KR20070102280A - Structure of electrode group for large capacity nickel/metal hydryde secondary battery - Google Patents

Structure of electrode group for large capacity nickel/metal hydryde secondary battery Download PDF

Info

Publication number
KR20070102280A
KR20070102280A KR1020060034213A KR20060034213A KR20070102280A KR 20070102280 A KR20070102280 A KR 20070102280A KR 1020060034213 A KR1020060034213 A KR 1020060034213A KR 20060034213 A KR20060034213 A KR 20060034213A KR 20070102280 A KR20070102280 A KR 20070102280A
Authority
KR
South Korea
Prior art keywords
electrode plate
secondary battery
nickel
positive electrode
storage alloy
Prior art date
Application number
KR1020060034213A
Other languages
Korean (ko)
Other versions
KR100790563B1 (en
Inventor
노남종
양준현
양상기
김영록
김세강
Original Assignee
에너그린(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에너그린(주) filed Critical 에너그린(주)
Priority to KR1020060034213A priority Critical patent/KR100790563B1/en
Publication of KR20070102280A publication Critical patent/KR20070102280A/en
Application granted granted Critical
Publication of KR100790563B1 publication Critical patent/KR100790563B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A structure of an electrode plate assembly for a large capacity nickel/metal storage alloy secondary battery is provided to prevent the pollution in a battery container and to improve the low temperature discharge performance. A structure of an electrode plate assembly for a large capacity nickel/hydrogen storage alloy secondary battery includes an electrode plate assembly comprising a plurality of positive electrode plates(10) connected to a positive electrode pole(30), a plurality of negative electrode plates(20) connected to a negative electrode pole(40), and separating membranes(50) installed at all space between the positive electrode plate and the negative electrode plate, wherein the electrode plate assembly is wrapped by a contractible tube, and the positive electrode plate and the negative electrode plate have a pocket type or a paste type.

Description

대용량 니켈/수소저장합금 이차전지의 극판군 구조{STRUCTURE OF ELECTRODE GROUP FOR LARGE CAPACITY NICKEL/METAL HYDRYDE SECONDARY BATTERY}STRUCTURE OF ELECTRODE GROUP FOR LARGE CAPACITY NICKEL / METAL HYDRYDE SECONDARY BATTERY}

도 1은 본 발명에 따른 대용량 니켈/수소저장합금 이차전지의 극판군 구조를 나타내는 사시도,1 is a perspective view showing the electrode plate group structure of a large capacity nickel / hydrogen storage alloy secondary battery according to the present invention,

도 2는 종래의 대용량 니켈/수소저장합금 이차전지의 극판군 구조를 나타내는 사시도이다.FIG. 2 is a perspective view illustrating a structure of a plate group of a conventional high capacity nickel / hydrogen storage alloy secondary battery. FIG.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

10: 양극판 20: 음극판10: positive electrode plate 20: negative electrode plate

30: 양극주 30a: 단자30: anode column 30a: terminal

40: 음극주 40a: 단자40: cathode column 40a: terminal

50: 분리막 60: 밴드50: separator 60: band

70: 전조 80: 수축튜브70: precursor 80: shrink tube

90: 안전조절부90: safety control unit

본 발명은 극판군 구조에 관한 것으로서, 더욱 상세하게는 양극판과 음극판 및 분리막 등으로 이루어진 극판군에 있어 전조의 내부 오염현상을 방지하고 저온(-18℃) 방전성능을 향상시킨 대용량 니켈/수소저장합금 이차전지의 극판군 구조에 관한 것이다.The present invention relates to a structure of the electrode plate group, and more particularly, a large-capacity nickel / hydrogen storage that prevents internal contamination of the precursor and improves low-temperature (-18 ° C) discharge performance in the electrode plate group including the positive plate, the negative plate, and the separator. It is related with the electrode plate group structure of an alloy secondary battery.

일반적으로 이차전지(二次電池)란 충전시켜 다시 쓸 수 있는 전지를 말하며, 납축전지, 알칼리축전지, 기체전지, 리튬이온전지, 니켈/카드뮴전지, 니켈/수소저장합금전지, 폴리머전지 등이 여기에 속한다.In general, a secondary battery means a battery that can be recharged and used again. Lead batteries, alkaline batteries, gas batteries, lithium ion batteries, nickel / cadmium batteries, nickel / hydrogen storage alloy batteries, polymer batteries, etc. Belongs to.

이것은 에너지 변환이 이루어진 뒤 다시 충전하여 계속 사용할 수 있는 재충전식 전지로, 전류의 흐름에 의해 물질이 산화, 환원되고 물질의 산화, 환원에 의해서 전기가 생성되는 과정이 반복적으로 이루어질 수 있게 재료를 조합시킨 것이다.This is a rechargeable battery that can be recharged and used continuously after energy conversion. It combines materials so that the material is oxidized and reduced by the flow of electric current and electricity is generated by oxidation and reduction of the material. It is.

이 중에서 니켈/수소저장합금(Ni/MH) 이차전지는 경박 단소형 축전지로 제작하는 경우에 좁은 공간에도 용이하게 설치할 수 있으므로 공간활용도가 우수해서 대용량 비상전원 등 산업현장의 다양한 전원환경에 적합하다. Among these, nickel / hydrogen storage alloy (Ni / MH) secondary batteries can be easily installed in narrow spaces when they are made of light and thin short-sized storage batteries, so they have excellent space utilization and are suitable for various power environments in industrial sites such as large capacity emergency power supplies. .

또한, 니켈/수소저장합금 이차전지는 납과 카드뮴의 중금속을 대체하고 가스 재결합 반응으로 인한 유독가스 발생을 방지하며 제조시 분진발생을 억제하기 때문에 친환경적이고, 표준용량 대비 에너지 밀도가 높으며 고출력을 낼 수 있고 다양한 부하에 응용이 가능한 장점이 있다.In addition, nickel / hydrogen storage alloy secondary batteries are environmentally friendly, have high energy density and high output compared to standard capacity because they replace heavy metals of lead and cadmium, prevent the generation of toxic gases due to gas recombination reactions, and suppress dust generation during manufacturing. It can be applied to various loads.

니켈/수소저장합금 이차전지의 금속수소화합물(MH)은 합금의 전위를 변화시킴에 따라 수소의 저장과 방출이 가역적으로 반복가능하게 한 것으로, 기본적으로, 양극과 음극에서 아래의 화학식 1~3과 같은 전기화학 반응을 일으키게 된다.The metal hydrogen compound (MH) of the nickel / hydrogen storage alloy secondary battery is reversibly repeatable for storing and releasing hydrogen as the potential of the alloy is changed. It causes an electrochemical reaction such as

Ni(OH)2 + OH- → NiOOH + H2O + e_ --- 화학식 1,Ni (OH) 2 + OH- → NiOOH + H 2 O + e _ --- Formula 1,

M + H2O → MH + OH_ (M은 수소저장합금) --- 화학식 2,M + H 2 O → MH + OH _ (M is hydrogen storage alloy) --- Formula 2,

Ni(OH)2 + M ↔ NiOOH + MH --- 화학식 3,Ni (OH) 2 + M ↔ NiOOH + MH --- Formula 3,

상기 화학식 1은 양극인 니켈 전극에서의 반응을, 화학식 2는 음극인 수소전극에서의 반응을, 화학식 3은 전지 전체의 충방전 반응을 각각 나타낸다.Formula 1 represents a reaction at a nickel electrode as a positive electrode, Formula 2 represents a reaction at a hydrogen electrode as a negative electrode, and Formula 3 represents a charge and discharge reaction of the entire battery.

이렇게, 음극으로 사용되는 수소저장합금(M)은 충전시에 양극 활물질에서 생긴 수소를 흡수하고, 방전시에는 흡수한 수소를 방출하면서 합금표면으로부터 전기화학적 반응이 일어나 전기를 발생시킨다.Thus, the hydrogen storage alloy (M) used as the negative electrode absorbs the hydrogen generated from the positive electrode active material during charging, and during discharge, the electrochemical reaction is generated from the surface of the alloy while releasing the absorbed hydrogen to generate electricity.

한편, 무보수 밀폐형(Sealed Type)과 달리 개방형(Vented Type) 니켈/수소저장합금 축전지의 경우 전해액의 높이 측정으로 축전지의 상태를 알 수 있고, 전해액 감소시 전해액을 보충하여 축전지의 성능을 복원시킬 수 있다.On the other hand, unlike the maintenance-free sealed type (Vented type) nickel / hydrogen storage alloy storage battery can determine the state of the battery by measuring the height of the electrolyte, and can restore the performance of the battery by replenishing the electrolyte when the electrolyte decreases have.

그런데, 종래의 개방형 니켈/수소저장합금 이차전지는 양극판, 음극판 및 분리막 등 전체의 그룹인 극판군(Electrode Group)을 조립한 후 그대로 전조 안에 안착, 밀봉하기 때문에 극판에서 용출된 활물질을 함유한 전해액이 전조에 접촉하여 용출물이 부착, 오염됨으로써 외부에서 전해액의 높이를 파악할 수 없다.However, in the conventional open nickel / hydrogen storage alloy secondary battery, an electrolyte solution containing an active material eluted from the electrode plate is assembled and assembled into an electrode plate after assembling the electrode group, which is a whole group such as a positive electrode plate, a negative electrode plate, and a separator. The eluate adheres and contaminates in contact with this roll, so that the height of the electrolyte cannot be grasped from the outside.

또한, 저온(0℃이하)에서 축전지 사용시 저온의 전해액과 극판이 바로 접촉 반응함으로써, 내부저항의 증가로 인해 방전용량의 감소를 초래하는 문제점이 있다.In addition, when the battery is used at low temperatures (0 ° C. or less), the low temperature electrolyte and the electrode plate react directly to each other, resulting in a decrease in discharge capacity due to an increase in internal resistance.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 극판에서 용출된 활물질이 전해액에 함유되지 않으므로 전조의 내부가 오염되지 않아서 외부에서 전해액의 높이를 파악할 수 있으며, 저온에서 차가워진 전해액이 극판과 직접 반응하지 않기 때문에 내부저항의 급격한 증가를 막아서 방전용량이 크게 감소되지 않는 대용량 니켈/수소저장합금 이차전지의 극판군 구조를 제공하는데 그 목적이 있다.The present invention has been made in order to solve the problems of the prior art as described above, since the active material eluted from the electrode plate is not contained in the electrolyte, the interior of the precursor is not contaminated, so that the height of the electrolyte can be grasped from the outside, and cooled at low temperatures. It is an object of the present invention to provide a pole plate group structure of a large-capacity nickel / hydrogen storage alloy secondary battery in which the discharge capacity is not greatly reduced because the electrolyte does not directly react with the pole plate.

이와 같은 목적을 달성하기 위한 본 발명의 대용량 니켈/수소저장합금 이차전지의 극판군 구조는,The pole plate group structure of the large-capacity nickel / hydrogen storage alloy secondary battery of the present invention for achieving the above object,

양극주에 연결되는 여러 개의 양극판과 음극주에 연결되는 여러 개의 음극판 및 양극판과 음극판의 사이마다 설치되는 분리막 등으로 이루어진 극판군을 구비하는 니켈/수소저장합금 이차전지의 극판군 구조에 있어서,In the pole plate group structure of the nickel / hydrogen storage alloy secondary battery having a pole plate group consisting of a plurality of positive electrode plates connected to the positive electrode and a plurality of negative electrode plates connected to the negative electrode and a separator installed between the positive electrode and negative electrode plate,

상기 극판군은 수축튜브에 의해 랩핑(Wrapping)되고, 양극판과 음극판은 포켓(Pocket) 형식 또는 페이스트(Paste) 형식인 것을 특징으로 한다.The electrode plate group is wrapped by a shrink tube, and the positive electrode plate and the negative electrode plate are in a pocket type or a paste type.

그리고, 상기 이차전지는 전해액이 과량으로 설계된 침수(Flooded) 형식인 것을 특징으로 한다.In addition, the secondary battery is characterized in that the flooded (Flooded) type of the electrolyte is designed in excess.

또한, 상기 수축튜브는 알칼리에 화학적으로 안정한 합성수지로 이루어지는 것을 특징으로 한다.In addition, the shrink tube is characterized in that made of synthetic resin chemically stable to alkali.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하 면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 대용량 니켈/수소저장합금 이차전지의 극판군 구조를 나타내는 사시도이고, 도 2는 종래의 대용량 니켈/수소저장합금 이차전지의 극판군 구조를 나타내는 사시도이다.1 is a perspective view showing the electrode plate group structure of a large capacity nickel / hydrogen storage alloy secondary battery according to the present invention, Figure 2 is a perspective view showing the electrode plate group structure of a conventional large capacity nickel / hydrogen storage alloy secondary battery.

본 발명의 대용량 니켈/수소저장합금 이차전지의 극판군 구조를 설명하기에 앞서, 도 2에서 보는 바와 같이 일반적인 포켓 타입(Pocket Type) 대용량 니켈/수소저장합금 이차전지의 극판군 구조를 아래에서 간략히 살펴본다.Prior to explaining the electrode plate group structure of the high-capacity nickel / hydrogen storage alloy secondary battery of the present invention, as shown in FIG. 2, the electrode plate group structure of a general pocket type high capacity nickel / hydrogen storage alloy secondary battery is briefly described below. Take a look.

양극판(10)은 여러 개의 미세한 구멍이 뚫린 박막의 강판으로 이루어진 포켓(Pocket)에 수산화니켈(Ni(OH)2) 활물질을 충진한 다음, 니켈도금된 강판에 여러 개의 포켓을 끼워 넣어 극판을 구성한다.The positive electrode plate 10 is filled with a nickel hydroxide (Ni (OH) 2 ) active material in a pocket (pocket) made of a thin steel sheet with a number of fine holes, and then inserted a plurality of pockets in a nickel plated steel sheet to form a pole plate do.

그리고, 전도성을 양호하게 보전하기 위해 니켈도금된 강판과 포켓을 스폿(Spot)용접하고 전체를 프레싱(Pressing)하여 완성한다.Then, in order to maintain good conductivity, the spot is welded to the nickel plated steel sheet and the pocket, and the whole is pressed.

음극판(20)은 상기 양극판(10)과 동일한 구조이며, 다만 활물질로는 수소저장합금(MH Alloy)이 사용된다.The negative electrode plate 20 has the same structure as the positive electrode plate 10, but a hydrogen storage alloy (MH Alloy) is used as the active material.

이에 따라, 양극판(10) 및 음극판(20)이 집전체를 형성하면서 양극판(10)에 형성된 기공들에는 도전재 화합물이 첨가된 수산화니켈이 활물질로서 충진되고, 음극판(20)에 형성된 기공들에는 수소저장합금(MH Alloy)이 충진되는 것이다.Accordingly, while the positive electrode plate 10 and the negative electrode plate 20 form a current collector, pores formed in the positive electrode plate 10 are filled with nickel hydroxide containing an electrically conductive material compound as an active material, and the pores formed in the negative electrode plate 20 The hydrogen storage alloy (MH Alloy) is filled.

다음으로, 극판군을 형성하기 위해 양극판(10)과 음극판(20)의 사이마다 수백㎛ ~ 2mm 정도로 얇은 두께를 가진 다공성의 판재인 폴리 프로필렌(PP) 재질의 분리막(Separator)(50)을 삽입한다.Next, a separator 50 made of polypropylene (PP), which is a porous plate material having a thickness of several hundred μm to 2 mm, is inserted between the positive electrode plate 10 and the negative electrode plate 20 to form the electrode plate group. do.

그리고, 원하는 용량(대용량)에 맞게 양극판(10)과 음극판(20) 여러 개를 교대로 적층한 후 양극판(10)은 양극주(30)에 연결하고 음극판(20)은 음극주(40)에 연결하며, 기계적인 고정을 위해 폴리프로필렌(PP) 밴드(Band)(60)로 그 외부를 감아서 묶는다.Then, after stacking several positive electrode plates 10 and negative electrode plates 20 in accordance with a desired capacity (large capacity), the positive electrode plate 10 is connected to the positive electrode column 30, the negative electrode plate 20 to the negative electrode column 40 It is connected and wrapped around the outside with a polypropylene (PP) band (60) for mechanical fixation.

마지막으로, 상기 양극판(10), 음극판(20) 및 분리막(50) 등으로 이루어진 극판군을 합성수지(ABS) 재질의 전조(70)에 안착시키고, 일정 전해액(KOH+LiOH+Di)을 주입한 다음 전조(70)의 덮개를 고정, 밀봉한 후 전기활성화 작업을 함으로써 전지제조를 완료한다.Finally, the electrode plate group consisting of the positive electrode plate 10, the negative electrode plate 20, the separator 50, and the like is seated on the precursor 70 made of synthetic resin (ABS), and a predetermined electrolyte solution (KOH + LiOH + Di) is injected. Next, the battery manufacturing is completed by fixing and sealing the cover of the roll 70 and performing electric activation.

여기서, 상기 분리막(50)은 극판간의 접촉으로 인한 단락을 방지하고 전조(70)의 내부에 주입되는 전해액을 유지시켜 주며, 양극주(30)와 음극주(40)는 양극판(10) 및 음극판(20)과 전조의 양/음극단자를 전기적으로 연결시킨다.Here, the separation membrane 50 prevents a short circuit due to contact between the pole plates and maintains the electrolyte injected into the precursor 70. The anode column 30 and the cathode column 40 are the anode plate 10 and the cathode plate. (20) is electrically connected to the positive / negative terminal of the precursor.

도면에서 미설명 부호는 니켈도금 단자(30a,40a), 내압 안전조절부(90)이다.In the drawings, reference numerals denote nickel-plated terminals 30a and 40a and the breakdown voltage safety control unit 90.

이에 더하여, 본 발명의 대용량 니켈/수소저장합금 이차전지의 극판군 구조는 상기 폴리프로필렌(PP) 밴드(60)로 가압, 지지하여 극판군을 형성하는 과정을 마친 다음에, 양극판(10), 음극판(20) 및 분리막(30) 등으로 이루어진 극판군(100)의 외부를 수축튜브(80)에 의해 랩핑(Wrapping)한다.In addition, the electrode plate group structure of the large-capacity nickel / hydrogen storage alloy secondary battery of the present invention is pressurized and supported by the polypropylene (PP) band 60 to finish the process of forming the electrode plate group, the positive electrode plate 10, The outside of the electrode plate group 100 including the negative electrode plate 20 and the separator 30 is wrapped by the shrinkage tube 80.

즉, 극판군의 크기에 맞게 알칼리에 화학적으로 안정한 폴리염화비닐(PVC) 재질 등의 합성수지 열수축튜브(80)를 절단하고 열을 가하여 극판군의 외부 표면에 덮어서 밀착시킨다.That is, the synthetic resin heat shrink tube 80, such as polyvinyl chloride (PVC), which is chemically stable to alkali, is cut according to the size of the electrode plate group, and heat is applied to cover the outer surface of the electrode plate group.

본 발명에서는 일 실시예로 폴리염화비닐(PVC) 재질의 열수축튜브(80)를 사용하였으나 알칼리에 내구성(화학적으로 안정)을 가지는 재료이면 기타 다른 합성수지 등이 사용될 수 있을 것이다.In the present invention, a polyvinyl chloride (PVC) heat shrink tube 80 is used as an embodiment, but other synthetic resins may be used as long as the material has durability (chemically stable) in alkali.

본 발명에 따라 니켈/수소저장합금 이차전지의 극판군에 수축튜브 랩핑을 함으로써 개선된 효과는 아래의 시험결과를 나타내는 표를 통해서 더욱 분명하게 확인할 수 있다.According to the present invention, the improved effect of the shrinkage tube wrapping on the electrode plate group of the nickel / hydrogen storage alloy secondary battery can be more clearly confirmed through a table showing the following test results.

[표 1] 전조 내부의 오염현상 방지효과[Table 1] Prevention of Pollution in the Rolling Mill

Figure 112006026160713-PAT00001
Figure 112006026160713-PAT00001

- 시험전지: 포켓 타입 니켈/수소저장합금 이차전지(Pocket Type Ni-MH 100Ah).-Test cell: Pocket type nickel / hydrogen storage alloy secondary battery (Pocket Type Ni-MH 100Ah).

- 평가조건: 부동충전 전압으로 고온(60℃)에서 장기방치(3개월)시 전조 내부에 부착된 용출 활물질의 양을 평가함.-Evaluation condition: The amount of the eluted active material attached to the inside of the tank was evaluated at a high temperature (60 ° C) for a long period of time (3 months) with a floating charge voltage.

- 평가결과: 개선 전(수축튜브 랩핑 전) 부착된 활물질의 양(100mg), 개선 후(수축튜브 랩핑 후)의 양(5mg).-Results of evaluation: The amount of active material attached (100 mg) before improvement (before shrink tube wrapping) and the amount (5 mg) after improvement (after shrink tube wrapping).

결과적으로, 극판군의 외부에 수축튜브(80)를 적용함으로써 용출된 활물질이 전해액에 거의 함유되지 않도록 하여 전해액이 전조와 직접 반응하는 것을 막아서 전조의 내부 오염을 현저히 저하시킬 수 있다.As a result, by applying the shrinkage tube 80 to the outside of the electrode plate group, the eluted active material is hardly contained in the electrolyte, thereby preventing the electrolyte from directly reacting with the precursor, thereby significantly reducing the internal contamination of the precursor.

[표 2] 저온(-18℃) 방전용량 향상효과[Table 2] Improvement of discharge capacity at low temperature (-18 ℃)

Figure 112006026160713-PAT00002
Figure 112006026160713-PAT00002

- 시험전지: 포켓 타입 니켈/수소저장합금 이차전지(Pocket Type Ni-MH 100Ah).-Test cell: Pocket type nickel / hydrogen storage alloy secondary battery (Pocket Type Ni-MH 100Ah).

- 평가조건: 상온충전(20℃ 조건에서 10A로 16시간 충전)-Evaluation condition: normal temperature charging (charged at 10A for 16 hours at 20 ℃)

저온방치(-18℃ 조건에서 24시간 방치)            Low temperature (24 hours at -18 ℃)

저온방전(-18℃ 조건에서 100A로 0.9V까지 방전).            Low temperature discharge (Discharge up to 0.9V at 100A at -18 ° C).

- 평가결과: 개선 전(수축튜브 랩핑 전) 방전시간 25분, 개선 후(수축튜브 랩핑 후) 40분.-Evaluation result: 25 minutes before improvement (before shrink tube wrapping) and 40 minutes after improvement (after shrink tube wrapping).

결과적으로, 저온에서 사용하는 경우 수축튜브(80)가 보온작용을 함으로써 차가워진 전해액이 직접적으로 극판과 반응하는 것을 막기 때문에 내부저항의 증가량이 적어서 저온 방전용량의 감소를 최소화할 수 있다.As a result, when used at low temperatures, the shrinking tube 80 prevents the cold electrolyte from directly reacting with the electrode plate by keeping warm, thereby minimizing the decrease in low-temperature discharge capacity.

이렇게, 포켓 타입(Pocket Type)으로 구성하는 경우 특히 친환경 활물질을 사용할 수 있고 급속충전과 대전류 방전에 강하며 수명이 길고(충방전 2500회 이상) 넓은 온도 사용범위(-25~500℃)를 가지며 습도에 강한 이차전지를 얻을 수 있 다.Thus, in the case of a pocket type, it is possible to use particularly an eco-friendly active material, is resistant to rapid charging and large current discharge, has a long service life (more than 2,500 times of charge and discharge), and has a wide temperature use range (-25 to 500 ° C.). A secondary battery resistant to humidity can be obtained.

상기 실시예에서는, 극판군을 이루는 양극판(10)과 음극판(20)을 포켓(Pocket) 형식으로 구현하였으나, 다른 실시예로서 양극판(10)과 음극판(20)를 일반적으로 알려진 페이스트(Paste) 형식으로 실시할 수 있다.In the above embodiment, the positive electrode plate 10 and the negative electrode plate 20 constituting the electrode plate group are implemented in a pocket type, but as another embodiment, the positive electrode plate 10 and the negative electrode plate 20 are generally known as paste types. Can be carried out.

예를 들어, 양극판(10)은 다수의 3차원 기공이 형성된 니켈 기판에 도전재인 코발트화합물이 첨가된 수산화니켈 분말(Ni(OH)2)을 반죽하여 도포한 후 건조시킨 다음 성형(압연)하면 된다.For example, in the positive electrode plate 10, nickel hydroxide powder (Ni (OH) 2 ) containing a cobalt compound as a conductive material is added to a nickel substrate on which a plurality of three-dimensional pores are formed, dried, and then molded (rolled). do.

그리고, 음극판(20)은 분말형태의 활물질인 수소저장합금(MH: Metal Hydride), 바인더(Binder), 도전재(Conductor) 및 물을 혼합하고 반죽하여 강철 기판의 표면에 도포한 후 건조시킨 다음 성형(압연)하면 된다.In addition, the negative electrode plate 20 is mixed with a hydrogen hydride alloy (MH: Metal Hydride), a binder (Binder), a conductive material (conductor) and water in the form of a powder, kneaded, coated on the surface of the steel substrate and dried What is necessary is just to shape | mold (rolling).

이렇게, 페이스트 타입(Paste Type)으로 구성하는 경우 포켓 타입(Pocket Type)에 비해 상대적으로 경박단소(輕薄短小)형으로 제작이 가능하고 설치나 이동이 용이하며 산업용 외 다양한 부하에 적용 가능하게 된다.Thus, when the paste type (Paste Type) is configured as compared to the pocket type (Pocket Type) it can be manufactured in a relatively light and short (輕薄 短小) type, easy to install or move, and can be applied to a variety of loads other than industrial.

또한, 본 발명에서는 전해액의 양에 의한 축전지의 두 분류인 고갈형(Starved Cell)과 침수형(Flooded Cell) 중에서 전해액의 양이 많아 음·양극 활물질이 용출되는 현상이 발생하는 침수형 셀에 적용하는 것이 더욱 바람직하다.In addition, the present invention is applied to a submerged cell in which a large amount of electrolyte is eluted from a starved cell and a flooded cell, which are two types of storage batteries, depending on the amount of electrolyte. More preferably.

이와 같이 구성된 본 발명의 대용량 니켈/수소저장합금 이차전지의 극판군 구조는 전조의 오염을 방지하여 외부에서 전해액의 높이를 파악할 수 있고 저온에 서 사용시 내부저항의 급격한 증가를 막아서 방전용량의 감소를 최소화하는 유용한 효과를 발휘한다.The electrode plate group structure of the high-capacity nickel / hydrogen storage alloy secondary battery of the present invention configured as described above can prevent the contamination of the precursor to determine the height of the electrolyte from the outside and prevent the rapid increase of the internal resistance when used at low temperature, thereby reducing the discharge capacity. Minimizes useful effects

본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 사상과 범위내에서 다양하게 변경 또는 변형하여 실시할 수 있음은 본 발명이 속하는 기술분야의 당업자에게는 자명한 것이며, 따라서 그러한 변경 또는 변형은 첨부된 특허청구범위에 속한다 해야 할 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various changes or modifications can be made within the spirit and scope of the present invention, and such modifications or variations are attached thereto. Belong to the claims.

Claims (3)

양극주에 연결되는 여러 개의 양극판과 음극주에 연결되는 여러 개의 음극판 및 양극판과 음극판의 사이마다 설치되는 분리막 등으로 이루어진 극판군을 구비하는 니켈/수소저장합금 이차전지의 극판군 구조에 있어서,In the pole plate group structure of the nickel / hydrogen storage alloy secondary battery having a pole plate group consisting of a plurality of positive electrode plates connected to the positive electrode and a plurality of negative electrode plates connected to the negative electrode and a separator installed between the positive electrode and negative electrode plate, 상기 극판군은 수축튜브에 의해 랩핑(Wrapping)되고, 양극판과 음극판은 포켓(Pocket) 형식 또는 페이스트(Paste) 형식인 것을 특징으로 하는 대용량 니켈/수소저장합금 이차전지의 극판군 구조.The pole plate group is wrapped by a shrink tube (Wrapping), the positive electrode plate and the negative electrode plate (Pocket) type or paste (Paste) characterized in that the pole plate group structure of a large capacity nickel / hydrogen storage alloy secondary battery. 제 1항에 있어서,The method of claim 1, 상기 이차전지는 침수(Flooded) 형식인 것을 특징으로 하는 대용량 니켈/수소저장합금 이차전지의 극판군 구조.The secondary battery is a pole plate group structure of a large capacity nickel / hydrogen storage alloy secondary battery, characterized in that the flooded (Flooded) type. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 수축튜브는 알칼리에 화학적으로 안정한 합성수지로 이루어지는 것을 특징으로 하는 대용량 니켈/수소저장합금 이차전지의 극판군 구조.The shrinkage tube is a plate structure of a large capacity nickel / hydrogen storage alloy secondary battery, characterized in that made of a chemically stable synthetic resin alkali.
KR1020060034213A 2006-04-14 2006-04-14 Structure of electrode group for large capacity nickel/metal hydryde secondary battery KR100790563B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060034213A KR100790563B1 (en) 2006-04-14 2006-04-14 Structure of electrode group for large capacity nickel/metal hydryde secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060034213A KR100790563B1 (en) 2006-04-14 2006-04-14 Structure of electrode group for large capacity nickel/metal hydryde secondary battery

Publications (2)

Publication Number Publication Date
KR20070102280A true KR20070102280A (en) 2007-10-18
KR100790563B1 KR100790563B1 (en) 2008-01-02

Family

ID=38817318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060034213A KR100790563B1 (en) 2006-04-14 2006-04-14 Structure of electrode group for large capacity nickel/metal hydryde secondary battery

Country Status (1)

Country Link
KR (1) KR100790563B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943751B1 (en) * 2009-01-12 2010-02-23 에너그린(주) Nickel-metal hydride secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168623B2 (en) * 1991-07-31 2001-05-21 日本電池株式会社 Prismatic metal hydride storage battery
JP3238881B2 (en) 1997-03-28 2001-12-17 三菱樹脂株式会社 Heat-shrinkable polystyrene tube
KR100548123B1 (en) * 2004-02-27 2006-02-02 현대에너셀 주식회사 EXHAUST TYPE Ni-MH BATTERY
JP4287402B2 (en) 2005-04-08 2009-07-01 三菱樹脂株式会社 Heat-shrinkable tube and lithium ion secondary battery coated with the tube

Also Published As

Publication number Publication date
KR100790563B1 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
Besenhard Handbook of battery materials
KR102166391B1 (en) Secondary zinc-manganese dioxide batteries for high power applications
US5698342A (en) Electrode containing coated particles
JP5644873B2 (en) Air secondary battery
Krivik et al. Electrochemical energy storage
EP1576682A1 (en) Active electrode composition with conductive polymeric binder
Jafari et al. Pb acid batteries
JP2007073222A (en) Battery module
CN109119635B (en) Battery with a battery cell
WO2002059986A2 (en) Electrode with flag-shaped tap
Mondal et al. Energy storage batteries: basic feature and applications
US6309775B1 (en) Prismatic electrochemical cell
JP5557385B2 (en) Energy storage device with proton as insertion species
Mondal et al. Emerging nanomaterials in energy storage
KR100790563B1 (en) Structure of electrode group for large capacity nickel/metal hydryde secondary battery
CN207834425U (en) A kind of high temperature fast charge Ni-MH power cell
CN207705346U (en) A kind of low self-discharge Ni-MH battery
JP2989877B2 (en) Nickel hydride rechargeable battery
Dell Aqueous electrolyte batteries
JPH05159779A (en) Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole
US12051812B2 (en) Rechargeable cell architecture
GB2314200A (en) A group of winding electrodes
CN108054328B (en) High-temperature quick-charging nickel-hydrogen power battery and preparation method thereof
CN108054441B (en) High-current nickel-metal hydride battery and preparation method thereof
KR100548123B1 (en) EXHAUST TYPE Ni-MH BATTERY

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
LAPS Lapse due to unpaid annual fee