KR20070082785A - Self-assembly nano-composites comprising hydrophilic bioactive peptides and hydrophobic materials - Google Patents

Self-assembly nano-composites comprising hydrophilic bioactive peptides and hydrophobic materials Download PDF

Info

Publication number
KR20070082785A
KR20070082785A KR1020060015864A KR20060015864A KR20070082785A KR 20070082785 A KR20070082785 A KR 20070082785A KR 1020060015864 A KR1020060015864 A KR 1020060015864A KR 20060015864 A KR20060015864 A KR 20060015864A KR 20070082785 A KR20070082785 A KR 20070082785A
Authority
KR
South Korea
Prior art keywords
seq
amino acid
acid sequence
positions
peptide
Prior art date
Application number
KR1020060015864A
Other languages
Korean (ko)
Other versions
KR100759495B1 (en
Inventor
박윤정
추정은
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020060015864A priority Critical patent/KR100759495B1/en
Priority to PCT/KR2007/000336 priority patent/WO2007094570A1/en
Publication of KR20070082785A publication Critical patent/KR20070082785A/en
Application granted granted Critical
Publication of KR100759495B1 publication Critical patent/KR100759495B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D90/00Vehicles for carrying harvested crops with means for selfloading or unloading
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C4/00Foldable, collapsible or dismountable chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Combustion & Propulsion (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A self-assembly nano structure comprising hydrophilic bioactive peptides and hydrophobic materials is provided to promote adhesion, proliferation and differentiation of cells in the damaged tissue by adhering the self-assembly nano structure on the surface of a biological material and permeating the bioactive peptides into the living body while the peptides maintains structural stability, and maximize the tissue regeneration restoring efficiency. The self-assembly nano structure comprises a hydrophilic bioactive peptide selected from a cell adhesion-inducing peptide, a tissue growth factor-derived peptide or a cell permeation peptide and a hydrophobic material selected from a hydrophobic hydrocarbon, a hydrophobic polymer, a hydrophobic peptide and silane, and is prepared by applying the more than CMC(critical micelle concentration) of hydrophilic bioactive peptide and hydrophobic material to the water system, wherein the hydrophilic bioactive peptide and hydrophobic material are linked by an amide bonding; and the hydrophobic material is modified by a carboxyl group or an amine group for amide bonding.

Description

친수성 생리활성 펩타이드와 소수성 물질을 포함한 자기조립 나노구조체{Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials}Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials

도 1a 및 도 1c는 친수성 생리 활성 펩타이드를 나타낸 것이고, 도 1b 및 도 1d는 친수성 생리 활성 펩타이드와 소수성 물질의 결합체의 3D구조를 나타낸 것이다.1A and 1C show hydrophilic bioactive peptides, and FIGS. 1B and 1D show 3D structures of a combination of a hydrophilic bioactive peptide and a hydrophobic material.

도 2는 친수성 펩타이드-소수성 물질 결합체의 자기조립 여부를 알아보기 위해 자기조립이 일어나는 농도를 pyrene 기법을 이용하여 형광도가 급격히 떨어지는 농도(CMC)를 찾은 그래프이다. 이때 상기 결합체를 CMC이상의 농도로 수계에 적용하면 자기조립에 의해 나노구조체를 형성한다.Figure 2 is a graph of the concentration of the self-assembly to determine whether the self-assembly of the hydrophilic peptide-hydrophobic material conjugate using a pyrene technique to find a rapidly falling concentration (CMC). At this time, when the conjugate is applied to the aqueous solution at a concentration of CMC or more, nanostructures are formed by self-assembly.

도 3a는 본 발명에 따른 나노구조체가 세포내에서 어떤 신호 전달 체계를 갖는지를 알아보기 위해 웨스턴 블랏방법을 이용하여 FAK와 ERK의 활성화 정도를 확인한 것이고, 3b는 이를 그래프로 나타낸 것이다. Figure 3a is to confirm the degree of activation of FAK and ERK using a Western blot method to determine what signal transduction system in the nanostructures according to the present invention, 3b is shown graphically.

도 4는 본 발명에 따른 나노구조체의 세포부착 능력을 confocal microscopy로 확인한 것이다. Figure 4 confirms the cell adhesion of the nanostructures according to the invention by confocal microscopy.

도 5는 본 발명에 따른 나노구조체의 골아세포분화능을 확인한 것이다.5 confirms the osteoblast differentiation capacity of the nanostructures according to the present invention.

도 6은 본 발명에 따른 나노구조체의 유전자 발현능을 확인한 것이다.Figure 6 confirms the gene expression capacity of the nanostructures according to the present invention.

도 7은 본 발명에 따른 나노구조체의 세포 투과정도를 confocal microscopy로 확인한 것이다. Figure 7 confirms the cellular penetration of the nanostructures according to the present invention by confocal microscopy.

본 발명은 친수성 생리활성 펩타이드와 소수성 물질을 포함하는 자기조립 나노구조체에 관한 것으로, 보다 구체적으로는, 생체재료의 표면 처리에 활용될 펩타이드 고정기법뿐 아니라 직접적으로 조직 재생치료에 적용될 세포부착 유도 펩타이드, 조직성장인자 유래 펩타이드 또는 세포투과 펩타이드를 함유하는 나노구조체에 관한 것이다.The present invention relates to a self-assembled nanostructure comprising a hydrophilic bioactive peptide and a hydrophobic material, and more specifically, a cell adhesion inducing peptide to be directly applied to tissue regeneration treatment as well as a peptide fixing technique to be used for surface treatment of a biomaterial. The present invention relates to a nanostructure containing a tissue growth factor-derived peptide or a cell permeation peptide.

골조직, 피부, 신경 등의 손상 조직 재생 치유에 있어서, 생체친화성 고분자등의 생체재료를 활용하여 이들을 차폐막, 인공 골막, 임플란트, 인공피부 및 인공신경 도관 등의 특정 형태를 지니는 의료용구로 제작하고 적용하여 손상조직의 재생 및 복원을 돕고자 하는 연구가 많이 이루어져 왔다. 특히, 차폐막 및 임플란트를 포함한 의료용구의 조직재생력을 향상시키고 치료기간을 단축하기 위해 의료용구에 접촉하는 세포의 증식 및 분화에 중요한 역할을 하는 활성물질들을 활용하고자 하는 연구가 진행되고 있다. 이 중 세포외기질 (Extracellular matrix 예: Fibronectin)이나 특정 조직성장인자 (예:골형성 단백질 (Bone Morphogenetic Protein, BMP))들은 생체 내에서 조직손상을 수복하고 재생시키는 능력이 탁월한 것으로 보고되어져 온 바, 실제 임상에서도 우수한 조직재생력은 다수의 결과에서 확인되었다. In the healing and repair of damaged tissues such as bone tissue, skin, and nerves, biomaterials such as biocompatible polymers are used to produce and apply them as medical devices having specific forms such as shielding membranes, artificial periosteums, implants, artificial skins, and artificial nerve conduits. Many studies have been made to help the regeneration and restoration of damaged tissues. In particular, research is being conducted to utilize active substances that play an important role in the proliferation and differentiation of cells in contact with medical devices in order to improve the tissue regeneration ability of medical devices including the shielding membrane and implants and to shorten the treatment period. Among these, extracellular matrix (eg, Fibronectin) or certain tissue growth factors (eg, Bone Morphogenetic Protein, BMP) have been reported to be excellent in repairing and regenerating tissue damage in vivo. In addition, excellent tissue regeneration in actual clinical trials has been confirmed in a number of results.

그러나, 이들 대부분의 세포외기질 및 성장인자들은 상대적으로 고가이고, 분자량이 수십 KDa에 이르는 고분자량의 단백질로서 그 활성을 유지하기 위해서는 특정 삼차구조가 항시 보존되어야 하는 어려운 점이 있다. 실제로 생체 내에서 이들 단백질을 투여하는 경우 체내에서 불안정하여 활성이 떨어지는 단점이 있고, 특히 수분 이내에 체내에서 소실되므로 원하는 치료효과를 얻기 위해서는 대용량을 투여해야만 한다.However, most of these extracellular substrates and growth factors are relatively expensive, and high molecular weight proteins having molecular weights of several tens of KDa are difficult to maintain certain tertiary structures at all times in order to maintain their activity. In fact, in the case of administering these proteins in vivo, there is a disadvantage in that the activity is unstable in the body, the activity is lost, especially in a few minutes to lose the body in order to obtain the desired therapeutic effect must be administered a large amount.

상기의 단점을 극복하기 위해 고분자 생체재료에 조직성장인자 등을 함유하여 국소에서의 체류효과를 높이고 조절방출기법 (controlled drug release)에 의해 일정기간동안 약효농도를 유지시켜 조직재생효과를 극대화하고자 한 시도들이 이루어져 왔으나, 이 경우 약물방출 이후 소량이지만 비특이적으로 주위혈관으로의 이행을 통해 기타 조직으로의 분포 등이 수반되어 이로 인한 부작용이 지적되고 있는 상황이다. In order to overcome the above disadvantages, the polymer biomaterials contain tissue growth factors to enhance the retention effect at the local area and maintain the drug concentration for a certain period by controlled drug release to maximize the tissue regeneration effect. Attempts have been made, but in this case, a small amount after drug release, but non-specifically, the transition to surrounding blood vessels is accompanied by distribution to other tissues.

한편, 고분자나 세라믹등의 생체재료를 활용한 조직공학기법에서 중요한 기술 분야는 재료표면과 세포 및 조직간의 생체계면 (biointerface)의 개선 및 증진이다. 이를 위해 세포의 부착을 조절하는 기능성단백질과 아울러 세포의 분화, 증식을 상승시키는 성장인자유래 물질이 재료의 표면에 표지되어져야 한다. 생체재료의 표면에 상기의 생리활성 단백질을 표지하기 위해 종래에는 물리적인 도포 (coating)를 하였으나, 이 경우 표면에 도포된 단백질은 재료표면과 어떠한 상호작용도 없으므로 일정기간 국소 체류가 어려웠으며 세포와의 초기 상호작용 역시 불규칙한 결과를 나타내어 정확한 치료효과를 예측하기 어려웠다. 또 생체재료의 표면에 성장인자를 표면에 화학적으로 부착시켜 적용하여 성장인자의 국소화를 도모하고자 하는 연구도 보고되어져 왔으나 상대적으로 고분자량의 성장인자가 표면에 부착되는 양은 한계가 있다. 게다가 표면에 활성물질을 화학적으로 결합시키고자 하는 경우 의료용구의 원재료의 표면이 아민기나 카르복실기를 띠는 경우 (예: 키토산, 알긴산)에는 용이한 화학적 결합이 가능하나, 그렇지 않은 경우 예를 들면 임플란트 표면이 티타늄이나 소수성 고분자 (예:폴리락트산, 폴리우레탄)인 경우에는 화학적인 방법에 의한 펩타이드나 기타 생리활성물질의 부착효율이 떨어지는 등의 어려운 점이 제기되고 있다. 이러한 단점을 보완하기 위해 저온 플라즈마 장치를 이용하여 조직 공학용 다공성 고분자 지지체의 표면을 개질함으로써 친수성당량체를 지지체 표면에 중합하는 방법이 '세포 친화성이 향상된 생분해성의 조직 공학용 다공성고분자 지지체의 제조방법'(한국 등록특허공보 제52909호)에 제시되어 있으나, 이는 표면을 개질하기 위해 저온 플라즈마 방전 장치가 별도로 필요하다. Meanwhile, an important technical field in tissue engineering techniques using biomaterials such as polymers or ceramics is the improvement and enhancement of the biointerface between the material surface and cells and tissues. To this end, the growth protein-derived material that enhances the differentiation and proliferation of cells as well as the functional protein that regulates cell adhesion should be labeled on the surface of the material. In order to label the physiologically active protein on the surface of the biomaterial, physical coating was conventionally performed, but in this case, the protein coated on the surface had no interaction with the material surface, so local retention was difficult for a certain period of time. Early interactions also showed irregular results, making it difficult to predict the correct therapeutic effect. In addition, studies have been reported to improve the localization of growth factors by chemically attaching growth factors to the surface of the biomaterial, but the amount of relatively high molecular weight growth factors is limited to the surface. In addition, if the active material is chemically bound to the surface, if the surface of the raw material of the medical device has an amine group or a carboxyl group (e.g. chitosan, alginic acid), an easy chemical bond is possible, but for example, an implant If the surface is titanium or hydrophobic polymers (eg, polylactic acid, polyurethane), it is difficult to raise the adhesion efficiency of peptides or other bioactive substances by chemical methods. In order to compensate for these disadvantages, the method of polymerizing the surface of the porous polymer support for tissue engineering using a low temperature plasma apparatus to polymerize the hydrophilic equivalent on the surface of the support is 'a method of preparing a biodegradable porous engineering support for tissue engineering with improved cell affinity.' (Korean Patent Publication No. 52909), but it requires a separate low temperature plasma discharge device to modify the surface.

그러나, 본원발명에서는 상기와 같은 문제를 해결하기 위해 자기조립에 의해 안정적으로 부착가능한 나노구조체를 이용하게 되었는 바, 최근까지 나노구조체를 제조하기 위해서 여러 시도들이 있었는데 그 대부분이 고분자를 이용한 나노섬유를 방사(spinning)기법에 의해 제조하는 방법이었다. 예로, '조직 재생을 유도하기 위한 생체 모방형태의 나노섬유와 마이크로섬유의 복합지지체 및 그의 제조방법'을 제공한 사례(한국 공개특허공보 10-2005-0040187호)가 있었으나, 이는 조직 재생을 유도하는 고분자량의 단백질의 활성을 유지하기 위해서는 특정 삼차구조가 항시 보존되어야 하는 단점이 있었다. 또한, 조직재생치료에 있어 재생효과를 연구하기 위한 기존의 연구는 동물 이식 후 염색에 의한 조직학적 방법으로 재생효과를 측정하였으나 이에 의해서는 적용된 재료자체에 의한 효과인지, 주변 조직, 세포와의 상호작용에 의한 재생효과인지 확인하기 어려웠다.However, in the present invention, in order to solve the above problems, nanostructures that can be attached stably by self-assembly have been used. Until recently, many attempts have been made to manufacture nanostructures, most of which use nanofibers using polymers. It was a method of manufacturing by spinning technique. For example, there was a case of providing a composite support of biomimetic nanofibers and microfibers to induce tissue regeneration and a method of manufacturing the same (Korea Patent Publication No. 10-2005-0040187), which induces tissue regeneration. In order to maintain the activity of the high molecular weight protein, a specific tertiary structure had to be preserved at all times. In addition, the existing research to study the regenerative effect in tissue regeneration treatment was measured by the histological method of staining after transplantation of animals, but by this, whether the effect is due to the applied material itself, the interaction with surrounding tissues and cells It was difficult to determine whether it was a regeneration effect by action.

한편, 본원발명에서 이용한 '자기조립'은 나노기술의 원천기술로서, 분자들 간에 서로 밀치거나 당기는 힘을 인위적으로 조작하여 재현 가능한 나노구조를 자발적으로 형성하도록 하는 것이며, 이러한 자기조립기술은 질병진단에 응용되는 바이오칩, 나노튜브를 비롯한 전자재료 및 신소재분야, 고집적 반도체의 제조에 필요한 나노구조체 제조 등에서 서로 기술적으로 융합되어 발전될 가능성이 높은 분야이다. Meanwhile, 'self-assembly' used in the present invention is a source technology of nanotechnology, which artificially manipulates the pushing or pulling force between molecules to spontaneously form a reproducible nanostructure. It is a field that is highly likely to be technically fused and developed in the fields of electronic materials and new materials including biochips, nanotubes, and nanostructures required for the manufacture of highly integrated semiconductors.

이러한 자기조립 나노구조체는 친수성 부분과 소수성부분을 한 분자에 동시에 가지고 있는 여러 분자가 수계에서 모여서 특정의 형태로 조립하여 형성되도록 함을 기본으로 하고 있으며, 다른 표면처리에 비해서 현저히 많은 양의 펩타이드가 단위 구조체에 함유되어 있으므로 초기 세포와의 상호작용을 현격히 증가시킬 수 있다. 또한, 세포인식 및 세포내 분화단백질 인식성 펩타이드를 함유하는 자기조립 나노구조체에 의해 나노입자가 세포내로 도입되어 진단함으로써 최종적으로 적용된 재료에 의한 세포 분화력 진단 및 치료효과를 동시에 발휘할 수 있으며, 조직재생치료에 있어 생리활성 펩타이드 및 기능성 펩타이드의 발굴 및 이를 통한 구조체의 개발은 생체재료-세포간의 상호작용을 원천적으로 극대화하여 진단 및 치료효율을 현저히 향상시킬 수 있다.This self-assembled nanostructure is based on the fact that several molecules having both hydrophilic and hydrophobic moieties in one molecule are gathered in water and assembled into a specific form, and a significant amount of peptides is significantly higher than other surface treatments. Because it is contained in the unit structure it can significantly increase the interaction with the initial cell. In addition, the self-assembled nanostructures containing the cellular recognition and intracellular differentiation protein recognition peptides are introduced into the cell and diagnosed, thereby simultaneously exerting the effect of diagnosing and treating the cell differentiation by the material applied. Discovery of physiologically active peptides and functional peptides in regenerative treatment and the development of constructs through them can significantly improve the diagnostic and therapeutic efficiency by maximizing the interaction between biomaterials and cells.

펩타이드의 발굴관련에 있어서 기타 조직성장인자를 활용하는 것보다도 면역원성, 안정성에서 훨씬 이점이 많으나 관련 펩타이드 개발은 아직까지 왕성한 연구가 진행되지 않았으며 더욱이 펩타이드의 구조적 안정성을 유지하면서 다른 물질에 결합하는 기법은 아직 보고된 바 없다. Although there are more advantages in immunogenicity and stability than other tissue growth factors in the discovery of peptides, the development of related peptides has not been actively studied until now, and moreover, it is possible to bind to other substances while maintaining the structural stability of peptides. The technique has not been reported yet.

이에, 본 발명자들은 상기와 같은 종래기술의 문제점을 해결하고, 표면처리에 활용될 펩타이드 고정기법뿐 아니라 직접적으로 조직 재생치료에 적용될 펩타이드 함유 구조체를 개발하기 위하여 예의 노력한 결과, 친수성 펩타이드와 소수성 물질의 결합체를 임계 마이셀 농도 이상으로 수계에 적용시켜 자기조립(self-assembly)된 나노구조체를 형성하고, 상기 자기조립된 나노구조체가 생체재료의 표면에 안정적으로 부착되고, 동시에 상기 나노구조체에 함유되어 있는 생리활성 펩타이드가 생체내로 효율적으로 투과되어 조직재생에 효율적인 치료효과를 나타내는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have solved the above problems of the prior art, and as a result of diligent efforts to develop a peptide-containing structure to be directly applied to tissue regeneration treatment as well as a peptide fixing technique to be used for surface treatment, the hydrophilic peptide and a hydrophobic substance The conjugate is applied to the water system above the critical micelle concentration to form a self-assembly nanostructure, wherein the self-assembled nanostructure is stably attached to the surface of the biomaterial and at the same time contained in the nanostructure. It was confirmed that the physiologically active peptide is efficiently permeated in vivo and exhibits an effective therapeutic effect on tissue regeneration, thereby completing the present invention.

본 발명의 목적은 친수성 생리활성 펩타이드와 소수성 물질의 결합체가 자기조립되어 있는 나노구조체를 제공하는데 있다.It is an object of the present invention to provide a nanostructure in which a conjugate of a hydrophilic bioactive peptide and a hydrophobic material is self-assembled.

상기 목적을 달성하기 위하여, 본 발명은 친수성 생리활성 펩타이드와 소수성 물질의 결합체가 자기조립되어 있는 나노구조체를 제공한다.In order to achieve the above object, the present invention provides a nanostructure in which a combination of a hydrophilic bioactive peptide and a hydrophobic material is self-assembled.

본 발명에 있어서, 상기 친수성 생리활성 펩타이드는 세포부착 유도 펩타이드, 조직성장인자 유래 펩타이드 또는 세포투과 펩타이드인 것을 특징으로 할 수 있다. 구체적으로, 상기 세포부착 유도 펩타이드는 일반적으로 사용되는 RGD의 아미노산서열을 가지는 펩타이드를 사용하는 것이 바람직하여, 더욱 바람직하게는 CGGRGDS(서열번호 1) 또는 상기 RGD의 아미노산서열을 구조적으로 안정하게 유지하고자 고안된 CGGVACDCRGDCFC(서열번호 2) 중 어느 하나를 필수적으로 함유하는 펩타이드를 사용할 수 있다.In the present invention, the hydrophilic bioactive peptide may be characterized in that the cell adhesion inducing peptide, tissue growth factor-derived peptide or cell permeation peptide. Specifically, the cell adhesion inducing peptide is preferably a peptide having an amino acid sequence of RGD that is generally used, and more preferably to maintain structurally stable CGGRGDS (SEQ ID NO: 1) or the amino acid sequence of the RGD Peptides containing essentially any one of the designed CGGVACDCRGDCFC (SEQ ID NO: 2) can be used.

상기 조직성장인자 유래 펩타이드는 조직성장인자의 활성영역으로부터 유래된 것을 동정하여 화학적으로 합성한 것을 사용하는데, 구체적으로 (a) 골형성 단백질(bone morphogenetic protein, BMP)-2, 4 및 6의 아미노산서열 중 각각 2-18위치의 아미노산서열[BMP-2의 경우 (서열번호3), BMP-4의 경우(서열번호 4) 및 BMP-6의 경우 (서열번호 5)]; BMP-2의 16-34위치의 아미노산서열 (서열번호 6), 47-71위치의 아미노산서열 (서열번호 7), 73-92위치의 아미노산서열 (서열번호 8), 88-105위치의 아미노산서열 (서열번호 9), 283-302위치의 아미노산서열(서열번호 10), 335-353위치의 아미노산서열(서열번호 11) 및 370-390위치의 아미노산서열(서열번호 12); BMP-4의 74-93위치의 아미노산서열 (서열번호 13), 293-313위치의 아미노산서열(서열번호 14), 360-379위치의 아미노산서열(서열번호 15) 및 382-402위치의 아미노산서열 (서열번호 16); BMP-6의 91-110위치의 아미노산서열 (서열번호 17), 397-418위치의 아미노산서열 (서열번호 18), 472-490위치의 아미노산서열(서열번호 19) 및 487-510위치의 아미노산서열(서열번호 20); 및 BMP-7의 98-117위치의 아미노산서열 서열번호 21), 320-340위치의 아미노산서열(서열번호 22), 390-409위치의 아미노산서열(서열번호 23) 및 405-423위치의 아미노산서열(서열번호 24); The tissue growth factor-derived peptides are those chemically synthesized by identifying those derived from the active region of tissue growth factors. Specifically, (a) amino acids of bone morphogenetic protein (BMP) -2, 4 and 6 Amino acid sequences at positions 2-18 in the sequence [BMP-2 (SEQ ID NO: 3), BMP-4 (SEQ ID NO: 4), and BMP-6 (SEQ ID NO: 5)]; Amino acid sequence at positions 16-34 (SEQ ID NO: 6), amino acid sequence at positions 47-71 (SEQ ID NO: 7), amino acid sequence at positions 73-92 (SEQ ID NO: 8), amino acid sequence at positions 88-105 (SEQ ID NO: 9), amino acid sequence at positions 283-302 (SEQ ID NO: 10), amino acid sequence at positions 335-353 (SEQ ID NO: 11), and amino acid sequence at positions 370-390 (SEQ ID NO: 12); Amino acid sequence at positions 74-93 (SEQ ID NO: 13), amino acid sequence at positions 293-313 (SEQ ID NO: 14), amino acid sequence at positions 360-379 (SEQ ID NO: 15), and amino acid sequence at positions 382-402; (SEQ ID NO: 16); Amino acid sequence at positions 91-110 (SEQ ID NO: 17), amino acid sequence at positions 397-418 (SEQ ID NO: 18), amino acid sequence at positions 472-490 (SEQ ID NO: 19), and amino acid sequence at positions 487-510; (SEQ ID NO: 20); And amino acid sequence SEQ ID NO: 21) at positions 98-117 of BMP-7, amino acid sequence at positions 320-340 (SEQ ID NO: 22), amino acid sequence at positions 390-409 (SEQ ID NO: 23), and amino acid sequence at positions 405-423 (SEQ ID NO: 24);

(b) bone sialoprotein의 62-69위치의 아미노산서열 (서열번호 25), 139-148위치의 아미노산서열 (서열번호 26), 259-277위치의 아미노산서열 (서열번호 27), 199-204위치의 아미노산서열 (서열번호 28), 151-158위치의 아미노산서열 (서열번호 29), 275-291위치의 아미노산서열 (서열번호 30), 20-28위치의 아미노산(서열번호 31), 65-90위치의 아미노산서열 (서열번호 32), 150-170위치의 아미노산(서열번호 33) 및 280-290위치의 아미노산서열 (서열번호 34); (b) amino acid sequence at position 62-69 (SEQ ID NO: 25), amino acid sequence at position 139-148 (SEQ ID NO: 26), amino acid sequence at position 259-277 (SEQ ID NO: 27), position 199-204 Amino acid sequence (SEQ ID NO: 28), amino acid sequence 15-1558 (SEQ ID NO: 29), amino acid sequence 275-291 (SEQ ID NO: 30), amino acid position 20-28 (SEQ ID NO: 31), position 65-90 Amino acid sequence (SEQ ID NO: 32), amino acids 150-170 (SEQ ID NO: 33) and amino acid sequences 280-290 (SEQ ID NO: 34);

(c) 변형성장인자(transforming growth factor)의 242-250위치의 아미노산서열 (서열번호 35), 279-299위치의 아미노산서열 (서열번호 36) 및 343-361위치의 아미노산서열 (서열번호 37); (c) the amino acid sequence of positions 242-250 (SEQ ID NO: 35), the amino acid sequence of positions 279-299 (SEQ ID NO: 36) and the amino acid sequence of positions 343-361 (SEQ ID NO: 37) of the transforming growth factor ;

(d) 혈소판유래 성장인자의 100-120위치의 아미노산서열 (서열번호 38) 및 121-140위치의 아미노산서열 (서열번호 39); (d) amino acid sequences at positions 100-120 (SEQ ID NO: 38) and amino acid sequences 121-140 (SEQ ID NO: 39) of platelet derived growth factors;

(e) 산성 섬유아세포 성장인자(acidic fibroblast growth factor)의 23-31위치의 아미노산서열(서열번호 40) 및 97-105위치의 아미노산서열(서열번호 41); (e) the amino acid sequence at positions 23-31 (SEQ ID NO: 40) and the amino acid sequence at positions 97-105 of the acidic fibroblast growth factor (SEQ ID NO: 41);

(f) 염기성 섬유아세포 성장인자(basic fibroblast growth factor)의 16-27위치의 아미노산서열(서열번호 42), 37-42위치의 아미노산서열(서열번호 43), 78-84위치의 아미노산서열(서열번호 44) 및 107-112위치의 아미노산서열(서열번호 45); (f) the amino acid sequence at positions 16-27 (SEQ ID NO: 42), the amino acid sequence at positions 37-42 (SEQ ID NO: 43), and the amino acid sequence at positions 78-84 of the basic fibroblast growth factor; No. 44) and amino acid sequences 107-112 (SEQ ID NO: 45);

(g) dentin sialoprotein의 255-275위치의 아미노산서열(서열번호 46), 475-494위치의 아미노산서열(서열번호 47) 및 551-573위치의 아미노산서열(서열번호 48); (g) the amino acid sequence of positions 255-275 (SEQ ID NO: 46), amino acid sequence of positions 475-494 (SEQ ID NO: 47) and amino acid sequence of positions 551-573 (SEQ ID NO: 48) of the dentin sialoprotein;

(h) 헤파린 결합 EGF-유사 성장 인자(heparin binding EGF-lke growth factor)의 63-83위치의 아미노산서열(서열번호 49), 84-103위치의 아미노산서열(서열번호 50), 104-116위치의 아미노산서열(서열번호 51) 및 121-140위치의 아미노산서열(서열번호 52); (h) amino acid sequence at position 63-83 (SEQ ID NO: 49), amino acid sequence position 84-103 (SEQ ID NO: 50), 104-116 position of heparin binding EGF-lke growth factor; Amino acid sequence of SEQ ID NO: 51 and amino acid sequence of position 121-140 (SEQ ID NO: 52);

(i) cadherin EGF LAG seven-pass G-type receptor 3의 326-350위치의 아미노산서열(서열번호 53), 351-371위치의 아미노산서열(서열번호 54), 372-400위치의 아미노산서열(서열번호 55), 401-423위치의 아미노산서열(서열번호 56), 434-545위치의 아미노산서열(서열번호 57), 546-651위치의 아미노산서열(서열번호 58), 1375-1433위치의 아미노산서열(서열번호 59), 1435-1471위치의 아미노산서열(서열번호 60), 1475-1514위치의 아미노산서열(서열번호 61), 1515-1719위치의 아미노산서열(서열번호 62), 1764-1944위치의 아미노산서열(서열번호 63) 및 2096-2529위치의 아미노산서열(서열번호 64); 및 (i) the amino acid sequence of positions 326-350 (SEQ ID NO: 53), the amino acid sequence of positions 351-371 (SEQ ID NO: 54), and the amino acid sequence of positions 372-400 of the cadherin EGF LAG seven-pass G-type receptor 3 55), amino acid sequence of positions 401-423 (SEQ ID NO: 56), amino acid sequence of positions 434-545 (SEQ ID NO: 57), amino acid sequence of positions 546-651 (SEQ ID NO: 58), amino acid sequence of positions 1375-1433 (SEQ ID NO: 59), amino acid sequence at position 1435-1471 (SEQ ID NO: 60), amino acid sequence at position 1475-1514 (SEQ ID NO: 61), amino acid sequence at position 1515-1719 (SEQ ID NO: 62), position 1764-1944 Amino acid sequence (SEQ ID NO: 63) and amino acid sequence at positions 2096-2529 (SEQ ID NO: 64); And

(j) osteoblast specific cadherin(OB-cadherin)의 54-159위치의 아미노산서열(서열번호 65), 160-268위치의 아미노산서열(서열번호 66), 269-383위치의 아미노산서열(서열번호 67), 384-486위치의 아미노산서열(서열번호 68) 및 487-612위치의 아미노산서열(서열번호 69)로 구성된 군에서 선택된 어느 하나 이상을 사용하는 것이 바람직하다. 상기 펩타이드는 N-말단에 시스테인 및 CGG, CGGGGG, CEEEEEEE와 같은 스페이서를 부가하여 고정이 용이하도록 하는 것이 더욱 바람직하다.(j) amino acid sequence at position 54-159 (SEQ ID NO: 65), amino acid sequence at position 160-268 (SEQ ID NO: 66), amino acid sequence at position 269-383 (SEQ ID NO: 67) of osteoblast specific cadherin (OB-cadherin); , Amino acid sequence at positions 384-486 (SEQ ID NO: 68) and amino acid sequence at positions 487-612 (SEQ ID NO: 69) is preferably used at least one selected from the group consisting of. More preferably, the peptide is easy to fix by adding a cysteine and a spacer such as CGG, CGGGGG, and CEEEEEEE at the N-terminus.

또한, 아르기닌(arginine)이 풍부하며 친수성을 갖는 상기 세포투과 펩타이드는 서열번호 70 (VSRRRRRRGGRRRR) 또는 서열번호 71(YGRKKRRQRRR) 아미노산서열을 필수적으로 함유하는 펩타이드인 것을 특징으로 할 수 있으나, 이에 국한되는 것은 아니다. 이때, 상기 펩타이드는 N-말단에 시스테인 및 CGG, CGGGGG, CEEEEEEE와 같은 스페이서를 부가하여 고정이 용이하도록 하는 것이 더욱 바람직하다.In addition, the cell penetrating peptide rich in arginine and having hydrophilicity may be characterized in that the peptide is essentially a peptide containing the amino acid sequence of SEQ ID NO: 70 (VSRRRRRRGGRRRR) or SEQ ID NO: 71 (YGRKKRRQRRR), but is not limited thereto. no. At this time, the peptide is more preferably added to the N-terminal cysteine and spacer such as CGG, CGGGGG, CEEEEEEE to facilitate the fixation.

상기 소수성 물질은 탄화수소, 소수성 고분자(폴리카프로락톤 등), 소수성 펩타이드 및 실란으로 구성된 군에서 선택된 어느 하나 이상인 것을 특징으로 할 수 있으나, 이에 국한되는 것은 아니다. The hydrophobic material may be any one or more selected from the group consisting of hydrocarbons, hydrophobic polymers (polycaprolactone, etc.), hydrophobic peptides, and silanes, but is not limited thereto.

본 발명에 있어서, 상기 친수성 생리활성 펩타이드와 소수성 물질의 결합체는 아미드 결합으로 연결되어 있는 것을 특징으로 할 수 있고, 상기 소수성 물질은 상기 친수성 생리활성 펩타이드와의 아미드 결합을 위해 카르복실기 또는 아민기로 수식되어 있는 것을 특징으로 할 수 있다.In the present invention, the combination of the hydrophilic bioactive peptide and the hydrophobic material may be connected by an amide bond, wherein the hydrophobic material is modified with a carboxyl group or an amine group for the amide bond with the hydrophilic bioactive peptide. It can be characterized by.

본 발명에 따른 자기조립 나노구조체는 상기 친수성 생리활성 펩타이드와 소수성 물질의 결합체를 임계 마이셀 농도(CMC) 이상으로 수계에 적용시켜 수득되는 것을 특징으로 할 수 있다.The self-assembled nanostructure according to the present invention may be obtained by applying a conjugate of the hydrophilic bioactive peptide and a hydrophobic material to a water system above a critical micelle concentration (CMC).

이하, 본 발명에 따른 친수성 생리활성 펩타이드와 소수성 물질을 포함한 자기조립 나노구조체에 대해서 상세히 설명한다.Hereinafter, the self-assembled nanostructure including the hydrophilic bioactive peptide and the hydrophobic material according to the present invention will be described in detail.

먼저, 본 발명에 따르는 세포부착 도메인 및 펩타이드 개발하기 위하여, 생리활성 싸이토카인(cytokine)이나 세포내 분화 등의 지표단백질과 결합하는 항체 등에서 활성부위의 아미노산 배열을 분리, 추출하여 이들의 3차원적 구조를 분석한 후 세포와 결합하는 도메인 등을 분리하고 이로부터 조직성장인자유래 펩타이드를 설계한다. 상기 활성 펩타이드는 전체 조직성장인자의 아미노산 배열중 5-15개의 아미노산 배열을 각각 합성하고, 이들을 이용하여 세포 접착력연구 및 활성도, 분화력 등을 시험하여 가장 활성이 높은 아미노산 배열을 선택하고, 이들 펩타이드 말단을 화학적으로 수식한다. 이들 친수성 펩타이드와 결합하게 될 소수성 물질은 폴리카프로락톤 (분자량 2000) 등의 합성고분자, 알라닌과 글리신 및 소수성 아미노산을 포함하는 펩타이드류, 포화탄화수소 물질, 또는 실란 (silane) 등의 물질로 제조된다.First, in order to develop cell adhesion domains and peptides according to the present invention, amino acid sequences of active sites are isolated and extracted from antibodies that bind to indicator proteins such as physiologically active cytokines or intracellular differentiation, and their three-dimensional structure. After analyzing the isolated domains and the like to bind to the cells and to design a tissue growth factor-derived peptide from them. The active peptide synthesizes 5-15 amino acid sequences among the amino acid sequences of the entire tissue growth factor, and selects the most active amino acid sequences by testing cell adhesion, activity, and differentiation using them. The ends are chemically modified. The hydrophobic materials to be bound to these hydrophilic peptides are made of synthetic polymers such as polycaprolactone (molecular weight 2000), peptides containing alanine and glycine and hydrophobic amino acids, saturated hydrocarbon materials, or materials such as silane.

상기 제조된 펩타이드-소수성 결합체를 수계에 적용하고, 이를 Pyrene probe기법 및 전자현미경을 통해서 확인한 결과, 미셀 및 나노섬유 형태의 자기조립된 나노구조체를 형성하였다. The peptide-hydrophobic conjugate prepared above was applied to an aqueous system and confirmed through Pyrene probe technique and electron microscopy. As a result, self-assembled nanostructures in the form of micelles and nanofibers were formed.

본 발명에 따른 나노구조체는 친수성 부분과 소수성부분을 가지는 각각의 분자가 수계에서 특정의 형태로 자기조립되어 형성되므로 다른 표면처리에 비해서 현저히 많은 양의 펩타이드가 단위 구조체에 함유되어 있고 초기 세포와의 상호작용을 현격히 증가시킬 수 있다. 또한 생체재료의 표면에 세포인식 및 세포내 분화단백질 인식성 펩타이드를 효율적으로 부착함으로써 손상된 조직 내에서 세포의 부착, 증식 및 분화를 촉진할 수 있다. 본 발명에 따른 나노구조체를 세포내로 도입 시킬 경우, 세포내 분화 등을 영상화하고, 진단하고 측정하여 최종적으로 조직 재생 복원효율을 최적화할 수 있다. In the nanostructure according to the present invention, since each molecule having a hydrophilic portion and a hydrophobic portion is formed by self-assembly in a specific form in the water system, a significantly larger amount of peptide is contained in the unit structure than other surface treatments, and Can significantly increase interaction. In addition, by effectively attaching cell recognition and intracellular differentiation protein recognition peptides to the surface of the biomaterial can promote the attachment, proliferation and differentiation of cells in the damaged tissue. When the nanostructures according to the present invention are introduced into cells, intracellular differentiation, etc. can be imaged, diagnosed and measured to finally optimize tissue regeneration recovery efficiency.

실시예Example

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예Example 1: 세포인식 및 활성  1: Cell recognition and activity 펩타이드의Peptide 합성 synthesis

고체상 합성방법을 이용하여 펩타이드 자동합성기로 세포인식 및 활성을 갖는 서열번호 6, 17, 70 및 71의 펩타이드를 각각 합성하였다. 즉, 블로킹 그룹(Blocking group)으로 Fmoc-(9-Fluorenylmethoxycarbonyl)이 결합된 Rink resin (0.075mmol/g, 100 ~ 200 mesh, 1% DVB crosslinking)을 사용하여 합성하였으며, 합성기에 50㎎의 Rink resin을 넣은 뒤 DMF로 resin을 스웰링(swelling) 시킨 후 Fmoc-group의 제거를 위해 20% piperidine/DMF 용액을 사용하였다. C말단부터 서열대로 0.5M amino acid 용액(용매: DMF), 1.0M DIPEA(용매: DMF&NMP), 0.5M HBTU (용매: DMF)를 각각 5, 10, 5 당량씩 넣어 질소 기류하에서 1시간 동안 반응시켰다. 상기 디프로텍션(deprotection)과 커플링(coupling) 단계가 끝날 때마다 DMF와 NMP로 두 번씩 세척하는 과정을 거쳤다. 마지막 아미노산을 커플링(coupling) 시킨 후 에도 디프로텍션(deprotection)을 해주어 Fmoc-group을 제거하였다. Using the solid phase synthesis method, peptides of SEQ ID NOs: 6, 17, 70, and 71 having cell recognition and activity were synthesized by peptide autosynthesizers, respectively. In other words, it was synthesized using a Rink resin (0.075 mmol / g, 100 to 200 mesh, 1% DVB crosslinking) combined with Fmoc- (9-Fluorenylmethoxycarbonyl) as a blocking group, and 50 mg of Rink resin in the synthesizer. After swelling the resin with DMF, 20% piperidine / DMF solution was used to remove the Fmoc-group. From the terminal C, 0.5M amino acid solution (solvent: DMF), 1.0M DIPEA (solvent: DMF & NMP), and 0.5M HBTU (solvent: DMF) were added at 5, 10, and 5 equivalents, respectively, for 1 hour under a nitrogen stream. I was. Each time the deprotection and coupling steps were completed, washing was performed twice with DMF and NMP. Fmoc-group was removed by deprotection even after the last amino acid was coupled (coupling).

합성의 확인은 닌하이드린 테스트(ninhydrin test) 방법을 이용하였고, 테스트를 거치고 합성이 완료된 resin은 THF나 DCM으로 건조시킨 후 TFA cleavage cocktail을 resin 1g당 20ml의 비율로 넣어 3시간 shaking 시킨 후 필터링을 통해 resin 과 펩타이드가 녹아 있는 cocktail을 분리하였다. 필터로 걸러진 용액을 진공증발농축기(rotary evaporator)를 이용하여 제거한 후 콜드 에테르(cold ether)를 넣어주거나 펩타이드가 녹아있는 TFA cocktail용액에 직접 콜드 에테르를 과량 넣어주어 펩타이드를 고체상으로 결정화시키고 이를 원심분리하여 분리해내었다. 이때 에테르로 여러 번 세척과 원심분리 과정을 거쳐 TFA cocktail을 완전히 제거하였다. 이렇게 해서 얻어진 펩타이드는 증류수에 녹여 동결건조하였다. 합성된 펩타이드는 증류수에 녹인 후 MALDI-TOF를 이용하여 분자량을 측정함으로써 그 합성을 확인하였다. 이외의 서열번호 1-5, 7-16 및 18-69의 펩타이드 역시 상기와 동일한 방법으로 합성할 수 있다.Synthesis was confirmed using the ninhydrin test method. After the test was completed, the synthesized resin was dried with THF or DCM, and TFA cleavage cocktail was added at a rate of 20 ml per 1g of resin. Through the cocktail was dissolved resin and peptide dissolved. The filtered solution was removed using a rotary evaporator, and then cold ether was added or an excessive amount of cold ether was directly added to the TFA cocktail solution in which the peptide was dissolved to crystallize the peptide into a solid phase. Separated. At this time, the TFA cocktail was completely removed by washing and centrifuging with ether several times. The peptide thus obtained was dissolved in distilled water and lyophilized. The synthesized peptide was dissolved in distilled water, and then its synthesis was confirmed by measuring molecular weight using MALDI-TOF. Other peptides of SEQ ID NOs: 1-5, 7-16 and 18-69 can also be synthesized in the same manner as above.

YVPKPCCAPTKLNAISVLYF(OPD1): BMP6에 근원을 둠(서열번호 17; 도 1a)YVPKPCCAPTKLNAISVLYF (OPD1): originated in BMP6 (SEQ ID NO: 17; FIG. 1A)

SDVGWNDWIVAPPGYHA(OPD2): BMP2에 근원을 둠(서열번호 6; 도 1c)SDVGWNDWIVAPPGYHA (OPD2): sourced in BMP2 (SEQ ID NO: 6; FIG. 1C)

VSRRRRRRGGRRRR(LMWP): 서열번호 70VSRRRRRRGGRRRR (LMWP): SEQ ID NO: 70

YGRKKRRQRRR(TAT): 서열번호 71YGRKKRRQRRR (TAT): SEQ ID NO: 71

실시예Example 2: 활성  2: active 펩타이드의Peptide 구조를 안정화하기 위한 수식과정 Formula to stabilize the structure

구조 안정화를 위하여 실시예 1에서 제조된 펩타이드(OPD1, OPD2, LMWP, TAT)의 N-말단에 시스테인(CGG)을 첨가하였다(OPD1: CGGYVPKPCCAPTKLNAISVLYF, OPD2: CGGSDVGWNDWIVAPPGYHA). 합성된 활성 펩타이드는 소수성 물질을 결합시키기 위해 사용하였으며, 이를 NMR 등을 통해 확인하고 분자량등은 MALDI-TOF나 GPC를 활용하여 측정하였다.Cysteine (CGG) was added to the N-terminus of the peptides prepared in Example 1 (OPD1, OPD2, LMWP, TAT) for structural stabilization (OPD1: CGGYVPKPCCAPTKLNAISVLYF, OPD2: CGGSDVGWNDWIVAPPGYHA). The synthesized active peptide was used to bind the hydrophobic material, it was confirmed by NMR, and the molecular weight was measured using MALDI-TOF or GPC.

실시예Example 3: 친수성 생리활성  3: hydrophilic bioactivity 펩타이드와Peptides and 소수성 물질의 합성 Synthesis of Hydrophobic Materials

실시예 2에서 제조된 펩타이드의 N-말단에 시스테인(CGG)이 부가된 친수성 생리활성 펩타이드 OPD1 및 OPD2에 탄소 수 16개의 소수성 포화탄화수소 물질을 팔미트산(palmitic acid)을 이용하여 결합시켰다(alkyl OPD1 및 alkyl OPD2). 이때 결합의 방법을 용이하게 하기 위해 상기 소수성 포화탄화수소 물질의 말단에 카르복실 군(carboxly group)을 갖는 물질인 팔미트산(palmitic acid)을 이용하여, 상기 친수성 펩타이드의 N말단의 아민기와 아마이드 결합을 하도록 하였다. 결합 방법은 실시예 1의 아미노산의 결합방법과 동일하되 그 반응시간은 3배로 하였다. 합성된 소수성 말단을 갖는 펩타이드는 증류수에 녹인 후 MALDI-TOF를 이용하여 분자량을 측정함으로써 그 합성을 확인하였다. The hydrophilic physiologically active peptides OPD1 and OPD2 having cysteine (CGG) added to the N-terminus of the peptide prepared in Example 2 were bonded to the hydrophobic saturated hydrocarbon material having 16 carbon atoms using palmitic acid (alkyl OPD1 and alkyl OPD2). At this time, in order to facilitate the method of binding, palmitic acid, which is a substance having a carboxyl group at the end of the hydrophobic saturated hydrocarbon material, is used, and the amine group and the amide bond of the N terminal of the hydrophilic peptide are used. To be. The binding method was the same as the amino acid binding method of Example 1, but the reaction time was three times. The synthesized peptide having hydrophobic ends was dissolved in distilled water, and then its synthesis was confirmed by measuring molecular weight using MALDI-TOF.

Figure 112006011989974-PAT00001
Figure 112006011989974-PAT00001

도 1b 및 도 1d는 친수성 생리 활성 펩타이드에 소수성 물질을 결합시킨 3D구조를 나타낸 것이다.1B and 1D show a 3D structure in which a hydrophobic substance is bound to a hydrophilic bioactive peptide.

실험예Experimental Example 1: 친수성  1: hydrophilic 펩타이드Peptide -소수성 결합체의 자기조립에 의한 나노 구조체 형성 및 그Nanostructure formation by self-assembly of hydrophobic conjugates and its 확인Confirm

실시예 2에서 제조된 N-말단에 시스테인(CGG)이 부가된 OPD2와 실시예 3에서 제조된 친수성 펩타이드-소수성 결합체(alkyl OPD2)를 수계에 적용하여 이들이 자기조립으로 미셀(micelle) 및 나노섬유 형태의 나노구조체를 이루는지를 Pyrene을 이용하여 확인하였다. 1.0mg/ml부터 1.0×10-5mg/ml까지 6.0×10-6M Pyrene 용액(용매 -증류수)을 이용 10배씩 희석하여 그 용액의 형광도를 측정하였다. 농도에 따른 형광도의 그래프를 그려보았을 때 형광도가 급격히 변화하는 농도가 자기조립에 의한 미셀(micelle)이 형성되는 최소농도를 나타내는 것이며 이를 도 2에 나타내었다. 그래프를 통해 찾아낸 CMC(임계 마이셀 농도; 마이셀 형성이 시작되는 농도)는 0.1㎎/㎖로 나타났으며, 이는 OPD1도 약간의 변화를 보이나 alkyl OPD2는 확연히 변화하므로 상기 농도에서 마이셀을 형성하는 것을 나타낸다. 결과적으로, 상기 친수성 펩타이드-소수성 결합체는 임계 마이셀 농도 이상으로 수계에 적용하면 자기조립에 의해 나노구조체므로, 이하 실험에서는 펩타이드-소수성 결합체를 CMC 농도 이상으로 하였다.OPD2 with cysteine (CGG) added to the N-terminus prepared in Example 2 and the hydrophilic peptide-hydrophobic conjugate (alkyl OPD2) prepared in Example 3 were applied to the aqueous system, and these were self-assembled to micelles and nanofibers. It was confirmed using Pyrene to form a nanostructure of the form. The fluorescence of the solution was measured by diluting 10 times with a 1.0 × 10 −6 M Pyrene solution (solvent-distilled water) from 1.0 mg / ml to 1.0 × 10 −5 mg / ml. When a graph of fluorescence according to the concentration is drawn, the concentration of which the fluorescence changes rapidly represents the minimum concentration at which micelles are formed by self-assembly, which is shown in FIG. 2. The CMC (critical micelle concentration; concentration at which micelle formation begins) was found to be 0.1 mg / ml, indicating that OPD1 was slightly changed but alkyl OPD2 was notably changed, thus forming micelle at this concentration. . As a result, since the hydrophilic peptide-hydrophobic conjugate is nanostructured by self-assembly when applied to the aqueous system at a critical micelle concentration or higher, the peptide-hydrophobic conjugate was made to have a CMC concentration or higher in the following experiment.

실험예Experimental Example 2: 친수성  2: hydrophilic 펩타이드와Peptides and 소수성 물질로 이루어진 나노구조체의  Of nanostructures made of hydrophobic materials 세포내Intracellular 신호전달 Signaling

실시예 2에서 제조된 친수성 생리 활성 펩타이드 OPD1 및 OPD2와, 실시예 3에서 제조된 친수성 펩타이드-소수성 결합체 alkyl OPD1 및 alkyl OPD2가 세포내의 어떤 신호전달체계를 활성화시키는지 확인하기 위해, 세포표면의 인테그린(integrin)을 통한 Focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK)와 BMP의 신호전달에 관여하는 Smad의 활성화를 측정하였다. HOS cell(한국세포주은행, KCLB No.21543)를 배양하여 24시간 동안 starvation 시킨 후, 각각 펩타이드 및 결합체를 증류수에 녹여 1mg 처리한 후 30분 동안 배양하여 웨스턴블랏으로 그 활성을 확인하였다. 이때 alkyl OPD1 및 alkyl OPD2는 증류수에 녹임으로써 자기조립 나노구조체를 형성하게 된다. 그 후 배지를 제거하고 PBS pH 7.4 용액으로 세척한 후 세포라이시스 버퍼(cell lysis buffer) 60㎕와 단백질분해효소 억제제(100X protease inhibitor), 인산화 억제제(100X phosphatase inhibitor) 및 0.1M PMSF을 6㎕씩 첨가하여 세포를 스크래핑(scrapping)하였다. 세포내의 단백질 양을 측정하기 위해서 BSA 용액을 standard로 사용하고 bradford 법을 이용하였으며, 모든 샘플의 단백질용액을 브롬페놀 블루(bromophenol blue)가 첨가된 5X dye를 1:4의 비율로 넣은 뒤 1X dye로 각각의 sample의 농도를 같게 희석해주었다. 각 샘플을 SDS-PAGE하고 나이트로 셀룰로오스 멤브레인에 전개시켰다. 5% skim milk/TBS-T 용액으로 1시간동안 블로킹(blocking)하고, primary antibody를 1:1000의 비율의 5% BSA/TBS-T 용액으로 4시간 동안 실온에서 반응시켰다. secondary antibody는 1:2000의 비율의 5% skim milk/TBS-T 용액에 넣어 반응시킨 후 멤브레인을 ECL 용액에 넣어 반응시키고, X-ray film에 노출시킨 후 developing 하였다. X-ray film에 나타난 밴드의 두께를 측정하여 그 활성화 정도를 비교하였다. Integrins on the cell surface to confirm which signaling systems in cells activated by the hydrophilic bioactive peptides OPD1 and OPD2 prepared in Example 2 and the hydrophilic peptide-hydrophobic conjugates alkyl OPD1 and alkyl OPD2 prepared in Example 3 The activation of Smad involved in Focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK) and BMP signaling through integrin was measured. After culturing HOS cells (Korea Cell Line Bank, KCLB No.21543) for 24 hours, the peptides and conjugates were dissolved in distilled water, treated with 1mg, and then cultured for 30 minutes. At this time, alkyl OPD1 and alkyl OPD2 are dissolved in distilled water to form self-assembled nanostructures. Subsequently, the medium was removed, washed with PBS pH 7.4 solution, 60 μl of cell lysis buffer, 100X protease inhibitor, 100X phosphatase inhibitor, Cells were scraped by adding 6 μl of 0.1 M PMSF. In order to measure the amount of protein in cells, BSA solution was used as a standard and bradford method. Protein solution of all samples was added with bromine phenol blue (5X dye) in a ratio of 1: 4 and then 1X dye. Each sample was diluted equally. Each sample was SDS-PAGE and developed on nitrocellulose membrane. After blocking for 1 hour with 5% skim milk / TBS-T solution, the primary antibody was reacted with 5% BSA / TBS-T solution in a ratio of 1: 1000 at room temperature for 4 hours. The secondary antibody was reacted in a 5% skim milk / TBS-T solution at a ratio of 1: 2000, and then reacted by adding the membrane in an ECL solution, exposing it to an X-ray film, and developing it. The thickness of the bands on the X-ray film was measured and their activation levels were compared.

도 3은 상기 ERK 와 FAK의 활성화 정도를 무처리(no treated), OPD1, alkyl OPD1, OPD2, alkyl OPD2의 순으로 확인한 것으로, 무처리군에 비해 친수성 생리활성 펩타이드 및 친수성 펩타이드-소수성 결합체의 활성이 좋았으며, 친수성 생리활성 펩타이드와 친수성 펩타이드-소수성 결합체의 활성은 근소한 차이는 있으나 거의 유사하게 나타났다.Figure 3 shows the activation of the ERK and FAK in the order of no treatment (no treated), OPD1, alkyl OPD1, OPD2, alkyl OPD2, the hydrophilic bioactive peptide and hydrophilic peptide-hydrophobic conjugate activity compared to the untreated group The activity of the hydrophilic bioactive peptide and the hydrophilic peptide-hydrophobic conjugate was almost similar, although there was a slight difference.

실험예Experimental Example 3: 친수성  3: hydrophilic 펩타이드와Peptides and 소수성 물질로 이루어진 나노구조체의 세포부착력 실험 Cell adhesion test of nanostructures made of hydrophobic materials

실시예 1에서 제조된 친수성 생리 활성 펩타이드 OPD1 및 OPD2와, 실시예 3에서 제조된 친수성 펩타이드-소수성 결합체 alkyl OPD1 및 alkyl OPD2에 대한 HOS cell(한국세포주은행, KCLB No.21543)의 부착력을 실험하기 위해 상기 각각의 펩타 이드 및 결합체를 4well chamber에 코팅한 후 세포를 1시간 동안 배양하여 그 부착력을 확인하였다. 이때, 결합체 alkyl OPD1 및 alkyl OPD2는 배지에서 자기조립 나노구조체를 형성하였다. 배지를 모두 제거한 후 PBS pH7.4로 washing 한 후 세포핵과 세포질을 염색하여 세포의 부착형태를 형광현미경으로 관찰하였다(도 4).To test the adhesion of HOS cells (Korea Cell Line Bank, KCLB No.21543) to the hydrophilic physiologically active peptides OPD1 and OPD2 prepared in Example 1 and the hydrophilic peptide-hydrophobic conjugates alkyl OPD1 and alkyl OPD2 prepared in Example 3 In order to coat each of the peptides and conjugates in a 4well chamber, cells were cultured for 1 hour to confirm their adhesion. At this time, the conjugate alkyl OPD1 and alkyl OPD2 formed a self-assembled nanostructure in the medium. After removing all of the medium, washed with PBS pH7.4 and stained the nucleus and cytoplasm was observed by the fluorescent microscope of the cell adhesion form (Fig. 4).

그 결과, 도 4에 나타난 바와 같이, OPD1, OPD2, alkyl OPD1, alkyl OPD2 모두 NT에 비해 좋은 세포 부착력을 갖는 것으로 나타났으며, OPD1 보다는 OPD2의 경우가 조금 더 좋은 것으로 나타났고, 소수성 물질을 갖는 alkyl OPD1과 alkyl OPD2가 OPD1이나 OPD2와 비교했을 때 세포부착력에 차이가 없는 것으로 나타났다. As a result, as shown in Figure 4, OPD1, OPD2, alkyl OPD1, alkyl OPD2 all have a good cell adhesion compared to NT, OPD2 was found to be slightly better than OPD1, having a hydrophobic material Alkyl OPD1 and alkyl OPD2 showed no difference in cell adhesion when compared to OPD1 or OPD2.

실험예Experimental Example 4: 4: 친수성 Hydrophilic 펩타이드Peptide -소수성 결합체의 Of hydrophobic conjugates 골아세포Osteoblast 분화능Eruption 실험 Experiment

실시예 1에서 제조된 친수성 생리 활성 펩타이드 OPD1 및 OPD2와, 실시예 3에서 제조된 친수성 펩타이드-소수성 결합체 alkyl OPD1 및 alkyl OPD2가 HOS cell(한국세포주은행, KCLB No.21543)의 골아세포로 분화에 미치는 영향을 알아보기 위해 상기 각각의 펩타이드와 결합체를 배지에 첨가하여 2주간 배양한 후 칼세인(calcein)의 생성 정도를 관찰하였다. 이때 결합체 alkyl OPD1 및 alkyl OPD2는 배지에서 자기조립 나노구조체를 형성하였다. 배양한 세포를 10% NBF 용액으로 고정하고, PBS pH 7.4 용액으로 세척한 후 세포의 핵과 세포질을 Naphthol/ FRV / water 2: 1: 1 용액으로 염색한 다음, PBS pH 7.4 용액으로 세척하고 현미경으로 확인하였다 (도 5). The hydrophilic physiologically active peptides OPD1 and OPD2 prepared in Example 1, and the hydrophilic peptide-hydrophobic conjugate alkyl OPD1 and alkyl OPD2 prepared in Example 3, were differentiated into osteoblasts of HOS cells (Korea Cell Line Bank, KCLB No.21543). In order to determine the effect, each of the peptides and the conjugate was added to the medium and cultured for 2 weeks, and then the degree of generation of calcein (calcein) was observed. At this time, the conjugate alkyl OPD1 and alkyl OPD2 formed self-assembled nanostructures in the medium. The cultured cells were fixed with 10% NBF solution, washed with PBS pH 7.4 solution, stained nuclei and cytoplasm with Naphthol / FRV / water 2: 1: 1 solution, washed with PBS pH 7.4 solution, and It was confirmed (FIG. 5).

그 결과, 도 5에서 나타난 바와 같이, 골아세포 분화능은 OPD1의 경우보다 alkyl OPD1의 경우가 더 좋았으며, OPD2의 경우에는 alkyl OPD2와 비슷한 것으로 나타났다. 이들 역시 모든 경우 NT보다 골아세포 분화능이 뛰어난 것으로 나타났다.As a result, as shown in Figure 5, osteoblast differentiation ability was better in the case of alkyl OPD1 than in the case of OPD1, it was shown that similar to alkyl OPD2 in the case of OPD2. They also showed better osteoblast differentiation than NT in all cases.

실험예Experimental Example 5: 자기조립 나노구조체의 유전자  5: Genes of Self-Assembled Nanostructures 발현능Expression ability 실험 Experiment

실시예 1에서 제조된 친수성 생리 활성 펩타이드 OPD1 및 OPD2와, 실시예 2에서 제조된 친수성 펩타이드-소수성 결합체 alkyl OPD1 및 alkyl OPD2가 HOS cell(한국세포주은행, KCLB No.21543)의 유전자 발현에 미치는 영향을 알아보기 위해 culture dish 와 non-treated culture dish에 펩타이드와 소수성 물질을 갖는 생리활성 펩타이드 수용액을 코팅한 후 그 dish에 HOS cell을 일주일간 배양하였다. 배지를 제거하고 PBS pH 7.4 용액으로 세척한 후 세포에서 RNA를 추출하였다.추출한 RNA를 이용하여 골아세포가 분화되면서 발현되는 특징적인 단백질인 collagen type I 의 primer를 처리하여 PCR 하였다. 그 발현 결과를 알아보기 위해 2% agarose gel을 이용하여 전기 영동한 후 EtBr에 염색하고 UV를 이용하여 그 단백질의 발현을 확인하였다 (도 6). 그 결과, 도 6에 나타난 바와 같이, 발현능은 모든 경우 NT보다 발현능이 좋은 것으로 나타났으며, 나머지 OPD1, alkyl OPD1, OPD2 및 alkyl OPD2은 유사한 것으로 나타났다.Effects of the hydrophilic bioactive peptides OPD1 and OPD2 prepared in Example 1 and the hydrophilic peptide-hydrophobic conjugate alkyl OPD1 and alkyl OPD2 prepared in Example 2 on the gene expression of HOS cells (Korea Cell Line Bank, KCLB No.21543) To find out, the aqueous and non-treated culture dishes were coated with aqueous solution of physiologically active peptides containing peptides and hydrophobic substances, and then HOS cells were incubated for one week. After removing the medium and washing with PBS pH 7.4 solution, RNA was extracted from the cells. PCR was performed using the extracted RNA by treating primers of collagen type I, a characteristic protein expressed as the osteoblasts differentiated. In order to determine the expression results, after electrophoresis using 2% agarose gel was stained on EtBr and confirmed the expression of the protein using UV (Fig. 6). As a result, as shown in Figure 6, the expression capacity was found to be better than the NT in all cases, the remaining OPD1, alkyl OPD1, OPD2 and alkyl OPD2 was found to be similar.

실험예Experimental Example 6:  6: 세포내Intracellular 진단을 위한 나노구조체의 세포  Cells of Nanostructures for Diagnostics 투과력Penetration

실시예 1에서 제조된 펩타이드(LMWP; 서열번호 70, TAT; 서열번호 71)에 형 광물질인 FITC를 표지한 후 실시예 2 및 3과 동일한 방법으로 친수성 펩타이드-소수성 물질 결합체를 수득하고, 배양한 HOS cell배양액에 표지된 상기 결합체 수용액을 넣었다. 이때, 결합체는 수용액상태에서 자기조립되어 나노구조체를 형성한다. 60분 후 세포를 고정하고 confocal microscopy를 이용하여 세포투과력을 확인하였다 (도 7).Hydrophilic peptide-hydrophobic substance conjugate was obtained and cultured in the same manner as in Examples 2 and 3 after labeling the FITC as a fluorescent substance to the peptide prepared in Example 1 (LMWP; SEQ ID NO: 70, TAT; SEQ ID NO: 71) The conjugated aqueous solution labeled with HOS cell culture was added. In this case, the binder is self-assembled in the aqueous solution to form a nanostructure. After 60 minutes, the cells were fixed and cell permeability was confirmed using confocal microscopy (FIG. 7).

그 결과, 도 7에서 나타난 바와 같이, LMWP가 TAT에 비해 세포 투과 능력이 좋은 것으로 나타났으며, 형광물질인 FITC 용액만을 처리한 NT의 경우에는 핵만 관찰되는 것으로 보아 LMWP와 TAT가 세포 투과를 돕는 것을 알 수 있었다.As a result, as shown in FIG. 7, LMWP showed better cell permeability than TAT, and in the case of NT treated only with a fluorescent FITC solution, only nuclei were observed, so LMWP and TAT helped cell permeation. I could see that.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. 본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents. Simple modifications and variations of the present invention can be readily used by those skilled in the art, and all such variations or modifications can be considered to be included within the scope of the present invention.

본 발명은 친수성 생리활성 펩타이드와 소수성 물질의 결합체가 자기조립(self-assembly) 되어 있는 나노구조체를 제공하는 효과가 있다. 본 발명에 따른 나노구조체는 친수성 부분과 소수성부분을 가지는 각각의 분자가 수계에서 모여서 특정의 형태로 자기조립되어 형성되므로 다른 표면처리에 비해서 현저히 많은 양의 펩타이드가 단위 구조체에 함유되어 있고 초기 세포와의 상호작용을 현격히 증가시킬 수 있으며, 생체재료의 표면에 세포인식 및 세포내 분화단백질 인식성 펩타이드를 효율적으로 부착함으로써 손상된 조직 내에서 세포의 부착, 증식 및 분화를 촉진할 수 있다. 또한, 상기 나노구조체를 세포내로 도입시킬 경우, 세포내 분화 등을 영상화하고, 진단하고 측정하여 최종적으로 조직재생 복원효율을 최적화할 수 있는 장점이 있다. 특히, 조직재생효과를 연구하기 위해 기존에는 적용된 재료자체와 주변 조직, 세포와의 상호작용에 의한 재생효과인지 확인하기 어려웠으나, 본 발명에 따른 나노구조체를 세포내로 도입할 경우, 진단이 가능하므로 최종적으로 적용된 재료에 의한 세포 분화력 진단 및 치료효과를 동시에 발휘할 수 있다.The present invention has the effect of providing a nanostructure in which a combination of a hydrophilic bioactive peptide and a hydrophobic material is self-assembly. In the nanostructure according to the present invention, since each molecule having a hydrophilic portion and a hydrophobic portion is formed by self-assembly in a specific form by gathering in an aqueous system, a significantly larger amount of peptide is contained in the unit structure than other surface treatments, and Can significantly increase the interaction of the cells, and by effectively attaching the cell recognition and intracellular differentiation protein recognition peptide to the surface of the biomaterial can promote the attachment, proliferation and differentiation of cells in the damaged tissue. In addition, when the nanostructure is introduced into a cell, intracellular differentiation, etc. may be imaged, diagnosed, and measured to finally optimize tissue regeneration recovery efficiency. In particular, in order to study the tissue regeneration effect, it was difficult to determine whether the existing regeneration effect by the interaction between the applied material itself, surrounding tissues, and cells, but when the nanostructure according to the present invention is introduced into the cell, diagnosis is possible. Finally, the cell differentiation diagnosis and treatment effect by the applied material can be exerted simultaneously.

<110> Seoul National University Industry Foundation <120> Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials <130> P06-B019 <160> 71 <170> KopatentIn 1.71 <210> 1 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> RGD containing peptide <400> 1 Cys Gly Gly Arg Gly Asp Ser 1 5 <210> 2 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> RGD containing peptide <400> 2 Cys Gly Gly Val Ala Cys Asp Cys Arg Gly Asp Cys Phe Cys 1 5 10 <210> 3 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 3 Ala Lys His Lys Gln Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg His 1 5 10 15 Pro <210> 4 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 4 Cys Ser Pro Lys His His Pro Gln Arg Ser Arg Lys Lys Asn 1 5 10 <210> 5 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 5 Cys Ser Ser Arg Lys Lys Asn Lys Asn Cys Arg Arg His 1 5 10 <210> 6 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 6 Ser Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr His 1 5 10 15 Ala <210> 7 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 7 Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Ala Ile 1 5 10 15 Val Gln Thr Leu Val Asn Ser Val Asn 20 25 <210> 8 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 8 Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser 1 5 10 15 Met Leu Tyr Leu 20 <210> 9 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 9 Ser Met Leu Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys Asn Tyr 1 5 10 15 Gln Asp <210> 10 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide BMP-2 <400> 10 Gln Ala Lys His Lys Gln Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg 1 5 10 15 His Pro Leu Tyr 20 <210> 11 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 11 Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser 1 5 10 15 Met Leu Tyr Leu 20 <210> 12 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-7 <400> 12 Ser Met Leu Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys Asn Tyr 1 5 10 15 Gln Asp Met Val Val 20 <210> 13 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 13 Ser Ser Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile 1 5 10 15 Ser Met Leu Tyr Leu 20 <210> 14 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprptein <400> 14 Pro Lys His His Ser Gln Arg Ala Arg Lys Lys Asn Lys Asn Cys Arg 1 5 10 15 Arg His Ser Leu Tyr 20 <210> 15 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 15 Ser Ser Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile 1 5 10 15 Ser Met Leu Tyr Leu 20 <210> 16 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 16 Ser Met Leu Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr 1 5 10 15 Gln Glu Met Val Val 20 <210> 17 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 17 Tyr Val Pro Lys Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser 1 5 10 15 Val Leu Tyr Phe 20 <210> 18 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 18 Val Ser Ser Ala Ser Asp Tyr Asn Ser Ser Glu Leu Lys Thr Ala Cys 1 5 10 15 Arg Lys His Glu Leu Tyr 20 <210> 19 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 19 Tyr Val Pro Lys Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser 1 5 10 15 Val Leu Tyr Phe 20 <210> 20 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 20 Ser Val Leu Tyr Phe Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr 1 5 10 15 Arg Asn Met Val Val Arg Ala Cys 20 <210> 21 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Partial sequence of BMP-7 <400> 21 Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser 1 5 10 15 Val Leu Tyr Phe 20 <210> 22 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Partial peptide of BMP-7 <400> 22 Glu Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu 1 5 10 15 Tyr Val Ser Phe Arg 20 <210> 23 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-7 <400> 23 Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser 1 5 10 15 Val Leu Tyr Phe 20 <210> 24 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-7 <400> 24 Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr 1 5 10 15 Arg Asn Met <210> 25 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 25 Glu Glu Glu Gly Glu Glu Glu Glu 1 5 <210> 26 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 26 Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu 1 5 10 <210> 27 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 27 Tyr Glu Thr Tyr Asp Glu Asn Asn Gly Glu Pro Arg Gly Asp Thr Tyr 1 5 10 15 Arg Ile <210> 28 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 28 Glu Glu Gly Glu Glu Glu 1 5 <210> 29 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 29 Glu Glu Glu Glu Glu Glu Glu Glu 1 5 <210> 30 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 30 Tyr Glu Ile Tyr Glu Ser Glu Asn Gly Glu Pro Arg Gly Asp Asn Tyr 1 5 10 15 Arg <210> 31 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 31 Lys Asn Leu His Arg Arg Val Lys Ile 1 5 <210> 32 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 32 Asp Ser Ser Glu Glu Asn Gly Asp Asp Ser Ser Glu Glu Glu Glu Glu 1 5 10 15 Glu Glu Glu Thr Ser Asn Glu Gly Glu Asn 20 25 <210> 33 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 33 Asp Glu Glu Glu Glu Glu Glu Glu Glu Gly Asn Glu Asn Glu Glu Ser 1 5 10 15 Glu Ala Glu Val Asp 20 <210> 34 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 34 Ser Glu Asn Gly Glu Pro Arg Gly Asp Asn Tyr 1 5 10 <210> 35 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of TGF <400> 35 Thr Gly Arg Arg Gly Asp Leu Ala Thr 1 5 <210> 36 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of TGF <400> 36 Arg Ala Leu Asp Thr Asn Tyr Cys Phe Ser Ser Thr Glu Lys Asn Cys 1 5 10 15 Cys Val Arg Gln Leu 20 <210> 37 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of TGF <400> 37 Leu Tyr Asn Gln His Asn Pro Gly Ala Ser Ala Ala Pro Cys Cys Val 1 5 10 15 Pro Gln Ala <210> 38 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of PDGF <400> 38 Cys Glu Thr Val Ala Ala Ala Arg Pro Val Thr Arg Ser Pro Gly Gly 1 5 10 15 Ser Gln Glu Gln Arg 20 <210> 39 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of PDGF <400> 39 Ala Lys Thr Pro Gln Thr Arg Val Thr Ile Arg Thr Val Arg Val Arg 1 5 10 15 Arg Pro Pro Lys 20 <210> 40 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of AFGF <400> 40 Tyr Lys Lys Pro Lys Leu Leu Tyr Cys 1 5 <210> 41 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of AFGF <400> 41 Ile Ser Lys Lys His Ala Glu Lys 1 5 <210> 42 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 42 Gly His Phe Lys Asp Pro Lys Arg Leu Tyr Cys Lys 1 5 10 <210> 43 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 43 Pro Asp Gly Arg Val Asp 1 5 <210> 44 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 44 Lys Glu Asp Gly Arg Leu Leu 1 5 <210> 45 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 45 Tyr Arg Ser Arg Lys Tyr 1 5 <210> 46 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of dentin sialoprotein <400> 46 Glu Asp Glu Gly Ser Gly Asp Asp Glu Asp Glu Glu Ala Gly Asn Gly 1 5 10 15 Lys Asp Ser Ser Asn 20 <210> 47 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of dentin sialoprotein <400> 47 Asp Asp Ala Asn Ser Glu Ser Asp Asn Asn Ser Ser Ser Arg Gly Asp 1 5 10 15 Ala Ser Tyr Asn 20 <210> 48 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of dentin sialoprotein <400> 48 Asp Ser Asp Ser Ser Asp Ser Ser Asn Ser Ser Asp Ser Ser Asp Ser 1 5 10 15 Ser Asp Ser Asp Ser Ser Asp 20 <210> 49 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 49 Asp Leu Gln Glu Ala Asp Leu Ala Leu Leu Arg Val Thr Leu Ser Ser 1 5 10 15 Lys Pro Gln Ala Leu Ala 20 <210> 50 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 50 Ala Thr Pro Asn Lys Glu Glu His Gly Lys Arg Lys Lys Lys Gly Lys 1 5 10 15 Gly Leu Gly Lys 20 <210> 51 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 51 Lys Arg Asp Pro Cys Leu Arg Lys Tyr Lys Asp Phe Cys 1 5 10 <210> 52 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 52 Cys Lys Tyr Val Lys Glu Leu Arg Ala Pro Ser Cys Ile Cys His Pro 1 5 10 15 Gly Tyr His Gly 20 <210> 53 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 53 Pro Gln Tyr Asn Tyr Gln Thr Leu Val Pro Glu Asn Glu Ala Ala Gly 1 5 10 15 Thr Ala Val Leu Arg Val Val Ala Gln 20 25 <210> 54 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 54 Asp Pro Asp Ala Gly Glu Ala Gly Arg Leu Val Tyr Ser Leu Ala Ala 1 5 10 15 Leu Met Asn Ser Arg 20 <210> 55 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 55 Ser Leu Glu Leu Phe Ser Ile Asp Pro Gln Ser Gly Leu Ile Arg Thr 1 5 10 15 Ala Ala Ala Leu Asp Arg Glu Ser Met Glu Arg His Tyr 20 25 <210> 56 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 56 Leu Arg Val Thr Ala Gln Asp His Gly Ser Pro Arg Leu Ser Ala Thr 1 5 10 15 Thr Met Val Ala Val Thr Val 20 <210> 57 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 57 Glu Gln Ala Gln Tyr Arg Glu Thr Leu Arg Glu Asn Val Glu Glu Gly 1 5 10 15 Tyr Pro Ile Leu Gln Leu Arg Ala Thr Asp Gly Asp Ala Pro Pro Asn 20 25 30 Ala Asn Leu Arg Tyr Arg Phe Val Gly Pro Pro Ala Ala Arg Ala Ala 35 40 45 Ala Ala Ala Ala Phe Glu Ile Asp Pro Arg Ser Gly Leu Ile Ser Thr 50 55 60 Ser Gly Arg Val Asp Arg Glu His Met Glu Ser Tyr Glu Leu Val Val 65 70 75 80 Glu Ala Ser Asp Gln Gly Gln Glu Pro Gly Pro Arg Ser Ala Thr Val 85 90 95 Arg Val His Ile Thr Val Leu Asp Glu Asn Asp Asn Ala Pro Gln Phe 100 105 110 <210> 58 <211> 106 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 58 Ser Glu Lys Arg Tyr Val Ala Gln Val Arg Glu Asp Val Arg Pro His 1 5 10 15 Thr Val Val Leu Arg Val Thr Ala Thr Asp Arg Asp Lys Asp Ala Asn 20 25 30 Gly Leu Val His Tyr Asn Ile Ile Ser Gly Asn Ser Arg Gly His Phe 35 40 45 Ala Ile Asp Ser Leu Thr Gly Glu Ile Gln Val Val Ala Pro Leu Asp 50 55 60 Phe Glu Ala Glu Arg Glu Tyr Ala Leu Arg Ile Arg Ala Gln Asp Ala 65 70 75 80 Gly Arg Pro Pro Leu Ser Asn Asn Thr Gly Leu Ala Ser Ile Gln Val 85 90 95 Val Asp Ile Asn Asp His Ile Pro Ile Phe 100 105 <210> 59 <211> 59 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 59 Asp Asp Asn Val Cys Leu Arg Glu Pro Cys Glu Asn Tyr Met Lys Cys 1 5 10 15 Val Ser Val Leu Arg Phe Asp Ser Ser Ala Pro Phe Leu Ala Ser Ala 20 25 30 Ser Thr Leu Phe Arg Pro Ile Gln Pro Ile Ala Gly Leu Arg Cys Arg 35 40 45 Cys Pro Pro Gly Phe Thr Gly Asp Phe Cys Glu 50 55 <210> 60 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 60 Glu Leu Asp Leu Cys Tyr Ser Asn Pro Cys Arg Asn Gly Gly Ala Cys 1 5 10 15 Ala Arg Arg Glu Gly Gly Tyr Thr Cys Val Cys Arg Pro Arg Phe Thr 20 25 30 Gly Glu Asp Cys Glu 35 <210> 61 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 61 Glu Ala Gly Arg Cys Val Pro Gly Val Cys Arg Asn Gly Gly Thr Cys 1 5 10 15 Thr Asp Ala Pro Asn Gly Gly Phe Arg Cys Gln Cys Pro Ala Gly Gly 20 25 30 Ala Phe Glu Gly Pro Arg Cys Glu 35 40 <210> 62 <211> 205 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 62 Val Ala Ala Arg Ser Phe Pro Pro Ser Ser Phe Val Met Phe Arg Gly 1 5 10 15 Leu Arg Gln Arg Phe His Leu Thr Leu Ser Leu Ser Phe Ala Thr Val 20 25 30 Gln Gln Ser Gly Leu Leu Phe Tyr Asn Gly Arg Leu Asn Glu Lys His 35 40 45 Asp Phe Leu Ala Leu Glu Leu Val Ala Gly Gln Val Arg Leu Thr Tyr 50 55 60 Ser Thr Gly Glu Ser Asn Thr Val Val Ser Pro Thr Val Pro Gly Gly 65 70 75 80 Leu Ser Asp Gly Gln Trp His Thr Val His Leu Arg Tyr Tyr Asn Lys 85 90 95 Pro Arg Thr Asp Ala Leu Gly Gly Ala Gln Gly Pro Ser Lys Asp Lys 100 105 110 Val Ala Val Leu Ser Val Asp Asp Cys Asp Val Ala Val Ala Leu Gln 115 120 125 Phe Gly Ala Glu Ile Gly Asn Tyr Ser Cys Ala Ala Ala Gly Val Gln 130 135 140 Thr Ser Ser Lys Lys Ser Leu Asp Leu Thr Gly Pro Leu Leu Leu Gly 145 150 155 160 Gly Val Pro Asn Leu Pro Glu Asn Phe Pro Val Ser His Lys Asp Phe 165 170 175 Ile Gly Cys Met Arg Asp Leu His Ile Asp Gly Arg Arg Val Asp Met 180 185 190 Ala Ala Phe Val Ala Asn Asn Gly Thr Met Ala Gly Cys 195 200 205 <210> 63 <211> 181 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 63 Pro His His Phe Arg Gly Asn Gly Thr Leu Ser Trp Asn Phe Gly Ser 1 5 10 15 Asp Met Ala Val Ser Val Pro Trp Tyr Leu Gly Leu Ala Phe Arg Thr 20 25 30 Arg Ala Thr Gln Gly Val Leu Met Gln Val Gln Ala Gly Pro His Ser 35 40 45 Thr Leu Leu Cys Gln Leu Asp Arg Gly Leu Leu Ser Val Thr Val Thr 50 55 60 Arg Gly Ser Gly Arg Ala Ser His Leu Leu Leu Asp Gln Val Thr Val 65 70 75 80 Ser Asp Gly Arg Trp His Asp Leu Arg Leu Glu Leu Gln Glu Glu Pro 85 90 95 Gly Gly Arg Arg Gly His His Val Leu Met Val Ser Leu Asp Phe Ser 100 105 110 Leu Phe Gln Asp Thr Met Ala Val Gly Ser Glu Leu Gln Gly Leu Lys 115 120 125 Val Lys Gln Leu His Val Gly Gly Leu Pro Pro Gly Ser Ala Glu Glu 130 135 140 Ala Pro Gln Gly Leu Val Gly Cys Ile Gln Gly Val Trp Leu Gly Ser 145 150 155 160 Thr Pro Ser Gly Ser Pro Ala Leu Leu Pro Pro Ser His Arg Val Asn 165 170 175 Ala Glu Pro Gly Cys 180 <210> 64 <211> 36 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor3 <400> 64 Cys Pro Cys Arg Pro Gly Ala Leu Gly Arg Gln Cys Asn Ser Cys Asp 1 5 10 15 Ser Pro Phe Ala Glu Val Thr Ala Ser Gly Cys Arg Val Leu Tyr Asp 20 25 30 Ala Cys Pro Lys 35 <210> 65 <211> 106 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 65 Gly Trp Val Trp Asn Gln Phe Phe Val Ile Glu Glu Tyr Thr Gly Pro 1 5 10 15 Asp Pro Val Leu Val Gly Arg Leu His Ser Asp Ile Asp Ser Gly Asp 20 25 30 Gly Asn Ile Lys Tyr Ile Leu Ser Gly Glu Gly Ala Gly Thr Ile Phe 35 40 45 Val Ile Asp Asp Lys Ser Gly Asn Ile His Ala Thr Lys Thr Leu Asp 50 55 60 Arg Glu Glu Arg Ala Gln Tyr Thr Leu Met Ala Gln Ala Val Asp Arg 65 70 75 80 Asp Thr Asn Arg Pro Leu Glu Pro Pro Ser Glu Phe Ile Val Lys Val 85 90 95 Gln Asp Ile Asn Asp Asn Pro Pro Glu Phe 100 105 <210> 66 <211> 109 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 66 Leu His Glu Thr Tyr His Ala Asn Val Pro Glu Arg Ser Asn Val Gly 1 5 10 15 Thr Ser Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Thr Tyr 20 25 30 Gly Asn Ser Ala Lys Leu Val Tyr Ser Ile Leu Glu Gly Gln Pro Tyr 35 40 45 Phe Ser Val Glu Ala Gln Thr Gly Ile Ile Arg Thr Ala Leu Pro Asn 50 55 60 Met Asp Arg Glu Ala Lys Glu Glu Tyr His Val Val Ile Gln Ala Lys 65 70 75 80 Asp Met Gly Gly His Met Gly Gly Leu Ser Gly Thr Thr Lys Val Thr 85 90 95 Ile Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Lys Phe 100 105 <210> 67 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 67 Pro Gln Arg Leu Tyr Gln Met Ser Val Ser Glu Ala Ala Val Pro Gly 1 5 10 15 Glu Glu Val Gly Arg Val Lys Ala Lys Asp Pro Asp Ile Gly Glu Asn 20 25 30 Gly Leu Val Thr Tyr Asn Ile Val Asp Gly Asp Gly Met Glu Ser Phe 35 40 45 Glu Ile Thr Thr Asp Tyr Glu Thr Gln Glu Gly Val Ile Lys Leu Lys 50 55 60 Lys Pro Val Asp Phe Glu Thr Glu Arg Ala Tyr Ser Leu Lys Val Glu 65 70 75 80 Ala Ala Asn Val His Ile Asp Pro Lys Phe Ile Ser Asn Gly Pro Phe 85 90 95 Lys Asp Thr Val Thr Val Lys Ile Ser Val Glu Asp Ala Asp Glu Pro 100 105 110 Pro Met Phe 115 <210> 68 <211> 106 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 68 Pro Met Phe Leu Ala Pro Ser Tyr Ile His Glu Val Gln Glu Asn Ala 1 5 10 15 Ala Ala Gly Thr Val Val Gly Arg Val His Ala Lys Asp Pro Asp Ala 20 25 30 Ala Asn Ser Pro Ile Arg Tyr Ser Ile Asp Arg His Thr Asp Leu Asp 35 40 45 Arg Phe Phe Thr Ile Asn Pro Glu Asp Gly Phe Ile Lys Thr Thr Lys 50 55 60 Pro Leu Asp Arg Glu Glu Thr Ala Trp Leu Asn Ile Thr Val Phe Ala 65 70 75 80 Ala Glu Ile His Asn Arg His Gln Glu Ala Gln Val Pro Val Ala Ile 85 90 95 Arg Val Leu Asp Val Asn Asp Asn Ala Pro 100 105 <210> 69 <211> 126 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 69 Lys Phe Ala Ala Pro Tyr Glu Gly Phe Ile Cys Glu Ser Asp Gln Thr 1 5 10 15 Lys Pro Leu Ser Asn Gln Pro Ile Val Thr Ile Ser Ala Asp Asp Lys 20 25 30 Asp Asp Thr Ala Asn Gly Pro Arg Phe Ile Phe Ser Leu Pro Pro Glu 35 40 45 Ile Ile His Asn Pro Asn Phe Thr Val Arg Asp Asn Arg Asp Asn Thr 50 55 60 Ala Gly Val Tyr Ala Arg Arg Gly Gly Phe Ser Arg Gln Lys Gln Asp 65 70 75 80 Leu Tyr Leu Leu Pro Ile Val Ile Ser Asp Gly Gly Ile Pro Pro Met 85 90 95 Ser Ser Thr Asn Thr Leu Thr Ile Lys Val Cys Gly Cys Asp Val Asn 100 105 110 Gly Ala Leu Leu Ser Cys Asn Ala Glu Ala Tyr Ile Leu Asn 115 120 125 <210> 70 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> oligo peptide <400> 70 Val Ser Arg Arg Arg Arg Arg Arg Gly Gly Arg Arg Arg Arg 1 5 10 <210> 71 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> oligo peptide <400> 71 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 1 5 10 <110> Seoul National University Industry Foundation <120> Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive          Peptides and Hydrophobic Materials <130> P06-B019 <160> 71 <170> KopatentIn 1.71 <210> 1 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> RGD containing peptide <400> 1 Cys Gly Gly Arg Gly Asp Ser   1 5 <210> 2 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> RGD containing peptide <400> 2 Cys Gly Gly Val Ala Cys Asp Cys Arg Gly Asp Cys Phe Cys   1 5 10 <210> 3 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 3 Ala Lys His Lys Gln Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg His   1 5 10 15 Pro     <210> 4 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 4 Cys Ser Pro Lys His His Pro Gln Arg Ser Arg Lys Lys Asn   1 5 10 <210> 5 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 5 Cys Ser Ser Arg Lys Lys Asn Lys Asn Cys Arg Arg His   1 5 10 <210> 6 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 6 Ser Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr His   1 5 10 15 Ala     <210> 7 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 7 Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Ala Ile   1 5 10 15 Val Gln Thr Leu Val Asn Ser Val Asn              20 25 <210> 8 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 8 Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser   1 5 10 15 Met Leu Tyr Leu              20 <210> 9 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 9 Ser Met Leu Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys Asn Tyr   1 5 10 15 Gln asp         <210> 10 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide BMP-2 <400> 10 Gln Ala Lys His Lys Gln Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg   1 5 10 15 His Pro Leu Tyr              20 <210> 11 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-2 <400> 11 Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser   1 5 10 15 Met Leu Tyr Leu              20 <210> 12 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-7 <400> 12 Ser Met Leu Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys Asn Tyr   1 5 10 15 Gln Asp Met Val Val              20 <210> 13 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 13 Ser Ser Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile   1 5 10 15 Ser Met Leu Tyr Leu              20 <210> 14 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprptein <400> 14 Pro Lys His His Ser Gln Arg Ala Arg Lys Lys Asn Lys Asn Cys Arg   1 5 10 15 Arg His Ser Leu Tyr              20 <210> 15 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 15 Ser Ser Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile   1 5 10 15 Ser Met Leu Tyr Leu              20 <210> 16 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-4 <400> 16 Ser Met Leu Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr   1 5 10 15 Gln Glu Met Val Val              20 <210> 17 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 17 Tyr Val Pro Lys Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser   1 5 10 15 Val Leu Tyr Phe              20 <210> 18 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 18 Val Ser Ser Ala Ser Asp Tyr Asn Ser Ser Glu Leu Lys Thr Ala Cys   1 5 10 15 Arg Lys His Glu Leu Tyr              20 <210> 19 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 19 Tyr Val Pro Lys Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser   1 5 10 15 Val Leu Tyr Phe              20 <210> 20 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-6 <400> 20 Ser Val Leu Tyr Phe Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr   1 5 10 15 Arg Asn Met Val Val Arg Ala Cys              20 <210> 21 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Partial sequence of BMP-7 <400> 21 Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser   1 5 10 15 Val Leu Tyr Phe              20 <210> 22 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Partial peptide of BMP-7 <400> 22 Glu Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu   1 5 10 15 Tyr Val Ser Phe Arg              20 <210> 23 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-7 <400> 23 Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser   1 5 10 15 Val Leu Tyr Phe              20 <210> 24 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BMP-7 <400> 24 Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr   1 5 10 15 Arg Asn Met             <210> 25 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 25 Glu Glu Glu Gly Glu Glu Glu Glu   1 5 <210> 26 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 26 Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu   1 5 10 <210> 27 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 27 Tyr Glu Thr Tyr Asp Glu Asn Asn Gly Glu Pro Arg Gly Asp Thr Tyr   1 5 10 15 Arg Ile         <210> 28 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 28 Glu Glu Gly Glu Glu Glu   1 5 <210> 29 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 29 Glu Glu Glu Glu Glu Glu Glu Glu   1 5 <210> 30 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 30 Tyr Glu Ile Tyr Glu Ser Glu Asn Gly Glu Pro Arg Gly Asp Asn Tyr   1 5 10 15 Arg     <210> 31 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 31 Lys Asn Leu His Arg Arg Val Lys Ile   1 5 <210> 32 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 32 Asp Ser Ser Glu Glu Asn Gly Asp Asp Ser Ser Glu Glu Glu Glu Glu   1 5 10 15 Glu Glu Glu Thr Ser Asn Glu Gly Glu Asn              20 25 <210> 33 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 33 Asp Glu Glu Glu Glu Glu Glu Glu Glu Gly Asn Glu Asn Glu Glu Ser   1 5 10 15 Glu Ala Glu Val Asp              20 <210> 34 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of bone sialoprotein <400> 34 Ser Glu Asn Gly Glu Pro Arg Gly Asp Asn Tyr   1 5 10 <210> 35 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of TGF <400> 35 Thr Gly Arg Arg Gly Asp Leu Ala Thr   1 5 <210> 36 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of TGF <400> 36 Arg Ala Leu Asp Thr Asn Tyr Cys Phe Ser Ser Thr Glu Lys Asn Cys   1 5 10 15 Cys Val Arg Gln Leu              20 <210> 37 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of TGF <400> 37 Leu Tyr Asn Gln His Asn Pro Gly Ala Ser Ala Ala Pro Cys Cys Val   1 5 10 15 Pro Gln Ala             <210> 38 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of PDGF <400> 38 Cys Glu Thr Val Ala Ala Ala Arg Pro Val Thr Arg Ser Pro Gly Gly   1 5 10 15 Ser Gln Glu Gln Arg              20 <210> 39 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of PDGF <400> 39 Ala Lys Thr Pro Gln Thr Arg Val Thr Ile Arg Thr Val Arg Val Arg   1 5 10 15 Arg Pro Pro Lys              20 <210> 40 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of AFGF <400> 40 Tyr Lys Lys Pro Lys Leu Leu Tyr Cys   1 5 <210> 41 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of AFGF <400> 41 Ile Ser Lys Lys His Ala Glu Lys   1 5 <210> 42 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 42 Gly His Phe Lys Asp Pro Lys Arg Leu Tyr Cys Lys   1 5 10 <210> 43 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 43 Pro Asp Gly Arg Val Asp   1 5 <210> 44 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 44 Lys Glu Asp Gly Arg Leu Leu   1 5 <210> 45 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of BFGF <400> 45 Tyr Arg Ser Arg Lys Tyr   1 5 <210> 46 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of dentin sialoprotein <400> 46 Glu Asp Glu Gly Ser Gly Asp Asp Glu Asp Glu Glu Ala Gly Asn Gly   1 5 10 15 Lys Asp Ser Ser Asn              20 <210> 47 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of dentin sialoprotein <400> 47 Asp Asp Ala Asn Ser Glu Ser Asp Asn Asn Ser Ser Ser Arg Gly Asp   1 5 10 15 Ala Ser Tyr Asn              20 <210> 48 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of dentin sialoprotein <400> 48 Asp Ser Asp Ser Ser Asp Ser Ser Asn Ser Ser Asp Ser Ser Asp Ser   1 5 10 15 Ser Asp Ser Asp Ser Ser Asp              20 <210> 49 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 49 Asp Leu Gln Glu Ala Asp Leu Ala Leu Leu Arg Val Thr Leu Ser Ser   1 5 10 15 Lys Pro Gln Ala Leu Ala              20 <210> 50 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 50 Ala Thr Pro Asn Lys Glu Glu His Gly Lys Arg Lys Lys Lys Gly Lys   1 5 10 15 Gly Leu Gly Lys              20 <210> 51 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 51 Lys Arg Asp Pro Cys Leu Arg Lys Tyr Lys Asp Phe Cys   1 5 10 <210> 52 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of Heparin binding EGF like GF <400> 52 Cys Lys Tyr Val Lys Glu Leu Arg Ala Pro Ser Cys Ile Cys His Pro   1 5 10 15 Gly Tyr His Gly              20 <210> 53 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 53 Pro Gln Tyr Asn Tyr Gln Thr Leu Val Pro Glu Asn Glu Ala Ala Gly   1 5 10 15 Thr Ala Val Leu Arg Val Val Ala Gln              20 25 <210> 54 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 54 Asp Pro Asp Ala Gly Glu Ala Gly Arg Leu Val Tyr Ser Leu Ala Ala   1 5 10 15 Leu Met Asn Ser Arg              20 <210> 55 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 55 Ser Leu Glu Leu Phe Ser Ile Asp Pro Gln Ser Gly Leu Ile Arg Thr   1 5 10 15 Ala Ala Ala Leu Asp Arg Glu Ser Met Glu Arg His Tyr              20 25 <210> 56 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 56 Leu Arg Val Thr Ala Gln Asp His Gly Ser Pro Arg Leu Ser Ala Thr   1 5 10 15 Thr Met Val Ala Val Thr Val              20 <210> 57 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 57 Glu Gln Ala Gln Tyr Arg Glu Thr Leu Arg Glu Asn Val Glu Glu Gly   1 5 10 15 Tyr Pro Ile Leu Gln Leu Arg Ala Thr Asp Gly Asp Ala Pro Pro Asn              20 25 30 Ala Asn Leu Arg Tyr Arg Phe Val Gly Pro Pro Ala Ala Arg Ala Ala          35 40 45 Ala Ala Ala Ala Phe Glu Ile Asp Pro Arg Ser Gly Leu Ile Ser Thr      50 55 60 Ser Gly Arg Val Asp Arg Glu His Met Glu Ser Tyr Glu Leu Val Val  65 70 75 80 Glu Ala Ser Asp Gln Gly Gln Glu Pro Gly Pro Arg Ser Ala Thr Val                  85 90 95 Arg Val His Ile Thr Val Leu Asp Glu Asn Asp Asn Ala Pro Gln Phe             100 105 110 <210> 58 <211> 106 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 58 Ser Glu Lys Arg Tyr Val Ala Gln Val Arg Glu Asp Val Arg Pro His   1 5 10 15 Thr Val Val Leu Arg Val Thr Ala Thr Asp Arg Asp Lys Asp Ala Asn              20 25 30 Gly Leu Val His Tyr Asn Ile Ile Ser Gly Asn Ser Arg Gly His Phe          35 40 45 Ala Ile Asp Ser Leu Thr Gly Glu Ile Gln Val Val Ala Pro Leu Asp      50 55 60 Phe Glu Ala Glu Arg Glu Tyr Ala Leu Arg Ile Arg Ala Gln Asp Ala  65 70 75 80 Gly Arg Pro Pro Leu Ser Asn Asn Thr Gly Leu Ala Ser Ile Gln Val                  85 90 95 Val Asp Ile Asn Asp His Ile Pro Ile Phe             100 105 <210> 59 <211> 59 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 59 Asp Asp Asn Val Cys Leu Arg Glu Pro Cys Glu Asn Tyr Met Lys Cys   1 5 10 15 Val Ser Val Leu Arg Phe Asp Ser Ser Ala Pro Phe Leu Ala Ser Ala              20 25 30 Ser Thr Leu Phe Arg Pro Ile Gln Pro Ile Ala Gly Leu Arg Cys Arg          35 40 45 Cys Pro Pro Gly Phe Thr Gly Asp Phe Cys Glu      50 55 <210> 60 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 60 Glu Leu Asp Leu Cys Tyr Ser Asn Pro Cys Arg Asn Gly Gly Ala Cys   1 5 10 15 Ala Arg Arg Glu Gly Gly Tyr Thr Cys Val Cys Arg Pro Arg Phe Thr              20 25 30 Gly Glu Asp Cys Glu          35 <210> 61 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 61 Glu Ala Gly Arg Cys Val Pro Gly Val Cys Arg Asn Gly Gly Thr Cys   1 5 10 15 Thr Asp Ala Pro Asn Gly Gly Phe Arg Cys Gln Cys Pro Ala Gly Gly              20 25 30 Ala Phe Glu Gly Pro Arg Cys Glu          35 40 <210> 62 <211> 205 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 62 Val Ala Ala Arg Ser Phe Pro Pro Ser Ser Phe Val Met Phe Arg Gly   1 5 10 15 Leu Arg Gln Arg Phe His Leu Thr Leu Ser Leu Ser Phe Ala Thr Val              20 25 30 Gln Gln Ser Gly Leu Leu Phe Tyr Asn Gly Arg Leu Asn Glu Lys His          35 40 45 Asp Phe Leu Ala Leu Glu Leu Val Ala Gly Gln Val Arg Leu Thr Tyr      50 55 60 Ser Thr Gly Glu Ser Asn Thr Val Val Ser Pro Thr Val Pro Gly Gly  65 70 75 80 Leu Ser Asp Gly Gln Trp His Thr Val His Leu Arg Tyr Tyr Asn Lys                  85 90 95 Pro Arg Thr Asp Ala Leu Gly Gly Ala Gln Gly Pro Ser Lys Asp Lys             100 105 110 Val Ala Val Leu Ser Val Asp Asp Cys Asp Val Ala Val Ala Leu Gln         115 120 125 Phe Gly Ala Glu Ile Gly Asn Tyr Ser Cys Ala Ala Ala Gly Val Gln     130 135 140 Thr Ser Ser Lys Lys Ser Leu Asp Leu Thr Gly Pro Leu Leu Leu Gly 145 150 155 160 Gly Val Pro Asn Leu Pro Glu Asn Phe Pro Val Ser His Lys Asp Phe                 165 170 175 Ile Gly Cys Met Arg Asp Leu His Ile Asp Gly Arg Arg Val Asp Met             180 185 190 Ala Ala Phe Val Ala Asn Asn Gly Thr Met Ala Gly Cys         195 200 205 <210> 63 <211> 181 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 63 Pro His His Phe Arg Gly Asn Gly Thr Leu Ser Trp Asn Phe Gly Ser   1 5 10 15 Asp Met Ala Val Ser Val Pro Trp Tyr Leu Gly Leu Ala Phe Arg Thr              20 25 30 Arg Ala Thr Gln Gly Val Leu Met Gln Val Gln Ala Gly Pro His Ser          35 40 45 Thr Leu Leu Cys Gln Leu Asp Arg Gly Leu Leu Ser Val Thr Val Thr      50 55 60 Arg Gly Ser Gly Arg Ala Ser His Leu Leu Leu Asp Gln Val Thr Val  65 70 75 80 Ser Asp Gly Arg Trp His Asp Leu Arg Leu Glu Leu Gln Glu Glu Pro                  85 90 95 Gly Gly Arg Arg Gly His His Val Leu Met Val Ser Leu Asp Phe Ser             100 105 110 Leu Phe Gln Asp Thr Met Ala Val Gly Ser Glu Leu Gln Gly Leu Lys         115 120 125 Val Lys Gln Leu His Val Gly Gly Leu Pro Pro Gly Ser Ala Glu Glu     130 135 140 Ala Pro Gln Gly Leu Val Gly Cys Ile Gln Gly Val Trp Leu Gly Ser 145 150 155 160 Thr Pro Ser Gly Ser Pro Ala Leu Leu Pro Pro Ser His Arg Val Asn                 165 170 175 Ala Glu Pro Gly Cys             180 <210> 64 <211> 36 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of cadherin EGF LAG seven-pass G-type receptor 3 <400> 64 Cys Pro Cys Arg Pro Gly Ala Leu Gly Arg Gln Cys Asn Ser Cys Asp   1 5 10 15 Ser Pro Phe Ala Glu Val Thr Ala Ser Gly Cys Arg Val Leu Tyr Asp              20 25 30 Ala Cys Pro Lys          35 <210> 65 <211> 106 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 65 Gly Trp Val Trp Asn Gln Phe Phe Val Ile Glu Glu Tyr Thr Gly Pro   1 5 10 15 Asp Pro Val Leu Val Gly Arg Leu His Ser Asp Ile Asp Ser Gly Asp              20 25 30 Gly Asn Ile Lys Tyr Ile Leu Ser Gly Glu Gly Ala Gly Thr Ile Phe          35 40 45 Val Ile Asp Asp Lys Ser Gly Asn Ile His Ala Thr Lys Thr Leu Asp      50 55 60 Arg Glu Glu Arg Ala Gln Tyr Thr Leu Met Ala Gln Ala Val Asp Arg  65 70 75 80 Asp Thr Asn Arg Pro Leu Glu Pro Pro Ser Glu Phe Ile Val Lys Val                  85 90 95 Gln Asp Ile Asn Asp Asn Pro Pro Glu Phe             100 105 <210> 66 <211> 109 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 66 Leu His Glu Thr Tyr His Ala Asn Val Pro Glu Arg Ser Asn Val Gly   1 5 10 15 Thr Ser Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Thr Tyr              20 25 30 Gly Asn Ser Ala Lys Leu Val Tyr Ser Ile Leu Glu Gly Gln Pro Tyr          35 40 45 Phe Ser Val Glu Ala Gln Thr Gly Ile Ile Arg Thr Ala Leu Pro Asn      50 55 60 Met Asp Arg Glu Ala Lys Glu Glu Tyr His Val Val Ile Gln Ala Lys  65 70 75 80 Asp Met Gly Gly His Met Gly Gly Leu Ser Gly Thr Thr Lys Val Thr                  85 90 95 Ile Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Lys Phe             100 105 <210> 67 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 67 Pro Gln Arg Leu Tyr Gln Met Ser Val Ser Glu Ala Ala Val Pro Gly   1 5 10 15 Glu Glu Val Gly Arg Val Lys Ala Lys Asp Pro Asp Ile Gly Glu Asn              20 25 30 Gly Leu Val Thr Tyr Asn Ile Val Asp Gly Asp Gly Met Glu Ser Phe          35 40 45 Glu Ile Thr Thr Asp Tyr Glu Thr Gln Glu Gly Val Ile Lys Leu Lys      50 55 60 Lys Pro Val Asp Phe Glu Thr Glu Arg Ala Tyr Ser Leu Lys Val Glu  65 70 75 80 Ala Ala Asn Val His Ile Asp Pro Lys Phe Ile Ser Asn Gly Pro Phe                  85 90 95 Lys Asp Thr Val Thr Val Lys Ile Ser Val Glu Asp Ala Asp Glu Pro             100 105 110 Pro Met Phe         115 <210> 68 <211> 106 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 68 Pro Met Phe Leu Ala Pro Ser Tyr Ile His Glu Val Gln Glu Asn Ala   1 5 10 15 Ala Ala Gly Thr Val Val Gly Arg Val His Ala Lys Asp Pro Asp Ala              20 25 30 Ala Asn Ser Pro Ile Arg Tyr Ser Ile Asp Arg His Thr Asp Leu Asp          35 40 45 Arg Phe Phe Thr Ile Asn Pro Glu Asp Gly Phe Ile Lys Thr Thr Lys      50 55 60 Pro Leu Asp Arg Glu Glu Thr Ala Trp Leu Asn Ile Thr Val Phe Ala  65 70 75 80 Ala Glu Ile His Asn Arg His Gln Glu Ala Gln Val Pro Val Ala Ile                  85 90 95 Arg Val Leu Asp Val Asn Asp Asn Ala Pro             100 105 <210> 69 <211> 126 <212> PRT <213> Artificial Sequence <220> <223> partial peptide of OB-cadherin <400> 69 Lys Phe Ala Ala Pro Tyr Glu Gly Phe Ile Cys Glu Ser Asp Gln Thr   1 5 10 15 Lys Pro Leu Ser Asn Gln Pro Ile Val Thr Ile Ser Ala Asp Asp Lys              20 25 30 Asp Asp Thr Ala Asn Gly Pro Arg Phe Ile Phe Ser Leu Pro Pro Glu          35 40 45 Ile Ile His Asn Pro Asn Phe Thr Val Arg Asp Asn Arg Asp Asn Thr      50 55 60 Ala Gly Val Tyr Ala Arg Arg Gly Gly Phe Ser Arg Gln Lys Gln Asp  65 70 75 80 Leu Tyr Leu Leu Pro Ile Val Ile Ser Asp Gly Gly Ile Pro Pro Met                  85 90 95 Ser Ser Thr Asn Thr Leu Thr Ile Lys Val Cys Gly Cys Asp Val Asn             100 105 110 Gly Ala Leu Leu Ser Cys Asn Ala Glu Ala Tyr Ile Leu Asn         115 120 125 <210> 70 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> oligo peptide <400> 70 Val Ser Arg Arg Arg Arg Arg Arg Gly Gly Arg Arg Arg Arg   1 5 10 <210> 71 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> oligo peptide <400> 71 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg   1 5 10

Claims (14)

친수성 생리활성 펩타이드와 소수성 물질의 결합체가 자기조립(self-assembly) 되어 있는 나노구조체.Nanostructures are self-assembly of a combination of a hydrophilic bioactive peptide and a hydrophobic material. 제1항에 있어서, 상기 친수성 생리활성 펩타이드는 세포부착 유도 펩타이드 , 조직성장인자 유래 펩타이드 또는 세포투과 펩타이드인 것을 특징으로 하는 나노구조체.The nanostructure of claim 1, wherein the hydrophilic bioactive peptide is a cell adhesion inducing peptide, a tissue growth factor-derived peptide, or a cell permeation peptide. 제2항에 있어서, 상기 세포부착 유도 펩타이드는 RGD의 아미노산서열을 가지는 것임을 특징으로 하는 나노구조체.3. The nanostructure of claim 2, wherein the cell adhesion inducing peptide has an amino acid sequence of RGD. 제3항에 있어서, 상기 세포부착 유도 펩타이드는 서열번호 1(CGGRGDS) 또는 서열번호 2(CGGVACDCRGDCFC)의 아미노산서열을 필수적으로 함유하는 것을 특징으로 하는 나노구조체.The nanostructure of claim 3, wherein the cell adhesion inducing peptide essentially contains the amino acid sequence of SEQ ID NO: 1 (CGGRGDS) or SEQ ID NO: 2 (CGGVACDCRGDCFC). 제2항에 있어서, 상기 조직성장인자 유래 펩타이드는 다음으로 구성된 군에서 선택된 어느 하나 이상의 펩타이드인 것을 특징으로 하는 나노구조체:The nanostructure of claim 2, wherein the tissue growth factor-derived peptide is any one or more peptides selected from the group consisting of: (a) 골형성 단백질(bone morphogenetic protein, BMP)-2, 4 및 6의 아미노산서열 중 각각 2-18위치의 아미노산서열[BMP-2의 경우 (서열번호3), BMP-4의 경우(서열번호 4) 및 BMP-6의 경우 (서열번호 5)]; BMP-2의 16-34위치의 아미노산서열 (서열번호 6), 47-71위치의 아미노산서열 (서열번호 7), 73-92위치의 아미노산서열 (서열번호 8), 88-105위치의 아미노산서열 (서열번호 9), 283-302위치의 아미노산서열(서열번호 10), 335-353위치의 아미노산서열(서열번호 11) 및 370-390위치의 아미노산서열(서열번호 12); BMP-4의 74-93위치의 아미노산서열 (서열번호 13), 293-313위치의 아미노산서열(서열번호 14), 360-379위치의 아미노산서열(서열번호 15) 및 382-402위치의 아미노산서열 (서열번호 16); BMP-6의 91-110위치의 아미노산서열 (서열번호 17), 397-418위치의 아미노산서열 (서열번호 18), 472-490위치의 아미노산서열(서열번호 19) 및 487-510위치의 아미노산서열(서열번호 20); 및 BMP-7의 98-117위치의 아미노산서열 서열번호 21), 320-340위치의 아미노산서열(서열번호 22), 390-409위치의 아미노산서열(서열번호 23) 및 405-423위치의 아미노산서열(서열번호 24); (a) amino acid sequences of positions 2-18 of each of the amino acid sequences of bone morphogenetic protein (BMP) -2, 4 and 6 [BMP-2 (SEQ ID NO: 3), and BMP-4 (SEQ ID NO: Number 4) and for BMP-6 (SEQ ID NO: 5)]; Amino acid sequence at positions 16-34 (SEQ ID NO: 6), amino acid sequence at positions 47-71 (SEQ ID NO: 7), amino acid sequence at positions 73-92 (SEQ ID NO: 8), amino acid sequence at positions 88-105 (SEQ ID NO: 9), amino acid sequence at positions 283-302 (SEQ ID NO: 10), amino acid sequence at positions 335-353 (SEQ ID NO: 11), and amino acid sequence at positions 370-390 (SEQ ID NO: 12); Amino acid sequence at positions 74-93 (SEQ ID NO: 13), amino acid sequence at positions 293-313 (SEQ ID NO: 14), amino acid sequence at positions 360-379 (SEQ ID NO: 15), and amino acid sequence at positions 382-402; (SEQ ID NO: 16); Amino acid sequence at positions 91-110 (SEQ ID NO: 17), amino acid sequence at positions 397-418 (SEQ ID NO: 18), amino acid sequence at positions 472-490 (SEQ ID NO: 19), and amino acid sequence at positions 487-510; (SEQ ID NO: 20); And amino acid sequence SEQ ID NO: 21) at positions 98-117 of BMP-7, amino acid sequence at positions 320-340 (SEQ ID NO: 22), amino acid sequence at positions 390-409 (SEQ ID NO: 23), and amino acid sequence at positions 405-423 (SEQ ID NO: 24); (b) bone sialoprotein의 62-69위치의 아미노산서열 (서열번호 25), 139-148위치의 아미노산서열 (서열번호 26), 259-277위치의 아미노산서열 (서열번호 27), 199-204위치의 아미노산서열 (서열번호 28), 151-158위치의 아미노산서열 (서열번호 29), 275-291위치의 아미노산서열 (서열번호 30), 20-28위치의 아미노산(서열번 호 31), 65-90위치의 아미노산서열 (서열번호 32), 150-170위치의 아미노산(서열번호 33) 및 280-290위치의 아미노산서열 (서열번호 34); (b) amino acid sequence at position 62-69 (SEQ ID NO: 25), amino acid sequence at position 139-148 (SEQ ID NO: 26), amino acid sequence at position 259-277 (SEQ ID NO: 27), position 199-204 Amino acid sequence (SEQ ID NO: 28), amino acid sequence at positions 151-158 (SEQ ID NO: 29), amino acid sequence at positions 275-291 (SEQ ID NO: 30), amino acid at position 20-28 (SEQ ID NO: 31), 65-90 Amino acid sequence of positions (SEQ ID NO: 32), amino acid position 150-170 (SEQ ID NO: 33) and amino acid sequence of position 280-290 (SEQ ID NO: 34); (c) 변형성장인자(transforming growth factor)의 242-250위치의 아미노산서열 (서열번호 35), 279-299위치의 아미노산서열 (서열번호 36) 및 343-361위치의 아미노산서열 (서열번호 37); (c) the amino acid sequence of positions 242-250 (SEQ ID NO: 35), the amino acid sequence of positions 279-299 (SEQ ID NO: 36) and the amino acid sequence of positions 343-361 (SEQ ID NO: 37) of the transforming growth factor ; (d) 혈소판유래 성장인자의 100-120위치의 아미노산서열 (서열번호 38) 및 121-140위치의 아미노산서열 (서열번호 39); (d) amino acid sequences at positions 100-120 (SEQ ID NO: 38) and amino acid sequences 121-140 (SEQ ID NO: 39) of platelet derived growth factors; (e) 산성 섬유아세포 성장인자(acidic fibroblast growth factor)의 23-31위치의 아미노산서열(서열번호 40) 및 97-105위치의 아미노산서열(서열번호 41); (e) the amino acid sequence at positions 23-31 (SEQ ID NO: 40) and the amino acid sequence at positions 97-105 of the acidic fibroblast growth factor (SEQ ID NO: 41); (f) 염기성 섬유아세포 성장인자(basic fibroblast growth factor)의 16-27위치의 아미노산서열(서열번호 42), 37-42위치의 아미노산서열(서열번호 43), 78-84위치의 아미노산서열(서열번호 44) 및 107-112위치의 아미노산서열(서열번호 45); (f) the amino acid sequence at positions 16-27 (SEQ ID NO: 42), the amino acid sequence at positions 37-42 (SEQ ID NO: 43), and the amino acid sequence at positions 78-84 of the basic fibroblast growth factor; No. 44) and amino acid sequences 107-112 (SEQ ID NO: 45); (g) dentin sialoprotein의 255-275위치의 아미노산서열(서열번호 46), 475-494위치의 아미노산서열(서열번호 47) 및 551-573위치의 아미노산서열(서열번호 48); (g) the amino acid sequence of positions 255-275 (SEQ ID NO: 46), amino acid sequence of positions 475-494 (SEQ ID NO: 47) and amino acid sequence of positions 551-573 (SEQ ID NO: 48) of the dentin sialoprotein; (h) 헤파린 결합 EGF-유사 성장 인자(heparin binding EGF-lke growth factor)의 63-83위치의 아미노산서열(서열번호 49), 84-103위치의 아미노산서열(서열번호 50), 104-116위치의 아미노산서열(서열번호 51) 및 121-140위치의 아미노산서열(서열번호 52); (h) amino acid sequence at position 63-83 (SEQ ID NO: 49), amino acid sequence position 84-103 (SEQ ID NO: 50), 104-116 position of heparin binding EGF-lke growth factor; Amino acid sequence of SEQ ID NO: 51 and amino acid sequence of position 121-140 (SEQ ID NO: 52); (i) cadherin EGF LAG seven-pass G-type receptor 3의 326-350위치의 아미노산서열(서열번호 53), 351-371위치의 아미노산서열(서열번호 54), 372-400위치의 아미노산서열(서열번호 55), 401-423위치의 아미노산서열(서열번호 56), 434-545위치의 아미노산서열(서열번호 57), 546-651위치의 아미노산서열(서열번호 58), 1375-1433위치의 아미노산서열(서열번호 59), 1435-1471위치의 아미노산서열(서열번호 60), 1475-1514위치의 아미노산서열(서열번호 61), 1515-1719위치의 아미노산서열(서열번호 62), 1764-1944위치의 아미노산서열(서열번호 63) 및 2096-2529위치의 아미노산서열(서열번호 64); 및 (i) the amino acid sequence of positions 326-350 (SEQ ID NO: 53), the amino acid sequence of positions 351-371 (SEQ ID NO: 54), and the amino acid sequence of positions 372-400 of the cadherin EGF LAG seven-pass G-type receptor 3 55), amino acid sequence of positions 401-423 (SEQ ID NO: 56), amino acid sequence of positions 434-545 (SEQ ID NO: 57), amino acid sequence of positions 546-651 (SEQ ID NO: 58), amino acid sequence of positions 1375-1433 (SEQ ID NO: 59), amino acid sequence at position 1435-1471 (SEQ ID NO: 60), amino acid sequence at position 1475-1514 (SEQ ID NO: 61), amino acid sequence at position 1515-1719 (SEQ ID NO: 62), position 1764-1944 Amino acid sequence (SEQ ID NO: 63) and amino acid sequence at positions 2096-2529 (SEQ ID NO: 64); And (j) osteoblast specific cadherin(OB-cadherin)의 54-159위치의 아미노산서열(서열번호 65), 160-268위치의 아미노산서열(서열번호 66), 269-383위치의 아미노산서열(서열번호 67), 384-486위치의 아미노산서열(서열번호 68) 및 487-612위치의 아미노산서열(서열번호 69). (j) amino acid sequence at position 54-159 (SEQ ID NO: 65), amino acid sequence at position 160-268 (SEQ ID NO: 66), amino acid sequence at position 269-383 (SEQ ID NO: 67) of osteoblast specific cadherin (OB-cadherin); , Amino acid sequence at positions 384-486 (SEQ ID NO: 68) and amino acid sequence at positions 487-612 (SEQ ID NO: 69). 제5항에 있어서, 상기 조직성장인자 유래 펩타이드는 N-말단에 시스테인이 부가되어 있는 것을 특징으로 하는 나노구조체.The nanostructure of claim 5, wherein the tissue growth factor-derived peptide has cysteine added to the N-terminus. 제6항에 있어서, 시스테인은 CGG, CGGGGG 및 CEEEEEEE로 구성된 군에서 선택되는 스페이서 형태로 부가되어 있는 것을 특징으로 하는 나노구조체.The nanostructure of claim 6, wherein the cysteine is added in the form of a spacer selected from the group consisting of CGG, CGGGGG, and CEEEEEEE. 제1항에 있어서, 세포투과 펩타이드는 서열번호 70 (VSRRRRRRGGRRRR) 또는 서열번호 71(YGRKKRRQRRR)의 아미노산서열을 필수적으로 함유하는 것을 특징으로 하는 나노구조체.The nanostructure of claim 1, wherein the cell permeation peptide essentially contains the amino acid sequence of SEQ ID NO: 70 (VSRRRRRRGGRRRR) or SEQ ID NO: 71 (YGRKKRRQRRR). 제8항에 있어서, 상기 세포투과 펩타이드는 N-말단에 시스테인이 부가되어 있는 것을 특징으로 하는 나노구조체.The nanostructure of claim 8, wherein the cell penetrating peptide has cysteine added to the N-terminus. 제9항에 있어서, 시스테인은 CGG, CGGGGG 및 CEEEEEEE로 구성된 군에서 선택되는 스페이서 형태로 부가되어 있는 것을 특징으로 하는 나노구조체.The nanostructure of claim 9, wherein the cysteine is added in the form of a spacer selected from the group consisting of CGG, CGGGGG, and CEEEEEEE. 제1항에 있어서, 상기 소수성 물질은 소수성 탄화수소, 소수성 고분자, 소수성 펩타이드 및 실란으로 구성된 군에서 선택되는 것을 특징으로 하는 나노구조체.The nanostructure of claim 1, wherein the hydrophobic material is selected from the group consisting of hydrophobic hydrocarbons, hydrophobic polymers, hydrophobic peptides, and silanes. 제1항에 있어서, 상기 친수성 생리활성 펩타이드와 소수성 물질의 결합체는 아미드 결합으로 연결되어 있는 것을 특징으로 하는 나노구조체.The nanostructure of claim 1, wherein the conjugate of the hydrophilic bioactive peptide and the hydrophobic material is linked by an amide bond. 제1항에 있어서, 상기 소수성 물질은 상기 친수성 생리활성 펩타이드와의 아미드 결합을 위해 카르복실기 또는 아민기로 수식되어 있는 것을 특징으로 하는 나노구조체.The nanostructure of claim 1, wherein the hydrophobic material is modified with a carboxyl group or an amine group for amide bond with the hydrophilic bioactive peptide. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 친수성 생리활성 펩타이드와 소수성 물질의 결합체를 임계 마이셀 농도(CMC) 이상의 농도로 수계에 적용시켜 수득되는 것을 특징으로 하는 나노구조체.The nanostructure according to any one of claims 1 to 13, wherein the conjugate of the hydrophilic bioactive peptide and the hydrophobic material is obtained by applying to a water system at a concentration higher than the critical micelle concentration (CMC).
KR1020060015864A 2006-02-17 2006-02-17 Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials KR100759495B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060015864A KR100759495B1 (en) 2006-02-17 2006-02-17 Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials
PCT/KR2007/000336 WO2007094570A1 (en) 2006-02-17 2007-01-19 Self-assembly nano-composites comprising hydrophilic bioactive peptides and hydrophobic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060015864A KR100759495B1 (en) 2006-02-17 2006-02-17 Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials

Publications (2)

Publication Number Publication Date
KR20070082785A true KR20070082785A (en) 2007-08-22
KR100759495B1 KR100759495B1 (en) 2007-09-18

Family

ID=38371717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060015864A KR100759495B1 (en) 2006-02-17 2006-02-17 Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials

Country Status (2)

Country Link
KR (1) KR100759495B1 (en)
WO (1) WO2007094570A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793029A4 (en) * 2011-12-13 2015-08-12 Nano Intelligent Biomed Eng Method for finding bioactive peptides
EP3118216A1 (en) 2015-07-16 2017-01-18 Nuritas Limited Cellular growth and proliferation promoting peptides, and uses thereof
AU2016293129B2 (en) 2015-07-16 2021-01-28 Nuritas Limited Anti-inflammatory peptides, and uses thereof
CN109311956A (en) * 2015-08-25 2019-02-05 伊斯迪德股份公司 Compound for inducing tissue formation and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284267B1 (en) 1996-08-14 2001-09-04 Nutrimed Biotech Amphiphilic materials and liposome formulations thereof
AU2003229392A1 (en) * 2002-05-31 2003-12-19 Scegen Pty Ltd Self-coalescing or self-aggregating proteins derived from a membrane translocating sequence

Also Published As

Publication number Publication date
WO2007094570A1 (en) 2007-08-23
KR100759495B1 (en) 2007-09-18

Similar Documents

Publication Publication Date Title
JP6430595B2 (en) Modified self-assembling peptide
US7968677B2 (en) IFBM&#39;s to promote the specific attachment of target analytes to the surface of orthopedic implants
JP2005518442A (en) Interface biomaterial
Kumar et al. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering
EP2700655B1 (en) Surface-active collagen membrane by peptide
ES2643604T3 (en) Peptide that has the ability to regenerate bone tissue and bind to apatite
EP2167111A2 (en) Polypeptides and methods of use
WO2007081943A2 (en) Methods and compositions for promoting attachment of cells of endothelial cell lineage to medical devices
Zamuner et al. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides
KR100759495B1 (en) Self-Assembly Nano-Composites Comprising Hydrophilic Bioactive Peptides and Hydrophobic Materials
JP4572996B2 (en) Nerve regeneration induction tube
CA2742202A1 (en) Ifbm&#39;s to promote the specific attachment of target analytes to the surface of orthopedic implants
EP3564255A1 (en) Dual functional novel peptide having cell permeability and bone tissue regeneration ability, and use thereof
KR101681886B1 (en) Peptide Having Zirconia Binding Affinity
JP4626725B2 (en) Collagen for cell culture
KR101501436B1 (en) Osteogenic Peptide Self-assembled Gel-type Scaffold and Method for Preparing the Same
CN117659208A (en) Fusion peptide, composite scaffold containing fusion peptide, preparation method and application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120911

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130826

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150911

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180911

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190911

Year of fee payment: 13