KR20070100192A - Dye-sensitized solar cell prepared by low-temperature process using tio2 paste - Google Patents

Dye-sensitized solar cell prepared by low-temperature process using tio2 paste Download PDF

Info

Publication number
KR20070100192A
KR20070100192A KR1020070076345A KR20070076345A KR20070100192A KR 20070100192 A KR20070100192 A KR 20070100192A KR 1020070076345 A KR1020070076345 A KR 1020070076345A KR 20070076345 A KR20070076345 A KR 20070076345A KR 20070100192 A KR20070100192 A KR 20070100192A
Authority
KR
South Korea
Prior art keywords
titanium oxide
solar cell
sensitized solar
paste
dye
Prior art date
Application number
KR1020070076345A
Other languages
Korean (ko)
Inventor
박원규
Original Assignee
(주)디오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디오 filed Critical (주)디오
Priority to KR1020070076345A priority Critical patent/KR20070100192A/en
Publication of KR20070100192A publication Critical patent/KR20070100192A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A dye-sensitized solar cell prepared by a low-temperature process using TiO2 paste is provided to develop the entire process for manufacturing the dye-sensitized solar cell. A dye-sensitized solar cell is prepared by a low-temperature process using TiO2 paste. A process for manufacturing inorganic binder sol including high concentration aqueous TiO2 includes a step of mixing water(10) with titanium alkoxide(20) using catalyst(30). Start materials for manufacturing inorganic binder sol including high concentration aqueous TiO2 include titanium alkoxide (TiRO4(20), wherein R=alkyl group), and distilled water(10). A low grade alcohol solvent includes ethanol, methanol, isopropanol, and butanol.

Description

저온 산화티타늄 페이스트를 이용한 감응형 태양전지 { Dye-sensitized Solar Cell prepared by Low-temperature Process using TiO2 Paste} Dye-sensitized Solar Cell prepared by Low-temperature Process using TiO2 Paste}

색소감응형 태양전지는 도전성 기판(유리 또는 플라스틱, 금속) 위에 산화티탄 다공질 막을 만들어, 산화티탄 표면에 도 1의 Ru계 색소를 흡착시켜, 대향 전극을 만든 후, 양 전극간 사이에 전해질을 주입하여 하나의 셀을 형성시킨다.   The dye-sensitized solar cell forms a porous titanium oxide film on a conductive substrate (glass, plastic, metal), adsorbs the Ru-based dye of FIG. 1 onto the surface of the titanium oxide, forms a counter electrode, and then injects an electrolyte between the electrodes. To form one cell.

도 2를 참조하여, 일반적인 색소 감응형 태양전지 모식도를 나타낸다. 색소감응형 태양전지는 음전극(광전극)으로 투명 전도성막(

Figure 112007055433281-PAT00001
)을 코팅한 유리기판 속에 나노 크기의 산화티탄(
Figure 112007055433281-PAT00002
)입자를 페이스트 상으로 도포하여, 이를 450 ℃로 소결한 것을 이용한다. 이때 산화티탄 층의 두께는 10-15μm이고 다공성 구조를 지닌다. 이 산화티탄 입자 표면에 카르복실기를 지닌 루덴니움 바이 피리딘 (Ruthenium bi-pyridine) 흡착체를 흡착시켜 두고, 전해액으로서 니트릴(nitrile)계 용매를 이용한 요오드/요오드화 이온으로 이루어진 레독스 전해액을 광 전극기판(산화티탄 후막 코팅된 ITO유리기판)과 대극 기판(Pt증착된 ITO코팅유리) 사이에 주입하여 밀봉한 샌드위치 구조를 지닌 모듈을 만든다. 태양 광 전환부품에서의 전류 형성 메카니즘을 도 3에 도식적으로 나타낸다. With reference to FIG. 2, the general diagram of a dye-sensitized solar cell is shown. The dye-sensitized solar cell is a negative electrode (photoelectrode) and a transparent conductive film (
Figure 112007055433281-PAT00001
Nano-size titanium oxide () in a glass substrate coated with
Figure 112007055433281-PAT00002
) The particles are applied in the form of a paste, and those obtained by sintering at 450 캜 are used. At this time, the thickness of the titanium oxide layer is 10-15μm and has a porous structure. A ruthenium bi-pyridine adsorbent having a carboxyl group is adsorbed on the surface of the titanium oxide particles, and a redox electrolyte composed of iodine / iodide ions using a nitrile solvent as an electrolyte is used as a photoelectrode substrate ( A module having a sandwich structure sealed by injection between a titanium oxide thick film coated ITO glass substrate) and a counter electrode substrate (Pt-deposited ITO coated glass) is formed. The current forming mechanism in the solar conversion component is shown schematically in FIG. 3.

도 3을 참조하여, ①의 과정에서 태양 광 중 가시광 조사에 의해 증감색소(현재 Ru계의 전자가 여기되어, 기저상태에서 여기상태로 전자 전이가 일어난다. ②의 과정에서, 여기된 증감색소의 전자는 양전극 산화티탄 반도체의 전도대(conduction band)로 이동하고, 이 전자들은 외부회로를 통해, 대향 전극(음전극 ; 일반적으로 Pt전극이 사용된다.)으로 이동한다. ③의 과정에서, 이동된 전자는 전해질 환원ㆍ산화작용에 의해 다시 증감색소로 되돌아오게 된다. 이러한 과정이 반복되어 전기 에너지가 나오게 되는 것이다. 다른 변환소자와는 달리, 색소증감형 태양전지의 최대 출력 전위(

Figure 112007055433281-PAT00003
)는 전극반도체 페르미 준위와 전해질의 산화환원 포텐셜 차이에 의해 결정된다. Referring to Fig. 3, in the process of ①, the sensitizing dye (currently Ru-based electrons are excited by the visible light irradiation in the sunlight, and the electron transition occurs from the ground state to the excited state. The electrons move to the conduction band of the positive electrode titanium oxide semiconductor, and these electrons move through the external circuit to the opposite electrode (negative electrode; generally Pt electrode is used). Is returned to the sensitizing dye by electrolytic reduction / oxidation, and this process is repeated to generate electrical energy.Unlike other conversion elements, the maximum output potential of the dye-sensitized solar cell (
Figure 112007055433281-PAT00003
) Is determined by the difference between the electrode semiconductor Fermi level and the redox potential of the electrolyte.

앞서 서술한 내용들을 실현하고자 하는 공정에서,  In the process of realizing the above,

유연한 필름형 태양전지용 바인더 및 저온 성막을 위해, 전기영동 장치(宮坂 力, セラミックス, 39, 439-444 (2004)), 수열장치용 오토 클레이브(D.Zhang, T.Yoshida and H. Minoura, Adv . Mater., 15, 814-17 (2003)), 마이크로 웨이브 장치(Uchida et al, 機能材料, 23, 58-63 (2003)), 프레스 장치(G.Boschioo, H.Lindatrom, E.Magnusson, A.Homberg and A. Hagfeldt, J. Photochem. Photobiol. A., 148, 11-15 (2002)), 화학 증착기를 사용하는 등 공정상 막 형성을 위한 장치가 필요하며 공정이 복잡하다. For flexible film-type solar cell binders and low temperature film formation, electrophoretic devices (Seramics, 39, 439-444 (2004)), autoclaves for hydrothermal devices (D.Zhang, T.Yoshida and H. Minoura, Adv) . Mater., 15, 814-17 ( 2003)), microwave apparatus (Uchida et al,機能材料, 23, 58-63 (2003)), the press device (G.Boschioo, H.Lindatrom, E.Magnusson, A. Homberg and A. Hagfeldt, J. Photochem.Photobiol.A. , 148, 11-15 (2002)), and equipment for film formation in the process, such as using a chemical vapor deposition machine, are required and the process is complicated.

일본 공개특허 2006-76855, 2006-172722)에 의하면 상기의 장비를 사용치 않는 저온 성막용 바인더 없는 무기질 페이스트를 개발하였다고 발표하였으나, 핵심 기술인 무기질 산화 산화티탄 졸 제조 방법에 대해서는 직접적으로 서술되어 있지 않 고, 일반적인 졸,겔 공정을 이용하고 있다고만 서술되어 있고, 자세한 공정 조건에 대해서는 서술하고 있지 않다.  According to Japanese Patent Laid-Open Publication No. 2006-76855, 2006-172722, a binder-free inorganic paste for low temperature film formation without the use of the above-mentioned equipment was developed, but a method for preparing an inorganic titanium oxide sol, which is a core technology, is not directly described. It is only described that a general sol and gel process is used, and detailed process conditions are not described.

따라서 본 발명에서는 상기 방법들과 다르게 저온 성막용 페이스트를 제조함에 있어서 저온에서 별도의 장비사용 없이 일반적인 졸,겔 공정만을 응용한 저온 공정을 발명하고, 상기의 공정으로 제조된 무기질 바인더를 이용하여 나노 산화티탄 분말을 함유한 저온에서 제조한 산화티탄 페이스트를 제공할 수 있음을 실험을 통하여 확인하고 본 발명을 완성하였다. Accordingly, in the present invention, unlike the above methods, in the preparation of low temperature film forming paste, a low temperature process using only a general sol and gel process without using a separate equipment at low temperature is invented, and using the inorganic binder prepared in the above process, the nano It was confirmed through experiments that the titanium oxide paste prepared at a low temperature containing titanium oxide powder was completed and the present invention was completed.

또한, 상기의 산화티탄 페이스트를 이용하여 제조한 유연한 플라스틱 색소감응형 태양전지 모듈까지의 전 공정 개발하여 제공하는 것에 그 목적이 있다. Moreover, the objective is to develop and provide the whole process to the flexible plastic dye-sensitized solar cell module manufactured using said titanium oxide paste.

(1) 고농도 수용성 산화티탄 함유 무기질 바인더 졸 제조(1) Preparation of high concentration water soluble titanium oxide-containing inorganic binder sol

도 4을 참조하여,  4,

고농도 수용성 산화티탄(100) 함유 무기질 바인더 졸 제조 공정은 물(10))과 티탄늄 알콕사이드(Titanium alkoxide)(20)을 촉매(30)를 사용하여 섞는 것으로 정의한다. A process for preparing a high concentration water soluble titanium oxide (100) -containing inorganic binder sol is defined as mixing water (10) and titanium alkoxide (20) using a catalyst (30).

고농도(산화물 함량 8-20 wt%) 수용성 산화티탄(100) 함유 무기질 바인더 졸을 제조하기 위한 출발 원료로서는 티탄늄 알콕사이드(

Figure 112007055433281-PAT00004
, 여기서 R= alkyl group)(20), 가수분해 및 용매로서 증류수(10)를 포함한다. Titanium alkoxide (Titanium alkoxide) is used as a starting material for preparing inorganic binder sol containing a high concentration (oxide content of 8-20 wt%) water-soluble titanium oxide (100).
Figure 112007055433281-PAT00004
, Wherein R = alkyl group) 20, hydrolysis and distilled water 10 as a solvent.

상기의 점도를 조절하기 위해 저급 알콜용매로서 에탄놀(11), 에탄놀(12), 아이 소프로판놀(isopropanol)(13), 부탄놀(buthanol)(15)) 등을 포함한다.  In order to control the viscosity, ethanol (11), ethanol (12), isopropanol (13), buthanol (15), and the like are included as lower alcohol solvents.

상기의 티탄늄 알콕사이드의 가수분해에 의해 수화된 침전물을 산적정(acid peptization)하기 위해 산촉매(30)를 사용하였다. 상기의 산촉매는 질산(31), 염산(32), 초산(33)을 사용하는 것이 바람직하다.  An acid catalyst 30 was used for acid peptization of the precipitate hydrated by hydrolysis of the titanium alkoxide. It is preferable to use nitric acid 31, hydrochloric acid 32, and acetic acid 33 as said acid catalyst.

용매 대비, 산화티탄(100)의 농도를 8.0 - 20 wt%의 졸을 제조하기 위해, 증류수 20-35 mL를 파이렉스 플라스크 밀폐 용기 내에 넣고 중탕반응기를 이용하여 온도를 50- 80 ℃ 사이 온도로 맞춘 후,티탄늄 알콕사이드(20) 20-30 mL를 서서히 첨가한다. 티탄늄 알콕사이드(20)는 첨가되면서 가수분해되어, 침전물이 생겨난다. 이후 산 촉매(여기서는 60wt% 질산(31)를 1.0 -5.5 mL 첨가한 후, 스틸러를 이용하여 강력하게 교반한다. 교반 시간은 46-48시간까지이며, 이 이상 반응시키면, 교반 중 점도가 높아지면서 겔화 반응이 일어나게 된다. 산적정이 완료된 고농도 산화티탄 졸은 엷은 푸른색을 띠는 점성 졸 상태로 된다.   To prepare a sol having a concentration of 8.0-20 wt% of sol of titanium oxide (100) relative to the solvent, 20-35 mL of distilled water was placed in a Pyrex flask sealed container and the temperature was adjusted to a temperature of 50-80 ° C using a water bath reactor. Then, 20-30 mL of titanium alkoxide (20) is slowly added. Titanium alkoxide 20 is hydrolyzed as it is added, resulting in a precipitate. Thereafter, 1.0 -5.5 mL of an acid catalyst (here, 60 wt% nitric acid (31) is added, followed by vigorous stirring using a stiller. The stirring time is up to 46-48 hours. The gelation reaction takes place The concentrated titanium oxide sol, which has been titrated, becomes a pale blue viscous sol.

제조 예를 들면, 농도 14.7 wt% 수용성 산화티탄(100) 졸을 증류수 (10) 35 mL에 티탄늄 알콕사이드(20) 25 mL를 넣은 후, 60wt% 질산 (31)를 2.0 mL 첨가 후, 50 ℃에서, 2일간 교반하여 제조할 수 있다. 산화티탄 졸은 점성이 있는 푸른색 졸이 제조된다.     For example, 25 mL of titanium alkoxide (20) was added to 35 mL of distilled water (10) in a concentration of 14.7 wt% water-soluble titanium oxide (100) sol, and then 2.0 mL of 60 wt% nitric acid (31) was added thereto. Can be prepared by stirring for 2 days. Titanium oxide sol is prepared with a viscous blue sol.

도 5는 제조 예에서 제조된 농도 14.7 wt%의 산화티탄(100) 졸의 점도 경시변화를 시간이 지남에 따라 변화된 양을 측정한 결과를 나타낸다.  Figure 5 shows the result of measuring the amount changed over time the viscosity change of the titanium oxide 100 sol of the concentration of 14.7 wt% prepared in the preparation example over time.

도 5를 참조하여,  5,

제조 직후 점성이 80 cps에서 13일 경과 후 점도는 7 cps정도로 낮아지고, 그 이 후 점도변화는 거의 없다.   Viscosity is lowered to about 7 cps after 13 days at 80 cps immediately after preparation, and there is little change in viscosity thereafter.

도 5와 도 6은 용매로서 사용한 에탄놀(12)과 물(10)의 양을 조절하여 산화티탄(100) 졸의 농도를 12.64wt%, 14.7wt%, 18.4wt%로 각각 변화시켜, 점도 및 평균 입경을 측정한 결과이다.    5 and 6 show that the concentration of ethanol (12) and water (10) used as a solvent was changed to 12.64 wt%, 14.7 wt%, and 18.4 wt%, respectively. And an average particle diameter.

도 6를 참조하여,  6,

산화티탄(100) 졸 농도가 14.7wt%일 때, 점도가 6cps로 가장 낮았으며,  When the titanium oxide (100) sol concentration was 14.7 wt%, the viscosity was the lowest at 6 cps.

도 7을 참조하여,  Referring to Figure 7,

평균 입경은 27 nm이었다.   The average particle diameter was 27 nm.

도 8과 도 9는 산화티탄(100) 졸 농도를 14.7 wt%로 일정하게 고정하고, 용매로서 에탄놀(12)을 증가시킨 시료의 점도 변화 및 평균 입경 변화를 제공한다.  8 and 9 provide a fixed viscosity of the titanium oxide 100 sol concentration to 14.7 wt% and a change in viscosity and average particle diameter of the sample in which ethanol 12 is increased as a solvent.

도 8과 도 9을 참조하여,  8 and 9,

에탄놀(12) 양이 증가함으로써 점도가 270cps까지 급격하게 증가하며, 평균 입경도 80 nm로 증가함을 보인다. 산화티탄(100) 졸의 농도가 12.64wt%일 때보다 14.7 wt% 점도 및 평균 입경이 낮거나 작아진 것은 용매로서 사용되는 에탄놀(12) 농도와 밀접한 관계가 있음을 제공한다.  As the amount of ethanol (12) increases, the viscosity increases rapidly up to 270 cps, and the average particle size increases to 80 nm. The lower or smaller 14.7 wt% viscosity and average particle diameter than when the titanium oxide 100 sol concentration is 12.64 wt% provide a close relationship with the ethanol 12 concentration used as the solvent.

또한, 에탄놀(12) 농도가 증가함으로 물(10)/ 에탄놀(12)로 이루어진 용매 계에서 상대유전율이 물 보다 저하되고, 현탁액 졸 내의 초미립자의 응집이 이루어지면서, 점도가 증가함을 제공한다.   In addition, increasing the concentration of ethanol (12) provides a relative dielectric constant lower than that of water in a solvent system composed of water (10) / ethanol (12), and agglomeration of ultrafine particles in the suspension sol, resulting in an increase in viscosity. do.

도 10와 도 11은 상기 예조 예에서 제조된 산화티탄(100) 졸을 건조하여 분말 X선 회절 분석에 의한 패턴으로 결정상을 조사한 결과이다. 10 and 11 show the result of irradiating the crystal phase with a pattern by powder X-ray diffraction analysis after drying the titanium oxide sol prepared in the preparation example.

도 10와 도 11을 참조하여, With reference to FIGS. 10 and 11,

졸 농도가 낮고, 용매 중 에탄놀양이 많을 경우에는 루타일(rutile) 결정상이 확인되지 않으나, 14.7 wt% 농도 졸의 경우처럼, 졸 농도가 높아지고, 용매 내 에탄놀양이 적고 물 양이 많을 경우에는 아나타제(anatase), 부룩카니트(brookite) 및 루타일(rutile) 결정상 혼합하여 생성되고 있음을 제공한다.  When the sol concentration is low and the amount of ethanol in the solvent is high, the rutile crystal phase is not observed.However, as in the case of the 14.7 wt% sol, the sol concentration is high, and the amount of ethanol in the solvent is low and the amount of water is high. Anatase, brookite and rutile crystalline phases are provided to produce.

따라서, 상기의 제조 예 같이 용매 내 물/에탄놀=59/41(wt%), 농도 14.7 wt%로 제조한 산화티탄(100) 졸을 필름 성막용 무기질 바인더 조성을 선택하여, 저온 성막용 산화티탄(100) 페이스트를 제조하는 것이 좋다.  Therefore, the titanium oxide sol prepared in the solvent as water / ethanol = 59/41 (wt%) and the concentration of 14.7 wt% was selected as the inorganic binder composition for film formation, and the titanium oxide for low temperature film formation was selected. It is desirable to prepare a (100) paste.

(2) 저온 성막용 산화티탄 페이스트 제조  (2) Preparation of titanium oxide paste for low temperature film formation

용매로는 아이소프로판, 제3급 부탄농, 2-메독 에탄놀, 1-프로판놀등 4종류의 용매 15-25 mL에 아세토니트릴(acetonitrile) 0-3.0 mL 첨가한 후, P-25(Degussa ; 평균입경 21 nm) 3.0-6.0g과 나노-켐(Nano-Chem.) 분말(; 평균입경 220 nm)를 0-0.6g 칭량하여, 지르코니아 볼을 미리 집어넣은 폴리에스테르 통에 넣어 볼 밀링을 1시간 행한다. 여기에 농도 14.7 wt%의 산화티탄(100) 졸 5-10 mL를 넣고 다시 볼 밀을 1-4 시간 행하여 저온 성막 페이스트를 제조한다.   As a solvent, 0-25 mL of acetonitrile was added to 15-25 mL of four solvents such as isopropane, tert-butanone, 2-methoxetanol, and 1-propanol, followed by P-25 (Degussa). 0-0.6 g of 3.0-6.0 g average particle diameter (21 nm) and Nano-Chem. Powder (; average particle diameter 220 nm) were weighed and placed in a polyester vat pre-inserted with zirconia balls for ball milling. 1 hour. 5-10 mL of a titanium oxide (100) sol having a concentration of 14.7 wt% was added thereto, followed by a ball mill for 1-4 hours to prepare a low temperature film-forming paste.

저온 성막용 산화티탄(100) 페이스트 제조 예 1 ;  Titanium oxide (100) paste preparation example 1 for low temperature film-forming;

상기 여러 용매 중 한 종류를 택한 용매 25mL에 아세토니트릴 1.5 mL, P-25 3.0g, 나노-켐 분말 0.6g 조성을 PET 필름 위에 스퀴즈 법으로 성막하여 120℃, 15분 건조한다.  Acetonitrile 1.5 mL, P-25 3.0 g, and nano-chem powder 0.6 g were formed on a PET film by a squeeze method in 25 mL of a solvent selected from one of the various solvents, and dried at 120 ° C. for 15 minutes.

도 12을 참조하여, 저온 성막용 산화티탄(100) 페이스트 제조 예 1에서 제조한 시료   With reference to Figure 12, the sample prepared in Preparation Example 1 of the titanium oxide 100 paste for low temperature film formation

막 상태를 광학현미경으로 관찰한 사진(배율 200배)이며, 막 상태는 모두 건조 후, 균열이 간 상태이다.  It is a photograph (magnification 200 times) which observed the film | membrane state with the optical microscope, and the film | membrane state is a state which the crack went after drying.

저온 성막용 산화티탄(100) 페이스트 제조 예 2 ; Titanium oxide (100) paste preparation example 2 for low temperature film-forming;

1-프로판놀 25mL에 아세토니트릴 1.5 mL, P-25(130) 분말 4.5g, 나노-켐 분말 0.6g 조성을 PEN 필름(150) 위에 스퀴즈 법으로 성막하여 120℃, 15분 건조한다.   1.5 mL of acetonitrile, 4.5 g of P-25 (130) powder, and 0.6 g of nano-chem powder were formed on a PEN film 150 by 25 mL of 1-propanol and dried at 120 ° C. for 15 minutes.

도 13를 참조하여, 저온 성막용 산화티탄(100) 페이스트 제조 예 2에서 제조한    With reference to Figure 13, prepared in Example 2 of a low temperature titanium oxide paste for film forming

막 상태를 광학현미경으로 관찰한 사진(배율 200배)이며, 막 상태는 균질한 상태를 제공한다.  The state of the film was observed under an optical microscope (magnification 200 times), and the film state provided a homogeneous state.

본 발명으로 저온 성막용 산화티탄(100) 페이스트 제조용 용매로 1-프로판놀(110)이 좋다.    In the present invention, 1-propanol 110 may be used as a solvent for preparing a low temperature titanium oxide 100 paste.

(3) 성막과 색소 함침 그리고 전해질 제조  (3) film formation, pigment impregnation and electrolyte preparation

필름형 태양전지를 제조하기 위해서는 기판으로서 ITO 전극을 증착시킨 PET 또는 PEN 필름을 이용하게 된다. 기판 위 성막법으로는 스프레이 또는 스퀴즈 법을 이용한다. 두께 200 μm의 ITO- 증착 PEN 필름 (면 저항 13 옴 이하)위에 3 cm x 5cm 면적으로 성막하고, 120℃로 건조한다. 성막 건조된 필름에 색소는 R-535-bis-TBA Ruthenium계 색소 함유 에탄놀용액에 넣고 상온에서 24시간 색소 함침을 행한다.   In order to manufacture a film type solar cell, a PET or PEN film on which an ITO electrode is deposited is used as a substrate. As a film deposition method on a substrate, a spray or squeeze method is used. A film of 3 cm x 5 cm is deposited on a 200 μm thick ITO-deposited PEN film (up to 13 ohm sheet resistance) and dried at 120 ° C. In the film-form dried film, a pigment | dye is put into the ethanol solution containing R-535-bis-TBA Ruthenium type | system | group pigment | dye, and pigment | dye impregnation is carried out at room temperature for 24 hours.

전해질은 메독시 아세토니트릴 ( methoxy acetonitrile(

Figure 112007055433281-PAT00005
))을 용매로 LiI 0.1M, I2 0.05M, DMPⅡ(
Figure 112007055433281-PAT00006
)0.6M, 4-tert-butylpyridine(TBP,
Figure 112007055433281-PAT00007
) 0.5M 농도로 조정하여 상온에서 6시간 혼합하여 제조한다. The electrolyte is methoxy acetonitrile (
Figure 112007055433281-PAT00005
)) As solvent LiI 0.1M, I2 0.05M, DMPII (
Figure 112007055433281-PAT00006
) 0.6M, 4-tert-butylpyridine (TBP,
Figure 112007055433281-PAT00007
) The mixture is adjusted to 0.5M and prepared by mixing at room temperature for 6 hours.

도 14는 필름형 색소감응 태양전지 산화티탄(100) 페이스트 제조 공정도이다. 페이스트(Paste) 1(50)공정과 페이스트 2 공정(60)은 P-25 분말(52, 62)의 양이 다르고, 이하 공정은 동일하다. 1-PrOH 25ml와 acetonitrile 1.25ml(51, 61)을 혼합하고, 페이스트 1 공정은 P-25 분말 2.5g(52), 페이스트 2 공정에서는 P-25 분말 3.0g(62)과 nano chemical 0.6g 을 혼합한다. 1시간 볼 밀(53, 63)로 미소 분쇄하여 졸(54, 64)로 만들고, 최종 1시간 볼밀(55, 65)을 수행하였다.   14 is a process chart of manufacturing a film-type dye-sensitized solar cell titanium oxide (100) paste. The paste 1 (50) process and the paste 2 process 60 differ in the amounts of the P-25 powders 52 and 62, and the following processes are the same. 25 ml of 1-PrOH and 1.25 ml (51, 61) of acetonitrile were mixed, 2.5 g (52) of P-25 powder for paste 1 process, 3.0 g (62) of P-25 powder and 0.6 g of nano chemical for paste 2 process. Mix. The fine mill was pulverized with ball mills 53 and 63 for 1 hour to make sol 54 and 64, and the ball mills 55 and 65 were performed for the final 1 hour.

페이스트 3(70)의 공정은 페이스트1(50) 공정과 비교하여 1-PrOH(52, 71) 혼합 양만 다르고 이하 동일한 공정이다. 페이스트 1(50) 공정은 1-PrOH(51)양이 25ml 이고 페이스트 3(70) 공정의 1-PrOH(71) 양은 18ml이다.  The paste 3 (70) process is different from the paste 1 (50) process only in the amount of 1-PrOH (52, 71) mixed and is the same process below. The paste 1 (50) process had 25 ml of 1-PrOH (51) and the amount of 1-PrOH (71) had 18 ml.

도 15는 필름형 색소 감은 태양정지 페이스트 제조공정도에 따른 변환 효율 측정 예를 나타낸다. 광전변환효율 측정은 인조 태양(1.5SUN)하에서 오픈 셀(셀 면적 0.25

Figure 112007055433281-PAT00008
)로 측정한 실험 결과이다. 페이스트 2(60)보다 P-25 함량이 높은 페이스트 1의 변환 효율이 2.14%로 높아졌으며, 용매 1-PrOH함량을 18mL로 줄인 페이스트 3(70)의 경우, 변환 효율은 2.58%로 본 실험에서는 최대치를 제공한다. 15 shows an example of measuring conversion efficiency according to a film-type dyeing-stopped solar stop paste manufacturing process chart. Photoelectric conversion efficiency measurement is based on open cell (cell area 0.25)
Figure 112007055433281-PAT00008
This is the experimental result measured by). The conversion efficiency of Paste 1, which is higher in P-25 than Paste 2 (60), is 2.14%, and the conversion efficiency is 2.58% for Paste 3 (70), which reduces the solvent 1-PrOH content to 18 mL. Provide the maximum.

(4)필름형 색소 감응 태양전지 모듈 제조 (4) Manufacture of film-type dye-sensitized solar cell module

양전극용 필름의 대향 전극으로서는 백금(Pt)이 코팅된 PEN 필름(일본 Peccell사, 두께 180μm, 저항 5Ω)을 이용한다. 실링제로서 UV-가시광선 경화용 수지를 이용하며, 대향 전극에는 전해질 주입용 홀을 미리 만들어 둔다. 밀봉 후, 전해질 용액을 투입하여 다시 수지로 홀을 밀봉하여 시제품 모듈(수광 면적 약 20

Figure 112007055433281-PAT00009
)을 제조하였다. 이 모듈에 세 파장 형광등(27W)을 조사하였을 때, 흐르는 전류량을 측정하는 전류 값은 21.9 mA이고, 측정 전압은 약 0.72 mV얻었다. As a counter electrode of the film for positive electrodes, PEN film (Pecell Cell, Japan, 180 micrometers in thickness, resistance 5Ω) coated with platinum (Pt) is used. A UV-visible ray hardening resin is used as a sealing agent, and the hole for electrolyte injection is previously made in the counter electrode. After sealing, the electrolyte solution was added and the hole was again sealed with a resin to prepare a prototype module (light receiving area of about 20
Figure 112007055433281-PAT00009
) Was prepared. When the three-wavelength fluorescent lamp (27W) was irradiated to this module, the current value for measuring the amount of current flowing was 21.9 mA, and the measured voltage was about 0.72 mV.

본 발명은 기존 방법들과 다르게 저온 성막용 페이스트를 제조함에 있어서 저온에서 별도의 장비사용 없이 일반적인 졸과 겔 공정만을 응용한 저온 공정을 개발하고, 상기와 같이 제조된 무기질 바인더를 이용하여 나노 산화티탄 분말을 함유한 저온 성막용 산화티탄 페이스트를 발명하였으며, 상기의 산화티탄을 성막하여 유연한 플라스틱 색소감응형 태양전지 모듈 제조 공정을 개발하였다.    The present invention is to develop a low temperature process using only a typical sol and gel process without using a separate equipment at a low temperature in manufacturing a low temperature film forming paste, unlike the existing methods, and using the inorganic binder prepared as described above A low temperature titanium oxide paste containing a powder was invented, and the titanium oxide film was deposited to develop a flexible plastic dye-sensitized solar cell module manufacturing process.

본 발명을 통해 태양전지 소재 및 모듈제조의 기술을 확립하였고 고유가 시대에 적합한 에너지 공급형으로 휴대 전원의 대체 효과가 있다.    Through the present invention, the technology of solar cell material and module manufacturing has been established, and there is an alternative effect of the portable power source as an energy supply type suitable for high oil prices.

본 발명을 응용하면 유비쿼터스 휴대용 전원으로서 휴대폰 및 장남감등 2차 전지를 필요로 하는 휴대용 전자기기의 증대는, 필연적으로 환경친화형이며 에너지 절감형인 필름형 산화물 태양전지의 이용증대를 가져올 것으로 기대되며, 기타 유연한 디스플레이 산화물 전극으로의 활용가능하다.    Application of the present invention is expected to increase the use of environmentally friendly and energy-saving film-type oxide solar cells inevitably increase the number of portable electronic devices that require secondary batteries such as mobile phones and toys as ubiquitous portable power supply, Other flexible display oxide electrodes.

고농도 수용성 산화티탄 함유 무기질 바인더 졸 제조는 물/에탄올 혼합용매에 티탄늄 알콕사이드 를 넣고, 산촉매로 적정함으로서, 유기물 첨가제가 필요 없는 필름 성막용 무기질 바인더를 제조할 수 있었다. 제조된 졸의 점도는 물/에탄올 비에 따라, 6-270 cps, 평균입경은 27-80 nm 사이였으며, 확인된 결정상은 아나타제, 브룩카이트및 루타일이 관측되었다.  In preparing a high concentration water-soluble titanium oxide-containing inorganic binder sol, titanium alkoxide was added to a water / ethanol mixed solvent, and titrated with an acid catalyst, thereby preparing an inorganic binder for film film without an organic additive. The viscosity of the prepared sol was 6-270 cps and the average particle diameter was 27-80 nm, depending on the water / ethanol ratio, and the identified crystal phases were observed anatase, brookite and rutile.

저온 성막용 산화티탄 페이스트 제조는 상기에서 제조한 산화티탄 페이스트에 적합한 용매는 1-프로판놀이었으며, 용매/분말의 양을 조절함으로써 여러 가지 저온 성막법에 대응할 수 있는 산화티탄 페이스트를 제조 조건을 확립하였다. The production of titanium oxide paste for low temperature film formation was performed by using 1-propaneol as a suitable solvent for the titanium oxide paste prepared above, and establishing conditions for preparing titanium oxide paste that can cope with various low temperature film formation methods by controlling the amount of solvent / powder. It was.

성막과 색소 함침 그리고 전해질 제조는 스퀴즈 법을 이용하여 수광 면적 3 cm x 5cm 으로 산화티탄 양전극을 성막하였으며, 120℃ 건조 후, 양호한 막 강도를 나타내었다  For film formation, dye impregnation, and electrolyte preparation, a titanium oxide positive electrode was formed using a squeeze method with a light receiving area of 3 cm x 5 cm. After drying at 120 ° C, the film had good film strength.

광전 변환 효율 측정은 산화티탄 분말의 양, 산화티탄 졸의 양, 용매의 종류 및 양을 조절하였을때, 최대 광전 변환 효율 2.58%의 값을 얻을 수 있었다.   In the photoelectric conversion efficiency measurement, the maximum photoelectric conversion efficiency of 2.58% was obtained when the amount of titanium oxide powder, the amount of titanium oxide sol, the type and amount of solvent were adjusted.

필름형 색소 감응 태양전지 모듈 제조 상기에서 제조한 수광 면적 약 20 제곱센티의 시제품 모듈에 세 파장 형광등(27W)을 조사하였을 때, 발생한 전류값은 21.9 mA이었으며, 측정 전압은 약 0.72 mV이었다. Film-type dye-sensitized solar cell module production When the three-wavelength fluorescent lamp (27W) was irradiated to the prototype module having a light receiving area of about 20 square centimeters, the current value generated was 21.9 mA and the measured voltage was about 0.72 mV.

도면 1은 Ruthenium 계 증감 색소 Figure 1 is Ruthenium-based sensitizing pigment

도면 2는 일반적인 색소증감형 태양전지 모듈 구조 2 is a general dye-sensitized solar cell module structure

도면 3은 광 변환 메커니즘 모식도3 is a schematic diagram of the light conversion mechanism

도면 4는 무기질 바인더 졸 제조 공정도4 is an inorganic binder sol manufacturing process chart

도면 5는 농도 14.7 wt%의 산화티탄(100) 졸의 점도 경시변화5 is a time-dependent change in the viscosity of the titanium oxide (100) sol having a concentration of 14.7 wt%

도면 6은 산화티탄(100) 졸 농도에 따른 점도 변화 Figure 6 is the viscosity change according to the concentration of sol titanium oxide (100)

도면 7은 산화티탄(100) 졸 농도에 따른 입경 변화7 is a particle size change according to the concentration of sol of titanium oxide (100)

도면 8은 에탄놀 량에 따른 점도 변화8 is a viscosity change according to the amount of ethanol

도면 9는 에탄놀 량에 따른 입경 변화9 is a change in particle size according to the amount of ethanol

도면 10은 졸 농도에 따른 X-선 회절 무늬10 is an X-ray diffraction pattern according to the sol concentration

도면 11은 에탄놀 량에 따른 X-선 회절 무늬 11 is an X-ray diffraction pattern according to the amount of ethanol

도면 12는 PET 필름 위에 성막한 막의 광학 현미경 사진(x200)12 is an optical micrograph (x200) of a film deposited on a PET film

도면 13은 1-Propanol용매에 의한 페이스트의 성막 상태Figure 13 shows the film formation state of the paste by 1-Propanol solvent

도면 14는 필름형 색소감응 태양전지 페이스트 제조공정도14 is a film dye-sensitized solar cell paste manufacturing process chart

도면 15는 필름형 색소감응 태양전지 페이스트 변환효율 Figure 15 shows the conversion efficiency of the film-type dye-sensitized solar cell paste

Claims (4)

물/에탄올 혼합용매 티탄늄 알콕사이드를 넣고, 산 촉매로 적정함으로서 유기물 첨가제가 필요 없는 필름 성막용 무기질 바인더를 제조하는 것을 특징으로 한 저온 제조 산화티탄 페이스트를 이용한 유연한 색소 감응형 태양전지Flexible dye-sensitized solar cell using a low temperature manufactured titanium oxide paste characterized by preparing an inorganic binder for film deposition without adding an organic additive by adding a titanium / alkoxide mixed solvent of water and ethanol, and titrating with an acid catalyst. 제 1항에 있어서, The method of claim 1, 상기의 점도를 조절하기 위해 저급 알콜 용매로서 에탄놀(11), 에탄놀(12), 아이소프로판놀(isopropanol)(13), 부탄놀(buthanol)(15)) 등을 포함하며, Lower alcohol solvents include ethanol (11), ethanol (12), isopropanol (13), buthanol (15), and the like for adjusting the viscosity. 상기의 티탄늄 알콕사이드의 가수분해에 의해 수화된 침전물을 산적정(acid peptization)하기 위해 산촉매(30)로 질산(31), 염산(32), 초산(33)을 사용하는 것을 특징으로 한 저온 제조 산화티탄 페이스트를 이용한 유연한 색소 감응형 태양전지 Low temperature production oxidation characterized by using nitric acid (31), hydrochloric acid (32), acetic acid (33) as acid catalyst (30) for acid peptization of the precipitate hydrated by hydrolysis of the titanium alkoxide. Flexible Dye-Sensitized Solar Cell Using Titanium Paste 용매 1-프로판놀을 사용하여 용매/분말의 양을 조절함으로써 저온 성막법에 의해 산화티탄 페이스트를 제조한 것을 특징으로 한 저온 제조 산화티탄 페이스트를 이용한 유연한 색소 감응형 태양전지Flexible dye-sensitized solar cell using a low temperature titanium oxide paste prepared by low temperature film formation method by controlling the amount of solvent / powder using solvent 1-propanol 스프레이 혹은 스퀴즈 법에 의하여 산화티탄 양전극을 성막하여 120℃ 건조한 후, 색소함유 에탄놀에 넣고 상온에서 함침하여 건조하고, 산화티탄 분말의 양, 산하티 탄 졸의 양, 용매의 종류 및 양을 조절하여 광전 변화 효율이 최대로 할 수 있는 저온 제조 산화티탄 페이스트를 이용한 유연한 색소 감응형 태양전지 Titanium oxide positive electrode was formed by spraying or squeeze method, dried at 120 ° C, and then added to pigment-containing ethanol and impregnated at room temperature for drying. The amount of titanium oxide powder, the amount of titanium sol, and the type and amount of solvent were adjusted. Flexible dye-sensitized solar cell using low-temperature manufactured titanium oxide paste for maximum photoelectric change efficiency
KR1020070076345A 2007-07-30 2007-07-30 Dye-sensitized solar cell prepared by low-temperature process using tio2 paste KR20070100192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070076345A KR20070100192A (en) 2007-07-30 2007-07-30 Dye-sensitized solar cell prepared by low-temperature process using tio2 paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070076345A KR20070100192A (en) 2007-07-30 2007-07-30 Dye-sensitized solar cell prepared by low-temperature process using tio2 paste

Publications (1)

Publication Number Publication Date
KR20070100192A true KR20070100192A (en) 2007-10-10

Family

ID=38805265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070076345A KR20070100192A (en) 2007-07-30 2007-07-30 Dye-sensitized solar cell prepared by low-temperature process using tio2 paste

Country Status (1)

Country Link
KR (1) KR20070100192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066020B1 (en) * 2007-11-16 2011-09-20 주식회사 엘지화학 Paste Composition for Preparation of Absorption Layer of Solar Cell
KR20140141569A (en) * 2012-03-30 2014-12-10 세키스이가가쿠 고교가부시키가이샤 Titanium oxide paste
KR102027404B1 (en) * 2018-06-29 2019-10-02 (주)쓰리에이씨 Manufacturing method of Titanium dioxide nanoparticles dispersed solution, Titanium dioxide nanoparticles dispersed solution manufactured by the same, and preparing method of Titanium dioxide film using the Titanium dioxide nanoparticles dispersed solution having excellent deodorization effect for removing formaldehyde, ammonia, acetaldehyde, acetic acid and toluene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066020B1 (en) * 2007-11-16 2011-09-20 주식회사 엘지화학 Paste Composition for Preparation of Absorption Layer of Solar Cell
KR20140141569A (en) * 2012-03-30 2014-12-10 세키스이가가쿠 고교가부시키가이샤 Titanium oxide paste
KR102027404B1 (en) * 2018-06-29 2019-10-02 (주)쓰리에이씨 Manufacturing method of Titanium dioxide nanoparticles dispersed solution, Titanium dioxide nanoparticles dispersed solution manufactured by the same, and preparing method of Titanium dioxide film using the Titanium dioxide nanoparticles dispersed solution having excellent deodorization effect for removing formaldehyde, ammonia, acetaldehyde, acetic acid and toluene

Similar Documents

Publication Publication Date Title
Miyasaka et al. Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania
Chou et al. Preparation of TiO2/NiO composite particles and their applications in dye-sensitized solar cells
Kanmani et al. Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications
Li et al. Unique Zn-doped SnO 2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell
Guerin et al. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications
Flynn et al. Hierarchically-structured NiO nanoplatelets as mesoscale p-type photocathodes for dye-sensitized solar cells
JP4669352B2 (en) Method for producing titania nanorod and dye-sensitized solar cell using the titania nanorod
JP2009032663A (en) Photoelectrode for dye-sensitized solar cell containing metal oxide nano-particle of hollow spherical shape, and its manufacturing method
EP1709651A2 (en) Metal oxide dispersion, metal oxide electrode film, and dye sensitized solar cell
CN102891009B (en) With the chemically combined nano particle of imidazoles drone salt, its manufacture method and comprise its nanometer glue-type electrolyte
Kharel et al. Enhancing the photovoltaic performance of dye-sensitized solar cells with rare-earth metal oxide nanoparticles
Bang et al. Effect of acetic acid in TiO2 paste on the performance of dye-sensitized solar cells
Kumar et al. Optimizing room temperature binder free TiO2 paste for high efficiency flexible polymer dye sensitized solar cells
KR100656365B1 (en) Composition of non-aqueous paste for forming semiconductor electrode of dye-sensitized solar cell, preparation method thereof, and dye-sensitized solar cells comprising the same
Kathirvel et al. Preparation of Smooth Surface TiO2 Photoanode for High Energy Conversion Efficiency in Dye‐Sensitized Solar Cells
Zhang et al. Low‐Temperature Preparation of Hierarchical Structure TiO2 for Flexible Dye‐Sensitized Solar Cell
Fan et al. A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature
Dou et al. Highly efficient triarylene conjugated dyes for dye-sensitized Zn2SnO4 solar cells
Ahmed et al. Self-assembled TiO2 with increased photoelectron production, and improved conduction and transfer: Enhancing photovoltaic performance of dye-sensitized solar cells
Mazloum‐Ardakani et al. Synthesis and application of Fe3O4@ nanocellulose/TiCl as a nanofiller for high performance of quasisolid‐based dye‐sensitized solar cells
CN103700508A (en) Perovskite oxide counter electrode material for DSSCs (dye sensitized solar cells)
Ahmad et al. Pt-TCO free sn-ag-cu ternary alloy as cost effective counter electrode layer for dye sensitized solar cell
JP2007179766A (en) Dye-sensitized solar cell
Zhang et al. High efficiency solid-state dye-sensitized solar cells using a cobalt (II/III) redox mediator
Lee et al. Ionic liquid diffusion properties in tetrapod-like ZnO photoanode for dye-sensitized solar cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application