KR20070097725A - Diurnal variation monitering system for biological signal analysis - Google Patents

Diurnal variation monitering system for biological signal analysis Download PDF

Info

Publication number
KR20070097725A
KR20070097725A KR1020060028347A KR20060028347A KR20070097725A KR 20070097725 A KR20070097725 A KR 20070097725A KR 1020060028347 A KR1020060028347 A KR 1020060028347A KR 20060028347 A KR20060028347 A KR 20060028347A KR 20070097725 A KR20070097725 A KR 20070097725A
Authority
KR
South Korea
Prior art keywords
signal
biosignal
walking
sitting
measuring unit
Prior art date
Application number
KR1020060028347A
Other languages
Korean (ko)
Other versions
KR101227415B1 (en
Inventor
이태수
진계환
이상복
Original Assignee
이태수
이상복
진계환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이태수, 이상복, 진계환 filed Critical 이태수
Priority to KR1020060028347A priority Critical patent/KR101227415B1/en
Publication of KR20070097725A publication Critical patent/KR20070097725A/en
Application granted granted Critical
Publication of KR101227415B1 publication Critical patent/KR101227415B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7465Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
    • A61B5/747Arrangements for interactive communication between patient and care services, e.g. by using a telephone network in case of emergency, i.e. alerting emergency services

Abstract

A diurnal variation monitoring system for analyzing biological signals is provided to improve accuracy in an analyzed result by monitoring the biological signal corresponding to a current exercise state of a user. A biological signal measuring unit(100) includes a brain wave detection unit, an electrocardiogram sensor, a blood pressure measuring unit, a pulse measuring unit, and a temperature measuring unit. An acceleration sensor(200) measures an exercise amount of a user. A signal amplifier(300) is connected to an output side of the biological signal measuring unit and the acceleration sensors and magnifies a sensed signal. A signal converter(400) is connected to the output side of the signal magnifier and processes the received signal. A controller(500) determines a diurnal variation and the biological signal of the user, stores the result on a memory(620), and displays the result on a display(640). The controller generates an alarm signal using an alarm generator(650) when an abnormality is detected, and transmits an alarm signal through communication devices(610,630). Necessary procedures are displayed on a communication apparatus, such as a personal computer(720), a PDA(Personal Digital Assistant)(730), and a cellular phone(740).

Description

생체신호분석을 위한 일중주기 모니터링 시스템{Diurnal Variation Monitering System for Biological Signal Analysis}Daily Variation Monitering System for Biological Signal Analysis

도 1은 본 발명에 따른 정확도와 정밀도를 높이는 생체신호분석을 위한 일중주기(diurnal variation) 모니터링 시스템 구조를 보여주기 위한 블록도이다. 1 is a block diagram showing a structure of a monitoring system for monitoring a single cycle (diurnal variation) for improving the accuracy and precision according to the present invention.

도 2은 본 발명에 따른 일중주기(diurnal variation) 모니터링 시스템 구조에서 일중주기를 구분하여 주는 퍼지 추론시스템 구조를 보여주기 위한 블록도이다. FIG. 2 is a block diagram illustrating a structure of a fuzzy inference system that distinguishes a single period in a structure of a monitoring system according to the present invention.

도 3는 본 발명에 따른 일중주기(diurnal variation) 모니터링 시스템을 이용하여 측정한 뛰기, 걷기, 앉기 및 눕기로 구분한 일중주기와 생체신호인 혈압 및 맥박수의 상관관계를 보여주기 위한 그래프이다. Figure 3 is a graph for showing the correlation between the blood pressure and the pulse rate of the daily cycle divided into run, walk, sit and lie measured using a daily cycle (diurnal variation) monitoring system according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

100 : 생체신호 측정부 110 : 뇌파감지부100: biological signal measuring unit 110: brain wave detection unit

120 : 심전도감지부 130 : 혈압감지부120: ECG detection unit 130: blood pressure detection unit

140 : 맥박감지부 150 : 체온감지부140: pulse detection unit 150: body temperature detection unit

200 : 가속도 센서 300 : 신호증폭부200: acceleration sensor 300: signal amplifier

400 : 신호변환부 500 : 제어부400: signal conversion unit 500: control unit

610 : 유선통신장치 620 : 저장장치610: wired communication device 620: storage device

630 : 무선통신장치 640 : 표시부 630: wireless communication device 640: display unit

650 : 경보음발생부 710 : 키패드650: alarm sound generating unit 710: keypad

720 : 개인용 컴퓨터 730 : PDA720: personal computer 730: PDA

740 : 휴대폰740: Cell Phone

본 발명은 일중주기(앉기, 걷기, 뛰기, 눕기=잠자기)의 변동을 구분하기 위한 모니터링 시스템에 관한 것으로, 특히 생체신호인 뇌파, 심전도, 혈압, 맥박 및 체온은 생체 신호 측정 당시에 대상자가 앉기, 걷기, 뛰기, 눕기로 구분되는 동작 상태에 따라서 측정되는 생체신호가 변화하게 됨으로, 정확도와 정밀도를 높이는 생체신호분석을 위해서는 기존의 생체신호측정기에 일중주기의 변동을 동시에 측정하기 위한 생체신호분석을 위한 일중주기 모니터링 시스템에 관한 것이다. The present invention relates to a monitoring system for distinguishing fluctuations in the daily cycle (sitting, walking, running, lying down = sleeping), and in particular, the biological signals such as electroencephalogram, electrocardiogram, blood pressure, pulse and body temperature are measured by the subject at the time of measuring the biological signal. Since the measured biosignal changes according to the operation state divided into walking, running, and lying down, the biosignal analysis for measuring fluctuations of the single cycle at the same time is performed in the existing biosignal measuring instrument for the analysis of the biosignal which increases accuracy and precision. It is related to a single cycle monitoring system.

일반적으로, 생체신호는 인체에서 나오는 뇌파, 혈압, 맥박, 체온 등을 말하는 것으로 질병을 치료하거나 질병의 진단 등의 의료 활동을 위하여 필수적이다. 또한, 인구의 급속한 노령화와 노인 의료비, 만성질환자, 노인 1인 가구의 증가로 인하여, 만성질환자 또는 노인의 건강 상태에 대한 실시간 모니터링이 요구 있다. 즉, 급속한 사회발전과 더불어 여러 가지 환경적 요인과 식생활의 변화 등으로 인해 질병의 생성빈도가 높아짐에 따라 건강을 위협받고 있는 환자들도 증가하고 있다. In general, the biosignal refers to electroencephalogram, blood pressure, pulse, and body temperature, etc. coming from the human body, and are essential for medical activities such as treating a disease or diagnosing a disease. In addition, due to the rapid aging of the population, the increase in the elderly medical expenses, chronic diseases, single households of the elderly, there is a need for real-time monitoring of the health status of chronic patients or the elderly. In other words, the number of patients who are threatened with health is increasing due to the rapid development of the disease and the high frequency of disease generation due to various environmental factors and changes in diet.

이러한, 질병환자들을 연속적으로 관리하고 건강을 체크하기 위하여 환자 스스로 간편하게 생체신호를 체크할 수 있는 의료 장치들이 활발하게 연구되고 개발되고 있는 실정이다.In order to continuously manage the disease patients and check the health, medical devices capable of easily checking the biosignals themselves are being actively researched and developed.

현재 개발 판매되고 있는 생체신호를 측정하기 위한 장치는 대상자의 조작에 의해 혈압 및 맥박을 측정하여 표시하는 수준이었다. 이러한 점을 개선하기 위하여 인체에 간편하게 착용하여 혈압, 맥박, 뇌파, 심전도 등을 측정할 수 있는 장치를 이용하여 일정시간을 주기로 24시간 연속적으로 착용자의 생체신호를 측정하고, 측정된 데이터로 저장하고, 의료인 또는 주치의에게 일정기간의 건강정보를 제공함으로써 건강을 유지할 수 있도록 하고 또한, 건강에 이상이 있을 때 즉시 적절한 처방을 받을 수 있도록 하는 생체신호측정시스템이 개발되고 있는 실정이다. The apparatus for measuring the bio-signals currently being developed and sold was a level for measuring and displaying blood pressure and pulse by manipulating the subject. In order to improve this point, the wearer's body can be easily worn to measure blood pressure, pulse, brain wave, electrocardiogram, etc., and the wearer's bio signal is measured continuously for 24 hours at a predetermined time, and stored as measured data. In addition, biosignal measurement systems are being developed to provide health information for a certain period of time to medical personnel or primary care physicians, and to receive appropriate prescriptions immediately when there is an abnormality in health.

그러나, 종래의 휴대형 의료기기로 개발되고 있는 생체신호 측정 장치를 통하여 측정되는 혈압, 맥박, 뇌파, 심전도 등의 생체신호는 기온, 신체활동, 수면, 피로, 스트레스 등의 많은 인자들이 측정결과에 영향을 미치게 된다. 예를 들어 맥박 및 혈압의 경우에는 운동중일 때와 수면중일 때를 각각 측정하면 현저한 차이가 나게 되는 것이다. 즉, 생체신호 측정에 영향을 주는 많은 인자 중에서 가장 큰 변수는 신체활동에 따른 일중주기의 변동이다. 현재는 생체신호 측정 당시에 대상자가 앉아 있었는지, 걷기중인지등을 나타내는 일중주기의 변동을 알기 위한 방법으로 검사대상자의 기억에 의존하거나 메모(일지)에 의존하는 것이다. However, the biosignals such as blood pressure, pulse rate, brain wave, electrocardiogram, etc., measured through the biosignal measuring apparatus developed in the conventional portable medical device, have many factors such as temperature, physical activity, sleep, fatigue, stress, and the like. Get mad. For example, in the case of pulse and blood pressure, a significant difference is obtained when measuring during exercise and during sleep respectively. That is, among the many factors that affect the measurement of the biological signal, the biggest variable is the variation of the daily cycle according to physical activity. At present, it is based on the subject's memory or a memo (diary) as a way of knowing the variation of the daily cycle that indicates whether the subject is sitting or walking at the time of measuring the biological signal.

이와 같이 혈압, 맥박, 뇌파, 심전도 및 체온 등의 생체신호의 판독시에 매우 중요한 참고자료로 이용되고 있는 일중주기에 대하여 측정 대상자의 기억 또는 메모에 의존하는 방법으로는 정확한 생체신호를 분석할 수 없으므로 보다 과학적인 방법의 필요성이 대두된다. In this way, accurate biosignal analysis can be performed by relying on the memory or memo of the subject for the single-cycle, which is used as a very important reference when reading biosignals such as blood pressure, pulse, brain wave, electrocardiogram and body temperature. There is a need for more scientific methods.

본 발명은 상기의 필요성에 부응하기 위하여 발명된 것으로, 생체신호측정센서부터 측정된 뇌파, 심전도, 혈압, 맥박 및 체온 등에 관한 검사 대상자의 생체신호와 더불어 가속도센서를 이용하여 검사대상자의 일중주기 즉, 검사 대상자가 앉아 있었는지, 걷고 있었는지, 뛰고 있었는지, 누워 있었는지를 동시에 측정함으로써 보다 정확하고 실질적인 데이터의 분석이 되도록 하기 위한 일중주기(diurnal variation) 모니터링 시스템을 제공하는 데 그 목적이 있다.The present invention has been invented in order to meet the above necessity, using the accelerometer together with the biological signal of the subject to be measured from the biosignal measurement sensor, such as brain waves, electrocardiogram, blood pressure, pulse and body temperature, etc. The goal is to provide a system for monitoring the daily variation of the patient to ensure more accurate and realistic data analysis by simultaneously measuring whether the subject is sitting, walking, running or lying. .

이와 같은 목적을 달성하기 위한 본 발명은The present invention for achieving the above object

뇌파를 감지하기 위한 뇌파감지부(110), 심전도를 감지하기 위한 심전도감지부(120), 혈압을 감지하기 위한 혈압감지부(130), 맥박을 감지하기 위한 맥박감지부(140), 체온을 감지하기 위한 체온감지부(140)를 포함하는 생체신호측정부(100);EEG detector 110 for detecting EEG, ECG detector 120 for detecting ECG, blood pressure detector 130 for detecting blood pressure, pulse detector 140 for detecting pulse, body temperature A biosignal measuring unit 100 including a body temperature sensing unit 140 for sensing;

상기 생체신호측정부(100)의 생체신호측정시 검사대상자의 일중주기를 측정하기 위한 가속도센서(200);An acceleration sensor 200 for measuring a single cycle of a test subject when the biosignal measurement unit 100 measures the biosignal;

생체신호측정부(100) 및 가속도 센서(200)의 출력측에 접속되어 감지신호를 증폭하기 위한 신호증폭부(300);A signal amplifier 300 connected to an output side of the biosignal measuring unit 100 and the acceleration sensor 200 to amplify a detection signal;

상기 신호증폭부(300)의 출력측에 접속되어 신호를 변환하기 위한 신호변환부(400);A signal converter 400 connected to an output side of the signal amplifier 300 to convert a signal;

상기 생체신호측정부(100) 및 가속도센서(200)의 출력신호에 따라 검사대상자의 생체신호와 일중주기(신체활동량)를 종합적으로 판단하여 이 결과를 저장장치(620)에 저장하고 표시부(640)에 표시함과 동시에 건강상태의 이상이라고 판단되면 경보음발생부(650)를 통하여 경보신호를 발생시킴과 동시에 유, 무선통신장치 (610, 630)를 통하여 가족 , 병원 , 응급센터에 경보신호를 송출하도록 제어하는 제어부(500);According to the output signals of the biosignal measuring unit 100 and the acceleration sensor 200, the biosignal of the test subject and the single cycle (the amount of physical activity) are comprehensively determined, and the result is stored in the storage device 620 and the display unit 640. In addition, if it is determined that the health condition is abnormal, the alarm signal is generated through the alarm sound generator 650 and the alarm signal is transmitted to the family, hospital, and emergency center through the wireless and wireless communication devices 610 and 630. Control unit 500 to control the transmission;

상기 제어부(500)와 접속되어 검사대상자의 설정범위를 입력시키기 위한 키패드(500); 그리고,A keypad 500 connected to the control unit 500 for inputting a setting range of a test subject; And,

상기 제어부(500)의 출력을 유,무선으로 전송할 수 있도록 하기 위한 유선통신장치(610) 및 무선통신장치(630)의 출력측에 접속되어 피검자에게 이상이 발생했을 경우 구급신호를 자동적으로 송출받고 피검자에게 필요한 조치를 취할 수 있도록 하기 위한 개인용 컴퓨터(720), PDA(730) 및 휴대폰(740)등의 통신기기를 포함한다. Connected to the output side of the wired communication device 610 and the wireless communication device 630 to transmit the output of the control unit 500 by wire or wireless, when an abnormality occurs in the test subject, the emergency signal is automatically sent out and Communication devices such as a personal computer 720, a PDA 730, and a mobile phone 740 to enable the user to take necessary measures.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 정확도와 정밀도를 높이는 생체신호분석을 위한 일중주기(diurnal variation) 모니터링 시스템 구조를 보여주기 위한 블록도이고, 도 3은 본 발명에 따른 일중주기(diurnal variation) 모니터링 시스템을 이용하여 측정한 뛰기, 걷기, 앉기 및 눕기로 구분한 일중주기와 생체신호인 혈압 및 맥박수의 상관관계를 보여주기 위한 그래프이다. FIG. 1 is a block diagram illustrating a structure of a monitoring system for monitoring a single cycle (diurnal variation) for improving the accuracy and precision according to the present invention, and FIG. 3 is a diagram illustrating a system for monitoring a dual variation (diurnal variation) according to the present invention. It is a graph to show the correlation between the daily cycle divided into run, walk, sit and lie measured by blood pressure and pulse rate.

본 발명에 따른 생체신호측정시스템은 도 1에서 보는 바와 같이, 뇌파, 심전도 , 혈압, 맥박 및 체온의 생체신호를 감지하기 위한 생체신호 측정부(100)와 검사대상자의 일중주기 즉, 검사 대상자가 앉아 있었는지, 걷기중인지등을 동시에 측정하기 위한 가속도센서(200)를 구비한다. 생체신호측정부(100)는 뇌파를 감지하기 위한 뇌파감지부(110), 심전도를 감지하기 위한 심전도감지부(120), 혈압을 감지하기 위한 혈압감지부(130), 맥박을 감지하기 위한 맥박감지부(140), 체온을 감지하기 위한 체온감지부(140)를 포함한다.As shown in FIG. 1, the biosignal measurement system according to the present invention includes a biosignal measuring unit 100 for detecting a biosignal of an EEG, an electrocardiogram, a blood pressure, a pulse, and a body temperature, and a single period of the test subject. An acceleration sensor 200 for simultaneously measuring whether sitting or walking is provided. The biosignal measuring unit 100 includes an EEG detector 110 for detecting an EEG, an ECG detector 120 for detecting an EKG, a blood pressure detector 130 for detecting a blood pressure, and a pulse for detecting a pulse The sensing unit 140 includes a body temperature sensing unit 140 for sensing a body temperature.

생체신호측정부(100) 및 가속도 센서(200)는 일정주기로 인체의 생체신호 및 생체신호의 측정당시의 피검자의 상태(일중주기)를 전기적 신호로 신호증폭부(300)에입력하도록 구성되며 신호증폭부(300)에서는 이 신호를 증폭하게 된다. 신호증폭부(300)의 출력측에 접속된 신호 변환부(400)에서는 신호를 변환하여 제어부(500)에 입력시킨다. The biosignal measuring unit 100 and the acceleration sensor 200 are configured to input the biosignal of the human body and the state (daily cycle) of the subject at the time of the measurement of the biosignal to the signal amplifier 300 as an electric signal at regular intervals. The amplifier 300 amplifies this signal. The signal converter 400 connected to the output side of the signal amplifier 300 converts the signal and inputs the signal to the controller 500.

제어부(500)에서는 착용자의 생체신호와 일중주기를 종합적으로 판단하여 이 결과를 저장장치(620)에 저장하고 표시부(640)에 표시함과 동시에 건강상태의 이상이라고 판단되면 자동으로 구급신호를 발생하는 경보음발생부(650)를 통하여 구급신호를 발생한다. 또한, 제어부(500)에는 주치의 또는 전문의가 다른 정보를 입력할 수 있도록 별도의 키패드(710)를 포함하며, 인체로부터 감지된 생체신호 및 피검자의 일중주기를 전기적 신호로 변환하여 연산 처리할 수 있도록 제어부(500)의 출력을 유무선으로 전송할 수 있도록 유선통신장치(610) 및 무선통신장치(630)을 구비한다. The control unit 500 comprehensively determines the wearer's biosignal and the daily cycle, stores the result in the storage device 620, displays the result on the display unit 640, and automatically generates an emergency signal when it is determined that the health condition is abnormal. Through the alarm sound generating unit 650 to generate an emergency signal. In addition, the control unit 500 includes a separate keypad 710 so that the attending physician or specialist can input other information, and converts the biological signal detected from the human body and the single cycle of the subject into electrical signals so that they can be processed. A wired communication device 610 and a wireless communication device 630 are provided to transmit the output of the control unit 500 through wired and wireless communication.

유선 통신장치(610) 및 무선통신장치(630)의 출력측에는 개인용 컴퓨터(720), PDA(730) 및 휴대폰(740)등의 통신기기가 연결되어 피검자에게 이상이 발생했을 경우 구급신호를 자동적으로 송출받고 또한, 피검자에게 필요한 조치를 취할 수 있도록 한다.Communication devices such as a personal computer 720, PDA 730, and mobile phone 740 are connected to the output side of the wired communication device 610 and the wireless communication device 630, so that an emergency signal is automatically generated when a problem occurs in the subject. It will be sent out and you will be able to take necessary measures.

이하에서는 본 발명에 따른 신체 활동량과 일중주기의 변동을 구분하기 위한 생체신호측정시스템의 각 구성요소 간의 동작관계에 대해서 살펴본다.Hereinafter, the operational relationship between the components of the biosignal measurement system for distinguishing the amount of physical activity and the variation of the daily cycle according to the present invention will be described.

본 발명에 따른 생체신호측정시스템은 검사대상자의 팔목이나 상완에 쉽고 간편하게 착용할 수 있도록 구성된다. 측정시스템 내부에 구성되는 생체신호측정부(100)는 피검자의 뇌파, 심전도, 혈압, 맥박 및 체온을 측정한다. 또한 가속도 센서(200)는 생체신호의 측정당시에 검사대상자의 일중주기 즉, 검사 대상자가 앉아 있었는지, 걷기중인지등을 동시에 측정하게 된다. 생체신호측정부(100) 및 가속도센서(200)에서 센싱된 신호는 신호증폭부(300)에서 증폭되고 신호 변환부(400)에서 변환하여 제어부(500)에 입력된다. The biosignal measuring system according to the present invention is configured to be easily and simply worn on the subject's wrist or upper arm. The biosignal measuring unit 100 configured inside the measurement system measures the brain wave, electrocardiogram, blood pressure, pulse and body temperature of the subject. In addition, the acceleration sensor 200 simultaneously measures the circumferential period of the test subject, that is, whether the test subject is sitting or walking while the biosignal is measured. The signals sensed by the biosignal measuring unit 100 and the acceleration sensor 200 are amplified by the signal amplifier 300 and converted by the signal converter 400 and input to the controller 500.

제어부(500)는 생체신호측정부(100)에서 측정된 생체신호 및 가속도센서(200)에서 측정된 가속도의 변화량 즉, 가속도변화량의 절대 평균치인 MAD(means of absolute difference)로부터 검사대상자의 신체활동량을 측정하게 된다. 즉, 도 2를 참조하면 뛰기, 걷기, 앉기 및 눕기의 4단계활동중에 수축기 혈압, 이완기 혈압, 맥박수를 비교하면 뛰기의 단계에서는 수평, 수직활동량에 있어서, 큰 값을 보였고 수축기, 이완기 혈압 및 맥박수도 다른 3단계의 활동에 비하여 현저히 큰값을 보임을 알 수 있다.The controller 500 measures the amount of physical activity of the test subject from the mean of absolute difference (MAD), which is an absolute change value of the change in acceleration, that is, the acceleration measured in the biosignal measured by the biosignal measuring unit 100 and the acceleration sensor 200. Will be measured. That is, referring to FIG. 2, when comparing systolic blood pressure, diastolic blood pressure, and pulse rate during the four steps of running, walking, sitting, and lying down, the systolic, diastolic blood pressure, and pulse rate showed a large value in the amount of horizontal and vertical activity in the step of running. In addition, it can be seen that the value is significantly larger than other three levels of activity.

따라서, 생체신호측정부(100)에서 측정한 검사대상자의 뇌파, 심전도, 혈압, 맥박 및 체온등의 생체신호 및 가속도센서(200)에서 측정된 가속도변화량의 절대 평균치인 MAD(means of absolute difference)로부터 측정된 검사대상자의 신체활동량이 측정검사대상자에 알맞게 주치의 또는 전문의가 키패드(710)를 통하여 설정한 값보다 높게 되면 제어부(500)에서는 경보음발생부(650)를 통하여 경보음을 발생한다. Therefore, MAD (means of absolute difference) which is an absolute mean value of the acceleration signal measured by the acceleration sensor 200 and the biological signal such as EEG, ECG, blood pressure, pulse and body temperature of the test subject measured by the biosignal measurement unit 100 When the amount of physical activity of the test subject measured from the subject is higher than the value set by the attending physician or specialist through the keypad 710 according to the test subject, the control unit 500 generates an alarm sound through the alarm sound generating unit 650.

또한, 제어부(500)에는 경보음을 발생함과 동시에 가족, 주치의 또는 전문 응급상활실로 유선 통신장치(610) 및 무선통신장치(630)를 통하여 개인용 컴퓨터(720), PDA(730) 및 휴대폰(740)의 통신기기로 검사대상자에게 이상이 발생했음을 자동적으로 송출하여 검사대상자에게 필요한 조치를 취할 수 있도록 한다.In addition, the control unit 500 generates an alarm sound and at the same time, a personal computer 720, a PDA 730, and a mobile phone through a wired communication device 610 and a wireless communication device 630 to a family, doctor or professional emergency room. The communication device of 740 automatically transmits that an abnormality has occurred to the inspected subject so as to take necessary measures.

따라서, 본 발명에 따른 생체신호측정시스템은 생체신호, 생체신호를 측정할 동안의 동작 상태에 따른 일중주기의 변동을 제공함으로써, 보다 정확하고 실질적인 생체신호 데이터의 분석이 이루어지도록 할 수 있게 하는 것이다.Accordingly, the biosignal measurement system according to the present invention provides a more accurate and substantial analysis of the biosignal data by providing a variation in the single period according to the operating state during the measurement of the biosignal and the biosignal. .

일중주기의 변동을 구분하기 위하여 입력 데이터 벡터를 스칼라 출력으로 대응시키는 시스템으로, 퍼지화기, 퍼지규칙, 추론기, 역퍼지화와 같이 4가지 요소로 구성되는 도 2의 퍼지추론 시스템(fuzzy inference system)을 이용한다.A fuzzy inference system of FIG. 2 consisting of four elements such as a fuzzy purifier, a fuzzy rule, an inferencing machine, and a defuzzy purifier, in which an input data vector is mapped to a scalar output in order to distinguish the variation of a single period. ).

Figure 112006022065308-PAT00001
식1
Figure 112006022065308-PAT00001
Equation 1

Figure 112006022065308-PAT00002
: 가속도센서의 수직방향신호의 평균치
Figure 112006022065308-PAT00002
: Average value of vertical direction signal of acceleration sensor

(LAA, longitudinal accelerometer average)     (LAA, longitudinal accelerometer average)

Figure 112006022065308-PAT00003
: 가속도센서의 수평방향신호의 평균치
Figure 112006022065308-PAT00003
: Average value of horizontal direction signal of acceleration sensor

(TAA, transverse accelerometer average)     (TAA, transverse accelerometer average)

Figure 112006022065308-PAT00004
: 가속도센서의 수직방향신호의 가속도 변화량(전??후차이)의 절대치의 평균치
Figure 112006022065308-PAT00004
: Average value of absolute value of acceleration change (before and after) of vertical signal of acceleration sensor

(L-MAD, longitudinal accelerometer mean of absolute difference)     (L-MAD, longitudinal accelerometer mean of absolute difference)

Figure 112006022065308-PAT00005
: 가속도센서의 수평방향신호의 가속도 변화량(전??후차이)의 절대치의 평균치
Figure 112006022065308-PAT00005
: Average value of absolute value of acceleration change (before and after) of horizontal signal of acceleration sensor

(T-MAD, transverse accelerometer mean of absolute difference)     (T-MAD, transverse accelerometer mean of absolute difference)

식1에서

Figure 112006022065308-PAT00006
는 입력이고
Figure 112006022065308-PAT00007
는 출력(눕기, 앉기, 걷기, 뛰기)이다. 퍼지추론에서는 수학식 (1)과 같은 입출력 쌍으로부터 퍼지규칙의 집합을 생성시켜서
Figure 112006022065308-PAT00008
의 대응을 통해 출력을 결정한다. In equation 1
Figure 112006022065308-PAT00006
Is input
Figure 112006022065308-PAT00007
Is the output (lie, sit, walk, run). In fuzzy inference, a set of fuzzy rules is generated from an input / output pair such as Equation (1)
Figure 112006022065308-PAT00008
Determine the output through the correspondence of.

변수

Figure 112006022065308-PAT00009
,
Figure 112006022065308-PAT00010
의 값이 대부분 존재하는 구간을 여러 구역으로 나눈다. 이 각각의 구역을 눕기, 앉기, 걷기, 뛰기라하며 각 구역에 퍼지 멤버쉽 함수를 할당한다.
Figure 112006022065308-PAT00011
(LAA, TAA, L-MAD, T-MAD)에 대해 4개 구역(Low, Middle, High, Very High)으로, 그리고 y (membership for states)를 4개 구역(Low, Middle, High, Very High)으로 나눈 것이다. 여기서 소속함수의 형태는 삼각형과 사다리꼴형을 이용한다.variable
Figure 112006022065308-PAT00009
,
Figure 112006022065308-PAT00010
Divide the interval where most of the values exist into several zones. Each of these zones is called lying, sitting, walking, and running, and we assign fuzzy membership functions to each zone.
Figure 112006022065308-PAT00011
4 zones (Low, Middle, High, Very High) for (LAA, TAA, L-MAD, T-MAD) and 4 zones (Low, Middle, High, Very High) Divided by). The membership function uses triangles and trapezoids.

각각의 입력데이터의 사다리꼴형을 이용한 멤버쉽함수 할당은 다음과 같다.Membership function assignment using trapezoid of each input data is as follows.

LAA : 눕기 = [-2 -2 0.2 0.35]LAA: lying down = [-2 -2 0.2 0.35]

앉기 = [0.35 0.75 0.90 0.95]Sitting = [0.35 0.75 0.90 0.95]

걷기 =[0.75 0.95 1 1.1]Walking = [0.75 0.95 1 1.1]

뛰기 = [1 1.2 2 2]Run = [1 1.2 2 2]

TAA : 눕기 = [-2 -2 -0.5 -0.2]TAA: lying down = [-2 -2 -0.5 -0.2]

앉기 = [-0.4 -0.17 -0.1 0]Sitting = [-0.4 -0.17 -0.1 0]

걷기 = [-0.2 -0.1 0.05 0.1]Walking = [-0.2 -0.1 0.05 0.1]

뛰기 = [0 0.15 2 2]Run = [0 0.15 2 2]

L-MAD : 눕기 = [0 0 1 1.5]L-MAD: Lying Down = [0 0 1 1.5]

앉기 = [0 0.2 0.8 1.5]Sitting = [0 0.2 0.8 1.5]

걷기 = [1.5 2 4.5 6]Walking = [1.5 2 4.5 6]

뛰기 = [5 10 35 35]Run = [5 10 35 35]

T-MAD : 눕기 = [0 0 1 1.5]T-MAD: Lie down = [0 0 1 1.5]

앉기 = [0 0 1 2]Sitting = [0 0 1 2]

걷기 = [0 1 4 5]Walking = [0 1 4 5]

뛰기 = [5 7 16 16]Run = [5 7 16 16]

각각의 출력데이터의 사다리꼴형을 이용한 멤버쉽함수 할당은 다음과 같다.The membership function assignment using the trapezoid of each output data is as follows.

눕기 = [0 0 1 1.5]Lie down = [0 0 1 1.5]

앉기 = [0.5 1 2 2.5]Sitting = [0.5 1 2 2.5]

걷기 = [1.5 2 3 3.5]Walking = [1.5 2 3 3.5]

뛰기 = [2.5 3 4 4]Run = [2.5 3 4 4]

퍼지규칙의 생성은 각 구역에서 입출력 데이터 쌍의 소속정도(membership degree)와 전문가로부터 제공된 데이터와 실험을 통해 얻은 수치 데이터를 이용하여 결정한다. 확보된 입출력 데이터 쌍으로부터 AND 또는 OR와 같은 퍼지 연산자를 적용하여 다음과 같은 규칙을 생성한다. The generation of fuzzy rules is determined using the membership degree of input / output data pairs in each zone, numerical data obtained through experiments and data provided by experts. The following rules are generated by applying fuzzy operators such as AND or OR from the acquired I / O data pairs.

규칙1: IF LAA is LOW and TAA is LOW, THEN y is 눕기.Rule 1: IF LAA is LOW and TAA is LOW, THEN y is lying.

규칙2: IF LAA is MID and TAA is MID, THEN y is 앉기.Rule 2: IF LAA is MID and TAA is MID, THEN y is sitting.

규칙3: IF L-MAD is HIGH and T-MAD is HIGH, THEN y is 걷기.Rule 3: IF L-MAD is HIGH and T-MAD is HIGH, THEN y is walking.

규칙4: IF L-MAD is HIGH and T-MAD is VERY HIGH, THEN y is 뛰기.Rule 4: IF L-MAD is HIGH and T-MAD is VERY HIGH, THEN y is run.

입력 LAA, TAA, L-MAD, T-MAD를 센서로부터 받아서 미리 정해진 규칙에 의해 추론하게 된다. 추론이 끝난 후에 디퍼지화(defuzzification) 과정을 거쳐 인체운동상태를 결정하게 된다. 먼저 4개의 입력에 대해 해당 소속 함수로부터 각각의 상태에 대한 충족도(DOF: degree of fulfillment)를 찾은 후 출력의 소속정도

Figure 112006022065308-PAT00012
를 결정하기 위해서 max-min연산을 이용하여
Figure 112006022065308-PAT00013
번째 규칙의 if 부분을 다음 <식 2>로 한다. The input LAA, TAA, L-MAD, T-MAD are received from the sensor and inferred according to a predetermined rule. After the reasoning is completed, the state of human body movement is determined through defuzzification process. First find the degree of fulfillment (DOF) of each state from the corresponding membership function for the four inputs, and then the degree of membership of the output.
Figure 112006022065308-PAT00012
Use max-min to determine
Figure 112006022065308-PAT00013
The if part of the first rule is as follows.

Figure 112006022065308-PAT00014
식2
Figure 112006022065308-PAT00014
Equation 2

식 2에서

Figure 112006022065308-PAT00015
Figure 112006022065308-PAT00016
는 각각 규칙
Figure 112006022065308-PAT00017
에 대한 출력영역과
Figure 112006022065308-PAT00018
번째 조건의 입력영역을 나타내고, ??은 최소치 연산자이다.In equation 2
Figure 112006022065308-PAT00015
Wow
Figure 112006022065308-PAT00016
Each rule
Figure 112006022065308-PAT00017
Output area for
Figure 112006022065308-PAT00018
Represents the input area of the first condition, and ?? is the minimum operator.

퍼지 알고리즘에서 비퍼지화는 추론 과정에 의해 구한 결과(0~4까지 확률로 표현된 벡터)를 하나의 명확한 수로 나타내는 과정이다. 퍼지시스템에서 데이터의 내부적인 표현은 일상적인 퍼지집합이지만 출력은 하나의 명확한 수가 되어야 한다. 이를 위해 퍼지집합의 중심을 찾는 무게 중심법(COA, Center of Area method)이나 최대 수준을 갖는 값들의 평균을 취하는 수학식 4의 최대 평균법(MOM, Mean of Maxima method)을 사용한다. In the fuzzy algorithm, unfuzzy is a process of representing the result of the inference process (a vector expressed as a probability from 0 to 4) as a definite number. In a fuzzy system, the internal representation of the data is a routine fuzzy set, but the output should be one explicit number. To this end, we use the Center of Area (COA) method to find the center of the fuzzy set or the Mean of Maxima method (MOM) of Equation 4 which takes the average of the values with the maximum level.

Figure 112006022065308-PAT00019
식 3
Figure 112006022065308-PAT00019
Expression 3

여기서

Figure 112006022065308-PAT00020
는 퍼지규칙 베이스의 개수이고
Figure 112006022065308-PAT00021
는 출력영역
Figure 112006022065308-PAT00022
의중심이다. here
Figure 112006022065308-PAT00020
Is the number of fuzzy rule bases
Figure 112006022065308-PAT00021
Is the output area
Figure 112006022065308-PAT00022
It is central.

신체 활동에 따른 운동량을 표시하는 방법으로 수학식 4의 전??후 가속도센서의 수직방향신호에 의한 가속도 변화량의 절대치의 평균치의 측정구간에서의 합과 수학식 5의 전??후 가속도센서의 수평방향신호의 가속도 변화량의 절대치의 평균치의 측정구간에서의 합으로 나타낸다.As a method of displaying the amount of exercise according to physical activity, the sum of the average value of the absolute value of the acceleration change by the vertical direction signal of the front and rear acceleration sensor of Equation 4 and the front and rear acceleration sensor of Equation 5 This is expressed as the sum of the average values of the absolute values of the acceleration change amounts of the horizontal signals in the measurement section.

수직방향운동량 =

Figure 112006022065308-PAT00023
식 4Vertical momentum =
Figure 112006022065308-PAT00023
Equation 4

수평방향의 운동량 =

Figure 112006022065308-PAT00024
(n) 식 5Horizontal momentum =
Figure 112006022065308-PAT00024
(n) Equation 5

상술한 바와 같이, 본 발명에 따르면, 검사 대상자의 뇌파, 심전도, 혈압, 맥박 및 체온 등을 측정하는 생체신호측정센서를 이용하여 측정하는 생체신호와 더불어 가속도센서를 이용하여 검사대상자의 일중주기(diurnal variation) 모니터링 시스템 즉, 검사 대상자가 앉아 있었는지, 걷고 있었는지, 뛰고 있었는지, 누워 있었는지의 일중주기를 동시에 측정함으로써, 보다 정확하고 실질적인 생체신호 데이터의 분석이 이루어지는 효과가 있다.As described above, according to the present invention, the single cycle of the test subject using the acceleration sensor together with the biosignal measured using the biosignal measuring sensor for measuring the brain wave, electrocardiogram, blood pressure, pulse and body temperature of the test subject ( By measuring the diurnal variation monitoring system, i.e., whether the test subject is sitting, walking, running or lying, the simultaneous measurement of the diurnal variation results in more accurate and realistic analysis of the biosignal data.

이상에서 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것이 아니며 본 발명의 기술적 사상의 범위 내에서 당업자에 의해 그 개량이나 변형이 가능하다. Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited thereto and may be improved or modified by those skilled in the art within the scope of the technical idea of the present invention.

Claims (3)

뇌파를 감지하기 위한 뇌파감지부(110), 심전도를 감지하기 위한 심전도감지부(120), 혈압을 감지하기 위한 혈압감지부(130), 맥박을 감지하기 위한 맥박감지부(140), 체온을 감지하기 위한 체온감지부(140)를 포함하는 생체신호측정부(100);EEG detector 110 for detecting EEG, ECG detector 120 for detecting ECG, blood pressure detector 130 for detecting blood pressure, pulse detector 140 for detecting pulse, body temperature A biosignal measuring unit 100 including a body temperature sensing unit 140 for sensing; 상기 생체신호측정부(100)의 생체신호측정시 검사대상자의 신체활동량을 측정하기 위한 가속도센서(200); An acceleration sensor 200 for measuring an amount of physical activity of a test subject when the biosignal measurement unit 100 measures the biosignal; 생체신호측정부(100) 및 가속도 센서(200)의 출력측에 접속되어 감지신호를 증폭하기 위한 신호증폭부(300);A signal amplifier 300 connected to an output side of the biosignal measuring unit 100 and the acceleration sensor 200 to amplify a detection signal; 상기 신호증폭부(300)의 출력측에 접속되어 신호를 변환하기 위한 신호변환부(400);A signal converter 400 connected to an output side of the signal amplifier 300 to convert a signal; 상기 생체신호측정부(100) 및 가속도센서(200)의 출력신호에 따라 검사대상자의 생체신호와 일중주기(신체활동량)를 종합적으로 판단하여 이 결과를 저장장치(620)에 저장하고 표시부(640)에 표시함과 동시에 건강상태의 이상이라고 판단되면 경보음발생부(650)를 통하여 경보신호를 발생시킴과 동시에 유, 무선통신장치 (610,630)를 통하여 가족 , 병원 , 응급센터에 경보신호를 송출하도록 제어하는 제어부(500);According to the output signals of the biosignal measuring unit 100 and the acceleration sensor 200, the biosignal of the test subject and the single cycle (the amount of physical activity) are comprehensively determined, and the result is stored in the storage device 620 and the display unit 640. ) And at the same time, if it is determined that the health condition is abnormal, an alarm signal is generated through the alarm sound generator 650 and an alarm signal is transmitted to the family, hospital, and emergency center through the wired and wireless communication devices (610, 630). Control unit 500 to control to; 상기 제어부(500)와 접속되어 검사대상자의 설정범위를 입력시키기 위한 키패드(500); 그리고,A keypad 500 connected to the control unit 500 for inputting a setting range of a test subject; And, 상기 제어부(500)의 출력을 유,무선으로 전송할 수 있도록 하기 위한 유선통신장치(610) 및 무선통신장치(630)의 출력측에 접속되어 피검자에게 이상이 발생했을 경우 구급신호를 자동적으로 송출하고, 피검자에게 필요한 조치를 취할 수 있도록 하기 위한 개인용 컴퓨터(720), PDA(730) 및 휴대폰(740)등의 통신기기를 포함하는 종래의 생체신호측정기에 부가적 기능으로 추가하는 가속도센서를 이용하여 앉기, 걷기, 뛰기, 눕기로 구분하는 일중주기 모니터링 시스템Is connected to the output of the wired communication device 610 and the wireless communication device 630 for transmitting the output of the control unit 500, wired or wireless, and when an abnormality occurs to the subject, and sends an emergency signal automatically, Sitting using an accelerometer sensor as an additional function to a conventional biosignal measuring instrument including a personal computer 720, a PDA 730, and a mobile phone 740 to allow a subject to take necessary measures Cycle monitoring system divided into walking, running, lying down 제 1항에 있어서, 상기 제어부(500)는 LAA, TAA, L-MAD, T-MAD로 입력데이터를 구분하고, 상기 입력데이터는 사다리꼴형을 이용한 멤버쉽 함수의 할당에 아래 수치를 이용하는 것을 특징으로 하는 생체신호분석을 위한 일중주기 모니터링 시스템.The method of claim 1, wherein the control unit 500 divides input data into LAA, TAA, L-MAD, and T-MAD, and the input data uses the following values for assignment of a membership function using a trapezoidal shape. Single cycle monitoring system for analyzing bio-signals. LAA : 눕기 = [-2 -2 0.2 0.35]LAA: lying down = [-2 -2 0.2 0.35] 앉기 = [0.35 0.75 0.90 0.95]Sitting = [0.35 0.75 0.90 0.95] 걷기 =[0.75 0.95 1 1.1]Walking = [0.75 0.95 1 1.1] 뛰기 = [1 1.2 2 2]Run = [1 1.2 2 2] TAA : 눕기 = [-2 -2 -0.5 -0.2]TAA: lying down = [-2 -2 -0.5 -0.2] 앉기 = [-0.4 -0.17 -0.1 0]Sitting = [-0.4 -0.17 -0.1 0] 걷기 = [-0.2 -0.1 0.05 0.1]Walking = [-0.2 -0.1 0.05 0.1] 뛰기 = [0 0.15 2 2]Run = [0 0.15 2 2] L-MAD : 눕기 = [0 0 1 1.5]L-MAD: Lying Down = [0 0 1 1.5] 앉기 = [0 0.2 0.8 1.5]Sitting = [0 0.2 0.8 1.5] 걷기 = [1.5 2 4.5 6]Walking = [1.5 2 4.5 6] 뛰기 = [5 10 35 35]Run = [5 10 35 35] T-MAD : 눕기 = [0 0 1 1.5]T-MAD: Lie down = [0 0 1 1.5] 앉기 = [0 0 1 2]Sitting = [0 0 1 2] 걷기 = [0 1 4 5]Walking = [0 1 4 5] 뛰기 = [5 7 16 16]Run = [5 7 16 16] 제 1항 또는 제 2 항에 있어서, 상기 제어부(500)는 출력데이터를 눕기, 앉기, 걷기, 뛰기로 구분하고, 상기 출력데이터를 사다리꼴형을 이용한 멤버쉽 함수의 할당에 아래 수치를 이용하는 것을 특징으로 하는 생체신호분석을 위한 일중주기 모니터링 시스템. The method of claim 1 or 2, wherein the control unit 500 divides the output data into lying, sitting, walking, and running, and uses the following values to assign the membership function using the trapezoidal shape. Single cycle monitoring system for analyzing bio-signals. 눕기 = [0 0 1 1.5]Lie down = [0 0 1 1.5] 앉기 = [0.5 1 2 2.5]Sitting = [0.5 1 2 2.5] 걷기 = [1.5 2 3 3.5]Walking = [1.5 2 3 3.5] 뛰기 = [2.5 3 4 4]Run = [2.5 3 4 4]
KR1020060028347A 2006-03-29 2006-03-29 Diurnal Variation Monitering System for Biological Signal Analysis KR101227415B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060028347A KR101227415B1 (en) 2006-03-29 2006-03-29 Diurnal Variation Monitering System for Biological Signal Analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060028347A KR101227415B1 (en) 2006-03-29 2006-03-29 Diurnal Variation Monitering System for Biological Signal Analysis

Publications (2)

Publication Number Publication Date
KR20070097725A true KR20070097725A (en) 2007-10-05
KR101227415B1 KR101227415B1 (en) 2013-01-30

Family

ID=38803875

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060028347A KR101227415B1 (en) 2006-03-29 2006-03-29 Diurnal Variation Monitering System for Biological Signal Analysis

Country Status (1)

Country Link
KR (1) KR101227415B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949150B1 (en) * 2007-11-14 2010-03-25 엘아이지넥스원 주식회사 Apparatus for monitoring health condition, and method therefor
WO2012015818A2 (en) * 2010-07-27 2012-02-02 Carefusion 303, Inc. A system and method for reducing false alarms and negatives
WO2012027457A2 (en) * 2010-08-24 2012-03-01 Sion Power Corporation Electrically non-conductive materials for electrochemical cells
KR101338352B1 (en) * 2011-08-11 2013-12-06 주식회사 바이오넷 Display Method for Bio-signal
KR101400867B1 (en) * 2007-11-12 2014-06-27 삼성전자주식회사 Apparatus and method for providing user interface of portable terminal
US8814792B2 (en) 2010-07-27 2014-08-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
KR20150032410A (en) * 2013-09-17 2015-03-26 전자부품연구원 Method and Apparatus for Body State Recognition using the Impedance Charateristic Enhanced Electorde
US9017255B2 (en) 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
CN104605827A (en) * 2015-01-15 2015-05-13 辛勤 Human body vigorous motion state judgment method and device
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US9615792B2 (en) 2010-07-27 2017-04-11 Carefusion 303, Inc. System and method for conserving battery power in a patient monitoring system
US11322804B2 (en) 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120019396A (en) * 2010-08-24 2012-03-06 삼성전자주식회사 Terminal device and server for integrated managing personal health device standard and non-standard data
US11295858B2 (en) 2016-11-28 2022-04-05 Electronics And Telecommunications Research Institute Health data collection device, health evaluation method using the same, and health evaluation system including the health data collection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200004A (en) * 1992-01-28 1993-08-10 Matsushita Electric Works Ltd Hemadynamometer
JP3465327B2 (en) * 1993-11-12 2003-11-10 カシオ計算機株式会社 Heart radio wave detection device, heart radio wave detection system, and pulse calculation device
JP2000051157A (en) * 1998-08-06 2000-02-22 Seiko Precision Inc Detector for abnormality of subject, information device for abnormality of subject, and emergency system for subject
CN1551742A (en) * 2002-05-15 2004-12-01 ���µ�����ҵ��ʽ���� Pulse abnormality monitor and pulse abnormality warning system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400867B1 (en) * 2007-11-12 2014-06-27 삼성전자주식회사 Apparatus and method for providing user interface of portable terminal
KR100949150B1 (en) * 2007-11-14 2010-03-25 엘아이지넥스원 주식회사 Apparatus for monitoring health condition, and method therefor
US11311239B2 (en) 2010-07-27 2022-04-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
US9017255B2 (en) 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
WO2012015818A3 (en) * 2010-07-27 2012-08-09 Carefusion 303, Inc. A system and method for reducing false alarms and negatives
US11083415B2 (en) 2010-07-27 2021-08-10 Carefusion 303, Inc. Vital-signs patch having a strain relief
WO2012015818A2 (en) * 2010-07-27 2012-02-02 Carefusion 303, Inc. A system and method for reducing false alarms and negatives
US8814792B2 (en) 2010-07-27 2014-08-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
US11090011B2 (en) 2010-07-27 2021-08-17 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US9615792B2 (en) 2010-07-27 2017-04-11 Carefusion 303, Inc. System and method for conserving battery power in a patient monitoring system
US11264131B2 (en) 2010-07-27 2022-03-01 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
WO2012027457A3 (en) * 2010-08-24 2012-05-24 Sion Power Corporation Electrically non-conductive materials for electrochemical cells
WO2012027457A2 (en) * 2010-08-24 2012-03-01 Sion Power Corporation Electrically non-conductive materials for electrochemical cells
KR101338352B1 (en) * 2011-08-11 2013-12-06 주식회사 바이오넷 Display Method for Bio-signal
KR20150032410A (en) * 2013-09-17 2015-03-26 전자부품연구원 Method and Apparatus for Body State Recognition using the Impedance Charateristic Enhanced Electorde
CN104605827A (en) * 2015-01-15 2015-05-13 辛勤 Human body vigorous motion state judgment method and device
US11322804B2 (en) 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods
US11728528B2 (en) 2018-12-27 2023-08-15 Sion Power Corporation Isolatable electrodes and associated articles and methods

Also Published As

Publication number Publication date
KR101227415B1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
KR101227415B1 (en) Diurnal Variation Monitering System for Biological Signal Analysis
RU2768581C2 (en) Devices, systems and methods for prediction, screening and control of encephalopathy/delirium
CN108577830B (en) User-oriented physical sign information dynamic monitoring method and system
JP5584413B2 (en) Patient monitoring system and monitoring method
Yadav et al. Machine learning algorithms for disease prediction using iot environment
Al-Aubidy et al. Real-time patient health monitoring and alarming using wireless-sensor-network
Al-Aubidy et al. Real-time healthcare monitoring system using wireless sensor network
Wahane et al. An android based wireless ecg monitoring system for cardiac arrhythmia
Dutta et al. Using Fuzzy Logic for Decision Support in Vital Signs Monitoring.
JP2008253727A (en) Monitor device, monitor system and monitoring method
Panagiotou et al. A multi: modal decision making system for an ambient assisted living environment
KR20170112954A (en) method and Apparatus for Triage and Subsequent Escalation Based on Biosignals or Biometrics
KR20060031837A (en) Bio-unit using heart rate variability of mobile phone
KR20040034164A (en) Nursing robot and mornitoring system using nursing robot
Vinod et al. Unilateral vital signs monitoring systems on IoT
JP3994773B2 (en) Home health monitoring system
KR20180065039A (en) Smart phone ubiquitous healthcare diagnosis system using vital integrated communication module
WO2020013004A1 (en) Biological data provision device, biological data provision method, and program for biological data provision
Picard et al. Monitoring stress and heart health with a phone and wearable computer
Gay et al. Around the clock personalized heart monitoring using smart phones
Valsalan et al. Remote healthcare monitoring using expert system
Subito et al. Web-Based Wireless Monitoring System on Patient’s Vital Sign
CN116098595B (en) System and method for monitoring and preventing sudden cardiac death and sudden cerebral death
KR20130047077A (en) Personalized blood pressure management system
WO2023053176A1 (en) Learning device, behavior recommendation device, learning method, behavior recommendation method, and recording medium

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee