KR20070089089A - A composition for de-differentiating astrocytes into neural stem cell comprising human bmi-1 protein or a nucleic acid encoding and the same and a process of de-differentiation using said composition - Google Patents

A composition for de-differentiating astrocytes into neural stem cell comprising human bmi-1 protein or a nucleic acid encoding and the same and a process of de-differentiation using said composition Download PDF

Info

Publication number
KR20070089089A
KR20070089089A KR1020070019600A KR20070019600A KR20070089089A KR 20070089089 A KR20070089089 A KR 20070089089A KR 1020070019600 A KR1020070019600 A KR 1020070019600A KR 20070019600 A KR20070019600 A KR 20070019600A KR 20070089089 A KR20070089089 A KR 20070089089A
Authority
KR
South Korea
Prior art keywords
neural stem
bmi
cells
stem cells
differentiation
Prior art date
Application number
KR1020070019600A
Other languages
Korean (ko)
Other versions
KR100844971B1 (en
Inventor
유승권
문재희
윤병선
김기동
박규만
유승준
전은경
김보나
곽성식
맹이삭
Original Assignee
주식회사 임젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 임젠 filed Critical 주식회사 임젠
Publication of KR20070089089A publication Critical patent/KR20070089089A/en
Application granted granted Critical
Publication of KR100844971B1 publication Critical patent/KR100844971B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • C12N2501/392Sexual steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/08Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from cells of the nervous system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Neurosurgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Developmental Biology & Embryology (AREA)
  • Neurology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A composition comprising a Bmi-1 protein or a nucleic acid coding the Bmi-1 protein is provided to de-differentiate the astrocytes into neural stem cell-like cell which has the self-regeneration capability and the differentiation capability into astrocyte, neuron, and oligodendrocyte. The composition for inducing de-differentiation of astrocytes into neural stem cells comprises a Bmi-1 protein or a nucleic acid material including a nucleotide sequence coding a Bmi-1 protein, wherein the nucleic acid material containing a nucleotide sequence coding for a Bmi-1 protein is a vector allowing the Bmi-1 protein to be expressed. The method for inducing the de-differentiation of astrocytes comprises the steps of: (a) culturing astrocytes in a medium; (b) treating the astrocytes with the Bmi-1 protein or the nucleic acid material; and (c) inducing the astrocytes to differentiate into neural stem cells.

Description

Bmi-1을 이용한 아스트로사이트의 신경줄기세포로의 역분화 조성물 및 이를 이용한 역분화 방법{a composition for de-differentiating astrocytes into neural stem cell comprising human Bmi-1 protein or a nucleic acid encoding and the same and a process of de-differentiation using said composition}A composition for de-differentiating astrocytes into neural stem cell comprising human Bmi-1 protein or a nucleic acid encoding and the same and a process of de-differentiation using said composition}

도 1은 Bmi-1 유전자에 의해 p16Ink4a와 p19Arf의 발현을 감소시켜 아스트로사이트의 성장속도를 증가시킨 결과이다. 1 is a result of increasing the growth rate of astrosite by reducing the expression of p16 Ink4a and p19 Arf by the Bmi-1 gene.

도 1a는 면역세포화학법(Immunocytochemistry)을 통해 마우스에서 분리한 아스트로사이트와 Bmi-1 유전자가 과발현된 아스트로사이트를 아스트로사이트 특이적인 마커(GFAP, S100β)로 확인한 결과이다. 왼쪽은 마우스에서 분리한 아스트로사이트이고, 오른쪽은 Bmi-1유전자가 과발현된 아스트로사이트이다. Figure 1a is a result of confirming the astrosite isolated from the mouse and the astrosite overexpressed Astrosite-specific markers (GFAP, S100β) by immunocytochemistry (Immunocytochemistry). The left side is the astrosite isolated from the mouse, the right side is the astrosite overexpressed the Bmi-1 gene.

도 1b는 웨스턴 블랏 방법(western blot analysis)을 통해 Bmi-1유전자가 과발현된 것을 확인하고, 타겟 유전자인 p16Ink4a와 p19Arf의 발현이 Bmi-1유전자에 의해 감소하는 것을 확인한 것이다. α-튜불린(α-tubulin)은 동량을 로딩(loading)한 것을 나타낸다. 1b confirms that the Bmi-1 gene is overexpressed by Western blot analysis, and that the expression of target genes p16 Ink4a and p19 Arf is reduced by the Bmi-1 gene. α-tubulin indicates loading of the same amount.

도 1c는 벡터(Vector)만 도입한 아스트로사이트(대조구)와 Bmi-1 유전자가 과발현 된 아스트로사이트의 성장속도를 비교한 결과이다. Figure 1c is the result of comparing the growth rate of the astrosite (control) and the astrosite overexpressed Bmi-1 gene introduced only the vector (Vector).

도 2는 Bmi-1유전자가 과발현된 아스트로사이트가 in vitro에서 신경줄기세포-유사세포로 역분화가 유도되는 것을 보인다. Figure 2 shows that astrocytes overexpressing the Bmi-1 gene induces differentiation into neural stem cell-like cells in vitro.

도 2a는 역분화 유도 과정을 보여주는 결과로, 도 2a의 a-c는 벡터(Vector)만 도입한 아스트로사이트(대조구), d-f는 Bmi-1 유전자가 과발현된 아스트로사이트를 신경줄기세포 배양액에서 배양한 결과이다. g는 신경줄기세포, h는 Bmi-1유전자가 과발현된 세포이다. FIG. 2A shows a process for inducing differentiation. In FIG. 2A, ac is a astrosite (control) in which only a vector (Vector) is introduced, and df is a result of culturing astrosite overexpressed with Bmi-1 gene in neural stem cell culture. . g is a neural stem cell, h is a cell overexpressing the Bmi-1 gene.

도 2b는 Bmi-1이 과발현된 아스트로사이트의 역분화가 성장 인자에 의존적(growth factor dependent)인지 여부를 확인하기 위해 실험한 결과이다(N2: N2 배양액만, N2+EGF: N2 배양액에 EGF첨가, N2+bFGF: N2 배양액에 bFGF첨가, N2+bFGF+EGF: N2배양액에 bFGF 및 EGF첨가). FIG. 2B shows the results of experiments to determine whether the reverse differentiation of Bmi-1 overexpressed astrosite is growth factor dependent (N2: N2 culture only, N2 + EGF: EGF addition to N2 culture) , N2 + bFGF: bFGF added to N2 culture, N2 + bFGF + EGF: bFGF and EGF added to N2 culture solution).

도 2c는 Bmi-1 유전자를 과발현시킨 아스트로사이트를 역분화시킨 신경줄기세포-유사세포(NSCLCs ; neural stem cell-like cells)의 자가재생(self-renewal)능력의 유지가 bFGF에 의존적인지 여부를 확인한 결과이다. Figure 2c shows whether the maintenance of self-renewal capacity of neural stem cell-like cells (NSCLCs) that have re-differentiated Astrosite overexpressing the Bmi-1 gene is dependent on bFGF. The result is.

도 2d는 Bmi-1을 과발현시킨 아스트로사이트를 역분화시키는 과정에 FGF 신호 경로(signalling pathway)가 관여하는지를 확인하기 위해서 Bmi-1과발현된 세포를 single cell로 만들어서 신경줄기세포 배양액에 여러 가지 저해제(inhibitor)를 처리하였을 때, 역분화가 유도되는지를 확인한 결과이다. FGF 신호 경로(signalling pathway)에 관여하는 인자 (factor) 중에 몇 가지의 인자를 저해(inhibition)했을 때, 신경구(neurospheres)가 형성되지 않는지를 확인한 결과이다. FIG. 2D shows various inhibitors in neural stem cell culture by making Bmi-1 overexpressed cells into single cells to determine whether the FGF signaling pathway is involved in the process of dedifferentiating Bmi-1 overexpressed astrosite. ) Is the result of confirming whether reverse differentiation is induced. Inhibition of some of the factors involved in the FGF signaling pathway resulted in the confirmation of the formation of neurospheres.

도 2e는 Bmi-1을 과발현시킨 아스트로사이트를 역분화시킨 신경줄기세포-유사세포가 신경줄기세포와 동일한 성격을 가지는지를 면역세포화학법(Immunocytochemistry)으로 확인한 결과이다. Nestin, Sox2, CD133은 아스트로사이트 특이적 마커, Ki-67는 증식 마커(proliferation marker), 도 2e의 a-d는 신경줄기세포(NSCs), e-h는 신경줄기세포-유사세포(NSCLCs)를 나타낸다. FIG. 2E shows the result of confirming that the neural stem cell-like cells which dedifferentiated Astrosite overexpressing Bmi-1 have the same characteristics as the neural stem cells by immunocytochemistry. Nestin, Sox2, and CD133 are astrosite specific markers, Ki-67 is a proliferation marker, ad of FIG. 2E represents neural stem cells (NSCs), and eh represents neural stem cell-like cells (NSCLCs).

도 2f는 도 2e에서 확인한 마커를 RT-PCR 방법을 통해 확인한 결과이다. 신경줄기세포-유사세포에서는 신경줄기세포와 같이 Nestin, Sox2가 발현되고, Vector만 도입한 또는 Bmi-1 유전자가 과발현된 아스트로사이트에서는 발현되지 않는다(vector: astrocyte-pBabe puro, NSC: neural stem cell, Bmi-1:astrocyte-pBabe puro Bmi-1, Bmi-1 sphere: NSCLCs: neural stem cell-like cell). FIG. 2F is a result of confirming the marker identified in FIG. 2E through the RT-PCR method. In neural stem cell-like cells, Nestin and Sox2 are expressed like neural stem cells, but not in astrocytes incorporating Vector or overexpressing Bmi-1 gene (vector: astrocyte-pBabe puro, neural stem cell, Bmi) -1: astrocyte-pBabe puro Bmi-1, Bmi-1 sphere: NSCLCs: neural stem cell-like cells).

도 3은 신경줄기세포-유사세포(NSCLCs)가 신경줄기세포(NSCs)처럼 다분화능(multipotency)을 가지고 있는지를 실험실 내 분화(in vitro differentiation)실험을 통해 확인한 결과이다. FIG. 3 shows the results of confirming whether neural stem cell-like cells (NSCLCs) have multipotency like neural stem cells (NSCs) through in vitro differentiation experiments.

도 3a는 신경줄기세포 (NSCs)와 신경줄기세포-유사세포(NSCLCs)를 아스트로사이트 (astrocyte)로 분화시킨 후, 면역세포화학법 (Immunocytochemistry)으로 확인한 결과이다. 도 3a의 a,c는 신경줄기세포, b,d는 신경줄기세포-유사세포로, 아스트로사이트 특이적인 마커인 GFAP와 S100β의 발현을 나타낸다. Figure 3a is a result of differentiation of neural stem cells (NSCs) and neural stem cell-like cells (NSCLCs) to astrocyte (astrocyte), and confirmed by immunocytochemistry (Immunocytochemistry). In Figure 3a, a, c is a neural stem cell, b, d is a neural stem cell-like cell, it shows the expression of GFAP and S100β, astrosite-specific markers.

도 3b는 신경줄기세포(NSCs)와 신경줄기세포-유사세포(NSCLCs)를 뉴런으로 분화시 킨 후, 특이적인 마커(Tuj1, Map2, TH)를 면역세포화학법(Immunocytochemistry)으로 확인한 결과이다. 도 3b의 a,c-e는 신경줄기세포, b,f-h는 신경줄기세포와 같은 세포를 분화시킨 후 확인한 결과이다. Figure 3b is after the differentiation of neural stem cells (NSCs) and neural stem cell-like cells (NSCLCs) into neurons, specific markers (Tuj1, Map2, TH) was confirmed by immunocytochemistry (Immunocytochemistry). Figure 3b, a, ce is a neural stem cells, b, fh is a result confirmed after differentiating cells such as neural stem cells.

도 3c는 신경줄기세포와 신경줄기세포-유사세포(NSCLCs)를 올리고덴드로사이트 (oligodendrocyte)로 분화시킨 후, 특이적인 마커 (O1,O4,CNPase)를 면역세포화학법으로 확인한 결과이다. 도 3c의 a-c, g-i는 신경줄기세포, d-f, j-l는 신경줄기세포-유사세포를 분화시킨 후 확인한 결과이다. Figure 3c is the result of differentiation of neural stem cells and neural stem cell-like cells (NSCLCs) into oligodendocytes (oligodendrocyte), the specific markers (O1, O4, CNPase) was confirmed by immunocytochemistry. Ac and gi of Figure 3c, the neural stem cells, df, jl is a result confirmed after differentiating neural stem cells-like cells.

도 4는 역분화과정이 Bmi-1유전자에 의존적인(dependent)지 여부를 확인하기 위해 실험한 결과이다. 4 shows the results of experiments to determine whether the reverse differentiation process is dependent on the Bmi-1 gene.

도 4a는 유도가능 벡터(inducible vector)인 pBI-Bmi-1-EGFP와 pBabe puro rTTA를 함께 감염시킨 아스트로사이트에서 Bmi-1의 발현을 확인한 결과이다. 독시사이클린(Doxycycline) 1μg/ml로 Bmi-1유전자의 발현을 유도(induction)할 수 있고, 독시사이클린(doxycycline; DOX)이 있을 때와 없을 때의 Bmi-1의 발현의 차이를 웨스턴 블랏 분석을 통해 확인한 결과이다. 4A shows the results of confirming the expression of Bmi-1 in astrosite infected with the inducible vector pBI-Bmi-1-EGFP and pBabe puro rTTA. 1 μg / ml of Doxycycline can induce the expression of the Bmi-1 gene, and Western blot analysis confirms the difference in the expression of Bmi-1 with and without doxycycline (DOX). The result is.

도 4b는 신경줄기세포의 배양액으로 바꾸었을 때, 독시사이클린이 있을 때와 없을 때를 비교한 결과이다. Figure 4b is a result of comparing with and without doxycycline when switched to the culture of neural stem cells.

도 4c는 신경줄기세포의 배양액으로 바꾸고, 독시사이클린을 첨가하였을 때, 신경줄기세포와 같은 모양의 세포가 만들어지고, GFP가 발현되는 것을 확인한 결과이다. 도 4c-a는 신경줄기세포와 같은 모양의 세포의 사진이고, 도 4c-b는 이 세포의 GFP발현을 확인한 결과이다 또한, 4c-c는 신경줄기세포의 마커가 발현되는 것을 면역화학염색법으로 확인한 결과이다. Figure 4c is a result of confirming that the cells of the same shape as the neural stem cells are made, and GFP is expressed when switched to the culture medium of neural stem cells, and doxycycline is added. Figure 4c- a is a photograph of a cell of the same shape as the neural stem cells, Figure 4c-b is a result of confirming the GFP expression of these cells, In addition, 4c-c is confirmed by the immunochemical staining method to express the markers of neural stem cells to be.

도 4d는 도 4c에서 확인한 세포가 분화능력이 있는지를 확인한 결과이다. 도 4d의 a,b는 아스트로사이트, c-e는 뉴런, f,g는 올리고덴드로사이트로의 분화를 유도한 후, 면역화학염색법으로 각각의 특이적인 마커를 확인한 결과이다. 4d is a result confirming whether the cells identified in FIG. 4c have differentiation ability. In Figure 4d, a, b is astrosite, ce is a neuron, f, g is the result of inducing differentiation into oligodendrosite, and then the respective specific markers by immunochemical staining.

도 4e는 생체 내(in vivo)에서 분화능력이 있는지를 확인한 결과이다. 6주령의 누드 마우스(nude mouse)에 독시사이클린이 첨가된 신경줄기세포의 배양액에서 배양한 신경줄기세포-유사세포를 피하주사(subcutaneous injection)하고, 2주 후에 조직을 고정(fixation)하여, 각각의 분화 마커를 사용하여 확인한 결과이다. Figure 4e is a result confirming the differentiation ability in vivo (in vivo). Subcutaneous injection of neural stem cell-like cells cultured in a culture medium of neural stem cells to which doxycycline was added to nude mice of 6 weeks old was fixed, and the tissues were fixed two weeks later, and each differentiation marker was fixed. Confirmed using.

도 5는 HDAC 저해제(inhibitor)에 의해 Bmi-1 유전자에 의한 작용이 저해(inhibition)되는지를 확인한 결과이다. 5 is a result confirming whether the action by the Bmi-1 gene is inhibited by the HDAC inhibitor (inhibitor).

도 5a-f는 TSA (Trichostatin A)를 처리하면서 Bmi-1 유전자가 과발현된 아스트로사이트의 성장 속도(growth rate)와 역분화 여부를 확인한 결과이다. Figures 5a-f is the result of confirming the growth rate and reverse differentiation of Astrosite overexpressed Bmi-1 gene while treating TSA (Trichostatin A).

도 5a는 Bmi-1 유전자가 과발현된 아스트로사이트에 TSA를 처리하였을 때, 성장 속도가 저하된다는 것을 나타내고, 도 5b는 3일동안 처리한 후의 세포사진이고, 5B의 가장 오른쪽 사진은 100ng/ml처리한 후에 SA-β-갈락토시다아제 분석(SA-β-galactosidase assay)을 하여 노화(senescence)여부를 확인한 결과를 나타내는 세포 사진이다. 도 5c는 각각의 농도에서의 단백질 발현 차이를 나타내고, 도 5d는 역분화과정에 처리하였을 때, 신경구가 형성되는지 여부를 확인한 결과이다. 도 5e 는 도 5d에서 확인한 샘플에서 추출한 RNA 수준(level)에서 신경줄기세포의 마커인 nestin과 sox2의 발현이 줄어드는 것을 나타낸다. 또한, 도 5f에서는 100개의 세포를 신경줄기세포 배양조건과 같은 배양액에 TSA를 농도별로 처리하면서 2주간 배양하고, 신경구가 형성되는지 여부를 확인한 결과를 나타낸다. Figure 5a shows that the growth rate is reduced when TSA is treated with the astrosite overexpressed Bmi-1 gene, Figure 5b is a cell picture after the treatment for 3 days, the rightmost picture of 5B is 100ng / ml treatment Afterwards, SA-β-galactosidase assay (SA-β-galactosidase assay) is a cell photo showing the results of senescence. Figure 5c shows the difference in protein expression at each concentration, Figure 5d is a result of confirming whether the neurospheres are formed when subjected to reverse differentiation process. 5E shows that the expression of nestin and sox2, which are markers of neural stem cells, decreases at the RNA level extracted from the sample identified in FIG. 5D. In addition, FIG. 5F shows 100 cells incubated for 2 weeks while treating TSAs in concentrations such as neural stem cell culture conditions for each concentration, and confirming whether neurospheres are formed.

도 5g-j는 Bmi-1유전자가 과발현된 아스트로사이트에 VPA (Valproic acid)를 처리한 결과이다. 도 5g는 VPA를 농도별로 처리하였을 때, 아스트로사이트의 성장속도의 차이를 보여주고, 도 5h는 신경줄기세포의 배양액에서 3일동안 처리한 후의 세포의 모양을 보여준다. 도 5i도 5h에서 확인한 샘플에서 추출한 RNA에서 신경줄기세포의 마커인 nestin과 sox2의 발현이 줄어드는 것을 나타낸다. 또한, 도 5j에서는 Bmi-1이 과발현된 아스트로사이트 세포 100개를 신경줄기세포의 배양액과 VPA를 농도별로 처리한 배양액에서 2주간 배양을 하였을 때, 신경구가 형성되는 지 여부를 확인한 결과이다. Figure 5g-j is the result of treatment of VPA (Valproic acid) to the astrosite overexpressed Bmi-1 gene. Figure 5g shows the difference in the growth rate of astrosite when treated with VPA concentration, Figure 5h shows the shape of the cells after treatment for 3 days in the culture of neural stem cells. 5i shows that the expression of nestin and sox2, which are markers of neural stem cells, is reduced in RNA extracted from the sample identified in FIG. 5h . In addition, in FIG. 5J , 100 cells of Bmi-1 overexpressed astrosite were cultured for 2 weeks in a culture solution of neural stem cells and a culture solution treated with VPA at different concentrations.

1. Toru Kondo, martin Raff. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells Genes & Development 2004;18: 2963-2972 1. Toru Kondo, martin Raff. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells Genes & Development 2004; 18: 2963-2972

2. Alexis Joannides, Phil Gaughwin, Chistof Shwiening, Henry Majed, Jane Sterling, Alastair Compston, siddharthan Chandran. Effiencient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells Lancet 2004;363:172-178Alexis Joannides, Phil Gaughwin, Chistof Shwiening, Henry Majed, Jane Sterling, Alastair Compston, siddharthan Chandran. Effiencient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells Lancet 2004; 363: 172-178

3. Sally Temple. The development of neural stem cells Nature 2001;414:112-1173. Sally Temple. The development of neural stem cells Nature 2001; 414: 112-117

4. Anna V. Molofsky, Ricardo Pardal, Toshihide Iwashita, In-Kyung Park,Michael F. Clarke & Sean J. Morrison. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation Nature 2003;425:962-967Anna V. Molofsky, Ricardo Pardal, Toshihide Iwashita, In-Kyung Park, Michael F. Clarke & Sean J. Morrison. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation Nature 2003; 425: 962-967

5. Jacqueline J.L. Jacobs, Blanca Scheijen, Jan-Willem Voncken, Karin Kieboom, Anton Berns, and Maarten van Lohuizen. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF Genes & Development 1999;13:2678-26905. Jacqueline J.L. Jacobs, Blanca Scheijen, Jan-Willem Voncken, Karin Kieboom, Anton Berns, and Maarten van Lohuizen. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a / ARF Genes & Development 1999; 13: 2678-2690

6. Sı´lvia Bea, Frederic Tort, Magda Pinyol, Xavier Puig, Luis Herna´ndez, Silvia Herna´ndez, Pedro L. Ferna´ndez, Maarten van Lohuizen, Dolors Colomer, and Elias Campo. BMI-1 Gene Amplification and Overexpression in Hematological Malignancies Occur Mainly in Mantle Cell Lymphomas. 2001;61:2409-4126.Sı´lvia Bea, Frederic Tort, Magda Pinyol, Xavier Puig, Luis Herna´ndez, Silvia Herna´ndez, Pedro L. Ferna´ndez, Maarten van Lohuizen, Dolors Colomer, and Elias Campo. BMI-1 Gene Amplification and Overexpression in Hematological Malignancies Occur Mainly in Mantle Cell Lymphomas. 2001; 61: 2409-412

7. Dusan Zencak, Merel Lingbeek, Corinne Kostic, Meriem Tekaya, Ellen Tanger, Dana Hornfeld, Muriel Jaquet, Francis L. Munier, Daniel F.Schorderet, Maarten van Lohuizen, and Yvan Arsenijevic. Bmi1 Loss Produces an Increase in Astroglial Cells and a Decrease in Neural Stem Cell Population and Proliferation.The Journal of Neuroscience 2005;25:5774-783Dusan Zencak, Merel Lingbeek, Corinne Kostic, Meriem Tekaya, Ellen Tanger, Dana Hornfeld, Muriel Jaquet, Francis L. Munier, Daniel F. Schorderet, Maarten van Lohuizen, and Yvan Arsenijevic. Bmi1 Loss Produces an Increase in Astroglial Cells and a Decrease in Neural Stem Cell Population and Proliferation.The Journal of Neuroscience 2005; 25: 5774-783

8. Carly Leung, Merel Lingbeek, Olga Shakhova, James Liu, Ellen Tanger, Parvin Saremaslani, Maarten van Lohuizen & Silvia Marino. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas Nature 2004;428:337-3418.Carly Leung, Merel Lingbeek, Olga Shakhova, James Liu, Ellen Tanger, Parvin Saremaslani, Maarten van Lohuizen & Silvia Marino. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas Nature 2004; 428: 337-341

9. Atsushi Iwama, Hideyuki Oguro, Masamitsu Negishi, Yuko Kato, Youhei Morita,Hiroko Tsukui, Hideo Ema, Takehiko Kamijo, Yuko Katoh-Fukui, Haruhiko Koseki,Maarten van Lohuizen, and Hiromitsu Nakauchi. Enhanced Self-Renewal of Hematopoietic Stem Cells Mediated by the Polycomb Gene Product Bmi-1 of transcriptional activators 2004;21:843-8519.Asushi Iwama, Hideyuki Oguro, Masamitsu Negishi, Yuko Kato, Youhei Morita, Hiroko Tsukui, Hideo Ema, Takehiko Kamijo, Yuko Katoh-Fukui, Haruhiko Koseki, Maarten van Lohuizen, and Hiromitsu Nakauchi. Enhanced Self-Renewal of Hematopoietic Stem Cells Mediated by the Polycomb Gene Product Bmi-1 of transcriptional activators 2004; 21: 843-851

10. Katalin Schlett and Emilia Madara´sz. Retinoic Acid Induced Neural Differentiation in a Neuroectodermal Cell Line Immortalized by p53 Deficiency. Journal of Neuroscience Research 1997;47:405-1510. Katalin Schlett and Emilia Madara´sz. Retinoic Acid Induced Neural Differentiation in a Neuroectodermal Cell Line Immortalized by p53 Deficiency. Journal of Neuroscience Research 1997; 47: 405-15

11. Barbara Ahlemeyer, Eveline Baumgart-Vogt. Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl/6J mice. Journal of Neuroscience Methods 200511.Barbara Ahlemeyer, Eveline Baumgart-Vogt. Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl / 6J mice. Journal of Neuroscience Methods 2005

12. Tomoya Kitayama, Masanori Yoneyama, Keisuke Tamaki, and Yukio Yoneda. Regulation of Neuronal Differentiation by N-Methyl-D-Aspartate Receptors Expressed in Neural Progenitor Cells Isolated From Adult Mouse Hippocampus Journal of Neuroscience Research 2004:76:599-1212.Tomoya Kitayama, Masanori Yoneyama, Keisuke Tamaki, and Yukio Yoneda. Regulation of Neuronal Differentiation by N-Methyl-D-Aspartate Receptors Expressed in Neural Progenitor Cells Isolated From Adult Mouse Hippocampus Journal of Neuroscience Research 2004: 76: 599-12

13. Yingwei Mao and Angel W.-M. Lee. A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation. The Journal of Cell Biology 2005;170:305-1613.Yingwei Mao and Angel W.-M. Lee. A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation. The Journal of Cell Biology 2005; 170: 305-16

14. Mireya Marin-Husstege, Michela Muggironi, Aixiao Liu, Patrizia Casaccia-Bonnefi. Histone Deacetylase Activity Is Necessary for Oligodendrocyte Lineage Progression. The Journal of Neuroscience, 2002;22:10333-0345Mireya Marin-Husstege, Michela Muggironi, Aixiao Liu, Patrizia Casaccia-Bonnefi. Histone Deacetylase Activity Is Necessary for Oligodendrocyte Lineage Progression. The Journal of Neuroscience, 2002; 22: 10333-0345

15. Anna V. Molofsky, Shenghui He, Mohammad Bydon, Sean J. Morrison, Ricardo Pardal. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes & Development 2005;19:1432-143715. Anna V. Molofsky, Shenghui He, Mohammad Bydon, Sean J. Morrison, Ricardo Pardal. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes & Development 2005; 19: 1432-1437

16. Sopia W. M. bruggeman, Merel E. Valk-Lingbeek, Petra P.M. van der Stoop, Jacqueline J.L.,Jacobs, Karin kieboom, Ellen Tanger, Danielle Hulsman, Carly Leung, Yvan Arsenijevic, Silvia Marino and Maarten van Lohuizen. Ink4a and Arf differentiallu affect cell proliferation and neural stem cell self-renewal in Bmi-1-deficient mice. Genes & Development 2005;19:1438-1443 16. Sopia W. M. bruggeman, Merel E. Valk-Lingbeek, Petra P.M. van der Stoop, Jacqueline J.L., Jacobs, Karin kieboom, Ellen Tanger, Danielle Hulsman, Carly Leung, Yvan Arsenijevic, Silvia Marino and Maarten van Lohuizen. Ink 4a and Arf differentiallu affect cell proliferation and neural stem cell self-renewal in Bmi-1-deficient mice. Genes & Development 2005; 19: 1438-1443

17. Kishi Y, Takahashi J, Koyanagi M, Morizane A, Okamoto Y, Horiguchi S, Tashiro K, Honjo T, Fujii S, Hashimoto N.. Estrogen promotes differentiation and survival of dopaminergic neurons derived from neural stem cells Journal of neuroscience research 2005;79:279-28617.Kishi Y, Takahashi J, Koyanagi M, Morizane A, Okamoto Y, Horiguchi S, Tashiro K, Honjo T, Fujii S, Hashimoto N .. Estrogen promotes differentiation and survival of dopaminergic neurons derived from neural stem cells Journal of neuroscience research 2005; 79: 279-286

18. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibitor-mediated neuronal differentiation of multipotent adult neural progenitor cells PNAS 2004;101:16659-1666418.Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibitor-mediated neuronal differentiation of multipotent adult neural progenitor cells PNAS 2004; 101: 16659-16664

19. Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P. Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells Journal of neuroscience research 2004;78:625-63619.Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P. Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells Journal of neuroscience research 2004; 78: 625-636

20. Ping Wu, Yevgeniy. Tarasenko, Yanping Gu, Li-Yen M. Huang, Richard E. Coggeshall and Yongjia Yu Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nature neuroscience 2005;5:1271-127820. Ping Wu, Yevgeniy. Tarasenko, Yanping Gu, Li-Yen M. Huang, Richard E. Coggeshall and Yongjia Yu Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nature neuroscience 2005; 5: 1271-1278

21. Hu X, Jin L, Feng L. Erk1/2 but not PI3K pathway is required for neurotrophin 3-induced oligodendrocyte differentiation of post-natal neural stem cells. Journal of Neurochemistry 2004;90:1339-134721.Hu X, Jin L, Feng L. Erk1 / 2 but not PI3K pathway is required for neurotrophin 3-induced oligodendrocyte differentiation of post-natal neural stem cells. Journal of Neurochemistry 2004; 90: 1339-1347

22. In-Kyung Park, Sean J. Morrison, and Michael F. Clarke. Bmi1, stem cells, and senescence regulation. J.Clin. Invest. 2004;113:175-17922. In-Kyung Park, Sean J. Morrison, and Michael F. Clarke. Bmi1, stem cells, and senescence regulation. J. Clin. Invest. 2004; 113: 175-179

23. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. Transgenic bovine chimeric offspring produced from somatic cell- derived stem-like cells. Nat Biotechnol 1998 Jul; 16(7): 642-646.23. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. Transgenic bovine chimeric offspring produced from somatic cell- derived stem-like cells. Nat Biotechnol 1998 Jul; 16 (7): 642-646.

24. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001 Apr 27; 292(5517): 740-743.24.Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001 Apr 27; 292 (5517): 740-743.

25. Gurdon JB, Byrne JA. The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A 2003 Jul 8; 100(14): 8048-8052.25. Gurdon JB, Byrne JA. The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A 2003 Jul 8; 100 (14): 8048-8052.

26. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997 Feb 27; 385(6619): 810-813.26. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997 Feb 27; 385 (6619): 810-813.

27. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 Aug 25; 126(4): 663-676.27.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 Aug 25; 126 (4): 663-676.

28. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 1991 May 31; 65(5): 753-763.28. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 1991 May 31; 65 (5): 753-763.

29. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, et al.The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002 Aug 15; 62(16): 4736-4745.29. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002 Aug 15; 62 (16): 4736-4745.

30. Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol 2003 Jul; 31(7): 567-585.30. Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol 2003 Jul; 31 (7): 567-585.

31. Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ, et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 2003 Jan; 23(1): 389-401.31. Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ, et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 2003 Jan; 23 (1): 389-401.

32. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999 Jan 14; 397(6715): 164-168.32. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink 4a locus. Nature 1999 Jan 14; 397 (6715): 164-168.

33. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001 Oct; 2(10): 731-737.33. Sherr CJ. The INK4a / ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001 Oct; 2 (10): 731-737.

34. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992 Nov; 12(11): 4565-4574.34. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992 Nov; 12 (11): 4565-4574.

35. Vescovi AL, Reynolds BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 1993 Nov; 11(5): 951-966.35.Vescovi AL, Reynolds BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal / astroglial) EGF-generated CNS progenitor cells. Neuron 1993 Nov; 11 (5): 951-966.

36. Wu P, Tarasenko YI, Gu Y, Huang LY, Coggeshall RE, Yu Y. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 2002 Dec; 5(12): 1271-1278.36. Wu P, Tarasenko YI, Gu Y, Huang LY, Coggeshall RE, Yu Y. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 2002 Dec; 5 (12): 1271-1278.

37. Gritti A, Frolichsthal-Schoeller P,Galli R, Parati EA, Cova L, Pagano SF, et al.Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 1999 May 1; 19(9): 3287-3297.37.Grittti A, Frolichsthal-Schoeller P, Galli R, Parati EA, Cova L, Pagano SF, et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 1999 May 1; 19 (9): 3287-3297.

38. Mao Y, Lee AW. A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation. J Cell Biol 2005 Jul 18; 170(2): 305-316.38. Mao Y, Lee AW. A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation. J Cell Biol 2005 Jul 18; 170 (2): 305-316.

39. Tsang M, Dawid IB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE 2004 Apr 13; 2004(228): pe17.39. Tsang M, Dawid IB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE 2004 Apr 13; 2004 (228): pe 17.

40. Chojnacki A, Weiss S. Isolation of a novel platelet-derived growth factor-responsive precursor from the embryonic ventral forebrain. J Neurosci 2004 Dec 1; 24(48): 10888-10899.40. Chojnacki A, Weiss S. Isolation of a novel platelet-derived growth factor-responsive precursor from the embryonic ventral forebrain. J Neurosci 2004 Dec 1; 24 (48): 10888-10899.

41. Hu X, Jin L, Feng L. Erk1/2 but not PI3K pathway is required for neurotrophin 3-induced oligodendrocyte differentiation of post-natal neural stem cells. J Neurochem 2004 Sep; 90(6): 1339-1347.41.Hu X, Jin L, Feng L. Erk1 / 2 but not PI3K pathway is required for neurotrophin 3-induced oligodendrocyte differentiation of post-natal neural stem cells. J Neurochem 2004 Sep; 90 (6): 1339-1347.

42. Kim BK, Kim SE, Shim JH, Woo DH, Gil JE, Kim SK, et al. Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells. FEBS Lett 2006 Oct 30; 580(25): 5869-5874.42. Kim BK, Kim SE, Shim JH, Woo DH, Gil JE, Kim SK, et al. Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells. FEBS Lett 2006 Oct 30; 580 (25): 5869-5874.

43. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 2005 Jun; 8(6): 723-729.43. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 2005 Jun; 8 (6): 723-729.

44. Rogister B, Ben-Hur T, Dubois-Dalcq M. From neural stem cells to myelinating oligodendrocytes. Mol Cell Neurosci 1999 Oct-Nov; 14(4-5): 287-300.44. Rogister B, Ben-Hur T, Dubois-Dalcq M. From neural stem cells to myelinating oligodendrocytes. Mol Cell Neurosci 1999 Oct-Nov; 14 (4-5): 287-300.

45. Song MR, Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004 Mar; 7(3): 229-235.45. Song MR, Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004 Mar; 7 (3): 229-235.

46. Matheu A, Klatt P, Serrano M. Regulation of the INK4a/ARF locus by histone deacetylase inhibitors. J Biol Chem 2005 Dec 23 280(51): 42433-42441.46. Matheu A, Klatt P, Serrano M. Regulation of the INK4a / ARF locus by histone deacetylase inhibitors. J Biol Chem 2005 Dec 23 280 (51): 42433-42441.

47. Wharton W, Savell J, Cress WD, Seto E, Pledger WJ. Inhibition of mitogenesis in Balb/c-3T3 cells by Trichostatin A. Multiple alterations in the induction and activation of cyclin-cyclin-dependent kinase complexes. J Biol Chem 2000 Oct 27; 275(43): 33981-33987.47. Wharton W, Savell J, Cress WD, Seto E, Pledger WJ. Inhibition of mitogenesis in Balb / c-3T3 cells by Trichostatin A. Multiple alterations in the induction and activation of cyclin-cyclin-dependent kinase complexes. J Biol Chem 2000 Oct 27; 275 (43): 33981-33987.

48. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990 Oct 5; 265(28): 17174-17179.48. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990 Oct 5; 265 (28): 17174-17179.

49. Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, et al.Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 2001 Apr; 7(4): 971-976.49. Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, et al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 2001 Apr; 7 (4): 971-976.

50. Zhou Q, Melkoumian ZK, Lucktong A, Moniwa M, Davie JR, Strobl JS. Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J Biol Chem 2000 Nov 10; 275(45): 35256-35263.50. Zhou Q, Melkoumian ZK, Lucktong A, Moniwa M, Davie JR, Strobl JS. Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J Biol Chem 2000 Nov 10; 275 (45): 35256-35263.

51. Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, et al.Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 1999 Sep; 13(9): 1316-1324.51.Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, et al. Histone deacetylase inhibitors are the potent inducer / enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 1999 Sep; 13 (9): 1316-1324.

52. Noriyuki T, Murai H, Ubagai T, Kimura A, Koga R, Okumichi T. [Chronic hemorrhagic pyothorax treated with preoperative internal thoracic and intercostal arterial embolization and perioperative non-invasive positive pressure ventilation]. Kyobu Geka 2004 Aug; 57(9): 857-863.52. Noriyuki T, Murai H, Ubagai T, Kimura A, Koga R, Okumichi T. [Chronic hemorrhagic pyothorax treated with preoperative internal thoracic and intercostal arterial embolization and perioperative non-invasive positive pressure ventilation]. Kyobu Geka 2004 Aug; 57 (9): 857-863.

53. Allegrucci C, Denning C, Priddle H, Young L. Stem-cell consequences of embryo epigenetic defects. Lancet 2004 Jul 10-16; 364(9429): 206-208.53. Allegrucci C, Denning C, Priddle H, Young L. Stem-cell consequences of embryo epigenetic defects. Lancet 2004 Jul 10-16; 364 (9429): 206-208.

54. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell 2004 Aug 20; 118(4): 409-418.54. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell 2004 Aug 20; 118 (4): 409-418.

55. Gil J, Bernard D, Peters G. Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol 2005 Feb; 24(2): 117-125.55. Gil J, Bernard D, Peters G. Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol 2005 Feb; 24 (2): 117-125.

56. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003 May 15; 423(6937): 302-305.56. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003 May 15; 423 (6937): 302-305.

57. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996 Apr 10; 175(1): 1-13.57. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996 Apr 10; 175 (1): 1-13.

58. Jin L, Hu X, Feng L. NT3 inhibits FGF2-induced neural progenitor cell proliferation via the PI3K/GSK3 pathway. J Neurochem 2005 Jun; 93(5): 1251-1261.58. Jin L, Hu X, Feng L. NT3 inhibits FGF2-induced neural progenitor cell proliferation via the PI3K / GSK3 pathway. J Neurochem 2005 Jun; 93 (5): 1251-1261.

59. Ren W, Guo Q, Yang Y, Chen F. bFGF and heparin but not laminin are necessary factors in the mediums that affect NSCs differentiation into cholinergic neurons. Neurol Res 2006 Jan; 28(1): 87-90.59. Ren W, Guo Q, Yang Y, Chen F. bFGF and heparin but not laminin are necessary factors in the mediums that affect NSCs differentiation into cholinergic neurons. Neurol Res 2006 Jan; 28 (1): 87-90.

60. Kondo T. Epigenetic alchemy for cell fate conversion. Curr Opin Genet Dev 2006 Oct; 16(5): 502-507.60. Kondo T. Epigenetic alchemy for cell fate conversion. Curr Opin Genet Dev 2006 Oct; 16 (5): 502-507.

61. Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci U S A 2003 Jul 8; 100(14): 8342-8347.61.Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci U S A 2003 Jul 8; 100 (14): 8342-8347.

62. Zeleznik-Le NJ, Harden AM, Rowley JD. 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci U S A 1994 Oct 25; 91(22): 10610-10614.62.Zeleznik-Le NJ, Harden AM, Rowley JD. 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci U S A 1994 Oct 25; 91 (22): 10610-10614.

63. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 1980 Jun; 85(3): 890-902.63. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 1980 Jun; 85 (3): 890-902.

64. Kim TK, Lee JS, Jung JE, Oh SY, Kwak S, Jin X, et al. Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. Cancer Lett 2006 Oct 28; 242(2): 215-221.64. Kim TK, Lee JS, Jung JE, Oh SY, Kwak S, Jin X, et al. Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. Cancer Lett 2006 Oct 28; 242 (2): 215-221.

65. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004 Nov 23; 101(47): 16659-16664.65. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004 Nov 23; 101 (47): 16659-16664.

신경줄기세포(Neural stem cells: NSCs)는 신경계에 존재하는 전구세포(progenitor cell)의 서브타입(subtype)으로 아스트로사이트(astrocytes), 올리고덴드로사이트(oligodendrocytes), 뉴런(neurons)으로 분화할 수 있는 능력을 가지고 있다. 중추신경계(Central nervous system: CNS)와 말초신경계(peripheral nervous system: PNS)에서 분리하여 다세포 신경구(Multicellular neurospheres)를 만들 수 있고 이 세포가 각각의 조건에서 아교 계통(glial lineage)과 신경 계통(neural lineage)으로 분화하게 된다(Sally Temple et al. 2001). 이 신경줄기세포는 난치병의 치료에 응용되어 현재 세포치료의 한 가지 방법으로 연구되고 있다. 이러한 신경줄기세포는 성체줄기세포의 하나로 윤리적인 문제가 거의 없기 때문에 많이 연구되고 있는 실정이다. 최근에 역분화에 관련된 연구가 진행되고 있는 상황에서 성체줄기세포의 중요성이 좀 더 강조되고 있다. 이러한 성체줄기세포는 배아줄기 세포보다 얻기 쉽지만 실제로 적용하기에 아직 어려운 부분이 많다. 또한 다른 사람의 성체줄기세포를 사용할 땐 면역거부 반응이란 문제도 제기될 수 있다. 따라서 자신의 세포를 이용하여 역분화를 유도할 경우 현재 제기되고 있는 문제를 해결 할 수 있다. 이와 같은 취지에서 이미 분화가 진행된 세포를 이용하여 역분화를 유도하는 부분이 중요하다. 현재 세포융합(cell fusion), 핵이식(Nuclear transfer)등의 방법을 이용하여 역분화를 유도하는 연구가 진행 중에 있고 또 다른 방법을 이용한 그룹으로 Alexis J (Lancet 2004)는 피부에서 분리한 세포를 신경줄기세포 배양 조건에서 배양했을 때 신경 줄기세포의 특성을 가지고 있다고 보고하였다. 또한, Toru K. (Genes & Development 2004)은 올리고덴드로사이트 전구체(oligodendrocyte precursors)를 신경줄기세포로 역분화시켰음을 보고하였다. 이 그룹은 2000년부터 이와 관련된 논문을 연구하여 발표하였고, 최근 2004년 논문에서 각 분화 단계에서 유전자의 발현이 크로마틴 리모델링(chromatin remodeling)과 히스톤 수식(histone modification)에 관련이 있다고 보고하였다. Neural stem cells (NSCs) are subtypes of progenitor cells in the nervous system that are capable of differentiating into astrocytes, oligogodendrocytes, and neurons. Have Multicellular neurospheres can be formed from the central nervous system (CNS) and the peripheral nervous system (PNS), which can produce glial lineage and neural lines under different conditions. lineage) (Sally Temple et al. 2001). The neural stem cells have been applied to the treatment of intractable diseases and are currently being studied as a method of cell therapy. These neural stem cells are one of the adult stem cells, so the situation is being studied a lot because there is little ethical problem. The importance of adult stem cells has been emphasized more recently in the context of research on dedifferentiation. Although adult stem cells are easier to obtain than embryonic stem cells, there are still many difficult parts to apply. In addition, when using adult stem cells of another person, an immune rejection reaction may be raised. Therefore, inducing dedifferentiation using own cells can solve the problems that are being raised. For this purpose, it is important to induce reverse differentiation using cells that have already undergone differentiation. Currently, research is being conducted to induce differentiation using methods such as cell fusion and nuclear transfer, and another method is called Alexis J (Lancet 2004). Neural stem cells were reported to have characteristics of neural stem cells when cultured in culture conditions. Toru K. (Genes & Development 2004) also reported that oligoendrocyte precursors dedifferentiated into neural stem cells. The group has studied and published papers since 2000, and recently reported in 2004 that gene expression is related to chromatin remodeling and histone modification at each stage of differentiation.

본 발명에서는 기존의 여러 가지 방법의 문제점을 해결하고, 좀 더 사용하기에 적절한 방법을 확립하고자 하였다. NSCs의 특성을 조절하고 있는 전사 인자(transcription factor)중 하나를 선별하고 과발현을 유도하여 신경줄기세포(neural stem cell)로의 분화를 연구하였다. 발명자가 선별한 polycomb 그룹의 Bmi-1 유전자는 히스톤 수식(histone modification)과 세포주식 조절자(cell cycle regulators)를 조절하는 단백질 중 하나를 코딩하는 유전자이다(Jan W. et al. 1999). cdkn2a/INK4A locus는 Bmi-1 유전자의 타겟으로 알려져 있으며 Bmi-1 유전자는 이러한 타겟 유전자를 전사과정에서 억제하는 작용을 한다고 알려져 있다. 최근에 Bmi-1 유전자는 신경줄기세포(neural stem cell)에서 발현되고 있고, 신경줄기세포(neural stem cell)의 자가재생(self-renewal)을 유지시키는데 작용하고 있음이 보고되었다 (Anna V.M et al. 2003, 2005, In-Kyung Park et al. 2004). In the present invention, to solve the problems of various existing methods, to establish a more suitable method for use. One of the transcription factors controlling the properties of NSCs was selected and overexpressed to study differentiation into neural stem cells. The Bmi-1 gene of the polycomb group selected by the inventors is a gene encoding one of the proteins that regulate histone modification and cell cycle regulators (Jan W. et al. 1999). The cdkn2a / INK4A locus is known to be a target of the Bmi-1 gene, and the Bmi-1 gene is known to act to inhibit this target gene during transcription. Recently, it has been reported that the Bmi-1 gene is expressed in neural stem cells and acts to maintain self-renewal of neural stem cells (Anna VM et al. 2003). , 2005, In-Kyung Park et al. 2004).

이런 배경하에, 본 발명자들은 이미 분화된 마우스 아스트로사이트에 Bmi-1 유전자를 과발현시키면 자가재생능과 아스트로사이트(astrocyte), 뉴런(neuron), 올리고덴드로사이트(oligodendrocyte)로의 분화능을 가지는 신경줄기세포-유사세포(neural stem cell-like cell)로 역분화될 수 것을 확인하고 본 발명을 완성하였다.Against this background, the inventors overexpressed the Bmi-1 gene in already differentiated mouse astrosites, which have neural stem cell-like regeneration ability and differentiation ability to asstroocytes, neurons, and oligoendrocytes. It was confirmed that the cells (neural stem cell-like cell) can be differentiated and completed the present invention.

본 발명의 하나의 목적은 Bmi-1 단백질 또는 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산을 포함하는 아스트로사이트(astrocyte)를 신경줄기세포로 역분화를 유도하는 조성물을 제공하기 위함이다.One object of the present invention is to provide a composition for inducing the differentiation of astrocytes (astrocytes) comprising a Bmi-1 protein or a nucleotide sequence encoding a Bmi-1 protein into neural stem cells.

본 발명의 또 다른 목적은 Bmi-1 단백질 또는 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산을 처리하는 단계를 포함하는 아스트로사이트를 신경줄기세포로 역분화를 유도하는 방법을 제공하기 위함이다. Still another object of the present invention is to provide a method for inducing differentiation of astrosite into neural stem cells, comprising the step of processing a Bmi-1 protein or a nucleic acid that is a nucleotide sequence encoding a Bmi-1 protein.

본 발명의 또 다른 목적은 상기 방법으로 생산된 신경줄기세포를 제공하기 위함이다.Another object of the present invention is to provide a neural stem cell produced by the above method.

본 발명의 또 다른 목적은 상기 방법으로 생산되어 아스트로사이트, 뉴런 또는 올리고덴드로사이트로 분화능을 가지는 신경줄기세포를 제공하기 위함이다.Still another object of the present invention is to provide neural stem cells which are produced by the above method and have differentiation ability into astrosites, neurons or oligodendrosites.

하나의 양태로서, 본 발명은 Bmi-1 단백질 또는 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산을 포함하는 아스트로사이트 (astrocyte)를 신경줄기세포로 역분화를 유도하는 조성물에 관한 것이다.In one aspect, the present invention relates to a composition for inducing reverse differentiation of an astrocyte (astrocyte) comprising a Bmi-1 protein or a nucleotide sequence encoding a Bmi-1 protein into neural stem cells.

본 발명에서 용어, "신경줄기세포-유사세포(neural stem cell-like cells)"란 뉴런, 아스트로사이트, 올리고덴드로사이트 등의 세포로 분화될 수 있는 다분화능을 가지는 줄기세포 (multipotent stem cell)로, 체세포의 역분화에 의하여 기원한 신경줄기세포이다. 본 발명에서 신경줄기세포-유사세포는 신경줄기세포로 기술되기도 한다.As used herein, the term "neural stem cell-like cells" refers to a multipotent stem cell capable of differentiating into cells such as neurons, astrosites, oligodendrosites, and the like. It is a neural stem cell originated by dedifferentiation of somatic cells. Neural stem cell-like cells in the present invention may be described as neural stem cells.

본 발명자는 아스트로사이트에서 Bmi-1 을 과발현시킬 경우, 이미 분화된 세포 타입인 아스트로사이트가 다분화능을 가지는 신경줄기세포-유사세포(multipotent neural stem-like cell)로 역분화 (de-differentiation)되는 것을 발견하였다. The inventors have found that when overexpressing Bmi-1 in astrosite, de-differentiation of the already differentiated cell type astrosite into multipotent neural stem-like cells. Found.

본 발명의 Bmi-1은 단백질 또는 이의 단백질을 코딩하는 핵산의 형태로 제공된다.Bmi-1 of the present invention is provided in the form of a protein or a nucleic acid encoding the protein thereof.

본 발명의 조성물에 사용되는 Bmi-1은 인간과 말, 양, 돼지, 염소, 낙타, 영양, 개 등의 동물 유래의 모든 Bmi-1을 포함하며, 바람직하게는 인간 Bmi-1 이다. 또한, 신경세포로의 역분화에 사용되는 본 발명의 Bmi-1 단백질은 이의 야생형(wild type)의 아미노산 서열을 갖는 단백질뿐만 아니라 Bmi-1 단백질의 변이체를 포함한다.Bmi-1 used in the compositions of the present invention includes all Bmi-1 derived from humans and animals such as horses, sheep, pigs, goats, camels, antelopes, dogs, and preferably human Bmi-1. In addition, the Bmi-1 protein of the present invention, which is used for reverse differentiation into neurons, includes variants of the Bmi-1 protein as well as proteins having their wild type amino acid sequences.

Bmi-1 단백질의 변이체란 Bmi-1의 천연 아미노산 서열과 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 단백질을 의미한다. 상기 변이체는 천연 단백질과 동일한 생물학적 활성을 나타내는 기능적 등가물이거나 필요에 의해서 단백질의 물리 화학적 성질이 변형된 변이체일 수 있다. 물리, 화학적 환경에 대한 구조적 안정성이 증대되거나 생리학적 활성이 증대된 변이체이다 A variant of Bmi-1 protein refers to a protein in which the natural amino acid sequence of Bmi-1 and one or more amino acid residues have different sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof. The variant may be a functional equivalent exhibiting the same biological activity as the native protein or a variant in which the physicochemical properties of the protein are modified as necessary. Variants with increased structural stability or increased physiological activity to the physical and chemical environment

바람직하게는, Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열을 갖는 핵산의 형태로 제공된다.Preferably, it is provided in the form of a nucleic acid having a nucleotide sequence encoding a Bmi-1 protein.

Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열은 야생형 또는 상기한 바와 같은 변이체 형태의 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열로서, 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 천연에서 분리되거나 화학적 합성법을 이용하여 제조할 수 있다. The nucleotide sequence encoding the Bmi-1 protein is a nucleotide sequence encoding the Bmi-1 protein in wild-type or variant form as described above, wherein one or more bases can be mutated by substitution, deletion, insertion, or a combination thereof, It can be isolated from nature or prepared using chemical synthesis.

상기한 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열을 갖는 핵산은 단쇄 또는 이중쇄일 수 있으며, DNA 분자(게놈, cDNA) 또는 RNA 분자일 수 있다.Nucleic acid having a nucleotide sequence encoding the above-described Bmi-1 protein may be single- or double-stranded, and may be a DNA molecule (genomic, cDNA) or RNA molecule.

하나의 바람직한 양태에서, 본 발명에서 아스트로사이트를 신경줄기세포로 역분화를 유도하는 조성물은 Bmi-1 단백질을 코딩하는 뉴클레오타이드인 핵산을 포함하는 Bmi-1 단백질을 발현하는 벡터를 포함한다.In one preferred embodiment, the composition for inducing reverse differentiation of astrosite into neural stem cells in the present invention comprises a vector expressing a Bmi-1 protein comprising a nucleic acid that is a nucleotide encoding a Bmi-1 protein.

본 발명에서 용어,“벡터”란 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.As used herein, the term "vector" refers to a gene construct, which is an expression vector capable of expressing a protein of interest in an appropriate host cell, and which contains essential regulatory elements operably linked to express the gene insert.

본 발명에서 용어,“작동가능하게 연결된(operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다. As used herein, the term “operably linked” refers to a functional linkage of a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. The operative linkage of can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation uses enzymes commonly known in the art and the like.

본 발명의 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서 열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다. 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다.Vectors of the present invention include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals, enhancers and can be prepared in various ways depending on the purpose. . The promoter of the vector may be constitutive or inducible. In addition, the expression vector includes a selectable marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, a replication origin. Vectors can self replicate or integrate into host DNA.

벡터는 플라스미드 벡터, 코즈미드 벡터, 바이러스 벡터 등을 포함한다. 바람직하게는, 바이러스 벡터이다. 바이러스 벡터는 레트로바이러스(Retrovirus), 예를 들어 HIV(Human immunodeficiency virus) MLV(Murine leukemia virus) ASLV(Avian sarcoma/leukosis), SNV(Spleen necrosis virus), RSV(Rous sarcoma virus), MMTV(Mouse mammary tumor virus) 등, 아데노바이러스(Adenovirus), 아데노 관련 바이러스(Adeno-associated virus), 헤르페스 심플렉스 바이러스(Herpes simplex virus) 등에서 유래한 벡터를 포함하나, 이에 제한되지 않는다. 본 발명의 구체적인 실시예에서는, MLV-기반-바이러스 벡터 (Moloney leukemia virus based virus vector)로 푸로마이신에 대한 선별마커를 포함하는 pBabe puro 벡터와 GFP 마커를 포함하는 pBI-EGFP 벡터를 이용하였다.Vectors include plasmid vectors, cosmid vectors, viral vectors, and the like. Preferably, it is a viral vector. Viral vectors are retroviruses such as Human immunodeficiency virus HIV (Murine leukemia virus) Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus (RSV) and Mouse mammary (MMTV). tumor viruses, and the like, but are not limited to vectors derived from Adenovirus, Adeno-associated virus, Herpes simplex virus, and the like. In a specific embodiment of the present invention, a pBabe puro vector containing a selection marker for puromycin and a pBI-EGFP vector including a GFP marker were used as a MLV-based vector.

Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열을 갖는 핵산은 당 분야의 공지 방법, 예를 들어 벡터 형태의 네이키드 DNA로 세포내로 전달하거나(Wolff et al. Science,1990: Wolffet al. J Cell Sci. 103:1249-59, 1992), 리포좀(Liposome), 양이온성 고분자(Cationic polymer)등을 이용하여 세포내로 전달할 수 있다. 리포좀은 유전자 전달을 위하여 DOTMA나 DOTAP 등의 양이온성 인지질을 혼합하여 제조한 인지질 막으로, 양이온성의 리포좀과 음이온성의 핵산이 일정 비 율로 혼합하면 핵산-리포좀 복합체가 형성된다.Nucleic acid having a nucleotide sequence encoding a Bmi-1 protein can be delivered intracellularly by methods known in the art, such as naked DNA in vector form (Wolff et al. Science, 1990: Wolffet al. J Cell Sci. 103). : 1249-59, 1992), liposomes, cationic polymers and the like can be delivered intracellularly. Liposomes are phospholipid membranes prepared by mixing cationic phospholipids such as DOTMA or DOTAP for gene transfer. Nucleic acid-liposomal complexes are formed when cationic liposomes and anionic nucleic acids are mixed in a proportion.

또 다른 바람직한 양태로서, 본 발명에서 아스트로사이트를 신경줄기세포로 역분화를 유도하는 조성물은 Bmi-1 단백질을 코딩하는 뉴클레오타이드인 핵산을 포함하는 Bmi-1 단백질을 발현하는 바이러스를 포함한다.In another preferred embodiment, the composition for inducing differentiation of astrosite into neural stem cells in the present invention comprises a virus expressing a Bmi-1 protein comprising a nucleic acid that is a nucleotide encoding a Bmi-1 protein.

본 발명에서 용어, “바이러스”는 Bmi-1 단백질을 코딩하는 핵산을 포함하는 바이러스 벡터를 패키징 세포로 형질전환 및 감염시켜 제작한, Bmi-1을 발현하는 바이러스를 의미한다.As used herein, the term “virus” refers to a virus that expresses Bmi-1 produced by transforming and infecting a viral vector comprising a nucleic acid encoding a Bmi-1 protein with packaging cells.

본 발명의 Bmi-1 단백질을 발현하는 바이러스 제조에 사용될 수 있는 바이러스는 레트로바이러스, 아데노바이러스, 아데노 관련 바이러스, 헤르페스 심플렉스 바이러스 등을 포함하며 이로 제한되지 않는다. 바람직하게는, 레트로바이러스이다. 본 발명의 구체적인 실시예에서는, pBabe puro 벡터에 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열을 삽입하여 제조한 벡터(pBabe puro Bmi-1)를 광범위한 포유류 숙주세포에 감염이 가능한 고역가 바이러스를 생성하는 패키징 세포인 PT67 세포에 형질전환시켜 Bmi-1 단백질을 발현하는 바이러스를 제조하여 아스트로사이트를 감염시켰다. Viruses that can be used to make viruses expressing the Bmi-1 protein of the invention include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes simplex viruses, and the like. Preferably, it is a retrovirus. In a specific embodiment of the present invention, a packaging cell for generating a high titer virus capable of infecting a wide range of mammalian host cells with a vector (pBabe puro Bmi-1) prepared by inserting a nucleotide sequence encoding a Bmi-1 protein into a pBabe puro vector PT67 cells were transformed to prepare a virus expressing the Bmi-1 protein to infect the astrosite.

또 다른 양태로서, 본 발명은 아스트로사이트에 Bmi-1 단백질 또는 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산을 처리하는 단계를 포함하는 아스트로사이트를 신경줄기세포로 역분화를 유도하는 방법에 관한 것이다.In another aspect, the present invention relates to a method for inducing reverse differentiation of an astrosite into neural stem cells comprising treating the astrosite with a nucleic acid that is a nucleotide sequence encoding a Bmi-1 protein or a Bmi-1 protein.

보다 구체적으로, (i) 아스트로사이트를 배지에서 배양하는 단계; (ii) Bmi-1 단백질 또는 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산을 삽입한 벡터를 트렌스펙션시킨 패키징 세포로 감염시키는 단계; 및 (iii) 상기 감염시킨 아스트로사이트를 신경줄기세포 배양 조건과 동일한 배양조건에서 배양하여 신경줄기세포로 역분화를 유도하는 단계를 포함한다.More specifically, (i) culturing the astrosite in the medium; (ii) infecting the vector with the transfected packaging cells with a vector inserted with a Bmi-1 protein or a nucleic acid that is a nucleotide sequence encoding the Bmi-1 protein; And (iii) inducing the reverse differentiation into neural stem cells by culturing the infected astrosite under the same culture conditions as neural stem cell culture conditions.

상기 방법의 (i) 단계에서 아스트로사이트를 배양하는 배지는 당해 분야에서 신경줄기세포 배양에 통상적으로 사용되는 배지를 모두 포함한다. 배양에 사용되는 배지는 일반적으로 탄소원, 질소원 및 미량원소 성분을 포함한다. 또한, 배지는 페니실린(penicillin), 스트렙토마이신(streptomycin), 겐타마이신(gentamicin) 등의 항생제를 포함할 수 있다. 바람직하게는 bFGF(Basic Fibroblast Growth Factor)를 포함하는 배지이다. 본 발명의 구체적인 실시예에서는 마우스의 뇌(braion)에서 분리한 아스트로사이트를 트립신 처리하여 FBS(fetal bovine serum), 페니실린/스트렙토마이신, L-글루타민이 포함되어 있는 둘베코 변형 이글 배지(Dulbecco's modified Eagle's medium, DMEM)에서 배양하였다.The medium for culturing the astrosite in step (i) of the method includes all of the medium conventionally used for culturing neural stem cells in the art. The medium used for culturing generally contains a carbon source, a nitrogen source and a trace element component. In addition, the medium may include antibiotics such as penicillin, streptomycin, gentamicin, and the like. Preferably it is a medium containing bFGF (Basic Fibroblast Growth Factor). In a specific embodiment of the present invention, the astrosine isolated from the brain of the mouse is trypsinized, Dulbecco's modified Eagle's medium containing fetal bovine serum (FBS), penicillin / streptomycin, L-glutamine medium, DMEM).

상기 방법의 (ii) 단계에서 처리되는 Bmi-1 단백질 또는 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산은 인간과 말, 양, 돼지, 염소, 낙타, 영양, 개 등의 동물 유래의 모든 Bmi-1일 수 있으며, 야생형 및 변이체를 포함한다. 본 발명의 구체적인 실시예에서는 인간 Bmi-1(NCBI accession No. L13689)을 이용하였다.The nucleic acid, the nucleotide sequence encoding the Bmi-1 protein or Bmi-1 protein processed in step (ii) of the method, is a human and all Bmi-derived animals, such as horses, sheep, pigs, goats, camels, antelopes, and dogs. May be 1 and include wild type and variant. In a specific embodiment of the present invention, human Bmi-1 (NCBI accession No. L13689) was used.

상기 방법의 (iii) 단계의 신경줄기세포 배양 조건은 당해 분야에서 신경줄기세포 배양에 통상적으로 사용되는 배지를 모두 포함한다. 본 발명의 구체적인 실시예에 서는 두가지 방법을 사용하였다. 한가지 방법으로 세포를 플레이팅하고, 12시간 후에 인슐린, 아포-트랜스페린, 셀레늄, 프로게스테론, 페니실린/스트렙토마이신이 포함되어 있는 DMEM/F12 배지(N2)에 혈청 대체물인 B27과 인간 재조합 bFGF(Basic Fibroblast Growth Factor) 가 첨가된 배지로 바꾸고, 매일 bFGF 처리를 하고 배지는 이틀에 한번 바꿔주면서 배양하였다. 또 다른 한가지 방법으로는 10% FBS, 1% 페니실린(Penicillin) 또는 스트렙토마이신(Streptomycin), 및 1% L-글루타민(L-glutamine)을 포함하는 성장배지(Growth medium) DMEM 에서 배양하던 세포를 trypinization한 후에 박테리아 배양 플레이트에 씨딩을 하고 상기와 같은 배지에서 배양하여 신경줄기세포로의 역분화를 유도하였다.Neural stem cell culture conditions of step (iii) of the method includes all of the medium commonly used in the culture of neural stem cells in the art. In a specific embodiment of the present invention, two methods were used. Plate the cells in one way and after 12 hours, serum replacement B27 and human recombinant BFGF (Basic Fibroblast Growth) in DMEM / F12 medium (N2) containing insulin, apo-transferrin, selenium, progesterone, penicillin / streptomycin Factor) was added to the medium, bFGF treatment daily, and the medium was incubated with a change every other day. Another method is trypinization of cells cultured in Growth medium DMEM containing 10% FBS, 1% Penicillin or Streptomycin, and 1% L-glutamine. After seeding in bacterial culture plates and cultured in the same medium to induce differentiation into neural stem cells.

또 다른 양태로서, 본 발명은 상기 방법으로 제조된 신경줄기세포에 관한 것이다.In another embodiment, the present invention relates to neural stem cells produced by the above method.

본 발명의 역분화 방법으로 제조된 신경줄기세포는, 신경줄기세포 특이적인 마커인, Nestin, CD133, Sox2가 신경줄기세포와 같은 수준으로 발현하며 일반적인 신경줄기세포와 동일한 다분화능을 가지는 것을 확인하였다. 또한, 본 발명의 역분화 방법으로 제조된 신경줄기세포는 자가재생 (self-renewal)의 특징을 가진다.Neural stem cells prepared by the reverse differentiation method of the present invention, it was confirmed that Nestin, CD133, Sox2, which is a specific marker of neural stem cells, express the same level as neural stem cells and have the same multipotency as general neural stem cells. In addition, the neural stem cells produced by the reverse differentiation method of the present invention has the characteristics of self-renewal.

또 다른 양태로서, 본 발명은 상기 방법으로 생산된 신경줄기세포를 아스트로사이트, 뉴런 또는 올리고덴드로사이트로 분화시키는 방법을 제공하기 위함이다.In still another aspect, the present invention is to provide a method for differentiating neural stem cells produced by the above method into astrosites, neurons or oligodendrosites.

본 발명의 조성물과 방법에 따라 제조된 신경줄기세포를 당 분야에 알려진 통상적 인 아스트로사이트, 뉴런 또는 올리고덴드로사이트 분화 조건에서 분화를 유도할 경우, 각각의 세포로 분화가 유도되는 것을 각 세포 특이적인 마커의 발현으로 확인하였다. When the neural stem cells prepared according to the compositions and methods of the present invention induce differentiation under conventional astrosite, neuron or oligodendrosite differentiation conditions known in the art, it is indicated that each cell-specific marker induces differentiation to each cell. It was confirmed by the expression of.

아스트로사이트로의 분화유도를 위해서는 FBS가 포함된 DMEM에 인간 재조합 bFGF(Basic Fibroblast Growth Factor)와 EGF(Epidermal Growth Facor) 또는 랫 재조합 CNTF(recombinant rat ciliaryneurotrophic factor)를 첨가하여 배양할 수 있으며, 아스트로사이트 특이적 마커로 GFAP, S100β 등을 사용할 수 있다.To induce differentiation into astrosite, human recombinant BFGF (Basic Fibroblast Growth Factor) and EGF (Epidermal Growth Facor) or rat recombinant CNTF (recombinant rat ciliaryneurotrophic factor) can be added to DMEM containing FBS. As specific markers, GFAP, S100β and the like can be used.

뉴런으로의 분화는 혈청 대체물인 B27이 포함되어 있는 N2 배양액에 인간 재조합 FGF 처리를 한 후, 몇일 동안은 FGF가 없는 배지에서 배양하여 유도할 수 있고, 다른 방법으로는 RA(retinoic acid)를 첨가하여 배양하거나, VPA(valproic acid)를 RA와 함께 첨가하여 배양하여 분화를 유도할 수 있다. 뉴런 특이적 마커로는 Tuj1, Map2, TH 등을 사용할 수 있다.Differentiation into neurons can be induced by treatment with human recombinant FGF in N2 medium containing B27, a serum replacement, followed by culturing in a medium without FGF for several days, and alternatively by adding retinoic acid (RA). Or by incubating with addition of VPA (valproic acid) with RA to induce differentiation. As a neuron specific marker, Tuj1, Map2, TH, etc. can be used.

올리고덴드로사이트로의 분화는 혈청 대체물이 첨가된 B27이 첨가된 N2 배양액에 PDGF-AA(platelet derived growth factor-AA)와 T3(3,3,5-triiodo-L-thyronine) 및 인간 재조합 bFGF를 함께 첨가하여 배양하여 분화를 유도할 수 있다. 올리고덴드로사이트 특이적 마커로는 01, 04, CNPase 등을 사용할 수 있다.Differentiation to oligodendroseite was performed by platelet derived growth factor-AA (PDGF-AA), T3 (3,3,5-triiodo-L-thyronine) and human recombinant bFGF in B27-supplemented N2 cultures with serum replacement. It can be added together to incubate differentiation. Oligodendrosite specific markers such as 01, 04, CNPase and the like can be used.

이하, 본 발명을 실시예에 의거하여 보다 구체적으로 설명하고자 한다. 그러나 하기 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.

<실시예 1> 마우스 아스트로사이트 (mouse astrocyte)와 마우스 신경줄기세포 (mouse Example 1 Mouse Astrocytes and Mouse Neural Stem Cells neuralneural stemstem cellcell ) 배양Culture

마우스 아스트로사이트(mouse astrocytes)는 신생 마우스(neonatal mouse, 1-5days)의 뇌(brain)에서 분리하여 적합한 배양 조건에서 배양하였다. 분리한 세포를 트립신(Gibco 0.05%)으로 처리한 후에 단세포(single cell)로 만들어서 FBS(HyClone) 10%, 페니실린/스트렙토마이신(penicillin/streptomycin) 1%, L-글루타민(L-glutamine) 1% (cambrex)가 포함되어 있는 둘베코 변형 이글 배지(Dulbecco's modified Eagle's medium; DMEM; high glucose, Hyclone))에서 배양하였다. 배양한 후 다음 날부터 배지 교환을 하였으며 1-3 계대(passage) 사이의 세포를 사용하였다. 아스트로사이트에서 특이적으로 발현되는 마커인 GFAP (Dako)를 면역세포화학법으로 확인하였다(도 1a 왼쪽).Mouse astrocytes were isolated from the brains of neonatal mice (1-5 days) and cultured in suitable culture conditions. The isolated cells were treated with trypsin (Gibco 0.05%) and then made into single cells, 10% FBS (HyClone), 1% penicillin / streptomycin, 1% L-glutamine (L-glutamine). (Dulbecco's modified Eagle's medium; DMEM; high glucose, Hyclone) containing (cambrex). After incubation, the medium was changed from the next day, and cells between 1-3 passages were used. GFAP (Dako), a marker specifically expressed in astrosite, was confirmed by immunocytochemistry ( FIG. 1A left ).

<실시예 2> 레트로바이러스-매개 감염(Retroviral-mediated infection) Example 2 Retroviral-mediated Infection

pBabe puro 벡터에 인간 Bmi-1(NCBI accession No. L13689)유전자를 삽입하여 제조한 pBabe puro Bmi-1(from Dr.G.P.Dimri, Evanston Northwestern Healthcare Research Institute, Feinberg School of Medicine, Northwestern University, Evanston, IL 60201, USA)과 pBabe puro(대조구)를 PT67 팩키징 세포주(packaging cell line , Clontech)에 리포펙타민(Lipofectamine, Invitrogen)을 사용하여 트랜스펙션(transfection)을 한 후 푸로마이신(puromycine, 3μg/ml)(BD science)로 선별하였다. PT67 팩키징 세포주는 광범위한 포유류 숙주세포에 감염이 가능한 고역가 virus를 생성하는 세포이다.pBabe puro Bmi-1 (from Dr. GPDimri, Evanston Northwestern Healthcare Research Institute, Feinberg School of Medicine, Northwestern University, Evanston, IL) prepared by inserting the human Bmi-1 (NCBI accession No. L13689) gene into a pBabe puro vector 60201, USA) and pBabe puro (control) were transfected with PT67 packaging cell line (Clontech) using lipofectamine (Invitrogen), followed by puromycine (puromycine, 3 μg / ml). (BD science). The PT67 packaging cell line produces a high titer virus that can infect a wide range of mammalian host cells.

이와 같이 만들어진 세포주가 90%이상 되었을 때 상등액(supernatant)을 취하여 0.45μm(Millipore)로 필터링(filtering)을 하여 세포 파편 (cell debris)를 제거한 후에 폴리브렌(polybrene, 6μg/ml)(sigma)을 첨가하여 10시간 간격으로 분리한 마우스 아스트로사이트 세포에 두 번 감염시키고, 3-5일동안 푸로마이신(puromycine)을 0.5μg/ml로 처리하여 선별하였다. When the cell line thus formed is 90% or more, a supernatant is taken and filtered with 0.45 μm (Millipore) to remove cell debris and then polybrene (6 μg / ml) (sigma) is removed. The mice were infected twice with 10 hr intervals and were selected by treatment with puromycine at 0.5 μg / ml for 3-5 days.

<실시예 3> 웨스턴 블랏 분석 (Western blot analysis)과 반정량적인(semi-quantitative) PCRExample 3 Western blot analysis and semi-quantitative PCR

실시예 2에서 선별한 세포에서 Bmi-1 유전자가 과발현된 것을 확인하기 위해서 웨스턴 블랏 분석 방법을 사용하였다. Bmi-1이 발현되고 있는 것을 확인하였고, 그 타겟 유전자인 p16INK4a와 p19Arf의 발현이 감소하고 있는 것을 확인할 수 있었다(도 1b). 또한 이렇게 확인한 세포가 아스트로사이트의 성격을 유지하고 있는지 확인하기 위해서 면역세포화학법을 사용하였다. 아스트로사이트의 특이적인 마커인 S100β가 발현되고 있는 것을 확인하였고(도 1a의 오른쪽), 그 타겟유전자인 p16INK4A 와 p19Arf의 발현이 감소하고 있는 것을 확인할 수 있었다(도 1b).Western blot analysis was used to confirm that the Bmi-1 gene was overexpressed in the cells selected in Example 2. It was confirmed that Bmi-1 was expressed, and it was confirmed that expression of p16 INK4a and p19 Arf , which are the target genes, was reduced ( FIG. 1B ). In addition, immunocytochemistry was used to confirm that the cells thus identified maintain the character of astrosite. It was confirmed that S100β, a specific marker of astrosite, was expressed ( right side of FIG. 1A ), and its target gene, p16 INK4A. And it was confirmed that the expression of p19 Arf is reduced ( FIG. 1B ).

실시예 1에서 선별한 세포를 아이스-콜드 용해 버퍼(ice-cold cell lysis buffer)인 RIPA 버퍼 (proteinase inhibitor cocktail과 phosphatase inhibitor가 포함되어 있음)로 재부유(resuspend)한 후에 얼음(ice)에서 30분간 인큐베이션(incubation)하면서 보텍싱(vortexing)을 하였다. 14000rpm에서 30분간 원심분리(centrifugation)를 한 후 상층액을 얻어서 브래드포드 분석 시약(Bradford assay reagents. Bio-rad)으로 단백질 농도를 측정한 후 각 50μg-100μg씩 10% 혹은 4-12% 미리제조된(precasted) SDS-PAGE NuPAGE 겔 (Invitrogen)에 러닝(running) 하였다. 이를 PVDF 막(membrane)(Millipore)에 트랜스퍼(transfer) 한 후, 3-5% 탈지우유(Skimmed milk)가 포함된 TBST (Tris buffered saline with 0.1% Tween 20)로 블로킹(blocking)을 하였다. 항-Bmi-1 (Upstate Biotechnology), 항-p16INK4A (Santa Cruz Biotechnology), 항-p19ARF (Novous Biologies), 항-아세틸 H3(anti-acetyl H3, Cell signalling), 항-p21WAF1 (Neomarker), α-튜불린(Sigma)을 사용하여 4℃에서 하룻밤 쉐이킹(shaking overnight)을 한 후에 상온에서 1시간동안 호세라디쉬 퍼옥시다아제-접합 항-2차 IgG(horseradish peroxidase-conjugated anti-secondary IgG, Invitrogen)로 반응시키고, 수퍼 시그날 웨스트 피코 화학발광 기질 키트(Super Signal West Pico Chemiluminescent Substrate kit, Pierce)로 검출하였다.The cells selected in Example 1 were resuspended in ice-cold cell lysis buffer, RIPA buffer (containing proteinase inhibitor cocktail and phosphatase inhibitor), and then resuspended in ice. Vortexing was performed while incubating for minutes. After centrifugation at 14000 rpm for 30 minutes, the supernatant was obtained, the protein concentration was measured by Bradford assay reagents (Bio-rad), and each 50 μg-100 μg was prepared by 10% or 4-12%. Running on a precasted SDS-PAGE NuPAGE gel (Invitrogen). This was transferred to a PVDF membrane (Millipore) and then blocked with Trist buffered saline with 0.1% Tween 20 containing 3-5% skimmed milk. Wherein -Bmi-1 (Upstate Biotechnology), wherein -p16 INK4A (Santa Cruz Biotechnology), anti -p19 ARF (Novous Biologies), anti-acetyl-H3 (anti-acetyl H3, Cell signalling), wherein -p21 WAF1 (Neomarker) , horseradish peroxidase-conjugated anti-secondary IgG, 1 hour at room temperature after shaking overnight at 4 ° C using α-tubulin (Sigma) Invitrogen) and detected with a Super Signal West Pico Chemiluminescent Substrate kit (Pierce).

각각의 세포에서 트리졸(Trizol, Invitrogen)을 사용하여, RNA를 분리한 후, 역전사(Reverse-transcription: RT)는 전체 RNA 의 500 ng, 올리고(oligo) d(T)12-18 프라이머 (Invitrogen), 수퍼스크립타아제 Ⅱ 리버스 트랜스크립타아제 (superscriptase Ⅱ reverse transcriptase, Invitrogen)를 사용하여 cDNA를 만들었다. RT-PCR은 cDNA 1㎕, 각각의 프라이머 10 pmol, 그리고 PCR 프리믹스(premix)(1U Tag DNA polymerase, 250 μM dNTPs, 10 mM Tris-HCl, 40 mM KCl and 1.5 mM MgCl2, Bioneer, Korea)을 사용하여 실시하였다. 마우스 GAPDH, Nestin, Sox2를 대조구와 각각의 마커로 사용하였고, 각각의 프라이머 조건에 따라 PCR 증폭하였다. 사용한 프라이머 서열은 서열번호 1 내지 6과 같다.After isolation of RNA using Trizol (Invitrogen) in each cell, reverse-transcription (RT) was performed at 500 ng of total RNA, oligo d (T) 12-18 primer (Invitrogen). CDNA was generated using superscriptase II reverse transcriptase (Invitrogen). RT-PCR contained 1 μl of cDNA, 10 pmol of each primer, and PCR premix (1U Tag DNA polymerase, 250 μM dNTPs, 10 mM Tris-HCl, 40 mM KCl and 1.5 mM MgCl 2 , Bioneer, Korea). It was carried out using. Mouse GAPDH, Nestin, Sox2 was used as a control and each marker, and PCR amplification according to the respective primer conditions. Primer sequences used are as shown in SEQ ID NOs: 1-6.

<실시예 4> Bmi-1이 과발현된 아스트로사이트의 성장속도 측정  Example 4 Measurement of Growth Rate of Astrosite Overexpressed with Bmi-1

과발현 유무를 확인한 세포의 성장속도의 차이를 보기 위해서 성장 곡선 분석(growth curve analysis)을 하였다. 벡터(대조구)와 Bmi-1이 과발현된 아스트로사이트의 성장속도를 측정하기 위해서 2.5-5.0× 104cell/6 웰 플레이트(well plate)를 플레이팅(plating)한 후에, 0.01% 크리스탈 바이올렛(crystal violet)을 사용하여 5일동안 매일 관찰하고 염색(stain)을 하여 분석을 하였다. 크리스탈 바이올렛 염색(Crystal violet stain)의 추출물(extract)은 10% 아세트산(acetic acid)을 사용하여 분광광도계(spectrophotometer; 600nm)에서 값을 측정하고 상대적인 성장속도를 비교하였다. 또한, 히스톤 디아세릴라아제 저해제(histone deacerylase inhibitor)를 처리하였을 때, 성장속도가 떨어지는 시점에서 노화(senescence)여부를 확인하기 위해서 SA-β-갈락토시다아세 분석(galactosidase assay)방법을 사용하였다. 대조군으로 사용된 신경줄기세포(neural stem cells)는 E13.5일령의 마우스에서 분리하여 인슐린(Insulin, sigma), 아포-트랜스페린(apo-transferrin, sigma), 셀레니움(selenium, sigma), 프로게스테론(progesteron, sigma), 페니실린/스토렙토마이신(penicillin/streptomycin, cambrex)가 포함되어 있는 둘베코 변형 이글 배지(Dulbecco's modified Eagle's medium/F12, DMEM/F12, Gibco) 배지(N2)에 혈청-대체물(serum-replacement)인 B27 (Gibco)과 인간 재조합 bFGF(human recombinant basic Fibroblast Growth Factor), 인간 재조합 EGF(human recombinant Epidermal Growth Factor, R&D)를 더 첨가하여 배양하였다. 피펫팅(Pipetting)을 하여 계대를 하면서 배양을 하고, 서브스피어 분석(subsphere assay)을 통해 스피어의 성장(sphere growth)도 측정해보았다. 100개의 세포를 12 웰 플레이트(well plate)에 씨딩(seeding)을 하고 14일 후에 스피어(sphere)수와 전체 세포의 수를 측정하여 확인하였다. Growth curve analysis was performed to see the difference in the growth rate of the cells identified as overexpression. 0.01% crystal violet after plating 2.5-5.0 × 10 4 cell / 6 well plates to determine growth rate of vector (control) and Bmi-1 overexpressed astrosite violet) was used every day for 5 days and stained for analysis. The extract of the crystal violet stain was measured on a spectrophotometer (600 nm) using 10% acetic acid and compared relative growth rates. In addition, the SA-β-galactosidase assay was used to confirm the senescence when the growth rate was decreased when the histone deacerylase inhibitor was treated. . Neural stem cells used as controls were isolated from E13.5-day-old mice and used insulin (Insulin, sigma), apo-transferrin (sigma), selenium (sigma), and progesteron (progesteron). sigma), serum-replacement in Dulbecco's modified Eagle's medium / F12, DMEM / F12, Gibco medium (N2) containing penicillin / streptomycin (cambrex). ) Were cultured with the addition of B27 (Gibco), human recombinant basic fibroblast growth factor (bFGF), and human recombinant epidermal growth factor (R & D). The culture was carried out by pipetting (Pipetting), and the sphere growth was also measured through a subsphere assay. 100 cells were seeded in 12 well plates, and 14 days later, the number of spheres and the total number of cells were measured.

도 1c는 벡터와 Bmi-1이 과발현된 아스트로사이트의 성장속도를 비교한 결과로, Bmi-1 유전자가 과발현된 아스트로사이트가 벡터에 비해 성장속도가 차이나게 증가하고 있는 것을 알 수 있었다. Figure 1c is a result of comparing the growth rate of the vector and Bmi-1 overexpressed astrosite, it was found that the growth rate of the astrosite overexpressed Bmi-1 gene is increased compared to the vector.

<실시예 5> 역분화 (de-differentiation) 유도 Example 5 De-differentiation Induction

Bmi-1 유전자가 과발현된 세포와 그에 해당하는 벡터를 감염시킨 세포를 신경줄기세포 배양 조건과 동일한 조건에서 배양하면서 역분화를 유도하였다. 신경줄 기세포의 배양액은 인슐린(Insulin, Sigma), 아포-트랜스페린(apo-transferrin, Sigma), 셀레늄(selenium, Sigma), 프로게스테론(progesteron, Sigma), 페니실린/스트렙토마이신(penicillin/streptomycin, cambrex)이 포함되어 있는 둘베코 변형 이글 배지/F12(Dulbecco's modified Eagle's medium/F12, DMEM/F12, Gibco)(N2)에 혈청-대체물(serum-replacement)인 B27 (Gibco)과 인간 재조합 bFGF(human recombinant basic Fibroblast Growth Factor , R&D systems)가 첨가된 배지를 사용하였다. bFGF 처리는 매일 하였고, Bmi-1유전자가 과발현된 세포와 이의 대조구인 벡터만 있는 세포를 2500-5000 세포/cm2만큼 6 웰 플레이트(well plate)에 플레이팅(plating)하였다. 플레이팅 12시간 후에 신경줄기세포 배양액으로 바꿔준 후, 세포 모양의 변화를 관찰하였다. Reverse differentiation was induced by culturing cells overexpressing the Bmi-1 gene and cells infected with the corresponding vector under the same conditions as the neural stem cell culture conditions. Cultures of neural stem cells include insulin (Insulin, Sigma), apo-transferrin (Sigma), selenium (Selenium, Sigma), progesteron (Sigma), penicillin / streptomycin (penicillin / streptomycin, cambrex) Serum-replacement B27 (Gibco) and human recombinant basic Fibroblast Growth in Dulbecco's modified Eagle's medium / F12, DMEM / F12, Gibco (N2) Medium with Factor, R & D systems) was used. bFGF treatment was performed daily, and cells overexpressing the Bmi-1 gene and its control vector only were plated in 6 well plates by 2500-5000 cells / cm 2 . After 12 hours of plating, the cells were changed to neural stem cell culture, and cell shape changes were observed.

신경줄기세포(Neural stem cells) 배양 조건과 동일한 배양 조건으로, 두 가지 방법을 사용하였는데, 그 중 하나는 6 웰 플레이트에 1× 105의 세포를 플레이팅을 한 후, 12시간 후에, 신경줄기세포의 배양액으로 바꿔준 후, 매일 bFGF를 처리하고, 배지는 이틀에 한 번 바꿔주면서 배양하는 것이다. 역분화 유도 과정 결과는 도 2a에서 나타내었다. 도 2a의 a-c는 벡터, d-f는 Bmi-1유전자가 과발현된 아스트로사이트를 신경줄기세포 배양액에서 배양한 결과이다. 동일한 수의 세포를 부착(attach)시킨 후, 12시간 후에 안정이 되었을 때 신경줄기세포의 배양 조건으로 배양한 것으로, a,d는 부착 12시간 후; b,e는 3일 후; c,f는 6일 후의 세포의 모습 이다. 신경줄기세포의 배양액에서 배양을 시작한 지 3일 째에 Bmi-1유전자가 과발현된 세포에서 신경구(neurosphere)가 형성되려는 모습이었고, 6일 째는 신경구가 형성되어 벡터와 현저히 다른 모습을 보였다. 반면에 벡터만 감염시킨 세포는 거의 자라지 못하고, 신경구도 형성하지 못했다. 벡터의 세포는 노화(senescence)과정을 보이지만, Bmi-1유전자가 과발현된 세포는 신경줄기세포와 유사한 모습으로 변한 것을 볼 수가 있다. 도 2A에서 g는 신경줄기세포, h는 Bmi-1유전자가 과발현된 세포로 두 가지를 비교하였을 때, 거의 비슷한 모습을 보였다.Two methods were used, with the same culture conditions as neural stem cells, one of which was plated with 1 × 10 5 cells in a 6 well plate and 12 hours later. After switching to the culture, bFGF is treated every day, and the medium is incubated with a change every other day. The results of the process of inducing differentiation are shown in FIG. 2A . In FIG. 2A, ac is a vector and df is a result of culturing astrocytes overexpressed with Bmi-1 gene in neural stem cell culture. After attaching the same number of cells, the cells were cultured under neural stem cell culture conditions when stabilized after 12 hours, wherein a and d were 12 hours after attachment; b, e is after 3 days; c and f are the cells after 6 days. On the third day of incubation in the culture of neural stem cells, neurospheres were formed in cells overexpressing the Bmi-1 gene, and on the 6th day, the neurospheres were formed, which was significantly different from the vector. On the other hand, cells infected only with vectors rarely grew and did not form neurospheres. The cells of the vector show senescence, but the cells overexpressing the Bmi-1 gene are similar to neural stem cells. In FIG. 2A , g is a neural stem cell, and h is a cell overexpressing the Bmi-1 gene, and the two cells showed similar results.

신경줄기세포(Neural stem cells) 배양 조건과 동일한 배양 조건으로, 또 다른 한 가지 방법은 10% FBS, 1% 페니실린 또는 스트렙토마이신, 및 1% L-글루타민을 포함하고 있는 성장배지(Growth medium)에서 배양하던 세포를 트리피니제이션(trypinization)한 후에 3× 105씩 60mm 박테리아 배양 플레이트 (BD Bioscience)에 씨딩을 하여 인슐린(sigma), 아포-트랜스페린(sigma), 셀레늄(sigma), 프로게스테론(sigma), 페니실린/스트렙토마이신(cambrex)이 포함되어 있는 둘베코 변형 이글 배지/F12(DMEM/F12, Gibco)(N2)에 혈청-대체물인 B27 (Gibco)과 인간 재조합 bFGF(human recombinant basic Fibroblast Growth Factor, R&D)가 첨가된 배지에서 배양을 하는 것이다. 신경줄기세포와 같은 세포가 만들어진 후부터는 60mm 박테리아 플레이트에서 신경줄기세포 배양액에 bFGF와 EGF를 처리하면서 배양하였다. In the same culture conditions as the neural stem cells culture, another method is cultured in a growth medium containing 10% FBS, 1% penicillin or streptomycin, and 1% L-glutamine After trypinization of the cells, the cells were seeded in 60 mm bacterial culture plates (BD Bioscience) by 3 × 10 5 each to insulin (sigma), apo-transferrin (sigma), selenium (sigma), progesterone (sigma), Serum-substituted B27 (Gibco) and human recombinant basic fibroblast growth factor (R & D) in Dulbecco's modified Eagle's medium / F12 (DMEM / F12, Gibco) (N2) containing penicillin / streptomycin (cambrex) ) Is cultured in the added medium. Since cells such as neural stem cells were made, the cells were cultured in 60 mm bacterial plates by treating bFGF and EGF in neural stem cell culture.

이는 역분화 과정 중에 사용하는 bFGF가 필요한지 여부를 보기 위한 것으로 2b에서와 같이 여러 가지 조건을 달리하여 확인하였다. bFGF 단독으로 처리한 경우와 bFGF와 EGF를 함께 처리한 경우에만 신경구가 형성되었다. This is to see whether bFGF used during the dedifferentiation process was confirmed by different conditions as shown in Figure 2b . Neurospheres were formed only with bFGF alone and with bFGF and EGF.

역분화된 신경줄기세포-유사세포에 자가재생(self-renewal)능력이 유지되고 있는지를 확인하기 위하여 100개의 단일 세포(single cell)를 신경줄기세포의 배양액에서 배양하여 2차 구 형성(Secondary sphere formation)을 시도한 경우에도 도 2c에서와 같이 bFGF 혹은 bFGF와 EGF를 함께 처리한 경우에만 구(spheres)가 형성되었다. N2 배양액과 EGF가 첨가된 경우에는 구(spheres)가 형성되지 않았으나, bFGF 혹은 bFGF아 EGF를 함께 처리한 경우에는 12.3± 4.5, 15.6± 1.5개의 신경구(nuerospheres)가 형성되었다. 이러한 결과는 신경줄기세포의 기본 배양액에 bFGF가 필요함을 의미하는 것이다.Secondary sphere formation by culturing 100 single cells in culture of neural stem cells to determine whether self-renewal ability is maintained in dedifferentiated neural stem cell-like cells Even in the case of attempting, spheres were formed only when bFGF or bFGF and EGF were treated together as in FIG. 2c . When N2 culture and EGF were added, spheres were not formed, but when bFGF or bFGF and EGF were treated together, 12.3 ± 4.5 and 15.6 ± 1.5 neurospheres were formed. These results indicate that bFGF is required for the basal culture of neural stem cells.

또한, 신경줄기세포와 역분화된 신경줄기세포-유사세포의 증식능(proliferative capacity)을 비교하기 위해 10000개의 single cell을 60mm 플레이트에서 14일동안 배양하여 형성된 2차 스피어(secondary spheres)의 전체 세포수(total cell number)를 계산하여 서브스피어 형성 분석(subsphere forming assay)을 한 결과 형성된 신경구의 전체 세포의 수가 180,000± 30,550 (NSCLCs), 160,667± 75,000 (NSCs)개로 더 증가했음을 확인하였다. In addition, in order to compare the proliferative capacity of neural stem cells and dedifferentiated neural stem cell-like cells, the total cell count of secondary spheres formed by incubating 10000 single cells for 14 days in a 60 mm plate. As a result of performing the subsphere forming assay by calculating the cell number, it was confirmed that the total number of cells formed in the neurosphere was further increased to 180,000 ± 30,550 (NSCLCs) and 160,667 ± 75,000 (NSCs).

<< 실시예Example 6>  6> 면역세포화학법Immunocytochemistry ( ( ImmunocytochemistryImmunocytochemistry )과 )and RTRT -- PCRPCR 로 각각의 As each 마커Marker 확인 Confirm

상기에서 만들어진 신경구(Neurosphere)가 신경줄기세포의 성격을 가지는지 확인해 보기 위하여, 신경구를 4% 파라포름알데하이드(paraformaldehyde, EMS)로 1시간 동안 4℃에서 고정을 한 후 20% 수크로즈를 첨가하여 4℃에서 하룻밤 쉐이킹(shaking overnight)하였다. 그 후 OCT 컴파운드(compound) (Tissue Tek, Sacura)로 8-웰 챔버 슬라이드(well chamber slide, Nunc)에 냉동보존(cryopreservation)을 하였다. 8-10 μm로 절단(section)을 한 후 염색을 하였다. 또한, 신경구를 PLO(poly-L-orthinine, sigma)와 fibronectin(sigma)로 미리 코팅한 플레이트에 플레이팅을 한 후에, 4% 파라포름알데하이드(paraformaldehyde, EMS)를 20분동안 처리를 하여 고정을 한 후, 0.1% BSA(bovine serum albumine, sigma)이 포함된 PBS(Ca와 Mg가 포함되어 있습니다.)로 세척 한 후, 염색을 하였습니다. 두 가지 방법으로 고정을 한 세포를 아래와 같은 방법으로 블로킹, permeabilization과 항체 인큐베이션(antibodies incubation)을 하였다.In order to check whether the neurospheres prepared above have the characteristics of neural stem cells, the neurospheres were fixed with 4% paraformaldehyde (EMS) at 4 ° C. for 1 hour, and then 20% sucrose was added thereto. Shaking overnight at &lt; RTI ID = 0.0 &gt; Thereafter, cryopreservation was performed on an 8-well chamber slide (Nunc) with an OCT compound (Tissue Tek, Sacura). Sections were stained after 8-10 μm. In addition, the neurospheres were plated on a plate coated with PLO (poly-L-orthinine, sigma) and fibronectin (sigma), and then treated with 4% paraformaldehyde (EMS) for 20 minutes. Afterwards, the cells were washed with PBS (containing Ca and Mg) containing 0.1% BSA (bovine serum albumine, sigma) and stained. Cells immobilized by two methods were blocked, permeabilized and antibody incubated in the following manner.

10% 정상 원숭이 혈청(Normal donkgey serum, Jackson Immunoresearch), 0.1% BSA (Sigma), 0.3% 트리톤 X-100 (Sigma)이 포함된 PBS로 블로킹을 한 후 항-nestin(Chemicon), 항-CD133 (MACS)(CD133은 surface marker이기 때문에, permeabilization시간을 10분정도로 제한하였다), 항-Sox2(Sigma)을 사용하여 4℃에서 하룻밤(overnight) 반응을 시킨 후에 상온에서 항-마우스-cy3 (Jackson Immunoresearch), 항-래빗-FITC (Molecular probe)로 반응을 시킨 후 마지막으로 DAPI(sigma)를 사용하여 핵염색(nuclear stain)을 하였다. 염색을 한 후에 Zeiss confocal(Carl Zeiss)로 확인을 하였다. 분화된 세포의 경우 위와 같은 방법으로 염색을 하였고, 이 때 사용한 항체는 항-GFAP (Dako), 항-S100β (Sigma), 항-β-튜불린 Ⅲ(Covance), 항-Map2a (Sigma), 항-TH (Chemicon), 항-NeuN (Chemicon), 항-O4, 항-O1, 항-A2B5 (R&D)였다.After blocking with PBS containing 10% Normal donkgey serum, Jackson Immunoresearch, 0.1% BSA (Sigma) and 0.3% Triton X-100 (Sigma), anti-nestin (Chemicon), anti-CD133 ( MACS) (CD133 is a surface marker, limiting the permeabilization time to about 10 minutes) and anti-mouse-cy3 (Jackson Immunoresearch at room temperature after overnight reaction at 4 ° C using anti-Sox2 (Sigma). ), And then reacted with anti-rabbit-FITC (Molecular probe) and finally nuclear stain using DAPI (sigma). After staining, it was confirmed by Zeiss confocal (Carl Zeiss). Differentiated cells were stained in the same manner as above, and the antibodies used were anti-GFAP (Dako), anti-S100β (Sigma), anti-β-tubulin III (Covance), anti-Map2a (Sigma), Anti-TH (Chemicon), anti-NeuN (Chemicon), anti-O4, anti-O1, anti-A2B5 (R & D).

면역세포화학법을 통해 신경줄기세포의 특이적인 마커를 확인한 결과, Nestin, Sox2, CD133 이 동일하게 발현되고, Nestin-양성 세포는 증식마커인 Ki-67도 함께 발현되었다(도 2e, 도2 e의 a-d;신경줄기세포, 도2 e의 e-h; 신경줄기세포-유사세포). Through immunocytochemistry, make a specific marker of neural stem cells results, Nestin, Sox2, CD133 is the same expression, Nestin- positive cells was expressed with the proliferation marker Ki-67 also (Fig. 2e, in Figure 2 e ad; neural stem cells, eh of FIG. 2 e; neural stem cells-like cells) .

상기에서 확인한 마커를 RT-PCR 방법을 통하여 확인한 결과는 도 2f에서 보였다. 신경줄기세포-유사세포(Bmi1-sphere)에서는 신경줄기세포(NSC)와 같이 Nestin, Sox2가 발현된 반면, 벡터(Vector) 혹은 Bmi-1 유전자가 과발현된 아스트로사이트(Bmi1)에서는 발현되지 않았다.Results confirm the markers identified in the through RT-PCR method is shown in Fig. 2f. Nestin and Sox2 were expressed in neural stem cell-like cells (Bmi1-sphere) as in neural stem cells (NSC), but not in astrocytes (Bmi1) in which the vector or Bmi-1 gene was overexpressed.

<< 실시예Example 7> 인 비트로 분화 ( 7> Differentiate into inbeats ( InIn vitroin vitro differentiationdifferentiation ))

신경줄기세포-유사세포가 신경줄기세포와 같이 다분화능(multipotency)을 가지는지 여부를 확인하기 위하여, 배양하고 있던 신경구를 PLO(poly-L-ornithinte, Sigma)와 라미닌(laminin) 혹은 피브로넥틴(fibronectin, sigma)으로 코팅(coating)을 한 플레이트에서 아래와 같은 분화 조건으로 배양을 하였다.In order to determine whether neural stem cell-like cells have multipotency like neural stem cells, the cultured neurospheres were treated with PLO (poly-L-ornithinte, Sigma), laminin, or fibronectin (sigma). ) Was cultured under the following differentiation conditions in a plate coated with ().

아스트로사이트(astrocyte)로의 분화는 10% FBS (Hyclone)이 포함된 DMEM (Hyclone, high glucose)에 인간 재조합 bFGF와 EGF (R&D systems)를 첨가하거나 CNTF (recombinant rat ciliaryneurotrophic factor)(upstate)에서 5-7일 동안 배양하여 분화를 유도하였다. 아스트로사이트로 분화를 확인하는 마커로 GFAP, S100β를 사용하였다(도 3a, 도 3a의 a,c; 신경줄기세포, 도 3a의 b,d; 신경줄기세포-유사세포).Differentiation into astrocytes was achieved by adding human recombinant bFGF and EGF (R & D systems) to DMEM (Hyclone, high glucose) containing 10% FBS (Hyclone), or by recombinant rat ciliaryneurotrophic factor (CNTF) (upstate). Differentiation was induced by incubation for 7 days. GFAP and S100β were used as markers to confirm differentiation with astrosites ( a, c in FIGS. 3a and 3a; neural stem cells, b and d in FIG. 3a; neural stem cells-like cells ).

뉴런 (neuron)으로의 분화는 혈청-대체물인 B27 (Gibco)이 포함되어 있는 N2 배양액에 인간 재조합 FGF를 4일 동안 처리를 한 후, 8일 동안은 FGF를 없는 배지에서 배양을 하였다. 다른 방법으로는 RA (retinoic acid, sigma)를 1-10μM으로 첨가하여 7-14일 동안 배양을 하였다. 또 다른 방법으로 사용한 것은 1-10mM의 농도의 VPA (valproic acid, sigma)를 1-10μM 농도의 RA (retinoic acid, sigma)과 함께 첨가하여 7-14일 동안 배양하여 분화를 유도하였다. 뉴런으로 분화를 확인하는 마커로 βⅢ-튜불린(Tuj1), Map2a, TH를 사용하였다(도 3b, 도 3b의 a,c-e; 신경줄기세포,도 3b의 b,f-h; 신경줄기세포-유사세포).Differentiation into neurons was treated with human recombinant FGF for 4 days in N2 culture medium containing B27 (Gibco), a serum-substituted product, and then cultured in medium without FGF for 8 days. Alternatively, RA (retinoic acid, sigma) was added at 1-10 μM and cultured for 7-14 days. Another method was used to induce differentiation by adding VPA (valproic acid, sigma) at 1-10 mM concentration with RA (retinoic acid, sigma) at 1-10 μM concentration for 7-14 days. ΒIII-tubulin (Tuj1), Map2a, and TH were used as markers for differentiation into neurons ( a, ce of FIGS. 3b and 3b; neural stem cells and b, fh of neural stem cell-like cells ) of FIG. 3b ).

올리고덴드로사이트 (oligodendrocyte)로의 분화는 혈청 대체물인 B27이 첨가된 N2 배양액에 PDGF-AA (platelet derived growth factor-AA, R&D)와 T3 (3,3,5-triiodo-L-thyronine, sigma), 인간 재조합 bFGF와 EGF (R&D)를 함께 첨가 하여 배양하다가 상기 첨가된 성분들을 차례로 하나씩 제거한 배양액으로 교환하면서 20일 동안 배양하여 분화를 유도하였다. 올리고덴드로사이트로 분화를 확인하는 마커로 04, CNPase, 01을 사용하였다(도 3c, 도 3c의 a-c,g-i; 신경줄기세포, 도 3c의 d-f,j-l; 신경줄기세포-유사세포).Differentiation into oligodendrocytes is characterized by platelet derived growth factor-AA (R & D) and T3 (3,3,5-triiodo-L-thyronine, sigma), N2 cultures with serum replacement B27. Human recombinant bFGF and EGF (R & D) were added together and cultured, followed by incubation for 20 days while exchanging the added components one by one to induce differentiation. 04, CNPase, 01 was used as a marker to confirm the differentiation into oligodendrosite ( ac, gi of Figure 3c, Figure 3c; neural stem cells, df, jl of Figure 3c; neural stem cells-like cells ).

위에서 언급한 조건에서 배양을 하고, 각각의 분화된 세포의 모양을 관찰하면서, 각각의 분화 마커로 사용되는 항체를 사용하여 면역세포화학법(immunocytochemistry)으로 확인한 결과 신경줄기세포의 특징과 같이 세가지로의 분화가 신경줄기세포-유사세포(NSCLCs)에서도 동일하게 나타나는 것을 확인할 수 있었다(도 3).After culturing under the above-mentioned conditions, observing the shape of each differentiated cell, and using the antibody used as the differentiation marker, it was confirmed by immunocytochemistry. Differentiation was found to be the same in neural stem cell-like cells (NSCLCs) ( FIG. 3 ).

<< 실시예Example 8>  8> BmiBmi -1 유전자가 -1 gene 역분화에In reverse differentiation 미치는 영향 확인 Check impact

pBI-Bmi-1-EGFP와 pBabe puro rTTA를 함께 트렌스펙션하고 독시사이클린(doxycycline)으로 Bmi-1 유전자의 발현을 유도한 세포를 신경줄기세포 배양액에서 배양하였다.pBI-Bmi-1-EGFP and pBabe puro rTTA were transfected together and cells in which Bmi-1 gene expression was induced with doxycycline were cultured in neural stem cell culture.

독시사이클린-유도가능한(Doxycycline-inducible) pBI-Bmi-1-EGFP 벡터는 pBI-EGFP (BD Bioscience) 벡터를 pvuⅡ로 다이제스쳔(digestion)한 후, 인간 Bmi-1유전자를 라이게이션(ligation)하여 클로닝(cloning)을 하였다. 이렇게 만들어진 벡터(vector)와 pBabe puro rTTA를 함께 아스트로사이트에 트랜스펙션을 하고, 푸 로마이신(puromycine) 0.5μg/ml로 선별을 하면서 독시사이클린 (Dox) 1μg/ml처리를 하고 GFP로 발현을 확인하였다(도 4a). 독시사이클린으로 Bmi-1 유전자의 발현을 유도(Dox +)할 수 있고, 독시사이클린이 없을 때(Dox -)는 Bmi-1 유전자가 발현되지 않음을 알 수 있다. 신경줄기세포의 배양액으로 바꾸었을 때, 독시사이클린이 있을 때, 신경구가 형성되고, 없을 때는 신경구가 형성되지 않는 것을 확인하였다(도 4b). 이는 Bmi-1 유전자가 아스트로사이트의 역분화를 유도하는 역할을 한다는 것을 의미한다.The Doxycycline-inducible pBI-Bmi-1-EGFP vector digests the pBI-EGFP (BD Bioscience) vector with pvuII and then ligations the human Bmi-1 gene. Cloning was performed. This vector and pBabe puro rTTA were transfected together with astrosite, and treated with 1 μg / ml of doxycycline (Dox) while screening with 0.5 μg / ml of puromycine and confirming expression with GFP. ( FIG. 4A ). Doxycycline can induce the expression of the Bmi-1 gene (Dox +), and when there is no doxycycline (Dox-) it can be seen that the Bmi-1 gene is not expressed. When switched to the culture medium of neural stem cells, it was confirmed that when there is doxycycline, neurospheres are formed, and when there is no neurospheres ( FIG. 4B) . This means that the Bmi-1 gene plays a role in inducing the differentiation of astrosite.

Bmi-1 유전자의 발현이 유도된 세포를 독시사이클린이 첨가된 신경줄기세포의 배양액에서 배양하면, 신경줄기세포와 유사한 모양의 세포가 만들어 지고, GFP가 발현되고(도 4c), 신경줄기세포의 마커가 발현되었다(도 4c의 c)When cells in which Bmi-1 gene expression was induced were cultured in a culture medium of neural stem cells to which doxycycline was added, cells similar to neural stem cells were formed, GFP was expressed ( FIG. 4C ), and markers of neural stem cells were expressed. ( C in FIG. 4C )

독시사이클린이 첨가된 신경줄기세포의 배양액에서 배양한 신경줄기세포-유사세포의 분화를 유도한 후, 면역화학염색법으로 각각의 특이적 마커를 확인한 결과 각각 아스트로사이트(도 4d의 a,b), 뉴런(도 4d의 c-e), 올리고덴드로사이트(도 4d의 f,g)로 분화가 유도되었음을 확인하였다.After inducing differentiation of neural stem cell-like cells cultured in the culture medium of doxycycline-added neural stem cells, each specific marker was identified by immunochemical staining . Asstrosite ( a and b in FIG. 4d ) and neurons ( FIG. 4d ce ), oligodendrosite ( f, g of Figure 4d ) was confirmed that differentiation was induced.

<< 실시예Example 9> 생체 내 분화 ( 9> in vivo differentiation ( InIn vivovivo differentiationdifferentiation ))

독시사이클린이 첨가된 신경줄기세포의 배양액에서 배양한 신경줄기세포-유사세포를 6주령의 누드 마우스(nude mouse)의 피하조직에 주사(injection)하고 2주 후에 조직을 절제(section) 하여 각각의 분화 마커로 확인을 하였다. 면역세포화학법으로 분화마커를 염색을 하고, GFP로 머지(merge)하여 주사한 세포에 의해 분화가 되었는지를 확인한 결과 상기 세포는 마우스의 생체내(in vivo)에서도 분화능이 있음을 확인하였다(도 4e). Neural stem cell-like cells cultured in a culture medium of doxycycline-added neural stem cells were injected into subcutaneous tissues of 6-week-old nude mice, and the tissues were excised two weeks later to be differentiated into different markers. It was confirmed. Differentiation markers were stained by immunocytochemistry and merged with GFP to confirm whether they were differentiated by the injected cells. As a result, the cells were found to have differentiation ability in vivo ( FIG. 4e ).

<< 실시예Example 10> 생화학 저해제( 10> biochemical inhibitors ( BiochemicalBiochemical inhibitorsinhibitors ) 처리가 Processing BmiBmi -1 유전자가 과발현된 -1 gene overexpressed 아스트로사이트의Astrosite 성장과  Growth and 역분화에In reverse differentiation 미치는 영향 분석 Impact Analysis

히스톤 디아세틸라아제 저해제(Histone deacetylase(HDAC) inhibitor)에 속하는 VPA(Valproic acid, Sigma), TSA(Trichostatin A, Sigma)와 FGF 신호 경로(signal pathway)에 관여하고 있는 인자(factor)중에서 열쇠(key)가 되는 분자를m 저해(inhibition)하는 물질인 NL-71-101(Sigma), PD98059 (Calbiochem), Wortmannin (Sigma) 및 U0126(Promega)를 몇 가지 농도를 정하여, Bmi-1 유전자가 과발현된 아스트로사이트의 성장 배지(Growth media, GM) 및 신경줄기세포-유사세포로 역분화 시키기 위한 신경줄기세포 배양액에 생화학 저해제처리를 한 경우, Bmi-1 유전자가 과발현된 아스트로사이트 세포의 성장과 신경줄기세포로의 역분화에 미치는 영향을 분석하였다. Among the factors involved in Valproic acid (Sigma), TSA (Trichostatin A, Sigma) and FGF signal pathways belonging to the histone deacetylase (HDAC) inhibitor Several concentrations of NL-71-101 (Sigma), PD98059 (Calbiochem), Wortmannin (Sigma), and U0126 (Promega), which are substances that inhibit the key molecule, are overexpressed, resulting in the overexpression of the Bmi-1 gene. When biochemical inhibitor treatment was performed on the growth media (Growth media, GM) of the grown astrosites and the neural stem cell cultures for dedifferentiation into neural stem cell-like cells, the growth and neuronal stem cells of the Bmi-1 gene were overexpressed. The effect on the reverse differentiation of was analyzed.

성장 배지에 처리를 한 경우는 적정량의 세포를 플레이팅한 후 3일동안 처리를 하면서 매일 0.01% 크리스탈 바이올렛(crystal violet)으로 염색하고, 10% 아세트산으로 추출하여 상대적인 성장속도를 측정하였다. 또한, 신경줄기세포 배양액에 처리를 한 경우는 적정량의 세포를 플레이팅한 후에 처리를 하면서 역분화가 유도되는지를 확인해보았다. 다른 방법으로 12 웰 플레이트에 100cells/well 정도의 세포를 신경줄기세포 배양액으로 플레이팅하면서 위에 언급한 저해제를 처리해보았다. 처리 14일 후에 신경구가 형성되는지 여부를 관찰하였다. When the growth medium was treated, the cells were plated with an appropriate amount, and then treated for 3 days, and then stained with 0.01% crystal violet (crystal violet) every day and extracted with 10% acetic acid to measure relative growth rates. In addition, when treated in the neural stem cell culture solution, it was confirmed that reverse differentiation was induced during the treatment after plating the appropriate amount of cells. Alternatively, the above mentioned inhibitors were treated by plating 100 cells / well of cells in 12 well plates with neural stem cell culture. It was observed 14 days after treatment whether neurospheres were formed.

그 결과, HDAC 저해제에 의해서 Bmi-1의 작용이 억제되고, 신경줄기세포로의 역분화도 이루어지지 않는 다는 것을 확인하였다(도 5). VPA(Valproic acid)와 TSA(Trichostatin A)를 처리한 결과 Bmi-1 유전자의 과발현이 유도된 세포의 성장속도가 감소하였고, 이를 신경줄기세포의 배양 조건에서 배양한 결과 역분화가 유도되지 않는 것을 관찰할 수 있었다. TSA를 20ng/ml 내지 100ng/ml 범위로 처리한 결과 농도가 높아질 수록 성장속도가 현저하게 떨어지는 것을 확인하였고(도 5a, 도 5b), 100ng/ml로 3일간 처리한 후 SA-β-갈락토시다아제 분석(SA-β-galactosidase assay)을 했을 때, 양성(positive)을 나타내는 세포들이 있음을 관찰할 수 있었다(도 5b에서 화살표). 또한, TSA는 히스톤 디아세틸라이제 저해제(histone deacetylase inhibitor)로 작용하므로, TSA의 처리에 의해서 히스톤 H3가 아세틸화(acetylation)되었음을 확인하였고,이 때 p16과 p21의 발현도 높아지고, TSA 처리농도가 높아질수록 단백질의 발현이 높아졌다(도 5c). 이와 같은 처리를 신경줄기세포로의 역분화 유도와 함께 한 결과 TSA 100ng/ml로 처리한 경우에는 신경구도 형성되지 않았고(도 5d), nestin과 sox2의 발현도 대조구에 비해 줄어드는 것을 확인할 수 있었다(도 5e). 또한, Bmi-1 유전자의 과발현이 유도된 100개의 아스트로사이트 세포에 TSA를 첨가하고 신경줄기세포 배양조건에서 2주간 배양하고, 신경구가 형성되는지 관찰한 결과, 처리농도가 높아질 수록 신경구가 형성이 현저하게 저해되는 것을 확인하였다(도 5f).As a result, it was confirmed that the action of Bmi-1 was inhibited by the HDAC inhibitor, and no reverse differentiation into neural stem cells was performed (FIG. 5). Treatment with VPA (Valproic acid) and TSA (Trichostatin A) decreased the growth rate of cells induced by overexpression of the Bmi-1 gene, and observed that incubation under neural stem cell culture conditions did not induce differentiation. Could. As a result of treatment with TSA in the range of 20 ng / ml to 100 ng / ml, it was confirmed that the growth rate was remarkably decreased as the concentration was increased ( FIG. 5a, FIG. 5b) . When the SA-β-galactosidase assay was performed, it was observed that there were cells showing positive ( arrow in FIG. 5B ). In addition, since TSA acts as a histone deacetylase inhibitor, it was confirmed that histone H3 was acetylated by TSA treatment. At this time, expression of p16 and p21 also increased, and TSA concentration was increased. The higher the higher the expression of the protein ( Fig. 5c ). As a result of induction of differentiation into neural stem cells, such treatment did not form neurospheres ( FIG. 5D ), and the expression of nestin and sox2 was reduced compared to the control ( FIG. 5D ) . 5e ). In addition, TSA was added to 100 Astrosite cells induced with overexpression of the Bmi-1 gene, and cultured for 2 weeks under the neural stem cell culture conditions, and the formation of neurospheres was observed. It was confirmed that it is inhibited ( FIG. 5F ).

또한, Bmi-1 유전자가 과발현된 아스트로사이트에 각각 1mM, 5mM, 10mM VPA를 처리를 한 경우에도, 처리농도가 높아질수록 Bmi-1 유전자의 과발현이 유도된 세포의 성장속도가 현저히 떨어지고(도 5g), 역분화를 위해 신경줄기세포의 배양액으로 배양하는 경우에도 VPA 처리농도가 높아질 수록, 신경구가 형성되지 않는 것을 확인하였다(도 5j). 도 5h는 Bmi-1 유전자가 과발현된 아스트로사이트를 신경줄기세포의 배양약에서 VPA를 3일동안 처리한 후의 세포의 모양을 보여준다. 또한, nestin 과 sox2의 발현도 VPA 처리의 경우 대조구에 비해 감소하는 것을 확인하였다(도 5i). 또한, Bmi-1 유전자의 과발현이 유도된 100개의 아스트로사이트 세포에 VPA를 첨가하고 신경줄기세포 배양조건에서 2주간 배양하고, 신경구가 형성되는지 관찰한 결과, 처리농도가 높아질 수록 신경구가 형성이 현저하게 저해되는 것을 확인하였다(도 5j). In addition, even when treated with 1mM, 5mM, and 10mM VPA to the astrocytes overexpressed Bmi-1 gene, the growth rate of cells induced by overexpression of Bmi-1 gene was significantly decreased as the treatment concentration increased ( FIG. 5G). ), Even when cultured with a culture of neural stem cells for reverse differentiation, the higher the VPA treatment concentration, the more likely the formation of neurospheres ( FIG. 5J ). Figure 5h shows the appearance of the cells after treatment with VPA for 3 days in the culture of neural stem cells Astrosite overexpressed Bmi-1 gene. In addition, it was confirmed that the expression of nestin and sox2 also decreased compared to the control in the VPA treatment ( Fig. 5i ). In addition, VPA was added to 100 Astrosite cells induced with overexpression of the Bmi-1 gene, and cultured for 2 weeks under culture conditions of neural stem cells, and the formation of neurospheres was observed. It was confirmed that the inhibition ( FIG. 5J ).

또한, bFGF에 의해 신경줄기세포-유사세포로 역분화가 유도되는 것을 확인하고 그의 관련 경로(pathway)에 대하여 실험해 보았다. bFGF에 의해 활성화 되는 경로인 P13K-AKT, MEK1/MAPK 경로가 신경줄기세포로의 역분화 기작에 관련이 있는지 확인해 보았다. P13K-inhibitor(wortmannin), AKT-inhibitor(NL-71-101), EPK- inhibitor(PD98059), MEK1-inhibitor(U0126)을 Bmi-1 유전자가 과발현된 아스트로사이트의 역분화 유도를 위한 신경줄기세포 배양액에 1μM, 10μM로 처리하였을 때, 1μM에서는 대조군과 비교하였을 때, 크게 차이나지 않았으나, 10μM에서는 신경구가 거의 형성되지 않는 것을 볼 수 있었다. 그러나 PD98059를 처리한 경우는 대조군에 비해 신경구가 형성되는 수가 현저하게 차이나지 않는 것을 확인하였다(도 2d).In addition, it was confirmed that bFGF induced dedifferentiation into neural stem cell-like cells and experimented with their related pathways. We examined whether the P13K-AKT and MEK1 / MAPK pathways, which are activated by bFGF, are involved in the mechanism of retrodifferentiation into neural stem cells. P13K-inhibitor (wortmannin), AKT-inhibitor (NL-71-101), EPK-inhibitor (PD98059), and MEK1-inhibitor (U0126) are neuronal stem cell culture media for inducing differentiation of astrosite overexpressed with Bmi-1 gene When treated at 1μM, 10μM, 1μM was not significantly different when compared with the control group, but at 10μM it could be seen that almost no neurospheres formed. However, when PD98059 was treated, it was confirmed that the number of neurosphere formation was not significantly different from that of the control group ( FIG. 2D ).

따라서, HDAC 저해제가 신경줄기세포-유사세포의 증식(proliferation), 역분화(dedifferentiation), 유지(maintenance)를 감소시키는 작용을 함을 알 수 있다.Therefore, it can be seen that the HDAC inhibitor acts to reduce the proliferation, dedifferentiation, and maintenance of neural stem cell-like cells.

상기에서 기술한 바와 같이, Bmi-1 을 이용하여 아스트로사이트를 신경줄기세포로 역분화를 유도할 수 있으며, 역분화된 신경줄기세포는 다양한 질병치료에 사용될 수 있다.As described above, Bmi-1 may be used to induce differentiation of astrosite into neural stem cells, and the dedifferentiated neural stem cells may be used for treating various diseases.

<110> Imgen Co., Ltd <120> a composition for de-differentiating astrocytes into neural stem cell comprising human Bmi-1 protein or a nucleic acid encoding the same and a process of de-differentiation using said composition <130> PA9702-0146/KR <150> KR10-2006-19018 <151> 2006-02-27 <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> forward primer specific for GAPDH <400> 1 gatgacatca agaaggtggt gaag 24 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> reverse primer specific for GAPDH <400> 2 gttgctgtag ccgtattcat tgtc 24 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer specific for nestin <400> 3 ggcatccctg aattacccaa 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer specific for nestin <400> 4 agctcatggg catctgtcaa 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer specific for sox2 <400> 5 agtggtacgt taggcgcttc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer specific for sox2 <400> 6 tgccttaaac aagaccacga 20 <110> Imgen Co., Ltd <120> a composition for de-differentiating astrocytes into neural stem          cell comprising human Bmi-1 protein or a nucleic acid encoding          the same and a process of de-differentiation using said          composition <130> PA9702-0146 / KR <150> KR10-2006-19018 <151> 2006-02-27 <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> forward primer specific for GAPDH <400> 1 gatgacatca agaaggtggt gaag 24 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> reverse primer specific for GAPDH <400> 2 gttgctgtag ccgtattcat tgtc 24 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer specific for nestin <400> 3 ggcatccctg aattacccaa 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer specific for nestin <400> 4 agctcatggg catctgtcaa 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer specific for sox2 <400> 5 agtggtacgt taggcgcttc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer specific for sox2 <400> 6 tgccttaaac aagaccacga 20  

Claims (17)

인간 Bmi-1 단백질 또는 인간 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산을 포함하는 아스트로사이트(astrocyte)를 신경줄기세포로의 역분화를 유도하는 조성물.A composition for inducing the differentiation of an astrocyte (astrocyte) comprising a human Bmi-1 protein or a nucleotide sequence encoding a human Bmi-1 protein into neural stem cells. 제1항에 있어서, 상기 조성물은 인간 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산이 삽입된 Bmi-1 단백질 발현 벡터를 포함하는 조성물. The composition of claim 1, wherein the composition comprises a Bmi-1 protein expression vector inserted with a nucleic acid that is a nucleotide sequence encoding human Bmi-1 protein. 제2항에 있어서, 상기 벡터는 pBabe puro 벡터에 인간 Bmi-1 단백질을 코딩하는 뉴클레오티드 서열을 삽입하여 제조한 것을 특징으로 하는 조성물.The composition of claim 2, wherein the vector is prepared by inserting a nucleotide sequence encoding a human Bmi-1 protein into a pBabe puro vector. 제1항에 있어서, 상기 조성물은 인간 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산이 도입되어 Bmi-1 단백질을 발현하는 바이러스를 포함하는 것을 특징으로 하는 조성물. The composition of claim 1, wherein the composition comprises a virus in which a nucleic acid, which is a nucleotide sequence encoding human Bmi-1 protein, is introduced to express the Bmi-1 protein. 제4항에 있어서, 상기 바이러스는 인간 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산이 삽입된 Bmi-1 단백질 발현 벡터를 PT67 패키징 세포주(packaging cell line)에 트랜스펙션(transfection)하여 생성되는 것을 특징으로 하는 조성물.The method of claim 4, wherein the virus is produced by transfection of a Bmi-1 protein expression vector containing a nucleic acid, a nucleotide sequence encoding human Bmi-1 protein, into a PT67 packaging cell line. Characterized in that the composition. 제1항에 있어서, 상기 역분화된 신경줄기세포는 아스트로사이트(astrocyte), 뉴런(neuron) 또는 올리고덴드로사이트(oligodendrocyte)로의 다분화능(multipotency)을 가지는 신경줄기세포인 조성물.The composition of claim 1, wherein the de-differentiated neural stem cells are neural stem cells having multipotency to an astrocyte, a neuron, or an oligoendrocyte. (i) 아스트로사이트를 배지에서 배양하는 단계, (ii) 상기 배양한 아스트로사이트를 인간 Bmi-1 유전자를 삽입한 벡터를 트랜스펙션시킨 패키징 세포로 감염시키는 단계, (iii) 상기 감염시킨 아스트로사이트를 신경줄기세포 배양조건에서 배양하는 단계를 포함하는 아스트로사이트를 신경줄기세포로의 역분화를 유도하는 방법.(i) culturing the astrosite in the medium, (ii) infecting the cultured astrosite with packaging cells transfected with the vector into which the human Bmi-1 gene is inserted, and (iii) the infected astrosite A method of inducing dedifferentiation into neural stem cells, comprising the step of culturing in neural stem cell culture conditions. 제7항에 있어서, 단계(i)은 마우스의 뇌에서 아스트로사이트를 분리하여 트립신 처리 후 단세포(single cell)로 만들어서, FBS(fetal bovine serum), 페니실 린(penicillin) 또는 스트렙토마이신(streptomycin) 및 L-글루타민(L-glutamine)이 포함되어 있는 둘베코 변형 이글 배지(Dulbecco's modified Eagle's medium, DMEM)에서 배양하는 것을 특징으로 하는 방법.8. The method of claim 7, wherein step (i) separates the astrosite from the brain of the mouse to make a single cell after trypsin treatment, fetal bovine serum (FBS), penicillin or streptomycin (streptomycin) And culturing in Dulbecco's modified Eagle's medium (DMEM) containing L-glutamine. 제7항에 있어서, 단계(ii)의 상기 벡터는 pBabe puro 벡터에 인간 Bmi-1 단백질을 코딩하는 뉴클레오타이드 서열인 핵산을 삽입하여 제조한 것을 특징으로 하는 방법.The method of claim 7, wherein the vector of step (ii) is prepared by inserting a nucleic acid, which is a nucleotide sequence encoding human Bmi-1 protein, into a pBabe puro vector. 제7항에 있어서, 단계(ii)의 상기 패키징 세포는 PT67 패키징 세포인 것을 특징으로 하는 방법.8. The method of claim 7, wherein said packaging cells of step (ii) are PT67 packaging cells. 제7항에 있어서, 단계(iii)의 신경줄기세포 배양조건은 세포를 플레이팅하여 배양 한 후 12시간 후, 인슐린(Insulin), 아포-트랜스페린(apo-transferrin), 셀레늄(selenium), 프로게스테론(progesteron), 및 페니실린 또는 스트렙토마이신이 포함되어 있는 둘베코 변형 이글 배지/F12(Dulbecco's modified Eagle's medium/F12)에 혈청-대체물(serum-replacement) B27과 bFGF(basic Fibroblast Growth Factor)가 첨가된 배지로 바꾸어준 후, 매일 bFGF 처리를 하고 배지를 2일에 한번씩 바꿔 주면서 배양하는 것인 방법.According to claim 7, Neural stem cell culture conditions of step (iii) 12 hours after culturing the cells plated, insulin (Insulin), apo-transferrin, selenium (selenium), progesteron (progesteron) ), And Dulbecco's modified Eagle's medium / F12 containing penicillin or streptomycin added to a medium in which serum-replacement B27 and basic Fibroblast Growth Factor (bFGF) were added. After giving, bFGF treatment every day and the culture method of changing the medium every two days. 제7항에 있어서, 단계(iii)의 신경줄기세포 배양조건은 10% FBS, 1% 페니실린 또는 스트렙토마이신, 및 1% L-글루타민을 포함하고 있는 성장배지(Growth medium)에서 배양하던 세포를 트리피니제이션(trypinization)한 후에 박테리아 배양 플레이트에 씨딩하여 인슐린, 아포-트랜스페린, 셀레늄, 프로게스테론, 및 페니실린 또는 스트렙토마이신이 포함되어 있는 둘베코 변형 이글 배지/F12 에 혈청-대체물 B27과 bFGF가 첨가된 배지에서 배양하는 것인 방법.The method according to claim 7, wherein the neural stem cell culture conditions of step (iii) is a tripine to cells cultured in a growth medium containing 10% FBS, 1% penicillin or streptomycin, and 1% L- glutamine After trypinization, seeded in bacterial culture plates and in serum-alternate B27 and bFGF added to Dulbecco's modified Eagle's medium / F12 containing insulin, apo-transferrin, selenium, progesterone, and penicillin or streptomycin Culturing. 제7항 내지 제12항 중 어느 한항의 방법으로 생산되어 아스트로사이트, 뉴런 또는 올리고덴드로사이트로 분화능을 가지는 신경줄기세포.Neural stem cells produced by the method of any one of claims 7 to 12 having a differentiation ability to astrosite, neurons or oligodendrosite. 제13항에 있어서, 상기 아스트로사이트의 분화는 상기 신경줄기세포를 FBS가 포함된 둘베코 변형 이글배지에 bFGF(basic Fibroblast Growth Factor) 및 EGF(Epidermal Growth Factor) 또는CNTF(CiliaryNeuroTrophic Factor)를 첨가하여 배양함으로써 이루어지는 것인 신경줄기세포.The method of claim 13, wherein the differentiation of the astrosite cultured neural stem cells by adding a basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) or CiliaryNeuroTrophic Factor (CNTF) to the Dulbecco modified eagle medium containing FBS Neural stem cells that are made by. 제13항에 있어서, 상기 뉴런으로의 분화는 상기 신경줄기세포를 혈청-대체물 B27이 포함되어 있는 N2배양액(인슐린, 아포-트랜스페린, 셀레늄, 프로게스테론, 및 페니실린 또는 스트렙토마이신이 포함되어 있는 DMEM/F12 배지)에 4일 동안 FGF 처리를 한 후, 8일 동안은 FGF가 없는 배지에서 배양함으로써 이루어지는 것인 신경줄기세포.The method of claim 13, wherein the differentiation of the neurons into the neuronal stem cells N-culture medium containing serum-substituted B27 (insulin, apo-transferrin, selenium, progesterone, and DMEM / F12 medium containing penicillin or streptomycin) 4 days after the FGF treatment, and for 8 days neural stem cells that are made by culturing in a medium without FGF. 제13항에 있어서, 상기 뉴런으로의 분화는 상기 신경줄기세포를 혈청-대체물 B27이 포함되어 있는 N2 배양액에 1 내지 10μM의 RA(retinoic acid)를 첨가하거나 또는 1 내지 10mM 의 VPA(valproic acid)를 1 내지 10μM의 RA(retinoic acid)와 함께 첨가하여 7일 내지 14일 동안 배양함으로써 이루어지는 것인 신경줄기세포.The method of claim 13, wherein the differentiation of the neurons to the neuronal stem cells in the N2 culture medium containing serum-substituted B27 is added 1-10μM retinoic acid (RA) or 1-10mM VPA (valproic acid) Neural stem cells that are made by incubating for 7 to 14 days by adding with 1-10 μM RA (retinoic acid). 제13항에 있어서, 상기 올리고덴드로사이트로의 분화는 상기 신경줄기세포를 혈청-대체물 B27이 포함되어 있는 N2 배양액에 PDGF-AA(platelet derived growth factor-AA), T3(3,3,5-triiodo-L-thyronine), bFGF 및 EGF를 첨가하여 배양하다가 상기 첨가된 성분들을 차례로 하나씩 제거한 배양액으로 교환하면서 20일 동안 배양함으로써 이루어지는 것인 신경줄기세포.The method according to claim 13, wherein the differentiation into oligodendrosite is the neural stem cells platelet derived growth factor-AA (PDGF-AA), T3 (3,3,5-triiodo) in N2 culture medium containing serum-substituted B27 -L-thyronine), the neural stem cells that are made by culturing for 20 days while adding and bFGF and EGF cultured by replacing the added components one by one.
KR1020070019600A 2006-02-27 2007-02-27 -1 a composition for de-differentiating astrocytes into neural stem cell comprising human Bmi-1 protein or a nucleic acid encoding and the same and a process of de-differentiation using said composition KR100844971B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060019018 2006-02-27
KR1020060019018 2006-02-27

Publications (2)

Publication Number Publication Date
KR20070089089A true KR20070089089A (en) 2007-08-30
KR100844971B1 KR100844971B1 (en) 2008-07-09

Family

ID=38437522

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070019600A KR100844971B1 (en) 2006-02-27 2007-02-27 -1 a composition for de-differentiating astrocytes into neural stem cell comprising human Bmi-1 protein or a nucleic acid encoding and the same and a process of de-differentiation using said composition

Country Status (5)

Country Link
EP (1) EP1987148A4 (en)
JP (1) JP2009528050A (en)
KR (1) KR100844971B1 (en)
CN (1) CN101389761A (en)
WO (1) WO2007097494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158402B1 (en) * 2009-12-30 2012-06-22 주식회사 일진케이제이 Generation composition for induced pluripotent stem cells with Bmi1 and Oct4, and method of manufacturing induced pluripotent stem cells using the same
US8772031B2 (en) 2009-12-30 2014-07-08 Korea University Research And Business Foundation Composition for reprogramming somatic cells to generate induced pluripotent stem cells, comprising Oct4 in combination with Bmi1 or its upstream regulator, and method for generating induced pluripotent stem cells using the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
PT1970446E (en) 2005-12-13 2011-09-01 Univ Kyoto Nuclear reprogramming factor
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
JP2008307007A (en) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag Human pluripotent stem cell induced from human tissue-originated undifferentiated stem cell after birth
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
KR101532442B1 (en) 2007-12-10 2015-06-29 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Efficient method for nuclear reprogramming
EP2242838A1 (en) * 2007-12-17 2010-10-27 GliaMed, Inc. Stem-like cells and method for reprogramming adult mammalian somatic cells
KR101661940B1 (en) 2008-05-02 2016-10-04 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Method of nuclear reprogramming
KR101874463B1 (en) 2009-10-31 2018-08-02 뉴 월드 레보러토리즈 인코포레이티드. Methods for reprogramming cells and uses thereof
US9453205B2 (en) 2009-10-31 2016-09-27 Genesis Technologies Limited Methods for reprogramming cells and uses thereof
CN102242146B (en) * 2010-05-10 2015-11-25 高丽大学校产学协力团 Composition and the method with its generation generate induced pluripotent stem cells
EP2569420B1 (en) 2010-05-13 2018-09-05 The Regents of The University of California Method and composition for inducing human pluripotent stem cells
CN106754728B (en) * 2016-12-30 2020-05-15 中国人民解放军总医院 Metanephric mesenchymal cell line and preparation method and application thereof
CN109674809B (en) * 2018-12-27 2022-08-09 吉林大学 Composition containing miR-124-3P and application thereof in medicine for inducing neuron formation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516776A1 (en) * 1995-05-10 1996-11-14 Boehringer Ingelheim Int Chromatin regulatory genes
US6897061B1 (en) * 2000-06-16 2005-05-24 Spinal Cord Society Transdifferentiation of glial cells
US6919204B2 (en) * 2000-09-29 2005-07-19 Sangamo Biosciences, Inc. Modulation of gene expression using localization domains
JP2003033179A (en) * 2001-07-05 2003-02-04 Asahi Kasei Corp Vector for reversible transduction of gene
KR20010099203A (en) * 2001-09-11 2001-11-09 이상훈 Method for differentiation of neural stem cell to dopaminergic neuron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158402B1 (en) * 2009-12-30 2012-06-22 주식회사 일진케이제이 Generation composition for induced pluripotent stem cells with Bmi1 and Oct4, and method of manufacturing induced pluripotent stem cells using the same
US8772031B2 (en) 2009-12-30 2014-07-08 Korea University Research And Business Foundation Composition for reprogramming somatic cells to generate induced pluripotent stem cells, comprising Oct4 in combination with Bmi1 or its upstream regulator, and method for generating induced pluripotent stem cells using the same

Also Published As

Publication number Publication date
EP1987148A1 (en) 2008-11-05
EP1987148A4 (en) 2009-08-05
KR100844971B1 (en) 2008-07-09
CN101389761A (en) 2009-03-18
WO2007097494A1 (en) 2007-08-30
JP2009528050A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
KR100844971B1 (en) -1 a composition for de-differentiating astrocytes into neural stem cell comprising human Bmi-1 protein or a nucleic acid encoding and the same and a process of de-differentiation using said composition
US9249391B2 (en) Methods of generating neural stem cells
US11512285B2 (en) Method of preparing induced neural stem cells reprogrammed from non-neuronal cells using HMGA2
US8772031B2 (en) Composition for reprogramming somatic cells to generate induced pluripotent stem cells, comprising Oct4 in combination with Bmi1 or its upstream regulator, and method for generating induced pluripotent stem cells using the same
KR100794362B1 (en) De-differentiation of astrocytes into neural stem cell using Nanog
KR100794359B1 (en) De-differentiation of astrocytes into neural stem cell using Shh
KR101211610B1 (en) Generation composition for induced pluripotent stem cells with Bmi1, MEK inhibitor and GSK inhibitor treatment and method of manufacturing induced pluripotent stem cells using the same
KR101211624B1 (en) Generation composition for induced pluripotent stem cells with Shh, FGFR tyrosine kinase inhibitor, MEK inhibitor and GSK inhibitor treatment and method of manufacturing induced pluripotent stem cells using the same
KR101188878B1 (en) Generation composition for induced pluripotent stem cells with purmorphamine treatment and Oct4, and method of manufacturing induced pluripotent stem cells using the same
KR101158402B1 (en) Generation composition for induced pluripotent stem cells with Bmi1 and Oct4, and method of manufacturing induced pluripotent stem cells using the same
KR101188877B1 (en) Generation composition for induced pluripotent stem cells with oxysterols treatment and Oct4, and method of manufacturing induced pluripotent stem cells using the same
KR101188876B1 (en) Generation composition for induced pluripotent stem cells with Shh and Oct4, and method of manufacturing induced pluripotent stem cells using the same
KR20110124102A (en) Generation composition for induced pluripotent stem cells with bmi1, g9ahmtase inhibitor and dmnt inhibitor treatment and method of manufacturing induced pluripotent stem cells using the same
KR20110124103A (en) Generation composition for induced pluripotent stem cells with bmi1 and histone deacetylase inhibitor treatment and method of manufacturing induced pluripotent stem cells using the same
KR20110124105A (en) Method of manufacturing induced epiblast stem cells with bmi1 and induced pluripotent stem cells using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130627

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150630

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161024

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180703

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190621

Year of fee payment: 12