KR20070100086A - Super broadband light source generator based on erbium fiber amplified spontaneous emission(ase) and wave division multiplexing passive optical network(wdm-pon) using the same - Google Patents

Super broadband light source generator based on erbium fiber amplified spontaneous emission(ase) and wave division multiplexing passive optical network(wdm-pon) using the same Download PDF

Info

Publication number
KR20070100086A
KR20070100086A KR1020060084664A KR20060084664A KR20070100086A KR 20070100086 A KR20070100086 A KR 20070100086A KR 1020060084664 A KR1020060084664 A KR 1020060084664A KR 20060084664 A KR20060084664 A KR 20060084664A KR 20070100086 A KR20070100086 A KR 20070100086A
Authority
KR
South Korea
Prior art keywords
light source
optical fiber
erbium
ase
fiber
Prior art date
Application number
KR1020060084664A
Other languages
Korean (ko)
Other versions
KR100767725B1 (en
Inventor
이주한
한영근
이상배
김철한
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of KR20070100086A publication Critical patent/KR20070100086A/en
Application granted granted Critical
Publication of KR100767725B1 publication Critical patent/KR100767725B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094023Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with ASE light recycling, with reinjection of the ASE light back into the fiber, e.g. by reflectors or circulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters

Abstract

An apparatus for generating super wideband light source generator on the base of spontaneous emission amplified in erbium fiber and a WDM-PON(Wave Division Multiplexing Passive Optical Network) using the same are provided to be applicable to an optical sensor or the WDM-PON by using a simple configuration. An apparatus for generating super wideband light source generator on the base of spontaneous emission amplified in erbium fiber comprises an EDF(Erbium Doped Fiber), an optical fiber amplifier, and an HNL-DSF(Highly Nonlinear Dispersion Shifted Fiber). The EDF outputs an incoherent ASE(Amplified Spontaneous Emission) seed light source which receives the first pumping light. The optical fiber amplifier amplifies the seed light source inputted from the EDF by pumping the seed light source in a forward direction via the second pumping light, pumping it in a backward direction via the third pumping light or pumping it in both directions. The HNL-DSF converts an amplified light source, inputted from the optical fiber amplifier, into a super wideband light source thorugh a nonlinear light source.

Description

어븀 광섬유에서 증폭된 자기 발광 기반의 초광대역 광원 발생기 및 이를 이용한 파장분할다중 수동광네트워크{Super Broadband Light Source Generator based on Erbium Fiber Amplified Spontaneous Emission(ASE) and Wave Division Multiplexing Passive Optical Network(WDM-PON) using the same}Super Broadband Light Source Generator based on Erbium Fiber Amplified Spontaneous Emission (ASE) and Wave Division Multiplexing Passive Optical Network (WDM-PON) using the same}

도 1은 본 발명의 실시예에 따른 어븀 첨가 광섬유에서 ASE 기반의 연속파형 슈퍼콘티뉴엄 광대역 광원 발생기의 구성도이다.1 is a block diagram of an ASE-based continuous wave supercontinuum broadband light source generator in an erbium-doped optical fiber according to an embodiment of the present invention.

도 2는 도 1의 광대역 광원 발생기에서 각 광섬유로부터 출력되는 광원의 대역폭과 광출력의 세기를 나타낸 그래프이다.FIG. 2 is a graph showing the bandwidth and light output intensity of light sources output from each optical fiber in the broadband light source generator of FIG. 1.

도 3은 도 1의 광대역 광원 발생기에서 발생된 광원을 파장분할다중 수동광네트워크에 사용할 때의 성능을 측정하기 위한 실험 구성도이다. FIG. 3 is an experimental configuration diagram for measuring performance when a light source generated by the broadband light source generator of FIG. 1 is used in a wavelength division multiple passive optical network.

도 4는 도 1에서 발생된 출력 스펙트럼을 1nm 파장 간격을 갖는 다중파장필터를 사용하여 스펙트럼을 분할시킨 다파장 광신호를 나타낸 도면이다.4 is a diagram illustrating a multi-wavelength optical signal obtained by dividing the output spectrum generated in FIG. 1 using a multi-wavelength filter having a wavelength range of 1 nm.

도 5는 도 4에서 발생된 다파장 채널 신호들의 25Km 전송 성능을 보여주는 BER(Bit Error Rate) 곡선을 나타낸 도면이다.FIG. 5 is a diagram illustrating a bit error rate (BER) curve showing 25 Km transmission performance of the multi-wavelength channel signals generated in FIG. 4.

도 6은 도 1의 광대역 광원 발생기에서 발생된 광원이 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 응용되는 구성도이다.FIG. 6 is a view showing a light source generated in the broadband light source generator of FIG. 1 using a Fabry-Perot Laser Diode (FP-LD) or a Reflective Semiconductor Optical Amplifier (RSOA) for injection locking. ) Is a configuration diagram applied to wavelength division multiple passive optical network based on.

도 7은 도 6의 구체적인 실시예로서, 광대역 광원 발생기에서 발생된 광원이 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 응용되는 구성도이다.FIG. 7 is a detailed embodiment of FIG. 6, in which a light source generated by a broadband light source generator is a Fabry-Perot Laser Diode (FP-LD) or a reflective semiconductor optical amplifier for injection locking. This is a configuration applied to the wavelength division multiple passive optical network based on Semiconductor Optical Amplifier (RSOA).

도 8은 도 6의 또 다른 구체적인 실시예로서, 광대역 광원 발생기에서 발생된 광원이 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 응용되는 또 다른 구성도이다.FIG. 8 is a further embodiment of FIG. 6, in which a light source generated by the broadband light source generator is a Fabry-Perot Laser Diode (FP-LD) or a reflective semiconductor optical amplifier for injection locking. This is another configuration applied to wavelength division multiple passive optical network based on Reflective Semiconductor Optical Amplifier (RSOA).

도 9는 본 발명의 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원을 파장별로 분할하여 C-band, L-band 및 U-band를 표시한 도면이다. FIG. 9 is a diagram illustrating C-band, L-band, and U-band by dividing an erbium-doped optical fiber ASE-based supercontinental light source by wavelength.

*도면의 주요부호에 대한 설명** Description of the major symbols in the drawings *

10, 14, 17:펌핑광 11, 15, 18:펌핑광 결합기10, 14, 17: pumping light 11, 15, 18: pumping light coupler

12:어븀 첨가 광섬유 13, 19:아이솔레이터12: Erbium-doped optical fiber 13, 19: isolator

16:어븀 또는 희토류 첨가 광섬유 20:고비선형 광섬유16: Erbium or rare earth-doped optical fiber 20: Highly nonlinear fiber

30:초광대역 광원 40:다중파장필터30: Ultra-wide band light source 40: Multiple wavelength filter

50:광감쇠기 60:변조기50: light attenuator 60: modulator

70:단일 모드 광섬유 80:AWG70: single mode fiber 80: AWG

90:수신기90: Receiver

본 발명은 어븀 광섬유에서 증폭된 자기 발광(ASE) 기반의 초광대역 광원 발생기에 관한 것으로서, 구체적으로는 파장 분할 다중(WDM) 수동 광 네트워크 및 광센서 응용을 위한 고출력뿐만 아니라 초광대역의 광원을 발생하는 어븀 광섬유에서 증폭된 자기 발광(ASE) 기반의 초광대역 광원 발생기 및 이를 이용한 파장분할다중 수동광네트워크에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-emissive (ASE) based ultra-wideband light source generator amplified in erbium fiber, specifically generating ultra-wideband light sources as well as high power for wavelength division multiplex (WDM) passive optical networks and optical sensor applications. The present invention relates to a self-emissive (ASE) based ultra-wideband light source generator amplified in an erbium fiber and a wavelength division multiple passive optical network using the same.

최근, 광센서(Optical Sense) 및 파장 분할 다중 수동광네트워크(Wave Division Multiplexing Passive Optical Network:WDM PON)의 기술이 발전함에 따라 이러한 응용에 사용되는 광대역 광결맞음성이 없는(Incoherent) 고출력 광원이 요구되고 있다.Recent advances in the technology of Optical Sense and Wave Division Multiplexing Passive Optical Networks (WDM PON) require broadband incoherent high power light sources used in these applications. It is becoming.

광결맞음성이 없는(Incoherent) 광대역 광원으로 어븀 첨가 광섬유에 기반한 증폭된 자기 발광(Amplified Spontaneous Emission, 이하, "ASE"라 한다) 광원, 반도체를 이용한 LED 광원, 슈퍼발광 LD(Superluminescent Laser Diode) 광원 등이 있는데 기존의 어븀 첨가 광섬유에 기반한 ASE 광원은 반도체를 이용한 LED 광원 또는 슈퍼발광 LD 광원에 비해 출력이 높고 대역폭이 넓다는 장점이 있지만, 아직까지도 30~80 nm에 제한된 대역폭과 수십 mW 이상의 광출력이 나오지 않는다는 한계가 있으므로 이를 극복하는 신개념의 광대역 고출력 광원이 절실히 요구되고 있다.Amplified Spontaneous Emission (hereinafter referred to as "ASE") light source based on erbium-doped fiber, Incoherent broadband light source, LED light source using semiconductor, Superluminescent Laser Diode (LD) light source ASE light source based on erbium-doped optical fiber has the advantage of higher output and wider bandwidth than LED light source or super light emitting LD light source using semiconductor, but it is still limited to 30 ~ 80 nm and more than tens of mW light. Since there is a limit that the output does not come out, there is an urgent need for a new concept of broadband high power light source to overcome this problem.

본 발명은 1백 nm 이상의 초광대역을 갖고, 1백 mW이상의 고출력의 광세기를 갖는 광결맞음성 없는 광대역 광원을 제공하는데 그 목적이 있다.An object of the present invention is to provide a light coherence-free broadband light source having an ultra-wide band of more than 100 nm and a high power light intensity of more than 100 mW.

또한, 간단한 구성으로 광센서 및 파장분할다중 수동광네트워크의 기본 광원으로 사용할 수 있는 광대역, 고출력의 광결맞음성 없는 광대역 광원 발생기를 제공하는데 그 목적이 있다.It is also an object of the present invention to provide a broadband, high power, optical coherence-free broadband light source generator that can be used as a basic light source for an optical sensor and a wavelength division multiple passive optical network with a simple configuration.

상기 목적은 어븀 첨가 광섬유로부터 나온 고출력의 결맞음성이 없는 증폭된 자기 발광(ASE) 광원을 고비선형 광섬유 상에서 비선형 현상을 이용하여 고출력 초광대역의 광원으로 변환하는 것을 특징으로 하는 초광대역 광원 발생기에 의해 달성될 수 있다.The objective is to convert a high power coherent amplified self-emitting (ASE) light source from an erbium-doped optical fiber into a high power ultra wide band light source using a nonlinear phenomenon on a high nonlinear fiber. Can be achieved.

또한, 상기 목적을 달성하기 위한 초광대역 광원 발생기는 제 1 펌핑광을 입력받아 결맞음성이 없는 증폭된 자기 발광(ASE) 시드(seed) 광원을 출력하는 어븀 첨가 광섬유; 제 2 펌핑광에 의해 순방향 펌핑되고 제 3 펌핑광에 의해 역방향 펌 핑되어, 상기 어븀 첨가 광섬유로부터 입력받은 시드 광원을 증폭하여 출력하는 광섬유 증폭기; 및 상기 광섬유 증폭기로부터 입력받은 증폭된 광원을 비선형 현상을 이용하여 초광대역의 광원으로 변환하는 고비선형 광섬유를 포함하는 것을 특징으로 한다.In addition, the ultra-wideband light source generator for achieving the above object is an erbium-added optical fiber for receiving the first pumping light and outputs an amplified self-emitting (ASE) seed light source without coherence; An optical fiber amplifier which is forward pumped by the second pumping light and backward pumped by the third pumping light, and amplifies and outputs a seed light source input from the erbium-doped optical fiber; And a high nonlinear optical fiber converting the amplified light source received from the optical fiber amplifier into an ultra-wide band light source using a nonlinear phenomenon.

나아가, 상기 목적은 제 1 펌핑광을 입력받아 결맞음성이 없는 증폭된 자기 발광(ASE) 시드(seed) 광원을 출력하는 어븀 첨가 광섬유; 제 2 펌핑광에 의해 순방향 펌핑되고 제 3 펌핑광에 의해 역방향 펌핑되어, 상기 어븀 첨가 광섬유로부터 입력받은 시드 광원을 증폭하여 출력하는 광섬유 증폭기; 상기 광섬유 증폭기로부터 입력받은 증폭된 광원을 비선형 현상을 이용하여 초광대역의 광원으로 변환하는 고비선형 광섬유; 상기 초광대역의 광원을 다파장 신호로 분할시키는 다중파장필터; 상기 다파장 신호를 데이터 변조시키는 변조기; 상기 변조된 다파장 신호가 전송된 단일 모드 광섬유; 및 상기 전송된 다파장 신호를 역다중화시키는 역다중화기를 포함하는 것을 특징으로 하는 파장분할다중 수동광네트워크에 의해서도 달성될 수 있다.Further, the object is an erbium-doped optical fiber for receiving the first pumping light and outputs an amplified self-emitting (ASE) seed light source without coherence; An optical fiber amplifier which is forward pumped by the second pumping light and backward pumped by the third pumping light, and amplifies and outputs a seed light source input from the erbium-doped optical fiber; A high nonlinear optical fiber converting the amplified light source received from the optical fiber amplifier into an ultra-wide band light source using a nonlinear phenomenon; A multi-wavelength filter for dividing the ultra-wide band light source into a multi-wavelength signal; A modulator for data modulating the multi-wavelength signal; A single mode optical fiber in which the modulated multi-wavelength signal is transmitted; And a demultiplexer for demultiplexing the transmitted multi-wavelength signal.

또한, 상기 목적을 달성하기 위한 파장분할다중 수동광네트워크는 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 있어서, 상기 인젝션 록킹용 광원으로 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원을 사용하는 것을 특징으로 한다.In addition, the wavelength division multiple passive optical network to achieve the above object is a Fabry-Perot Laser Diode (FP-LD) or Reflective Semiconductor Optical Amplifier (Injection Locking): In the RSOA-based wavelength division multiple passive optical network, an erbium-doped optical fiber ASE-based supercontinuum light source is used as the injection locking light source.

또한, 상기 목적은 중앙 기지국과 가입자망 사이에 데이터를 송수신하기 위한 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 있어서, 상기 중앙 기지국은, 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원; 상기 슈퍼콘티뉴엄 광원을 다수의 파장대역으로 분할하는 파장분할다중화기; 및 상기 분할된 파장을 상기 중앙 기지국 또는 상기 가입자망으로 전달하는 커플러를 포함하며, 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1530nm ~ 1565nm의 C-band 광원은 상기 중앙 기지국에 존재하는 하향신호 발생을 위한 인젝션-록킹용 광원으로 사용되고, 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1565nm ~ 1610nm의 L-band 광원은 상기 가입자망에 존재하는 상향신호 발생을 위한 인젝션-록킹용 광원으로 사용되는 것을 특징으로 하는 파장분할다중 수동광네트워크에 의해 달성될 수 있다.In addition, the above object is a Fabry-Perot Laser Diode (FP-LD) or Reflective Semiconductor Optical Amplifier for Injection Locking for transmitting and receiving data between the central base station and the subscriber network. In the wavelength division multiple passive optical network based on an Amplifier (RSOA), the central base station comprises: an erbium-doped optical fiber ASE-based supercontinuum light source; A wavelength division multiplexer for dividing the supercontinental light source into a plurality of wavelength bands; And a coupler for transmitting the divided wavelengths to the central base station or the subscriber network, wherein a C-band light source of 1530 nm to 1565 nm among the supercontinental light sources divided into the plurality of wavelengths is a downlink signal present in the central base station. Used as an injection-locking light source for generation, L-band light source of 1565nm ~ 1610nm among the supercontinentium light sources divided into the plurality of wavelengths is used as the injection-locking light source for generating the uplink signal existing in the subscriber network. It can be achieved by a wavelength division multiple passive optical network characterized in that.

나아가, 상기 목적은 중앙 기지국과 가입자망 사이에 데이터를 송수신하기 위한 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 있어서, 상기 중앙 기지국은, 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원; 상기 슈퍼콘티뉴엄 광원을 다수의 파장대역으로 분할하는 파장분할다중화기; 및 상기 분할된 파장을 상기 중앙 기지국 또는 상기 가입자망으로 전달하는 커플러를 포함하며, 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1530nm ~ 1565nm의 C-band 광원은 상기 가입자망에 존재하는 상향신호 발생을 위한 인젝션-록킹용 광원으로 사용되고, 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1565nm ~ 1610nm의 L-band 광원은 상기 중앙 기지국에 존재하는 하향신호 발생을 위한 인젝션-록킹용 광원으로 사용되는 것을 특징으로 하는 파장분할다중 수동광네트워크에 의해 달성할 수 있다.Further, the above object is a Fabry-Perot Laser Diode (FP-LD) or Reflective Semiconductor Optical Amplifier for Injection Locking for transmitting and receiving data between a central base station and a subscriber network. In the wavelength division multiple passive optical network based on an Amplifier (RSOA), the central base station comprises: an erbium-doped optical fiber ASE-based supercontinuum light source; A wavelength division multiplexer for dividing the supercontinental light source into a plurality of wavelength bands; And a coupler for transmitting the divided wavelengths to the central base station or the subscriber network, wherein a C-band light source of 1530 nm to 1565 nm among the supercontinental light sources divided into the plurality of wavelengths is an uplink signal existing in the subscriber network. Used as an injection-locking light source for generation, L-band light source of 1565 nm to 1610 nm among the supercontinentium light sources divided into the plurality of wavelengths is used as the injection-locking light source for generating the downlink signal existing in the central base station. It can be achieved by a wavelength division multiple passive optical network characterized in that.

여기서, 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1610nm 이상의 U-band 광원은 상기 광원들이 정상적으로 동작하는지 여부를 확인하는 모니터링 신호로 사용되는 것을 특징으로 한다.Here, the U-band light source of 1610 nm or more among the supercontinental light sources divided into the plurality of wavelengths is used as a monitoring signal for checking whether the light sources operate normally.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시예에 따른 어븀 첨가 광섬유 ASE 기반의 연속파형 슈퍼콘티뉴엄 광대역 광원 발생기의 구성도이다.1 is a block diagram of a continuous wave supercontinuum broadband light source generator based on an erbium-doped optical fiber ASE according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시예에 따른 광원 발생기는 펌핑광 결합기(11)를 통한 펌핑광(10)에 의해 펌핑되어 ASE 시드(seed) 광원을 출력하는 어븀 첨가 광섬유(5m Erbium Doped Fiber:EDF, 12)와, 상기 어븀 첨가 광섬유에서 레이징 현상이 일어나 협대역의 광결맞음성 레이저 출력이 나오는 것을 억제하는 아이솔레이터(Isolator:13)와, 펌핑광 결합기(15)를 통한 펌핑광(14)에 의해 순방향 펌핑되거나, 펌핑광 결합기(18)를 통한 펌핑광(17)에 의해 역방향 펌핑되고 또는 양방향 펌핑되어 상기 어븀 첨가 광섬유(12)로부터 시드 광원을 입력받아 이를 증폭하여 출력하는 어븀 첨가 광섬유(20m EDF) 또는 희토류 첨가 광섬유(20m Er/Yb Fiber) 증폭기(16)와 상기 증폭기에서 레이징 현상이 일어나 협대역의 광결맞음성 레이저 출력이 나오는 것을 억제하는 아이솔레이터(Isolator:19) 및 상기 증폭된 광원을 비선형 현상을 이용하여 초광대역의 광원으로 변환하는 고비선형 광섬유(2Km HNL-DSF:Highly Nonlinear Dispersion Shifted Fiber)를 포함한다.Referring to FIG. 1, a light source generator according to an embodiment of the present invention is pumped by a pumping light 10 through a pumping light combiner 11 to output an ASE seed light source (5m Erbium Doped Fiber) : EDF, 12, an isolator 13 for suppressing the occurrence of lasing in the erbium-doped optical fiber and output of narrow-band photocoherent laser output, and pumped light 14 through the pumping light combiner 15. Erbium-doped optical fiber that is forward-pumped by (), or pumped backward by pumping light (17) through pumping light combiner (18) or pumped bi-directionally to receive a seed light source from the erbium-doped fiber (12) and amplify and output it. (20m EDF) or 20m Er / Yb Fiber (16m Er / Yb Fiber) amplifier 16 and isolator that suppresses the occurrence of lasing in the amplifier, resulting in narrowband optical coherent laser output (19) It comprises: (Highly Nonlinear Dispersion Shifted Fiber 2Km HNL-DSF) and a non-linear optical fiber that converts the amplified light to the second broadband light source using a non-linear phenomenon.

펌핑광들(10, 14, 17)은 소정의 파장의 펌핑광을 출력하는 레이저 다이오드를 사용하며, 상기 어븀 첨가 광섬유(12, 16)를 펌핑한다.The pumping lights 10, 14, 17 use a laser diode that outputs a pumping light of a predetermined wavelength, and pump the erbium-doped optical fibers 12, 16.

펌핑광 결합기들(11, 15, 18)은 각각의 펌핑광들(10, 14, 17)을 상기 어븀 첨가 광섬유(12, 16)로 전달한다.The pumping light couplers 11, 15, and 18 transmit the respective pumping lights 10, 14, and 17 to the erbium-doped optical fiber 12, 16.

아이솔레이터(13, 19)는 광원이 순방향으로 전달되도록 할 뿐만 아니라 어븀 또는 희토류 첨가 광섬유 등에서 레이징 현상이 일어나 협대역의 광결맞음성 레이저 출력이 나오는 것을 억제하는 역할을 한다.The isolators 13 and 19 not only allow the light source to be transmitted in the forward direction but also serve to suppress the occurrence of a narrow band optical coherent laser output due to a lasing phenomenon in the erbium or the rare earth-added optical fiber.

고비선형 광섬유는 실리카에 기반한 고비선형 분산 천이 광섬유(HNL-DSF), 포토닉 크리스탈 광섬유(PCF), 비스무쓰 비선형 광섬유(Bismuth Nonlinear Fiber) 또는 찰코지나이드 광섬유(Chalcogenide Fiber)가 사용될 수 있다.The high nonlinear fiber may be a silica based high nonlinear distributed transition fiber (HNL-DSF), photonic crystal optical fiber (PCF), bismuth nonlinear fiber or chalcogenide fiber (Chalcogenide Fiber).

도 2는 도 1의 광대역 광원 발생기에서 각 광섬유로부터 출력되는 광원의 대역폭과 광출력의 세기를 나타낸 그래프이다. FIG. 2 is a graph showing the bandwidth and light output intensity of light sources output from each optical fiber in the broadband light source generator of FIG. 1.

도 1 및 도 2를 참조하여 자세히 설명하면, 먼저, 펌핑광(10)에 의해 펌핑된 5m의 어븀 첨가 광섬유(12)에서 나오는 ASE 광원을 시드(seed) 광원으로 사용한다. 이때, 발생된 광출력은 5mW 정도이고, 이 지점의 광출력 스펙트럼은 30nm 정도 의 대역폭을 갖고 있다(도 2의 ①참조).1 and 2, first, an ASE light source emitted from a 5 m erbium-doped optical fiber 12 pumped by the pumping light 10 is used as a seed light source. At this time, the generated light output is about 5 mW, and the light output spectrum at this point has a bandwidth of about 30 nm (see 1 in Fig. 2).

다음으로, 상기 어븀 첨가 광섬유(12)에서 발생된 저출력의 ASE 광을 다시 한번 펌핑광(14)에 의해 순방향 펌핑되고, 펌핑광(17)에 의해 역방향 펌핑되어 고출력의 어븀첨가 광섬유 또는 희토류 첨가 광섬유(16) 기반의 증폭기를 통하여 광출력 파워를 800mW 까지 증가시킨다. 이때, 증폭된 광의 대역폭은 15nm 정도로 줄어들게 되면서 출력의 세기는 증가한다(도 2의 ②참조).Next, the low power ASE light generated by the erbium-doped optical fiber 12 is once again pumped forward by the pumping light 14, and is reversely pumped by the pumping light 17 to produce a high power erbium-added optical fiber or a rare earth-added optical fiber. The optical output power is increased to 800mW through a (16) based amplifier. At this time, while the bandwidth of the amplified light is reduced to about 15nm, the intensity of the output increases (see ② in Fig. 2).

마지막으로, 증폭된 고출력의 ASE 광을 2Km의 고비선형 광섬유(HNL-DSF)에 입사시키면, 변조 불안정성(modulation instability)과 유도 라만 상호작용(stimulated Raman interaction)을 통하여 1백 nm 이상의 초광대역 광원으로 변환시킨다. 이때의 출력 세기는 500mW 정도이다(도 2의 ③참조). Finally, when amplified high power ASE light is incident on a 2Km high nonlinear optical fiber (HNL-DSF), it is applied to an ultra-wideband light source of 100 nm or more through modulation instability and stimulated Raman interaction. Convert The output intensity at this time is about 500 mW (see ③ in FIG. 2).

이와 같이, 본 발명의 실시예에 따르면, 어븀 첨가 광섬유 ASE 광원을 기반으로 하고 비선형 광섬유 내에서의 슈퍼콘티뉴엄 현상을 이용하여 1백 nm 이상의 대역폭을 갖고, 1백 mW 이상의 출력 광세기를 갖는 신개념의 광결맞음성이 없는(Incoherent) 초광대역 광원을 발생할 수 있다.As described above, according to an embodiment of the present invention, a new concept based on an erbium-doped fiber ASE light source and having a bandwidth of more than 100 nm and a light intensity of more than 100 mW by using supercontinuity in a nonlinear optical fiber Incoherent ultra-wideband light source can be generated.

이러한, 고출력, 초광대역 광원은 광센서 또는 파장 분할 다중 수동 광네트워크에 사용되기에 충분히 좋은 특성을 가지고 있어야 한다. 이를 확인하기 위하여 도 3을 참조하여 측정을 하기로 한다.Such high power, ultra-wideband light sources should have characteristics that are good enough for use in optical sensors or wavelength division multiple passive optical networks. In order to confirm this, measurement will be made with reference to FIG. 3.

도 3은 도 1의 광대역 광원 발생기에서 발생된 광원을 파장분할다중 수동광네트워크에 사용할 때의 성능을 측정하기 위한 실험 구성도이고, 도 4는 도 1에서 발생된 출력 스펙트럼을 1nm 파장 간격을 갖는 다중파장필터를 사용하여 스펙트럼을 분할시킨 다파장 광신호를 나타낸 도면이다.FIG. 3 is an experimental block diagram for measuring performance when a light source generated in the broadband light source generator of FIG. 1 is used in a wavelength division multiple passive optical network, and FIG. 4 shows an output spectrum having the wavelength of 1 nm generated in FIG. A diagram showing a multi-wavelength optical signal obtained by dividing a spectrum using a multi-wavelength filter.

도 3 및 도 4를 참조하면, 파장분할다중 수동광네트워크는 도 1에서 발생된 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원(30)을 다중파장필터(Multiwavelength Filter, 40)를 사용하여 스펙트럼을 슬라이싱(slicing) 해주어 도 4에서 나타나는 바와 같이 1백 여개의 채널 신호들을 만든다.3 and 4, the wavelength division multiple passive optical network is slicing the spectrum using a multiwavelength filter 40 using the erbium-doped optical fiber ASE-based supercontinuum light source 30 generated in FIG. 1. slicing to produce more than 100 channel signals as shown in FIG.

상기 1백 여개의 채널 신호들은 광 감쇠기(50)를 거쳐 데이터 변조기(60)에서 데이터 변조를 가해준 후 25Km 단일 모드 광섬유(Single Mode Fiber:SMF, 70)에서 전송시킨 후 AWG(Arrayed Waveguide Grating, 80)를 통해 역다중화 시킨 후 수신기(90)를 통해 신호를 수신한다.The one hundred channel signals are modulated by the data modulator 60 through the optical attenuator 50 and then transmitted by 25Km single mode fiber 70, and then AWG (Arrayed Waveguide Grating, After demultiplexing through 80), a signal is received through the receiver 90.

도 5는 도 4에서 발생된 다파장 채널 신호들의 25Km 전송 성능을 보여주는 BER(Bit Error Rate) 곡선을 나타낸 도면이다.FIG. 5 is a diagram illustrating a bit error rate (BER) curve showing 25 Km transmission performance of the multi-wavelength channel signals generated in FIG. 4.

도 5를 참조하면, 파장분할다중 수동광네트워크를 통하여 전송된 신호들 중 5개의 신호만을 골라 BER(Bit Error Rate)을 측정한 결과값으로서, 예를 들어, 1590nm 대역에서 단순히 케이블끼리만 연결하여(back-to-back) 수신한 것과 25Km 광섬유를 통과한 후 수신한 신호를 살펴보면 오류 없이 정상적으로 전송되었음을 알 수 있다.Referring to FIG. 5, as a result of measuring a bit error rate (BER) by selecting only five signals among signals transmitted through a wavelength division multiple passive optical network, for example, by simply connecting cables in the 1590 nm band ( If you look at the received back-to-back and the signal received after passing through 25Km fiber, you can see that it was transmitted without error.

또한, 그래프를 살펴보면, 5개의 신호 모두 에러없이 성공적인 전송 특성을 나타낸다. 이와 같은 결과로부터 본 발명의 실시예에 따른 도 1의 광대역 광원 발 생기는 파장분할다중 수동광네트워크에 사용되기에 충분히 좋은 특성을 갖고 있다는 것을 알 수 있다.Also, looking at the graph, all five signals exhibit successful transmission characteristics without error. From these results, it can be seen that the broadband light source generation of FIG. 1 according to the embodiment of the present invention has a characteristic sufficient to be used in a wavelength division multiple passive optical network.

도 6은 도 1의 광대역 광원 발생기에서 발생된 광원이 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 응용되는 구성도이다.FIG. 6 is a view showing a light source generated in the broadband light source generator of FIG. 1 using a Fabry-Perot Laser Diode (FP-LD) or a Reflective Semiconductor Optical Amplifier (RSOA) for injection locking. ) Is a configuration diagram applied to wavelength division multiple passive optical network based on.

도 6을 참조하면, 본 발명의 파장분할다중 수동광네트워크는 중앙 기지국(Central Office, 100)에서 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원(101)을 광원으로 사용한다. 즉, 상기 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원(101)은 중앙 기지국(106)과 가입자망(400) 사이의 데이터를 전달하는 상향신호와 하향신호로서 사용된다. Referring to FIG. 6, the wavelength division multiple passive optical network of the present invention uses an erbium-doped optical fiber ASE-based supercontinuum light source 101 as a light source in a central base station 100. That is, the erbium-doped optical fiber ASE-based supercontinuum light source 101 is used as an uplink signal and a downlink signal for transferring data between the central base station 106 and the subscriber network 400.

도 6을 자세히 살펴보면, 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원(101)은 서큘레이터(103)를 거쳐 25Km 단일모드 광섬유를 통해 지역국(Remote node)에 있는 배열 도파로 격자(AWG:Arrayed Waveguide Grating, 300)에서 다수의 파장으로 분할되어 가입자망(ONUs, 400)의 각 송신기(FP-LD 또는 ROSA, 401, 402, 403)에서 데이터를 싣고 반사되어 상기 중앙 기지국(100)으로 보내는 상향신호가 된다. 상기 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원(101)이 고출력(high power), 광대역(ultra-broadband), 무편광의존성(polarization insensitive), 연속 파형(Continues wave)의 특징을 가지고 있기 때문에 Injection-locking용 광원으로 가능하다. 6, the erbium-doped fiber ASE-based supercontinental light source 101 is an arrayed waveguide grating (AWG) in a remote node via a circulator 103 and a 25Km single mode fiber. The signal is divided into a plurality of wavelengths at 300 and is loaded with data from each transmitter (FP-LD or ROSA, 401, 402, 403) of the subscriber network (ONUs, 400) and reflected to be an uplink signal sent to the central base station 100. . Since the erbium-doped optical fiber ASE-based supercontinuum light source 101 has high power, ultra-broadband, polarization insensitive, and continuous wave characteristics, Injection- Possible as a light source for locking.

도 7은 도 6의 구체적인 실시예로서, 광대역 광원 발생기에서 발생된 광원이 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 응용되는 구성도이다.FIG. 7 is a detailed embodiment of FIG. 6, in which a light source generated by a broadband light source generator is a Fabry-Perot Laser Diode (FP-LD) or a reflective semiconductor optical amplifier for injection locking. This is a configuration applied to the wavelength division multiple passive optical network based on Semiconductor Optical Amplifier (RSOA).

도 7을 참조하면, 본 발명의 인젝션 록킹(Injection-Locking)용 파장분할다중 수동광네트워크는 중앙 기지국(100), 단일 모드 광섬유(200), 지역국의 사이클릭 AWG(300) 및 가입자망(400)으로 구성되는데, 특히, 상기 중앙 기지국(100)에서 사용되는 광원은 어븀첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원(101)을 사용한다.Referring to FIG. 7, the wavelength division multiple passive optical network for injection-locking according to the present invention includes a central base station 100, a single mode optical fiber 200, a cyclic AWG 300 of a local station, and a subscriber network 400. In particular, the light source used in the central base station 100 uses an erbium-added optical fiber ASE-based supercontinuum light source 101.

상기 슈퍼콘티뉴엄 광원(101)은 상기 도 4에 나타난 바와 같이, 약1510nm~1650nm 까지의 파장대역을 가지는데, 이를 파장분할다중화기(Wave Division Multiplexer:WDM, 102)에서 다수개의 파장 대역(C-band, L-band, U-band)으로 분할한다. 즉, 도 9에 도시된 바와 같이, C-band 광원은 약 1530 ~1565nm의 파장 대역, L-band 광원은 약 1565~ 1610nm의 파장 대역, U-band 광원은 약 1610 ~1650nm의 파장 대역이다.As shown in FIG. 4, the supercontinental light source 101 has a wavelength band of about 1510 nm to 1650 nm, which is a wavelength division multiplexer (WDM) 102. -band, L-band, U-band). That is, as shown in Figure 9, the C-band light source is a wavelength band of about 1530 ~ 1565nm, the L-band light source is a wavelength band of about 1565 ~ 1610nm, the U-band light source is a wavelength band of about 1610 ~ 1650nm.

상기 분할된 파장은 50:50 커플러(103)를 통하여 C-band 광원은 중앙 기지국(100)으로, L-band 광원은 가입자망(400)으로 전달된다. 상기 C-band 광원은 사이클릭 AWG(105)에서 분할되어 중앙 기지국(100)의 송신기(FP-LD 또는 RSOA, 106)에서 데이터를 싣고 반사되어 가입자망(400)으로 보내지는 하향신호가 된다. 상기 L-band 광원은 25Km 단일 모드 광섬유(200)를 통하여 지역국의 사이클릭 AWG(300) 에서 분할되어 가입자망(400)의 각 송신기(FP-LD 또는 RSOA, 401)에서 데이터를 싣고 반사되어 중앙 기지국(100)으로 보내지는 상향신호가 된다. 한편, U-band 광원은 전달되는 신호가 정상적으로 작동하고 있는지를 모니터링 하는 광원이다. The split wavelength is transmitted through the 50:50 coupler 103 to the C-band light source to the central base station 100 and the L-band light source to the subscriber network 400. The C-band light source is divided in the cyclic AWG 105 and is a downlink signal which is loaded with data from the transmitter (FP-LD or RSOA) 106 of the central base station 100 and reflected to the subscriber network 400. The L-band light source is divided in the cyclic AWG 300 of the local station through the 25Km single mode optical fiber 200, and loads and reflects data from each transmitter (FP-LD or RSOA, 401) of the subscriber network 400 to the center. It becomes an uplink signal sent to the base station 100. On the other hand, the U-band light source is a light source for monitoring whether the transmitted signal is operating normally.

종래에는 각각 C-band의 광원 및 L-band의 광원을 따로 만들어 입력하였지만, 본 발명은 하나의 초광대역인 어븀첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원(101)을 분할하여 각각 상향신호, 하향신호 및 모니터링 신호를 발생하여 Injetion-locking용 파장분할다중 수동광네트워크에 사용된다. Conventionally, the light source of the C-band and the light source of the L-band are separately input and input, but the present invention divides the supercontinent light source 101 based on the erbium-doped fiber ASE, which is one ultra-wide band, respectively, and respectively an uplink signal and a downlink signal. It generates a monitoring signal and is used for wavelength division multiple passive optical network for injetion-locking.

도 8은 도 6의 또 다른 구체적인 실시예로서, 광대역 광원 발생기에서 발생된 광원이 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 응용되는 또 다른 구성도이다.FIG. 8 is a further embodiment of FIG. 6, in which a light source generated by the broadband light source generator is a Fabry-Perot Laser Diode (FP-LD) or a reflective semiconductor optical amplifier for injection locking. This is another configuration applied to wavelength division multiple passive optical network based on Reflective Semiconductor Optical Amplifier (RSOA).

도 8을 참조하면, 도 8의 구성은 도 7과 동일하고, 다만, C-band 광원과 L-band 광원이 바뀌어, L-band 광원은 중앙 기지국(100)으로, C-band 광원은 가입자망(400)으로 전달된다. 상기 L-band 광원은 사이클릭 AWG(105)에서 분할되어 중앙 기지국(100)의 송신기(FP-LD 또는 RSOA, 106)에서 데이터를 싣고 반사되어 가입자망(400)으로 보내지는 하향신호가 된다. 상기 C-band 광원은 25Km 단일 모드 광섬유(200)를 통하여 지역국의 사이클릭 AWG(300)에서 분할되어 가입자망(400)의 각 송신기(FP-LD 또는 RSOA, 401)에서 데이터를 싣고 반사되어 중앙 기지국(100)으로 보내지는 상향신호가 된다. 한편, U-band 광원은 전달되는 신호가 정상적으로 작동 하고 있는지를 모니터링 하는 광원이다.Referring to FIG. 8, the configuration of FIG. 8 is the same as that in FIG. 7, except that the C-band light source and the L-band light source are switched so that the L-band light source is the central base station 100 and the C-band light source is the subscriber network. Is passed to 400. The L-band light source is divided in the cyclic AWG 105, and is a downlink signal which is loaded with data from the transmitter (FP-LD or RSOA) 106 of the central base station 100 and reflected to the subscriber network 400. The C-band light source is divided in the cyclic AWG 300 of the local station through the 25Km single mode optical fiber 200 to load and reflect the data from each transmitter (FP-LD or RSOA, 401) of the subscriber network 400, It becomes an uplink signal sent to the base station 100. On the other hand, the U-band light source is a light source for monitoring whether the transmitted signal is operating normally.

본 발명은 기존의 어븀 첨가 광섬유 ASE 기반의 광결맞음성 없는 광대역 광원이 갖고 있는 제한된 대역폭과 낮은 출력 광세기의 한계를 극복하고, 1백 nm 이상의 대역폭과 1백 mW 이상의 출력 광세기를 갖는 고출력 광대역의 광원을 생성하여 간단한 구성으로 광센서 또는 파장분할다중 수동광네트워크에 충분히 적용이 가능하다는 효과가 있다.The present invention overcomes the limitations of the limited bandwidth and low output light intensity of the conventional erbium-doped optical fiber ASE-based non-coherent broadband light source, and has a high power broadband having a bandwidth of more than 100 nm and an output light intensity of more than 100 mW. By generating a light source of the simple configuration with the light sensor or wavelength division multiple passive optical network can be effectively applied.

Claims (12)

어븀 첨가 광섬유로부터 나온 고출력의 결맞음성이 없는 증폭된 자기 발광(ASE) 광원을 고비선형 광섬유 상에서 비선형 현상을 이용하여 고출력 초광대역의 광원으로 변환하는 것을 특징으로 하는 초광대역 광원 발생기.An ultra-wideband light source generator characterized by converting a high power, non-coherent amplified self-emitting (ASE) light source from an erbium-doped fiber into a high power ultra-wideband light source using a nonlinear phenomenon on a high nonlinear fiber. 제 1 펌핑광을 입력받아 결맞음성이 없는 증폭된 자기 발광(ASE) 시드(seed) 광원을 출력하는 어븀 첨가 광섬유;An erbium-doped optical fiber that receives the first pumped light and outputs an amplified self-emitting (ASE) seed light source having no coherence; 제 2 펌핑광에 의해 순방향 펌핑되거나 제 3 펌핑광에 의해 역방향 펌핑되며, 또는 양방향 펌핑되어, 상기 어븀 첨가 광섬유로부터 입력받은 시드 광원을 증폭하여 출력하는 광섬유 증폭기; 및An optical fiber amplifier which is forward-pumped by the second pumping light or reverse-pumped by the third pumping light, or bi-directionally pumped to amplify and output a seed light source input from the erbium-doped optical fiber; And 상기 광섬유 증폭기로부터 입력받은 증폭된 광원을 비선형 현상을 이용하여 초광대역의 광원으로 변환하는 고비선형 광섬유를 포함하는 것을 특징으로 하는 초광대역 광원 발생기.And a non-linear optical fiber for converting the amplified light source received from the optical fiber amplifier into an ultra-wide band light source using a non-linear phenomenon. 제 2 항에 있어서,The method of claim 2, 상기 어븀 첨가 광섬유와 상기 광섬유 증폭기 사이에 레이징 현상이 일어나 협대역의광결맞음성 레이저 출력이 나오는 것을 억제하기 위한 제 1 아이솔레이터 를 더 포함하는 것을 특징으로 하는 초광대역 광원 발생기.And a first isolator for suppressing the occurrence of a lasing phenomenon between the erbium-doped optical fiber and the optical fiber amplifier to produce a narrow band optical coherence laser output. 제 3 항에 있어서,The method of claim 3, wherein 상기 광섬유 증폭기와 상기 고비선형 광섬유 사이에 레이징 현상이 일어나 협대역의광결맞음성 레이저 출력이 나오는 것을 억제하기 위한 제 2 아이솔레이터를 더 포함하는 것을 특징으로 하는 초광대역 광원 발생기.And a second isolator for suppressing the occurrence of a lasing phenomenon between the optical fiber amplifier and the high nonlinear optical fiber and outputting a narrow-band optical coherent laser output. 제 4 항에 있어서,The method of claim 4, wherein 상기 광섬유 증폭기는, 어븀 첨가 광섬유 증폭기 또는 희토류 첨가 광섬유 증폭기인 것을 특징으로 하는 초광대역 광원 발생기.The optical fiber amplifier is an erbium-doped fiber amplifier or a rare earth-added fiber amplifier. 제 2 항에 있어서,The method of claim 2, 상기 고비선형 광섬유는, The high nonlinear optical fiber, 실리카에 기반한 고비선형 분산 천이 광섬유, 포토닉 크리스탈 광섬유(PCF), 비스무쓰 비선형 광섬유(Bismuth Nonlinear Fiber) 및 찰코지나이드 광섬유(Chalcogenide Fiber) 중 선택된 하나인 것을 특징으로 하는 초광대역 광원 발생기.An ultra-wideband light source generator characterized in that it is selected from silica based high nonlinear distributed transition optical fiber, photonic crystal optical fiber (PCF), bismuth nonlinear fiber and chalcogenide fiber. 제 1 펌핑광을 입력받아 결맞음성이 없는 증폭된 자기 발광(ASE) 시드(seed) 광원을 출력하는 어븀 첨가 광섬유;An erbium-doped optical fiber that receives the first pumped light and outputs an amplified self-emitting (ASE) seed light source having no coherence; 제 2 펌핑광에 의해 순방향 펌핑되고 제 3 펌핑광에 의해 역방향 펌핑되어, 상기 어븀 첨가 광섬유로부터 입력받은 시드 광원을 증폭하여 출력하는 광섬유 증폭기;An optical fiber amplifier which is forward pumped by the second pumping light and backward pumped by the third pumping light, and amplifies and outputs a seed light source input from the erbium-doped optical fiber; 상기 광섬유 증폭기로부터 입력받은 증폭된 광원을 비선형 현상을 이용하여 초광대역의 광원으로 변환하는 고비선형 광섬유;A high nonlinear optical fiber converting the amplified light source received from the optical fiber amplifier into an ultra-wide band light source using a nonlinear phenomenon; 상기 초광대역의 광원을 다파장 신호로 분할시키는 다중파장필터;A multi-wavelength filter for dividing the ultra-wide band light source into a multi-wavelength signal; 상기 다파장 신호를 데이터 변조시키는 변조기;A modulator for data modulating the multi-wavelength signal; 상기 변조된 다파장 신호가 전송된 단일 모드 광섬유; 및A single mode optical fiber in which the modulated multi-wavelength signal is transmitted; And 상기 전송된 다파장 신호를 역다중화시키는 역다중화기를 포함하는 것을 특징으로 하는 파장분할다중 수동광네트워크.And a demultiplexer for demultiplexing the transmitted multi-wavelength signal. 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 있어서,In a wavelength division multiple passive optical network based on a Fabry-Perot Laser Diode (FP-LD) or a Reflective Semiconductor Optical Amplifier (RSOA) for Injection Locking, 상기 인젝션 록킹용 광원으로 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광 원을 사용하는 것을 특징으로 하는 파장분할다중 수동광네트워크.A wavelength division multiple passive optical network using an erbium-doped optical fiber ASE-based supercontinuum light source as the injection locking light source. 중앙 기지국과 가입자망 사이에 데이터를 송수신하기 위한 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 있어서,Based on Fabric-Perot Laser Diode (FP-LD) or Reflective Semiconductor Optical Amplifier (RSOA) for injection locking to send and receive data between the central base station and the subscriber network In a wavelength division multiple passive optical network of 상기 중앙 기지국은,The central base station, 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원;Supercontinental light source based on erbium-doped fiber ASE; 상기 슈퍼콘티뉴엄 광원을 다수의 파장대역으로 분할하는 파장분할다중화기; 및A wavelength division multiplexer for dividing the supercontinental light source into a plurality of wavelength bands; And 상기 분할된 파장을 상기 중앙 기지국 또는 상기 가입자망으로 전달하는 커플러를 포함하며,And a coupler for transmitting the divided wavelengths to the central base station or the subscriber network. 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1530nm ~ 1565nm의 C-band 광원은 상기 중앙 기지국에 존재하는 하향신호 발생을 위한 인젝션-록킹용 광원으로 사용되고, C-band light sources of 1530 nm to 1565 nm among the super-continuum light sources divided into the plurality of wavelengths are used as an injection-locking light source for generating a downlink signal existing in the central base station. 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1565nm ~ 1610nm의 L-band 광원은 상기 가입자망에 존재하는 상향신호 발생을 위한 인젝션-록킹용 광원으로 사용되는 것을 특징으로 하는 파장분할다중 수동광네트워크.L-band light sources of 1565 nm to 1610 nm among the supercontinentium light sources divided into the plurality of wavelengths are used as an injection-locking light source for generating an uplink signal existing in the subscriber network. . 제 9 항에 있어서,The method of claim 9, 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1610nm 이상의 U-band 광원은 상기 광원들이 정상적으로 동작하는지 여부를 확인하는 모니터링 신호로 사용되는 것을 특징으로 하는 파장분할다중 수동광네트워크.The U-band light source of 1610 nm or more among the super-continuum light sources divided into the plurality of wavelengths is used as a monitoring signal for checking whether the light sources are operating normally. 중앙 기지국과 가입자망 사이에 데이터를 송수신하기 위한 인젝션 록킹(Injection Locking)용 패브리-페롯 레이저 다이오드(Fabry-Perot Laser Diode:FP-LD) 또는 반사형 반도체 광증폭기(Reflective Semiconductor Optical Amplifier:RSOA) 기반의 파장분할다중 수동광네트워크에 있어서,Based on Fabric-Perot Laser Diode (FP-LD) or Reflective Semiconductor Optical Amplifier (RSOA) for Injection Locking to send and receive data between the central base station and the subscriber network In a wavelength division multiple passive optical network of 상기 중앙 기지국은,The central base station, 어븀 첨가 광섬유 ASE 기반의 슈퍼콘티뉴엄 광원;Supercontinental light source based on erbium-doped fiber ASE; 상기 슈퍼콘티뉴엄 광원을 다수의 파장대역으로 분할하는 파장분할다중화기; 및A wavelength division multiplexer for dividing the supercontinental light source into a plurality of wavelength bands; And 상기 분할된 파장을 상기 중앙 기지국 또는 상기 가입자망으로 전달하는 커플러를 포함하며,And a coupler for transmitting the divided wavelengths to the central base station or the subscriber network. 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1530nm ~ 1565nm의 C-band 광원은 상기 가입자망에 존재하는 상향신호 발생을 위한 인젝션-록킹용 광원으로 사용되고, C-band light sources of 1530 nm to 1565 nm among the supercontinentium light sources divided into the plurality of wavelengths are used as an injection-locking light source for generating an uplink signal existing in the subscriber network. 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1565nm ~ 1610nm의 L-band 광원은 상기 중앙 기지국에 존재하는 하향신호 발생을 위한 인젝션-록킹용 광원으로 사용되는 것을 특징으로 하는 파장분할다중 수동광네트워크.L-band light sources of 1565 nm to 1610 nm among the supercontinentium light sources divided into the plurality of wavelengths are used as an injection-locking light source for generating a downlink signal existing in the central base station. . 제 11 항에 있어서,The method of claim 11, 상기 다수의 파장대로 분할된 슈퍼콘티뉴엄 광원 중 1610nm 이상의 U-band 광원은 상기 광원들이 정상적으로 동작하는지 여부를 확인하는 모니터링 신호로 사용되는 것을 특징으로 하는 파장분할다중 수동광네트워크.The U-band light source of 1610 nm or more among the super-continuum light sources divided into the plurality of wavelengths is used as a monitoring signal for checking whether the light sources are operating normally.
KR1020060084664A 2006-04-05 2006-09-04 Super Broadband Light Source Generator based on Erbium Fiber Amplified Spontaneous EmissionASE and Wave Division Multiplexing Passive Optical NetworkWDM-PON using the same KR100767725B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060030860 2006-04-05
KR1020060030860 2006-04-05

Publications (2)

Publication Number Publication Date
KR20070100086A true KR20070100086A (en) 2007-10-10
KR100767725B1 KR100767725B1 (en) 2007-10-17

Family

ID=38805233

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060084664A KR100767725B1 (en) 2006-04-05 2006-09-04 Super Broadband Light Source Generator based on Erbium Fiber Amplified Spontaneous EmissionASE and Wave Division Multiplexing Passive Optical NetworkWDM-PON using the same

Country Status (1)

Country Link
KR (1) KR100767725B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123571A1 (en) * 2008-03-31 2009-10-08 Agency For Science, Technology And Research A wdm-pon architecture based on externally seeded optical source
KR100982207B1 (en) * 2008-07-28 2010-09-14 서울시립대학교 산학협력단 Ultrahigh frequency band combiner and network system using the same
CN113991400A (en) * 2021-10-25 2022-01-28 上海拜安实业有限公司 Fiber laser for realizing high power and high output aiming at laser radar

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004228278A1 (en) 2003-04-02 2004-10-21 Sumitomo Electric Industries, Ltd. Optical communication system having optical amplification function
KR100566202B1 (en) * 2003-09-18 2006-03-29 삼성전자주식회사 Wavelength division multiplexing optical transmitter using wideband gain laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123571A1 (en) * 2008-03-31 2009-10-08 Agency For Science, Technology And Research A wdm-pon architecture based on externally seeded optical source
KR100982207B1 (en) * 2008-07-28 2010-09-14 서울시립대학교 산학협력단 Ultrahigh frequency band combiner and network system using the same
CN113991400A (en) * 2021-10-25 2022-01-28 上海拜安实业有限公司 Fiber laser for realizing high power and high output aiming at laser radar

Also Published As

Publication number Publication date
KR100767725B1 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US20050041971A1 (en) Multi-wavelength optical transmitter and bi-directional wavelength division multiplexing system using the same
Nesset et al. Raman extended GPON using 1240 nm semiconductor quantum-dot lasers
KR20040044673A (en) Wavelength locked fabry perot laser device with multi wavelength lasing source and optical transmitter using the same
CN102047587A (en) A WDM-PON architecture based on externally seeded optical source
US20040175188A1 (en) Optical sources and transmitters for optical telecommunications
Kim et al. Enhanced performance of RSOA-based WDM PON by using Manchester coding
Iqbal et al. Noise performance improvement of broadband discrete Raman amplifiers using dual stage distributed pumping architecture
Khan et al. 100 Gb/s single channel transmission using injection-locked 1621 nm quantum-dash laser
US20100322624A1 (en) Bidirectional transmission network apparatus based on tunable rare-earth-doped fiber laser
JP2009533711A (en) System and method for implementing high capacity repeaterless optical communication system
Sun et al. An 80 nm ultra wide band EDFA with low noise figure and high output power
Zhu et al. 25.6 Tbit/s (64x400Gb/s) Real-time Unrepeatered Transmission over 320 km SCUBA Fibres by 400ZR+ Pluggable Modules
KR100767725B1 (en) Super Broadband Light Source Generator based on Erbium Fiber Amplified Spontaneous EmissionASE and Wave Division Multiplexing Passive Optical NetworkWDM-PON using the same
JP2004289811A (en) Optical transmission system
Mikhailov et al. 1255-1355 nm (17.6 THz) bandwidth O-band bismuth doped fiber amplifier pumped using uncooled multimode (mm) 915 nm laser diode
Wong et al. Directly-modulated self-seeding reflective SOAs as colorless transmitters for WDM passive optical networks
CN101268591A (en) Raman amplifier structure
Kim et al. CW depolarized multiwavelength Raman fiber ring laser with over 58 channels and 50 GHz channel spacing
KR100784115B1 (en) Passive optical network system using remote pumping optical amplifier
Spolitis et al. New generation energy efficient WDM-PON system using spectrum slicing technology
KR101038219B1 (en) Broadband light source for use in wavelength division multiplexed-passive optical network
Choi et al. Uplink transmission of a 60-km-reach WDM/OCDM-PON using a spectrum-sliced pulse source
US20050025484A1 (en) Wavelength-division-multiplexed passive optical network using multi-wavelength lasing source and reflective optical amplification means
Lee et al. Side-mode suppressed multiwavelength fiber laser and broadcast transmission
Yeh et al. Cost-effective colorless RSOA-based WDM-PON with 2.5 Gbit/s uplink signal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141219

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee