCCAGCAA GACGGATCGG GAGATCTTCA ATATTGGCCA TTAGCCATAT TATTCATTGG TTATATAGCA TAAATCAATA TTGGCTATTG GCCATTGCAT ACGTTGTATC TATATCATAA TATGTACATT TATATTGGCT CATGTCCAAT ATGACCGCCA TGTTGGCATT GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA CGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACACCAA TGGGCGTGGA TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTGCGA TCGCCCGCCC CGTTGACGCA AATGGGCGGT AGGCGTGTAC GGTGGGAGGT CTATATAAGC AGAGCTCGTT TAGTGAACCG TCAGATCACT AGAAGCTTTA TTGCGGTAGT TTATCACAGT TAAATTGCTA ACGCAGTCAG TGCTTCTGAC ACAACAGTCT CGAACTTAAG CTGCAGTGAC TCTCTTAAGG TAGCCTTGCA GAAGTTGGTC GTGAGGCACT GGGC AGGTAA GTATCAAGGT TACAAGACAG GTTTAAGGAG ACCAATAGAA ACTGGGCTTG TCGAGACAGA GAAGACTCTT GCGTTTCTGA TAGGCACCTA TTGGTCTTAC TGACATCCAC TTTGCCTTTC TCTCCACAGG TGTCCACTCC CAGTTCAATT ACAGCTCTTA AGGCTAGAGT ACTTAATACG ACTCACTATA GGCTAGCGCT ACCGGACTCA GATCATGGCA GATAACGGCA CTATTACTGT GGAGGAACTG AAACAACTGC TGGAACAATG GAACCTCGTA ATCGGCTTTC TCTTTCTGGC TTGGATTATG TTGTTACAGT TTGCGTATTC TAATCGTAAC CGTTTCCTCT ACATTATTAA GCTCGTTTTC CTGTGGTTGT TGTGGCCTGT AACTCTTGCT TGCTTTGTGC TTGCTGCTGT CTATCGTATC AACTGGGTTA CTGGTGGTAT TGCTATCGCT ATGGCTTGTA TTGTAGGCTT GATGTGGCTG TCTTATTTCG TTGCTTCTTT CCGTCTGTTT GCTCGTACTC GCTCTATGTG GTCCTTTAAT CCTGAGACTA ATATCCTGCT GAATGTTCCG CTCCGTGGTA CTATCGTTAC TAGACCGCTG ATGGAATCTG AACTGGTTAT TGGTGCCGTC ATTATCCGTG GTCATTTGCG TATGGCTGGT CACTCTCTGG GTCGTTGCGA TATTAAGGAT CTGCCAAAGG AAATCACTGT AGCCACTTCT CGTACTCTGT CTTACTATAA ACTCGGTGCA TCGCAACGTG TGGGAACTGA TTCGGGCTTC GCTGCGTATA ATCGTTATCG TATTGGCAAC TATAAACTGA ACACCGACCA CGCAGGCTCT AATGACAACA TCGCTCTCCT CGTTCAGTGA AATCACTAGT GCGGCCGCA G GTACCGAGCT CGGATCCGCC CCTCTCCCTC CCCCCCCCCT AACGTTACTG GCCGAAGCCG CTTGGAATAA GGCCGGTGTG CGTTTGTCTA TATGTTATTT TCCACCATAT TGCCGTCTTT TGGCAATGTG AGGGCCCGGA AACCTGGCCC TGTCTTCTTG ACGAGCATTC CTAGGGGTCT TTCCCCTCTC GCCAAAGGAA TGCAAGGTCT GTTGAATGTC GTGAAGGAAG CAGTTCCTCT GGAAGCTTCT TGAAGACAAA CAACGTCTGT AGCGACCCTT TGCAGGCAGC GGAACCCCCC ACCTGGCGAC AGGTGCCTCT GCGGCCAAAA GCCACGTGTA TAAGATACAC CTGCAAAGGC GGCACAACCC CAGTGCCACG TTGTGAGTTG GATAGTTGTG GAAAGAGTCA AATGGCTCTC CTCAAGCGTA TTCAACAAGG GGCTGAAGGA TGCCCAGAAG GTACCCCATT GTATGGGATC TGATCTGGGG CCTCGGTGCA CATGCTTTAC ATGTGTTTAG TCGAGGTTAA AAAAACGTCT AGGCCCCCCG AACCACGGGG ACGTGGTTTT CCTTTGAAAA ACACGATGAT AATATGGCCA CAACCATGGC ATACTCTTTT GTGTCTGAGG AAACTGGCAC TCTGATCGTG AACTCTGTAC TGCTGTTTCT CGCTTTTGTG GTATTCCTGC TGGTCACTCT CGCTATCCTC ACTGCTCTTC GTCTGTGTGC CTACTGTTGT AATATCGTGA ACGTGTCTCT GGTTAAGCCT ACTGTGTATG TGTATTCTCG TGTGAAAAAT CTCAATTCTT CTGAAGGAGT TCCCGATCTG CTGGTCTAGA GGGCCCGTTT AAACCCGCTG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT GTTT GCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC TGTCCTTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT GCGGTGGGCT CTATGGCTTC TGAGGCGGAA AGAACCAGCT GGGGCTCTAG GGGGTATCCC CACGCGCCCT GTAGCGGCGC ATTAAGCGCG GCGGGTGTGG TGGTTACGCG CAGCGTGACC GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTTAGG GTTCCGATTT AGTGCTTTAC GGCACCTCGA CCCCAAAAAA CTTGATTAGG GTGATGGTTC ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG AACAACACTC AACCCTATCT CGGTCTATTC TTTTGATTTA TAAGGGATTT TGCCGATTTC GGCCTATTGG TTAAAAAATG AGCTGATTTA ACAAAAATTT AACGCGAATT AATTCTGTGG AATGTGTGTC AGTTAGGGTG TGGAAAGTCC CCAGGCTCCC CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCAGG TGTGGAAAGT CCCCAGGCTC CCCAGCAGGC AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA TAGTCCCGCC CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC CGCCCCATGG C TGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC TCTGCCTCTG AGCTATTCCA GAAGTAGTGA GGAGGCTTTT TTGGAGGCCT AGGCTTTTGC AAAAAGCTCC CGGGAGCTTG TATATCCATT TTCGGATCTG ATCAAGAGAC AGGATGACTA GTGATTGATA TCTCCGGAAT CAATGCGAGC GTAGTGAACA TCCAGAAAGA GATTGACCGT TTGAATGAAG TTGCTAAAAA TCTGAATGAA CCTCTGATTG ACCTCCAAGA ACTCGGCAAA TATGAGCAAT ACATTAAATG GCCTTGGTAT GTCTGGTTGG GTTTCATCGC AGGTCTCATC GCTATCGTTA TGGTGACTAT TCTGCTGTGT TGTATGACTT CTTGTTGCTC TTGTCTGAAA GGTGCGTGTT CTTGTGGTTC TTGTTGTAAG TTTGATGAGG ATGATTCTGA GCCAGTTCTG AAGGGTGTGA AGCTGCATTA TACCTAGTTC GAAATGACCG ACCAAGCGAC GCCCAACCTG CCATCACGAG ATTTCGATTC CACCGCCGCC TTCTATGAAA GGTTGGGCTT CGGAATCGTT TTCCGGGACG CCGGCTGGAT GATCCTCCAG CGCGGGGATC TCATGCTGGA GTTCTTCGCC CACCCCAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGTAT ACCGTCGACC TCTAGCTAGA GCTTGGCGTA ATCATGGTCA TAGCTGTTTC CTGTGTGAAA TTGTTATCCG CTCACAATTC CACACAACAT ACGAGCCGGA AGCATAAAGT GTAAAGCCTG GGGTGCCTA A TGAGTGAGCT AACTCACATT AATTGCGTTG CGCTCACTGC CCGCTTTCCA GTCGGGAAAC CTGTCGTGCC AGCTGCATTA ATGAATCGGC CAACGCGCGG GGAGAGGCGG TTTGCGTATT GGGCGCTCTT CCGCTTCCTC GCTCACTGAC TCGCTGCGCT CGGTCGTTCG GCTGCGGCGA GCGGTATCAG CTCACTCAAA GGCGGTAATA CGGTTATCCA CAGAATCAGG GGATAACGCA GGAAAGAACA TGTGAGCAAA AGGCCAGCAA

<110> DNASHUTTLE Biopharm Co., Ltd. <120> AN EXPRESSION VECTOR ENCODING CORONAVIRUS-LIKE PARTICLE <130> NONE <140> US 10/855,490 <141> 2004-05-28 <160> 49 <170> PatentIn version 3.3 <210> 1 <211> 234 <212> DNA <213> SARS E gene <400> 1 atggcatact cttttgtgtc tgaggaaact ggcactctga tcgtgaactc tgtactgctg 60 tttctcgctt ttgtggtatt cctgctggtc actctcgcta tcctcactgc tcttcgtctg 120 tgtgcctact gttgtaatat cgtgaacgtg tctctggtta agcctactgt gtatgtgtat 180 tctcgtgtga aaaatctcaa ttcttctgaa ggagttcccg atctgctggt ctag 234 <210> 2 <211> 666 <212> DNA <213> SARS M gene <400> 2 atggcagata acggcactat tactgtggag gaactgaaac aactgctgga acaatggaac 60 ctcgtaatcg gctttctctt tctggcttgg attatgttgt tacagtttgc gtattctaat 120 cgtaaccgtt tcctctacat tattaagctc gttttcctgt ggttgttgtg gcctgtaact 180 cttgcttgct ttgtgcttgc tgctgtctat cgtatcaact gggttactgg tggtattgct 240 atcgctatgg cttgtattgt aggcttgatg tggctgtctt atttcgttgc ttctttccgt 300 ctgtttgctc gtactcgctc tatgtggtcc tttaatcctg agactaatat cctgctgaat 360 gttccgctcc gtggtactat cgttactaga ccgctgatgg aatctgaact ggttattggt 420 gccgtcatta tccgtggtca tttgcgtatg gctggtcact ctctgggtcg ttgcgatatt 480 aaggatctgc caaaggaaat cactgtagcc acttctcgta ctctgtctta ctataaactc 540 ggtgcatcgc aacgtgtggg aactgattcg ggcttcgctg cgtataatcg ttatcgtatt 600 ggcaactata aactgaacac cgaccacgca ggctctaatg acaacatcgc tctcctcgtt 660 cagtga 666 <210> 3 <211> 327 <212> DNA <213> SpikeCT gene <400> 3 gatatctccg gaatcaatgc gagcgtagtg aacatccaga aagagattga ccgtttgaat 60 gaagttgcta aaaatctgaa tgaacctctg attgacctcc aagaactcgg caaatatgag 120 caatacatta aatggccttg gtatgtctgg ttgggtttca tcgcaggtct catcgctatc 180 gttatggtga ctattctgct gtgttgtatg acttcttgtt gctcttgtct gaaaggtgcg 240 tgttcttgtg gttcttgttg taagtttgat gaggatgatt ctgagccagt tctgaagggt 300 gtgaagctgc attataccta gttcgaa 327 <210> 4 <211> 34 <212> DNA <213> E1L primer <400> 4 accatggcat actcttttgt gtctgaggaa actg 34 <210> 5 <211> 51 <212> DNA <213> E2L primer <400> 5 acagcagtac agagttcacg atcagagtgc cagtttcctc agacacaaaa g 51 <210> 6 <211> 51 <212> DNA <213> E3L primer <400> 6 tgaccagcag gaataccaca aaagcgagaa acagcagtac agagttcacg a 51 <210> 7 <211> 54 <212> DNA <213> E4L primer <400> 7 gcacacagac gaagagcagt gaggatagcg agagtgacca gcaggaatac caca 54 <210> 8 <211> 52 <212> DNA <213> E5L primer <400> 8 accagagaca cgttcacgat attacaacag taggcacaca gacgaagagc ag 52 <210> 9 <211> 58 <212> DNA <213> E6L primer <400> 9 gatttttcac acgagaatac acatacacag taggcttaac cagagacacg ttcacgat 58 <210> 10 <211> 62 <212> DNA <213> E7L primer <400> 10 tctagaccag cagatcggga actccttcag aagaattgag atttttcaca cgagaataca 60 ca 62 <210> 11 <211> 20 <212> DNA <213> E8L primer <400> 11 tctagaccag cagatcggga 20 <210> 12 <211> 22 <212> DNA <213> M1-1U primer <400> 12 tgatcatggc agataacggc ac 22 <210> 13 <211> 37 <212> DNA <213> M1U primer <400> 13 tgatcatggc agataacggc actattactg tggagga 37 <210> 14 <211> 49 <212> DNA <213> M1L primer <400> 14 gttccattgt tccagcagtt gtttcagttc ctccacagta atagtgccg 49 <210> 15 <211> 49 <212> DNA <213> M2L primer <400> 15 aagccagaaa gagaaagccg attacgaggt tccattgttc cagcagttg 49 <210> 16 <211> 50 <212> DNA <213> M3L primer <400> 16 agaatacgca aactgtaaca acataatcca agccagaaag agaaagccga 50 <210> 17 <211> 57 <212> DNA <213> M4L primer <400> 17 cgagcttaat aatgtagagg aaacggttac gattagaata cgcaaactgt aacaaca 57 <210> 18 <211> 56 <212> DNA <213> M5L primer <400> 18 caagagttac aggccacaac aaccacagga aaacgagctt aataatgtag aggaaa 56 <210> 19 <211> 55 <212> DNA <213> M6L primer <400> 19 ttgatacgat agacagcagc aagcacaaag caagcaagag ttacaggcca caaca 55 <210> 20 <211> 58 <212> DNA <213> M7L primer <400> 20 caagccatag cgatagcaat accaccagta acccagttga tacgatagac agcagcaa 58 <210> 21 <211> 56 <212> DNA <213> M8L primer <400> 21 aacgaaataa gacagccaca tcaagcctac aatacaagcc atagcgatag caatac 56 <210> 22 <211> 59 <212> DNA <213> M9L primer <400> 22 acatagagcg agtacgagca aacagacgga aagaagcaac gaaataagac agccacatc 59 <210> 23 <211> 20 <212> DNA <213> M10U primer <400> 23 tcctgctgaa tgttccgctc 20 <210> 24 <211> 65 <212> DNA <213> M10L primer <400> 24 gagcggaaca ttcagcagga tattagtctc aggattaaag gaccacatag agcgagtacg 60 agcaa 65 <210> 25 <211> 50 <212> DNA <213> M11L primer <400> 25 catcagcggt ctagtaacga tagtaccacg gagcggaaca ttcagcagga 50 <210> 26 <211> 60 <212> DNA <213> M12L primer <400> 26 accacggata atgacggcac caataaccag ttcagattcc atcagcggtc tagtaacgat 60 60 <210> 27 <211> 31 <212> DNA <213> M13L primer <400> 27 atacgcaaat gaccacggat aatgacggca c 31 <210> 28 <211> 45 <212> DNA <213> M14L primer <400> 28 aacgacccag agagtgacca gccatacgca aatgaccacg gataa 45 <210> 29 <211> 51 <212> DNA <213> M15L primer <400> 29 tacagtgatt tcctttggca gatccttaat atcgcaacga cccagagagt g 51 <210> 30 <211> 57 <212> DNA <213> M16L primer <400> 30 ccgagtttat agtaagacag agtacgagaa gtggctacag tgatttcctt tggcaga 57 <210> 31 <211> 58 <212> DNA <213> M17L primer <400> 31 cgaagcccga atcagttccc acacgttgcg atgcaccgag tttatagtaa gacagagt 58 <210> 32 <211> 58 <212> DNA <213> M18L primer <400> 32 cagtttatag ttgccaatac gataacgatt atacgcagcg aagcccgaat cagttccc 58 <210> 33 <211> 62 <212> DNA <213> M19L primer <400> 33 gagagcgatg ttgtcattag agcctgcgtg gtcggtgttc agtttatagt tgccaatacg 60 at 62 <210> 34 <211> 34 <212> DNA <213> M20L primer <400> 34 tcactgaacg aggagagcga tgttgtcatt agag 34 <210> 35 <211> 26 <212> DNA <213> SpikeCTup-EcoRV primer <400> 35 gatatctccg gaatcaatgc gagcgt 26 <210> 36 <211> 35 <212> DNA <213> DI-1U/BspE I primer <400> 36 tccggaatca atgcgagcgt agtgaacatc cagaa 35 <210> 37 <211> 48 <212> DNA <213> DI-1L primer <400> 37 gcaacttcat tcaaacggtc aatctctttc tggatgttca ctacgctc 48 <210> 38 <211> 45 <212> DNA <213> DI-2L primer <400> 38 atcagagatt cattcagatt tttagcaact tcattcaaac ggtca 45 <210> 39 <211> 51 <212> DNA <213> DI-3L primer <400> 39 tcatatttgc cgagttcttg gaggtcaatc agagattcat tcagattttt a 51 <210> 40 <211> 43 <212> DNA <213> DI-4L primer <400> 40 caaggccatt taatgtattg ctcatatttg ccgagttctt gga 43 <210> 41 <211> 50 <212> DNA <213> DI-5L primer <400> 41 acctgcgatg aaacccaacc agacatacca aggccattta atgtattgct 50 <210> 42 <211> 50 <212> DNA <213> DI-6L primer <400> 42 cagaatagtc accataacga tagcgatgag acctgcgatg aaacccaacc 50 <210> 43 <211> 50 <212> DNA <213> DI-7L primer <400> 43 agagcaacaa gaagtcatac aacacagcag aatagtcacc ataacgatag 50 <210> 44 <211> 50 <212> DNA <213> DI-8L primer <400> 44 accacaagaa cacgcacctt tcagacaaga gcaacaagaa gtcatacaac 50 <210> 45 <211> 50 <212> DNA <213> DI-9L primer <400> 45 gaatcatcct catcaaactt acaacaagaa ccacaagaac acgcaccttt 50 <210> 46 <211> 49 <212> DNA <213> DI-10L primer <400> 46 gcttcacacc cttcagaact ggctcagaat catcctcatc aaacttaca 49 <210> 47 <211> 35 <212> DNA <213> DI-11L primer <400> 47 cctaggtata atgcagcttc acacccttca gaact 35 <210> 48 <211> 27 <212> DNA <213> SpikeCTdn-BstB I primer <400> 48 ttcgaactag gtataatgca gcttcac 27 <210> 49 <211> 4800 <212> DNA <213> CoVLP cloning vector <400> 49 gacggatcgg gagatcttca atattggcca ttagccatat tattcattgg ttatatagca 60 taaatcaata ttggctattg gccattgcat acgttgtatc tatatcataa tatgtacatt 120 tatattggct catgtccaat atgaccgcca tgttggcatt gattattgac tagttattaa 180 tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 240 cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 300 atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggag 360 tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtccgccc 420 cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 480 cgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg 540 cggttttggc agtacaccaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 600 ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca 660 aaatgtcgta acaactgcga tcgcccgccc cgttgacgca aatgggcggt aggcgtgtac 720 ggtgggaggt ctatataagc agagctcgtt tagtgaaccg tcagatcact agaagcttta 780 ttgcggtagt ttatcacagt taaattgcta acgcagtcag tgcttctgac acaacagtct 840 cgaacttaag ctgcagtgac tctcttaagg tagccttgca gaagttggtc gtgaggcact 900 gggcaggtaa gtatcaaggt tacaagacag gtttaaggag accaatagaa actgggcttg 960 tcgagacaga gaagactctt gcgtttctga taggcaccta ttggtcttac tgacatccac 1020 tttgcctttc tctccacagg tgtccactcc cagttcaatt acagctctta aggctagagt 1080 acttaatacg actcactata ggctagcgct accggactca gatcatggca gataacggca 1140 ctattactgt ggaggaactg aaacaactgc tggaacaatg gaacctcgta atcggctttc 1200 tctttctggc ttggattatg ttgttacagt ttgcgtattc taatcgtaac cgtttcctct 1260 acattattaa gctcgttttc ctgtggttgt tgtggcctgt aactcttgct tgctttgtgc 1320 ttgctgctgt ctatcgtatc aactgggtta ctggtggtat tgctatcgct atggcttgta 1380 ttgtaggctt gatgtggctg tcttatttcg ttgcttcttt ccgtctgttt gctcgtactc 1440 gctctatgtg gtcctttaat cctgagacta atatcctgct gaatgttccg ctccgtggta 1500 ctatcgttac tagaccgctg atggaatctg aactggttat tggtgccgtc attatccgtg 1560 gtcatttgcg tatggctggt cactctctgg gtcgttgcga tattaaggat ctgccaaagg 1620 aaatcactgt agccacttct cgtactctgt cttactataa actcggtgca tcgcaacgtg 1680 tgggaactga ttcgggcttc gctgcgtata atcgttatcg tattggcaac tataaactga 1740 acaccgacca cgcaggctct aatgacaaca tcgctctcct cgttcagtga aatcactagt 1800 gcggccgcag gtaccgagct cggatccgcc cctctccctc ccccccccct aacgttactg 1860 gccgaagccg cttggaataa ggccggtgtg cgtttgtcta tatgttattt tccaccatat 1920 tgccgtcttt tggcaatgtg agggcccgga aacctggccc tgtcttcttg acgagcattc 1980 ctaggggtct ttcccctctc gccaaaggaa tgcaaggtct gttgaatgtc gtgaaggaag 2040 cagttcctct ggaagcttct tgaagacaaa caacgtctgt agcgaccctt tgcaggcagc 2100 ggaacccccc acctggcgac aggtgcctct gcggccaaaa gccacgtgta taagatacac 2160 ctgcaaaggc ggcacaaccc cagtgccacg ttgtgagttg gatagttgtg gaaagagtca 2220 aatggctctc ctcaagcgta ttcaacaagg ggctgaagga tgcccagaag gtaccccatt 2280 gtatgggatc tgatctgggg cctcggtgca catgctttac atgtgtttag tcgaggttaa 2340 aaaaacgtct aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgatgat 2400 aatatggcca caaccatggc atactctttt gtgtctgagg aaactggcac tctgatcgtg 2460 aactctgtac tgctgtttct cgcttttgtg gtattcctgc tggtcactct cgctatcctc 2520 actgctcttc gtctgtgtgc ctactgttgt aatatcgtga acgtgtctct ggttaagcct 2580 actgtgtatg tgtattctcg tgtgaaaaat ctcaattctt ctgaaggagt tcccgatctg 2640 ctggtctaga gggcccgttt aaacccgctg atcagcctcg actgtgcctt ctagttgcca 2700 gccatctgtt gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac 2760 tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat 2820 tctggggggt ggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca 2880 tgctggggat gcggtgggct ctatggcttc tgaggcggaa agaaccagct ggggctctag 2940 ggggtatccc cacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 3000 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 3060 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 3120 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 3180 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 3240 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 3300 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 3360 acaaaaattt aacgcgaatt aattctgtgg aatgtgtgtc agttagggtg tggaaagtcc 3420 ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc agcaaccagg 3480 tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aaagcatgca tctcaattag 3540 tcagcaacca tagtcccgcc cctaactccg cccatcccgc ccctaactcc gcccagttcc 3600 gcccattctc cgccccatgg ctgactaatt ttttttattt atgcagaggc cgaggccgcc 3660 tctgcctctg agctattcca gaagtagtga ggaggctttt ttggaggcct aggcttttgc 3720 aaaaagctcc cgggagcttg tatatccatt ttcggatctg atcaagagac aggatgacta 3780 gtgattgata tctccggaat caatgcgagc gtagtgaaca tccagaaaga gattgaccgt 3840 ttgaatgaag ttgctaaaaa tctgaatgaa cctctgattg acctccaaga actcggcaaa 3900 tatgagcaat acattaaatg gccttggtat gtctggttgg gtttcatcgc aggtctcatc 3960 gctatcgtta tggtgactat tctgctgtgt tgtatgactt cttgttgctc ttgtctgaaa 4020 ggtgcgtgtt cttgtggttc ttgttgtaag tttgatgagg atgattctga gccagttctg 4080 aagggtgtga agctgcatta tacctagttc gaaatgaccg accaagcgac gcccaacctg 4140 ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt 4200 ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcgcc 4260 caccccaact tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat 4320 ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat 4380 gtatcttatc atgtctgtat accgtcgacc tctagctaga gcttggcgta atcatggtca 4440 tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 4500 agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 4560 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 4620 caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac 4680 tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata 4740 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 4800 4800 <110> DNASHUTTLE Biopharm Co., Ltd. <120> AN EXPRESSION VECTOR ENCODING CORONAVIRUS-LIKE PARTICLE <130> NONE <140> US 10 / 855,490 <141> 2004-05-28 <160> 49 <170> PatentIn version 3.3 <210> 1 <211> 234 <212> DNA <213> SARS E gene <400> 1 atggcatact cttttgtgtc tgaggaaact ggcactctga tcgtgaactc tgtactgctg 60 tttctcgctt ttgtggtatt cctgctggtc actctcgcta tcctcactgc tcttcgtctg 120 tgtgcctact gttgtaatat cgtgaacgtg tctctggtta agcctactgt gtatgtgtat 180 tctcgtgtga aaaatctcaa ttcttctgaa ggagttcccg atctgctggt ctag 234 <210> 2 <211> 666 <212> DNA <213> SARS M gene <400> 2 atggcagata acggcactat tactgtggag gaactgaaac aactgctgga acaatggaac 60 ctcgtaatcg gctttctctt tctggcttgg attatgttgt tacagtttgc gtattctaat 120 cgtaaccgtt tcctctacat tattaagctc gttttcctgt ggttgttgtg gcctgtaact 180 cttgcttgct ttgtgcttgc tgctgtctat cgtatcaact gggttactgg tggtattgct 240 atcgctatgg cttgtattgt aggcttgatg tggctgtctt atttcgttgc ttctttccgt 300 ctgtttgctc gtactcgctc tatgtggtcc tttaatcctg agactaatat cctgctgaat 360 gttccgctcc gtggtactat cgttactaga ccgctgatgg aatctgaact ggttattggt 420 gccgtcatta tccgtggtca tttgcgtatg gctggtcact ctctgggtcg ttgcgatatt 480 aaggatctgc caaaggaaat cactgtagcc acttctcgta ctctgtctta ctataaactc 540 ggtgcatcgc aacgtgtggg aactgattcg ggcttcgctg cgtataatcg ttatcgtatt 600 ggcaactata aactgaacac cgaccacgca ggctctaatg acaacatcgc tctcctcgtt 660 cagtga 666 <210> 3 <211> 327 <212> DNA <213> SpikeCT gene <400> 3 gatatctccg gaatcaatgc gagcgtagtg aacatccaga aagagattga ccgtttgaat 60 gaagttgcta aaaatctgaa tgaacctctg attgacctcc aagaactcgg caaatatgag 120 caatacatta aatggccttg gtatgtctgg ttgggtttca tcgcaggtct catcgctatc 180 gttatggtga ctattctgct gtgttgtatg acttcttgtt gctcttgtct gaaaggtgcg 240 tgttcttgtg gttcttgttg taagtttgat gaggatgatt ctgagccagt tctgaagggt 300 gtgaagctgc attataccta gttcgaa 327 <210> 4 <211> 34 <212> DNA <213> E1L primer <400> 4 accatggcat actcttttgt gtctgaggaa actg 34 <210> 5 <211> 51 <212> DNA <213> E2L primer <400> 5 acagcagtac agagttcacg atcagagtgc cagtttcctc agacacaaaa g 51 <210> 6 <211> 51 <212> DNA <213> E3L primer <400> 6 tgaccagcag gaataccaca aaagcgagaa acagcagtac agagttcacg a 51 <210> 7 <211> 54 <212> DNA <213> E4L primer <400> 7 gcacacagac gaagagcagt gaggatagcg agagtgacca gcaggaatac caca 54 <210> 8 <211> 52 <212> DNA <213> E5L primer <400> 8 accagagaca cgttcacgat attacaacag taggcacaca gacgaagagc ag 52 <210> 9 <211> 58 <212> DNA <213> E6L primer <400> 9 gatttttcac acgagaatac acatacacag taggcttaac cagagacacg ttcacgat 58 <210> 10 <211> 62 <212> DNA <213> E7L primer <400> 10 tctagaccag cagatcggga actccttcag aagaattgag atttttcaca cgagaataca 60 ca 62 <210> 11 <211> 20 <212> DNA <213> E8L primer <400> 11 tctagaccag cagatcggga 20 <210> 12 <211> 22 <212> DNA <213> M1-1U primer <400> 12 tgatcatggc agataacggc ac 22 <210> 13 <211> 37 <212> DNA <213> M1U primer <400> 13 tgatcatggc agataacggc actattactg tggagga 37 <210> 14 <211> 49 <212> DNA <213> M1L primer <400> 14 gttccattgt tccagcagtt gtttcagttc ctccacagta atagtgccg 49 <210> 15 <211> 49 <212> DNA <213> M2L primer <400> 15 aagccagaaa gagaaagccg attacgaggt tccattgttc cagcagttg 49 <210> 16 <211> 50 <212> DNA <213> M3L primer <400> 16 agaatacgca aactgtaaca acataatcca agccagaaag agaaagccga 50 <210> 17 <211> 57 <212> DNA <213> M4L primer <400> 17 cgagcttaat aatgtagagg aaacggttac gattagaata cgcaaactgt aacaaca 57 <210> 18 <211> 56 <212> DNA <213> M5L primer <400> 18 caagagttac aggccacaac aaccacagga aaacgagctt aataatgtag aggaaa 56 <210> 19 <211> 55 <212> DNA <213> M6L primer <400> 19 ttgatacgat agacagcagc aagcacaaag caagcaagag ttacaggcca caaca 55 <210> 20 <211> 58 <212> DNA <213> M7L primer <400> 20 caagccatag cgatagcaat accaccagta acccagttga tacgatagac agcagcaa 58 <210> 21 <211> 56 <212> DNA <213> M8L primer <400> 21 aacgaaataa gacagccaca tcaagcctac aatacaagcc atagcgatag caatac 56 <210> 22 <211> 59 <212> DNA <213> M9L primer <400> 22 acatagagcg agtacgagca aacagacgga aagaagcaac gaaataagac agccacatc 59 <210> 23 <211> 20 <212> DNA <213> M10U primer <400> 23 tcctgctgaa tgttccgctc 20 <210> 24 <211> 65 <212> DNA <213> M10L primer <400> 24 gagcggaaca ttcagcagga tattagtctc aggattaaag gaccacatag agcgagtacg 60 agcaa 65 <210> 25 <211> 50 <212> DNA <213> M11L primer <400> 25 catcagcggt ctagtaacga tagtaccacg gagcggaaca ttcagcagga 50 <210> 26 <211> 60 <212> DNA <213> M12L primer <400> 26 accacggata atgacggcac caataaccag ttcagattcc atcagcggtc tagtaacgat 60                                                                           60 <210> 27 <211> 31 <212> DNA <213> M13L primer <400> 27 atacgcaaat gaccacggat aatgacggca c 31 <210> 28 <211> 45 <212> DNA <213> M14L primer <400> 28 aacgacccag agagtgacca gccatacgca aatgaccacg gataa 45 <210> 29 <211> 51 <212> DNA <213> M15L primer <400> 29 tacagtgatt tcctttggca gatccttaat atcgcaacga cccagagagt g 51 <210> 30 <211> 57 <212> DNA <213> M16L primer <400> 30 ccgagtttat agtaagacag agtacgagaa gtggctacag tgatttcctt tggcaga 57 <210> 31 <211> 58 <212> DNA <213> M17L primer <400> 31 cgaagcccga atcagttccc acacgttgcg atgcaccgag tttatagtaa gacagagt 58 <210> 32 <211> 58 <212> DNA <213> M18L primer <400> 32 cagtttatag ttgccaatac gataacgatt atacgcagcg aagcccgaat cagttccc 58 <210> 33 <211> 62 <212> DNA <213> M19L primer <400> 33 gagagcgatg ttgtcattag agcctgcgtg gtcggtgttc agtttatagt tgccaatacg 60 at 62 <210> 34 <211> 34 <212> DNA <213> M20L primer <400> 34 tcactgaacg aggagagcga tgttgtcatt agag 34 <210> 35 <211> 26 <212> DNA <213> SpikeCTup-EcoRV primer <400> 35 gatatctccg gaatcaatgc gagcgt 26 <210> 36 <211> 35 <212> DNA <213> DI-1U / BspE I primer <400> 36 tccggaatca atgcgagcgt agtgaacatc cagaa 35 <210> 37 <211> 48 <212> DNA <213> DI-1L primer <400> 37 gcaacttcat tcaaacggtc aatctctttc tggatgttca ctacgctc 48 <210> 38 <211> 45 <212> DNA <213> DI-2L primer <400> 38 atcagagatt cattcagatt tttagcaact tcattcaaac ggtca 45 <210> 39 <211> 51 <212> DNA <213> DI-3L primer <400> 39 tcatatttgc cgagttcttg gaggtcaatc agagattcat tcagattttt a 51 <210> 40 <211> 43 <212> DNA <213> DI-4L primer <400> 40 caaggccatt taatgtattg ctcatatttg ccgagttctt gga 43 <210> 41 <211> 50 <212> DNA <213> DI-5L primer <400> 41 acctgcgatg aaacccaacc agacatacca aggccattta atgtattgct 50 <210> 42 <211> 50 <212> DNA <213> DI-6L primer <400> 42 cagaatagtc accataacga tagcgatgag acctgcgatg aaacccaacc 50 <210> 43 <211> 50 <212> DNA <213> DI-7L primer <400> 43 agagcaacaa gaagtcatac aacacagcag aatagtcacc ataacgatag 50 <210> 44 <211> 50 <212> DNA <213> DI-8L primer <400> 44 accacaagaa cacgcacctt tcagacaaga gcaacaagaa gtcatacaac 50 <210> 45 <211> 50 <212> DNA <213> DI-9L primer <400> 45 gaatcatcct catcaaactt acaacaagaa ccacaagaac acgcaccttt 50 <210> 46 <211> 49 <212> DNA <213> DI-10L primer <400> 46 gcttcacacc cttcagaact ggctcagaat catcctcatc aaacttaca 49 <210> 47 <211> 35 <212> DNA <213> DI-11L primer <400> 47 cctaggtata atgcagcttc acacccttca gaact 35 <210> 48 <211> 27 <212> DNA <213> SpikeCTdn-BstB I primer <400> 48 ttcgaactag gtataatgca gcttcac 27 <210> 49 <211> 4800 <212> DNA <213> CoVLP cloning vector <400> 49 gacggatcgg gagatcttca atattggcca ttagccatat tattcattgg ttatatagca 60 taaatcaata ttggctattg gccattgcat acgttgtatc tatatcataa tatgtacatt 120 tatattggct catgtccaat atgaccgcca tgttggcatt gattattgac tagttattaa 180 tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 240 cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 300 atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggag 360 tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtccgccc 420 cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 480 cgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg 540 cggttttggc agtacaccaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 600 ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca 660 aaatgtcgta acaactgcga tcgcccgccc cgttgacgca aatgggcggt aggcgtgtac 720 ggtgggaggt ctatataagc agagctcgtt tagtgaaccg tcagatcact agaagcttta 780 ttgcggtagt ttatcacagt taaattgcta acgcagtcag tgcttctgac acaacagtct 840 cgaacttaag ctgcagtgac tctcttaagg tagccttgca gaagttggtc gtgaggcact 900 gggcaggtaa gtatcaaggt tacaagacag gtttaaggag accaatagaa actgggcttg 960 tcgagacaga gaagactctt gcgtttctga taggcaccta ttggtcttac tgacatccac 1020 tttgcctttc tctccacagg tgtccactcc cagttcaatt acagctctta aggctagagt 1080 acttaatacg actcactata ggctagcgct accggactca gatcatggca gataacggca 1140 ctattactgt ggaggaactg aaacaactgc tggaacaatg gaacctcgta atcggctttc 1200 tctttctggc ttggattatg ttgttacagt ttgcgtattc taatcgtaac cgtttcctct 1260 acattattaa gctcgttttc ctgtggttgt tgtggcctgt aactcttgct tgctttgtgc 1320 ttgctgctgt ctatcgtatc aactgggtta ctggtggtat tgctatcgct atggcttgta 1380 ttgtaggctt gatgtggctg tcttatttcg ttgcttcttt ccgtctgttt gctcgtactc 1440 gctctatgtg gtcctttaat cctgagacta atatcctgct gaatgttccg ctccgtggta 1500 ctatcgttac tagaccgctg atggaatctg aactggttat tggtgccgtc attatccgtg 1560 gtcatttgcg tatggctggt cactctctgg gtcgttgcga tattaaggat ctgccaaagg 1620 aaatcactgt agccacttct cgtactctgt cttactataa actcggtgca tcgcaacgtg 1680 tgggaactga ttcgggcttc gctgcgtata atcgttatcg tattggcaac tataaactga 1740 acaccgacca cgcaggctct aatgacaaca tcgctctcct cgttcagtga aatcactagt 1800 gcggccgcag gtaccgagct cggatccgcc cctctccctc ccccccccct aacgttactg 1860 gccgaagccg cttggaataa ggccggtgtg cgtttgtcta tatgttattt tccaccatat 1920 tgccgtcttt tggcaatgtg agggcccgga aacctggccc tgtcttcttg acgagcattc 1980 ctaggggtct ttcccctctc gccaaaggaa tgcaaggtct gttgaatgtc gtgaaggaag 2040 cagttcctct ggaagcttct tgaagacaaa caacgtctgt agcgaccctt tgcaggcagc 2100 ggaacccccc acctggcgac aggtgcctct gcggccaaaa gccacgtgta taagatacac 2160 ctgcaaaggc ggcacaaccc cagtgccacg ttgtgagttg gatagttgtg gaaagagtca 2220 aatggctctc ctcaagcgta ttcaacaagg ggctgaagga tgcccagaag gtaccccatt 2280 gtatgggatc tgatctgggg cctcggtgca catgctttac atgtgtttag tcgaggttaa 2340 aaaaacgtct aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgatgat 2400 aatatggcca caaccatggc atactctttt gtgtctgagg aaactggcac tctgatcgtg 2460 aactctgtac tgctgtttct cgcttttgtg gtattcctgc tggtcactct cgctatcctc 2520 actgctcttc gtctgtgtgc ctactgttgt aatatcgtga acgtgtctct ggttaagcct 2580 actgtgtatg tgtattctcg tgtgaaaaat ctcaattctt ctgaaggagt tcccgatctg 2640 ctggtctaga gggcccgttt aaacccgctg atcagcctcg actgtgcctt ctagttgcca 2700 gccatctgtt gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac 2760 tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat 2820 tctggggggt ggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca 2880 tgctggggat gcggtgggct ctatggcttc tgaggcggaa agaaccagct ggggctctag 2940 ggggtatccc cacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 3000 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 3060 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 3120 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 3180 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 3240 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 3300 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 3360 acaaaaattt aacgcgaatt aattctgtgg aatgtgtgtc agttagggtg tggaaagtcc 3420 ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc agcaaccagg 3480 tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aaagcatgca tctcaattag 3540 tcagcaacca tagtcccgcc cctaactccg cccatcccgc ccctaactcc gcccagttcc 3600 gcccattctc cgccccatgg ctgactaatt ttttttattt atgcagaggc cgaggccgcc 3660 tctgcctctg agctattcca gaagtagtga ggaggctttt ttggaggcct aggcttttgc 3720 aaaaagctcc cgggagcttg tatatccatt ttcggatctg atcaagagac aggatgacta 3780 gtgattgata tctccggaat caatgcgagc gtagtgaaca tccagaaaga gattgaccgt 3840 ttgaatgaag ttgctaaaaa tctgaatgaa cctctgattg acctccaaga actcggcaaa 3900 tatgagcaat acattaaatg gccttggtat gtctggttgg gtttcatcgc aggtctcatc 3960 gctatcgtta tggtgactat tctgctgtgt tgtatgactt cttgttgctc ttgtctgaaa 4020 ggtgcgtgtt cttgtggttc ttgttgtaag tttgatgagg atgattctga gccagttctg 4080 aagggtgtga agctgcatta tacctagttc gaaatgaccg accaagcgac gcccaacctg 4140 ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt 4200 ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcgcc 4260 caccccaact tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat 4320 ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat 4380 gtatcttatc atgtctgtat accgtcgacc tctagctaga gcttggcgta atcatggtca 4440 tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 4500 agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 4560 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 4620 caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac 4680 tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata 4740 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 4800                                                                         4800  

Claims (18)

ⅰ) 코로나바이러스의 막 단백질 유전자(M 단백질 유전자), 코로나바이러스의 외피 단백질 유전자(E 단백질 유전자) 및 내부 리보솜 도입 사이트(IRES) 서열을 포함하는 제1 전사 유닛으로서, 상기 IRES는 상기 막 단백질 유전자와 상기 외피 단백질 유전자의 연접부위로 삽입되는 제1 전사 유닛;Iii) a first transcription unit comprising a membrane protein gene (M protein gene) of coronavirus, an envelope protein gene (E protein gene) of coronavirus and an internal ribosomal introduction site (IRES) sequence, wherein the IRES is the membrane protein gene A first transcription unit inserted into a junction of the envelope protein gene; ⅱ) 상기 막 단백질 유전자에 결합되는 제1 진핵 프로모터로서, 상기 M 단백질 유전자의 상부에 위치하고, 상기 제1 전사 유닛의 발현을 유도하는 제1 진핵 프로모터;Ii) a first eukaryotic promoter coupled to said membrane protein gene, said first eukaryotic promoter positioned above said M protein gene and inducing expression of said first transcription unit; ⅲ) 코로나바이러스의 스파이크CT 유전자 및 클래스 I의 바이러스성 융합 단백질 유전자의 인-프레임 삽입 또는 클로닝을 위한 다수의 클로닝 싸이트(MCS)를 포함하는 제2 전사 유닛으로서, 상기 MCS는 스파이크CT 유전자의 시작부분에 위치하고, 제한 효소 절단 싸이트를 가지고 있는 제2 전사 유닛; 및Iii) a second transcription unit comprising a multiplicity of cloning sites (MCS) for in-frame insertion or cloning of the spike CT gene of coronavirus and the viral fusion protein gene of class I, wherein the MCS is the beginning of the spike CT gene A second transcription unit located in the portion and having a restriction enzyme cleavage site; And ⅳ) 상기 스파이크CT 유전자에 작동하도록 결합된 제2 진핵 프로모터로서, 상기 스파이크CT 유전자의 상부에 위치하고 제2 전사 유닛의 발현을 유도하는 제2 진핵 프로모터를 포함하되,Iii) a second eukaryotic promoter coupled to act on said SpikeCT gene, said second eukaryotic promoter located on top of said SpikeCT gene and inducing expression of a second transcriptional unit, 상기 제1 진핵 프로모터의 전자 활성은 상기 제2 진핵 프로모터보다 강력한 발현 벡터로서, The electronic activity of the first eukaryotic promoter is a stronger expression vector than the second eukaryotic promoter, DNA 백신 후보군으로서,클래스 I의 바이러스성 융합 단백질 유전자를 클로닝하기 위한 발현 벡터.An expression vector for cloning a viral fusion protein gene of class I as a DNA vaccine candidate. 제1 항에 있어서,According to claim 1, 상기 코로나바이러스는 돼지, 인간 또는 조류 코로나바이러스인 발현 벡터.The coronavirus is a pig, human or avian coronavirus expression vector. 제1 항에 있어서,According to claim 1, 상기 코로나바이러스는 돼지 TGEV 코로나바이러스, 인간 229E 코로나 바이러스 또는 인간 SARS 바이러스인 발현 벡터.The coronavirus is a swine TGEV coronavirus, human 229E corona virus or human SARS virus. 제1 항에 있어서,According to claim 1, 상기 외피 단백질 유전자는 서열 번호 1에서 표시된 서열을 가지는 발현 벡터.The coat protein gene is an expression vector having the sequence shown in SEQ ID NO: 1. 제1 항에 있어서,According to claim 1, 상기 막 단백질 유전자는 서열 번호 2에서 표시된 서열을 가지는 발현 벡터. The membrane protein gene is an expression vector having the sequence shown in SEQ ID NO: 2. 제1 항에 있어서,According to claim 1, 상기 스파이크CT 유전자는 서열 번호 3에서 표시된 서열을 가지는 발현 벡터.The Spike CT gene has an sequence shown in SEQ ID NO: 3. 제1 항에 있어서,According to claim 1, 숙주 세포 내에 전파 플라스미드를 위한 복제 기점을 더 포함하는 발현 벡터.An expression vector further comprising an origin of replication for the propagation plasmid in the host cell. 제1 항에 있어서,According to claim 1, 항생제-내성이 있는 유전자를 선택 표지로 더 포함하는 발현 벡터.An expression vector further comprising an antibiotic-resistant gene as a selection marker. 제1 항에 있어서,According to claim 1, 제1 및 제2 전사 유닛은 폴리A 시그널을 가지는 발현 벡터.An expression vector wherein the first and second transcription units have a polyA signal. 제9 항에 있어서,The method of claim 9, 상기 폴리A 시그널은 BGH 폴리A 시그널인 발현 벡터.Wherein said polyA signal is a BGH polyA signal. 제1 항에 있어서,According to claim 1, 상기 벡터는 서열 번호 49에서 표시된 서열을 가지는 발현 벡터.Said vector having the sequence set forth in SEQ ID NO: 49; 제1 항에 있어서, According to claim 1, 상기 스파이크CT 유전자는 코로나바이러스의 스파이크 단백질의 트랜스막 세그먼트와 나란한 방향족 잔류기가 풍부한 영역의 상부에 위치하는 C-말단 헵타드 리핏을 인코딩하는 발현 벡터.Wherein said Spike CT gene encodes a C-terminal heptad refit located on top of a region rich in aromatic residues parallel to the transmembrane segment of a spike protein of coronavirus. 제1 항에 있어서,According to claim 1, 상기 다수의 클로닝 사이트는 SmaI, BsaB I, EcoR V 및 BspE I로 이루어진 군에서 선택된 제한 사이트를 포함하는 발현 벡터. Wherein said plurality of cloning sites comprises a restriction site selected from the group consisting of SmaI, BsaB I, EcoR V and BspE I. 제1 항에 있어서,According to claim 1, 클래스 I 바이러스성 융합 단백질 유전자는 HIV의 gp160, 인플루엔자 바이러스의 HA 및 사스 바이러스의 스파이크로 이루어진 군에서 선택된 발현 벡터.The class I viral fusion protein gene is an expression vector selected from the group consisting of gp160 of HIV, HA of influenza virus, and spike of SARS virus. 제1 항에 있어서,According to claim 1, 상기 제1 진핵 프로모터는 CMV, SV40, RSV, HIV-1 LTR, 하이브리드 베타-액틴/CMV 프로모터 인핸서, 근육 특이 데스민, 크레아틴 키나제, 베타-액틴 프로모터, EF1알파, 유비퀴틴 프로모터로 이루어진 군에서 선택된 발현 벡터.The first eukaryotic promoter is selected from the group consisting of CMV, SV40, RSV, HIV-1 LTR, hybrid beta-actin / CMV promoter enhancer, muscle specific desmin, creatine kinase, beta-actin promoter, EF1alpha, ubiquitin promoter vector. 제1 항에 있어서,According to claim 1, 제1 진핵 프로모터는 pCMV, 하이브리드 베타-액틴/CMV 프로모터 인핸서 및 베타-액틴 프로모터로 이루어진 군에서 선택된 발현 벡터.The first eukaryotic promoter is an expression vector selected from the group consisting of pCMV, hybrid beta-actin / CMV promoter enhancer and beta-actin promoter. 제1 항에 있어서,According to claim 1, 상기 제2 진핵 프로모터는 CMV, SV40, RSV, HIV-1 LTR, 하이브리드 베타-액틴/CMV 프로모터 인핸서, 근육-특이 데스민, 크레아틴 키나제, 베타-액틴 프로모 터, EF1알파, 유비퀴틴 프로모터로 이루어진 군에서 선택된 발현 벡터.The second eukaryotic promoter in the group consisting of CMV, SV40, RSV, HIV-1 LTR, hybrid beta-actin / CMV promoter enhancer, muscle-specific desmin, creatine kinase, beta-actin promoter, EF1alpha, ubiquitin promoter Selected Expression Vector. 제1 항에 있어서,According to claim 1, 상기 제2 진핵 프로모터는 pCMV, SV40, 베타-액틴 및 EF1알파 프로모터로 이루어진 군으로부터 선택된 발현 벡터.The second eukaryotic promoter is an expression vector selected from the group consisting of pCMV, SV40, beta-actin and EF1 alpha promoter.
KR1020077014517A 2004-11-26 2004-11-26 An expression vector encoding coronavirus-like particle KR100915980B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077014517A KR100915980B1 (en) 2004-11-26 2004-11-26 An expression vector encoding coronavirus-like particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020077014517A KR100915980B1 (en) 2004-11-26 2004-11-26 An expression vector encoding coronavirus-like particle

Publications (2)

Publication Number Publication Date
KR20070117537A true KR20070117537A (en) 2007-12-12
KR100915980B1 KR100915980B1 (en) 2009-09-10

Family

ID=39142749

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077014517A KR100915980B1 (en) 2004-11-26 2004-11-26 An expression vector encoding coronavirus-like particle

Country Status (1)

Country Link
KR (1) KR100915980B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250738A (en) * 2020-09-02 2021-01-22 兰州大学 Preparation, purification and identification method of severe acute respiratory syndrome coronavirus 2 virus-like particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU228121B1 (en) 2001-05-17 2012-11-28 Stichting Tech Wetenschapp Corona-virus-like particles comprising functionally deleted genomes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250738A (en) * 2020-09-02 2021-01-22 兰州大学 Preparation, purification and identification method of severe acute respiratory syndrome coronavirus 2 virus-like particles
CN112250738B (en) * 2020-09-02 2023-05-12 兰州大学 Preparation, purification and identification method of severe acute respiratory syndrome coronavirus 2 virus-like particles

Also Published As

Publication number Publication date
KR100915980B1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
AU2018211212B2 (en) Treatment of amd using AAV sFlt-1
CN110656090B (en) Expression plasmid, cell strain for packaging capacity-increased second-generation adenovirus and application of cell strain
KR20180135441A (en) A novel immunostimulatory vector system
KR102563030B1 (en) Recombinant cell surface capture proteins
US10695417B2 (en) Human adenovirus serotype 5 vectors containing E1 and E2B deletions encoding the ebola virus glycoprotein
WO2006099019A2 (en) Methods and composition related to in vivo imaging of gene expression
Guldner et al. Human anti-p68 autoantibodies recognize a common epitope of U1 RNA containing small nuclear ribonucleoprotein and influenza B virus.
KR20020013537A (en) Compositions And Methods For Identifying Antigens Which Elicit An Immune Response
US20170044217A1 (en) Prophylactic vaccine against egg drop syndrome (eds)
JP2023025182A (en) Engineered multicomponent systems for identification and characterization of t cell receptors and t cell antigens
KR20210119900A (en) Immunologically cloaking anti-tumor adenovirus
KR20190076992A (en) A manipulated multicomponent system for the identification and characterization of T-cell receptors, T-cell antigens and their functional interactions
KR100915980B1 (en) An expression vector encoding coronavirus-like particle
KR20200107990A (en) Constructs containing nerve survival factors and uses thereof
CN101180082A (en) Remedy for disease associated with apoptotic degeneration in ocular cell tissue with the use of SIV-PEDF vector
CN110225765B (en) Attenuated swine influenza vaccines and methods of making and using the same
CN101160139A (en) Therapeutic agent for disease with apoptotic degeneration in eye tissue cell containing PEDF and FGF2
AU2004325189B2 (en) An expression vector encoding coronavirus-like particles
KR20230065640A (en) Pseudo foamy virus produced by 2-plasmid system and use thereof
MXPA02006313A (en) Improvements in nucleic acid vaccination.
KR102067487B1 (en) Novel cell penetrating peptide comprising beta-defensin dimer and uses thereof
KR20240027571A (en) Chimeric adenovirus vectors
RU2761904C1 (en) Drug application for induction of specific immunity against severe acute respiratory syndrome virus sars-cov-2 in children
US20050282279A1 (en) Expression vector encoding coronavirus-like particle
CN117836420A (en) Recombinant TERT-encoding viral genome and vector

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120808

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130808

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee