KR20070079215A - Image processing device - Google Patents

Image processing device Download PDF

Info

Publication number
KR20070079215A
KR20070079215A KR1020060009757A KR20060009757A KR20070079215A KR 20070079215 A KR20070079215 A KR 20070079215A KR 1020060009757 A KR1020060009757 A KR 1020060009757A KR 20060009757 A KR20060009757 A KR 20060009757A KR 20070079215 A KR20070079215 A KR 20070079215A
Authority
KR
South Korea
Prior art keywords
low pass
image data
image
region
register value
Prior art date
Application number
KR1020060009757A
Other languages
Korean (ko)
Other versions
KR100778924B1 (en
Inventor
박승규
Original Assignee
엠텍비젼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠텍비젼 주식회사 filed Critical 엠텍비젼 주식회사
Priority to KR1020060009757A priority Critical patent/KR100778924B1/en
Publication of KR20070079215A publication Critical patent/KR20070079215A/en
Application granted granted Critical
Publication of KR100778924B1 publication Critical patent/KR100778924B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B5/00Apparatus for jumping
    • A63B5/20Skipping-ropes or similar devices rotating in a vertical plane
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions

Abstract

An image processing device having a differential application filter and a method therefor are provided to improve the good degree of image quality in comparison to a compression rate by performing filtering in consideration of region-classified importance. N LPFs(Low Pass Filters)(211,212) have inter-different cutoff frequencies. A region designation register(115) stores a predetermined register value corresponding to one of the N LPFs(211,212) according to classification regions of image data. The classification regions as partial regions configuring the image data have a certain horizontal pixel number and a certain vertical pixel number. A selection unit(220) extracts the register value for the classification region corresponding to a position of a certain pixel of the inputted image data from the region designation register(115), and selects and outputs result pixel data by the LPF corresponding to the extracted register value among N result pixel data generated after certain pixel data are differentially filtered by the N LPFs(211,212).

Description

차등 적용 필터부를 가지는 영상 처리 장치 및 방법{Image processing device}Image processing device and method having a differential application filter unit

도 1은 본 발명의 바람직한 일 실시예에 따른 영상 처리 장치의 블록 구성도.1 is a block diagram of an image processing apparatus according to an exemplary embodiment of the present invention.

도 2는 도 1에 도시된 영상 처리 장치에서의 차등 적용 필터부를 나타낸 도면.FIG. 2 is a diagram illustrating a differential applying filter unit in the image processing apparatus of FIG. 1. FIG.

도 3은 본 발명의 바람직한 일 실시예에 따른 차등적인 영상 필터링을 수행하기 위한 영상 데이터의 영역 구분 방법을 예시한 도면.3 is a diagram illustrating a region classification method of image data for performing differential image filtering according to an exemplary embodiment of the present invention.

도 4는 도 3의 경우에 있어 구분 영역별로 미리 설정된 레지스터 값을 예시한 도면.4 is a diagram illustrating a register value preset for each division area in the case of FIG.

도 5는 도 2에 도시된 차등 적용 필터부에서의 영상 필터링 과정을 나타낸 흐름도.FIG. 5 is a flowchart illustrating an image filtering process in the differential applying filter unit illustrated in FIG. 2.

도 6 내지 도 8은 본 발명의 일 실시예에 따른 차등 적용 필터부를 통한 영상 필터링을 거친 경우와 종래의 방식에 의한 영상 필터링을 거친 경우의 압축률 대비 화질의 양호도를 비교한 도면.6 to 8 are views comparing the good quality of the compression ratio compared to the case of the image filtering through the differential application filter unit according to an embodiment of the present invention and the image filtering in the conventional manner.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100 : 영상 처리 장치100: image processing device

110 : 전처리부110: preprocessing unit

115 : 차등 적용 필터부115: differential application filter

120 : 압축부120: compression unit

130 : 저장부130: storage unit

211 : 약한 저역 통과 필터211: weak low pass filter

212 : 강한 저역 통과 필터212 strong low pass filter

220 : 선택부220: selection unit

230 : 영역 지정 레지스터230: area designation register

본 발명은 영상 처리 장치 및 방법에 관한 것으로, 보다 상세하게는 차등 적용 필터부를 가지는 영상 처리 장치 및 방법에 관한 것이다.The present invention relates to an image processing apparatus and method, and more particularly, to an image processing apparatus and method having a differential application filter.

영상 처리 장치는 디지털 카메라, 휴대폰, 컴퓨터 등 다양한 디지털 처리 장치에서 이용되며, 특히 영상 압축 기술과 관련된다. 최근 무선 통신 기술의 발달과 함께 정지 영상이나 동영상을 이용한 통신 환경이 급속히 확산됨에 따라 사용자들은 고화질의 영상을 원하는 반면, 이를 실현하기 위해 전송해야 하는 데이터의 양 은 더욱 증가하고 있다. 이와 같은 문제점을 해결하기 위해 JPEG(Joint Photographic Experts Group), MPEG(Moving Picture Experts Group)을 비롯한 여러 가지 영상 압축 방법이 제안되었으며, 이러한 영상 압축 기술들은 국제적으로 표준화되어 사용되고 있다. 따라서, 영상 처리 장치는 일반적으로 영상 데이터를 압축 또는 복원하기 위한 코덱(codec)을 필수적으로 포함하게 된다.Image processing apparatuses are used in various digital processing apparatuses, such as digital cameras, mobile phones, and computers, and are particularly related to image compression technology. Recently, with the development of wireless communication technology, the communication environment using a still image or a moving image is rapidly spreading, while users want a high quality image, but the amount of data to be transmitted to realize this is increasing. In order to solve this problem, various image compression methods including JPEG (Joint Photographic Experts Group) and Moving Picture Experts Group (MPEG) have been proposed, and these image compression techniques have been internationally standardized and used. Accordingly, an image processing apparatus generally includes a codec for compressing or reconstructing image data.

다만, 영상 처리 장치는 입력된 영상 데이터를 곧바로 영상 압축시키는 것은 아니며, 영상 압축을 수행하기에 앞서 영상 데이터를 영상 처리(이하, 이를 '전처리'라 함)함이 일반적이다. 예를 들어, 영상 처리 장치는 전처리부를 통해 영상 데이터의 크기를 조정(scaling)하거나 또는 영상 데이터에 포함된 잡음(noise)을 제거하는 등의 영상 데이터의 전처리 과정을 수행한다. 따라서, 영상 처리 장치의 전처리부에는 영상 데이터의 크기 조정을 위한 스케일러(scaler) 또는 잡음 제거를 위한 필터부 등이 포함된다. 이때, 필터부는 일반적으로 고주파 성분으로 이루어지는 잡음의 특성을 고려하여 저역 통과 필터(low pass filter)를 이용하여 구현하게 된다.However, the image processing apparatus does not immediately compress the input image data, and generally performs image processing (hereinafter, referred to as 'preprocessing') of the image data before performing image compression. For example, the image processing apparatus performs preprocessing of the image data, such as scaling the image data or removing noise included in the image data through the preprocessor. Accordingly, the preprocessor of the image processing apparatus includes a scaler for adjusting the size of the image data, a filter unit for removing noise, and the like. In this case, the filter unit is generally implemented using a low pass filter in consideration of the characteristics of the noise composed of high frequency components.

그러나 종래의 영상 처리 장치에 포함되는 필터부는 하나의 저역 통과 필터만으로 구현되고 있다. 저역 통과 필터의 강도가 강한 경우(즉, 저역 통과 필터의 차단 주파수가 상대적으로 작은 경우)에는 고주파인 잡음의 제거 능력은 향상되지만, 동시에 영상 데이터 중 저역 통과 필터의 차단 주파수보다 큰 주파수 성분을 갖는 영상 정보도 함께 제거되므로 영상의 왜곡이 심해지는 문제점이 있다. 이와 달리, 저역 통과 필터의 강도가 약한 경우(즉, 저역 통과 필터의 차단 주파수가 상 대적으로 큰 경우)에는 영상 데이터를 큰 왜곡 없이 보존할 수 있지만, 잡음 제거 능력이 저하되며 후속하는 영상 압축 과정을 통해 생성되는 압축 영상 데이터의 압축률이 떨어지는 문제점이 있다.However, the filter unit included in the conventional image processing apparatus is implemented with only one low pass filter. When the strength of the lowpass filter is strong (that is, when the cutoff frequency of the lowpass filter is relatively small), the ability to remove high frequency noise is improved, but at the same time, the image data having a frequency component larger than the cutoff frequency of the lowpass filter is shown. Since the image information is also removed, there is a problem that the distortion of the image is severe. On the other hand, when the strength of the low pass filter is weak (that is, when the cutoff frequency of the low pass filter is relatively large), the image data can be preserved without significant distortion, but the noise canceling ability is degraded and subsequent image compression process is performed. There is a problem that the compression ratio of the compressed image data generated through the drop.

또한, 종래와 같은 하나의 저역 통과 필터를 통한 영상 필터링(filtering) 방식은 영상 데이터에서의 영역별 중요도를 고려할 수 없는 한계가 있었다. 예를 들어, 촬영 대상인 인물은 보통 촬영된 이미지의 중앙에 존재하게 되는 것과 같이 일반적으로 사용자는 화면의 중앙 부분에 표시되는 영상 데이터에 주목을 하며, 화면 중 주변 부분의 이미지에 대한 중요도는 낮다. 따라서, 영상 데이터에서 중요도가 높은 영역에 대해서는 중요도가 낮은 영역보다 가능한 한 왜곡 없이 보존할 필요가 있다 할 것이다. 그러나, 종래 방식에서는 영상 데이터의 모든 영역이 하나의 필터에 의해 동일한 강도로 필터링되었기 때문에 영상 데이터의 영역별 중요도를 고려할 수 없었다.In addition, the conventional image filtering method through one low pass filter has a limitation in that it is impossible to consider the importance of each region in the image data. For example, as the person to be photographed usually exists in the center of the captured image, the user generally pays attention to the image data displayed in the center portion of the screen, and the importance of the image of the peripheral portion of the screen is low. Therefore, it is necessary to preserve the areas of high importance in the image data without distortion as much as possible than the areas of low importance. However, in the conventional method, since all regions of the image data are filtered with the same intensity by one filter, the importance of the regions of the image data cannot be considered.

따라서, 본 발명의 목적은 영상 데이터의 영역별 중요도에 따라 차등적으로 필터링을 수행할 수 있는 영상 처리 장치 및 방법을 제공하기 위한 것이다.Accordingly, an object of the present invention is to provide an image processing apparatus and method capable of performing differential filtering according to the importance of each region of image data.

본 발명의 다른 목적은 영역별 중요도를 고려한 필터링을 수행함으로써 압축률 대비 화질의 양호도를 향상시킬 수 있는 영상 처리 장치 및 방법을 제공하기 위한 것이다.Another object of the present invention is to provide an image processing apparatus and method capable of improving the goodness of image quality compared to the compression rate by performing filtering considering the importance of each region.

본 발명의 또 다른 목적은 영역별로 차등 필터링을 수행함으로써 영상에서 주제가 되는 대상을 부각시키는 등과 같은 다양한 영상 효과를 만들어낼 수 있는 영상 처리 장치 및 방법을 제공하기 위한 것이다.Still another object of the present invention is to provide an image processing apparatus and method capable of generating various image effects such as highlighting a subject in an image by performing differential filtering for each region.

본 발명의 또 다른 목적은 기존의 영상 처리 장치에 단순히 1개 이상의 저역 통과 필터 및 선택부만을 더 추가하는 방법으로 간단하게 구현할 수 있고, 영상 압축률을 향상시킴으로써 영상 저장 장치의 부담을 줄일 수 있는 영상 처리 장치 및 방법을 제공하기 위한 것이다.Another object of the present invention can be easily implemented by simply adding one or more low pass filters and a selection unit to an existing image processing device, and can reduce the burden on the image storage device by improving the image compression rate. It is to provide a processing apparatus and method.

본 발명의 이외의 목적들은 하기의 설명을 통해 쉽게 이해될 수 있을 것이다. Other objects of the present invention will be readily understood through the following description.

본 발명의 일 측면에 따르면, 각기 상이한 차단 주파수를 갖는 N개의 저역 통과 필터-여기서, N은 2 이상의 자연수임-; 영상 데이터의 구분 영역별로 N개의 저역 통과 필터 중 어느 하나의 저역 통과 필터에 대응되는 미리 설정된 레지스터 값을 저장하는 영역 지정 레지스터-여기서, 구분 영역은 영상 데이터를 구성하는 부분 영역으로서 소정의 수평 픽셀수 및 소정의 수직 픽셀수를 갖는 영역들을 의미함-; 및 입력된 영상 데이터의 임의의 픽셀의 위치에 상응하는 구분 영역에 대한 레지스터 값을 영역 지정 레지스터로부터 추출하고, 임의의 픽셀 데이터가 N개의 저역 통과 필터에 의해 차등 필터링되어 생성된 N개의 결과 픽셀 데이터 중 추출된 레지스터 값에 대응되는 저역 통과 필터에 의한 결과 픽셀 데이터를 선택하여 출력하는 선택부를 포함하는 차등 적용 필터부를 가지는 영상 처리 장치가 제공될 수 있다.According to one aspect of the invention, there are provided N low pass filters, each having a different cutoff frequency, wherein N is at least two natural numbers; An area designation register that stores a predetermined register value corresponding to any one of the N low pass filters of each of the N low pass filters for each division area of the image data. And regions having a predetermined number of vertical pixels; And N result pixel data generated by extracting a register value for a division region corresponding to a position of an arbitrary pixel of the input image data from the region designation register, and random pixel data being differentially filtered by the N low pass filters. An image processing apparatus having a differential applying filter unit including a selector for selecting and outputting result pixel data by a low pass filter corresponding to the extracted register value may be provided.

여기서, 저역 통과 필터는 FIR(Finite Impulse Response) 필터로 구현될 수 있고, 저역 통과 필터의 차단 주파수는 FIR 필터의 계수의 조정을 통해 상이해질 수 있다.Here, the low pass filter may be implemented as a finite impulse response (FIR) filter, and the cutoff frequency of the low pass filter may be different through adjustment of the coefficient of the FIR filter.

여기서, 선택부는 수평 픽셀 카운터(Horizontal pixel counter) 및 수직 픽셀 카운터(Vertical pixel counter)를 포함하되, 수평 픽셀 카운터 및 수직 픽셀 카운터를 통한 연산을 통해 픽셀의 위치를 계산할 수 있다.Here, the selection unit may include a horizontal pixel counter and a vertical pixel counter, but may calculate the position of the pixel through calculation through the horizontal pixel counter and the vertical pixel counter.

본 발명에 따른 차등 적용 필터부를 가지는 영상 처리 장치는 2개의 저역 통과 필터를 포함하되, 영역 지정 레지스터에 저장된 레지스터 값은 영상 데이터 중 제1 영역의 레지스터 값과 제2 영역의 레지스터 값이 상이하고, 제1 영역의 레지스터 값은 2개의 저역 통과 필터 중 상대적으로 큰 차단 주파수를 갖는 저역 통과 필터와 대응되며, 제2 영역의 레지스터 값은 2개의 저역 통과 필터 중 상대적으로 작은 차단 주파수를 갖는 저역 통과 필터와 대응될 수 있다.An image processing apparatus having a differential applying filter unit according to the present invention includes two low pass filters, wherein a register value stored in an area designation register is different from a register value of a first region and a second region of image data. The register value of the first region corresponds to a low pass filter having a relatively large cutoff frequency of two low pass filters, and the register value of the second region corresponds to a low pass filter having a relatively small cutoff frequency of two low pass filters. May correspond to

여기서, 제1 영역은 영상 데이터의 중앙 부분에 형성되고, 제2 영역은 영상 데이터의 중앙 부분 이외의 영역에 형성될 수 있다.Here, the first region may be formed in the center portion of the image data, and the second region may be formed in the region other than the center portion of the image data.

여기서, 제1 영역 및 제2 영역을 각각 구성하는 구분 영역의 개수는 영역 지정 레지스터의 개수 및 각 레지스터의 비트 수에 의해 결정될 수 있다.Here, the number of division areas constituting the first area and the second area may be determined by the number of area designation registers and the number of bits in each register.

본 발명의 다른 측면에 따르면, (a) 입력되는 영상 데이터의 임의의 1개 픽셀 데이터에 대하여 N개의 저역 통과 필터에 의해 차등 필터링된 N개의 결과 픽셀 데이터를 생성하는 단계-여기서, N개의 저역 통과 필터는 각기 상이한 차단 주파수 를 갖음-; (b) 임의의 픽셀의 위치에 상응하는 구분 영역에 대한 미리 설정된 레지스터 값을 영역 지정 레지스터로부터 추출하는 단계; 및 (c) N개의 저역 통과 필터 중 추출된 레지스터 값에 대응되는 저역 통과 필터에 의한 결과 픽셀 데이터를 선택하는 단계-여기서, 레지스터 값은 N개의 저역 통과 필터 중 어느 하나의 저역 통과 필터와 대응됨-를 포함하되, 영상 데이터의 모든 픽셀에 대하여 단계 (a) 내지 단계 (c)가 반복적으로 수행되는 차등 적용 필터부를 가지는 영상 처리 장치에서의 영상 처리 방법이 제공될 수 있다.According to another aspect of the invention, (a) generating N result pixel data differentially filtered by the N low pass filters for any one pixel data of the input image data, wherein N low pass Filters have different cutoff frequencies; (b) extracting from the region designation register a preset register value for the segmentation region corresponding to the position of any pixel; And (c) selecting the resulting pixel data by the low pass filter corresponding to the extracted register value among the N low pass filters, wherein the register value corresponds to the low pass filter of any one of the N low pass filters. There may be provided an image processing method in an image processing apparatus including-, but having a differential applying filter unit in which steps (a) to (c) are repeatedly performed on all pixels of the image data.

이하의 내용은 단지 본 발명의 원리를 예시한다. 따라서, 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만, 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 방법 및 이를 사용하는 장치를 발명할 수 있는 것이다. 즉, 본 발명의 원리, 관점 및 실시예들 뿐만 아니라 특정 실시예를 열거하는 모든 상세한 설명은 구조적 및 기능적 균등물을 포함하도록 의도되는 것으로 이해되어야 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. The following merely illustrates the principles of the invention. Thus, although not clearly described or illustrated herein, one of ordinary skill in the art would be able to invent various methods that implement the principles of the invention and are included in the concepts and scope of the invention and apparatuses using the same. In other words, it is to be understood that all details, including the principles, aspects, and embodiments of the present invention, as well as listing specific embodiments, are intended to include structural and functional equivalents. In addition, in describing the present invention, when it is determined that the detailed description of the related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals regardless of the reference numerals and redundant description thereof will be omitted.

도 1은 본 발명의 바람직한 일 실시예에 따른 영상 처리 장치의 블록 구성도 이다. 본 발명에 따른 영상 처리 장치(100)는 휴대폰을 비롯한 이동 통신 단말기, 디지털 카메라, 컴퓨터, 게임 단말기 등 디지털 영상의 처리를 필요로 하는 장치이면 어느 것에나 이용될 수 있다.1 is a block diagram of an image processing apparatus according to an exemplary embodiment of the present invention. The image processing apparatus 100 according to the present invention may be used for any device that requires processing of digital images such as a mobile communication terminal, a digital camera, a computer, a game terminal, and the like.

도 1을 참조하면, 본 발명에 따른 영상 처리 장치(100)는 차등 적용 필터부(115)를 포함하는 전처리부(110), 압축부(120) 및 저장부(130)를 포함한다.Referring to FIG. 1, the image processing apparatus 100 according to the present invention includes a preprocessing unit 110 including a differential applying filter unit 115, a compression unit 120, and a storage unit 130.

전처리부(110)는 영상 데이터를 압축하기에 앞서 이미지 센서(미도시)로부터 입력된 원시 영상 데이터에 대한 영상 처리를 수행한다. 전처리부(110)에 의해 영상 처리된 데이터는 저장부(130)에 저장될 수 있다. The preprocessor 110 performs image processing on the raw image data input from the image sensor (not shown) before compressing the image data. The data processed by the preprocessor 110 may be stored in the storage 130.

여기서, 전처리부(110)로 입력되는 원시 영상 데이터는 CCD 센서와 같은 이미지 센서에 의해 촬상된 원시 영상으로부터 변환된 형태인 디지털 영상 신호일 수 있다.Here, the raw image data input to the preprocessor 110 may be a digital image signal converted from a raw image captured by an image sensor such as a CCD sensor.

전처리부(110)는 차등 적용 필터부(115)를 포함한다. 차등 적용 필터부(115)는 원시 영상 데이터의 영역별 중요도에 따라 영상 필터링의 강도를 달리함으로써 후속하는 압축 과정을 통해 생성되는 압축 영상 데이터의 압축률을 높일 수 있다. 차등 적용 필터부(115)에 관하여는 도 2에서 상세히 설명하기로 한다.The preprocessor 110 includes a differential application filter 115. The differential application filter unit 115 may increase the compression rate of the compressed image data generated through the subsequent compression process by varying the intensity of the image filtering according to the importance of each region of the raw image data. The differential application filter unit 115 will be described in detail with reference to FIG. 2.

도 1에서는 차등 적용 필터부(115)를 전처리부(110)에 포함시켰지만, 전처리부(110)와 별도로 구비될 수 있음은 물론이다.In FIG. 1, the differential filter unit 115 is included in the pretreatment unit 110, but it may be provided separately from the pretreatment unit 110.

압축부(120)는 전처리부(110)를 통해 영상 처리된 영상 데이터를 압축(encoding)하거나, 압축된 영상 데이터를 원래의 영상 데이터로 복원(decoding)한다. 압축부(120)는 영상 데이터를 압축 또는 복원하기 위한 영상 코덱(codec)을 구 비할 수 있으며, 영상 코덱으로는 JPEG, MPEG 등의 다양한 영상 코덱 중 어느 것이든 선택 가능하다. 압축부(120)에 의해 압축된 영상 데이터는 저장부(130)에 저장될 수 있다. 이처럼 압축부(120)는 저장할 영상 데이터의 저장 용량을 작게 함으로써 저장부(130)의 부담을 줄일 수 있다.The compression unit 120 encodes image data processed by the preprocessor 110 or decodes the compressed image data into original image data. The compression unit 120 may have an image codec for compressing or restoring image data. The image codec may be any one of various image codecs such as JPEG and MPEG. Image data compressed by the compression unit 120 may be stored in the storage unit 130. As such, the compression unit 120 may reduce the load of the storage unit 130 by reducing the storage capacity of the image data to be stored.

저장부(130)는 복수의 메모리로 구성되며, 전처리부(110) 또는 압축부(120)에 의해 처리된 영상 데이터를 저장한다. 전처리부(110) 또는 압축부(120)에 의해 영상 처리된 각각의 데이터는 저장부(130) 내에서 어드레스(address)가 다른 별도의 저장 공간에 저장될 수 있다.The storage unit 130 includes a plurality of memories, and stores image data processed by the preprocessor 110 or the compressor 120. Each data processed by the preprocessor 110 or the compressor 120 may be stored in a separate storage space having different addresses in the storage 130.

도 1에 도시한 구성부 이외에도 본 발명에 따른 영상 처리 장치(100)에는 영상 처리를 위한 다양한 구성부가 더 포함될 수 있음은 자명하다. 예를 들어, 영상 처리 장치(100)에는 영상 데이터의 크기 조정을 위한 스케일러(Scaler), 영상 데이터를 베이어 패턴으로 배열하는 베이어 필터(Bayer filter), 영상 데이터의 픽셀간 보간을 수행하는 보간부(Interpolation), 영상 데이터에 대한 감마 보정 및 색채/휘도 보정을 수행하는 감마 보정부(Gamma Correction) 및 색채 보정부(Color Correction), RGB 영상 데이터를 YUV 영상 데이터로 변환하는 포맷 변환부(RGB to YCbCr Converter) 등이 더 포함될 수 있다. 이러한 구성부의 전부 또는 일부는 전처리부(110)에 포함되어 구비되거나 또는 전처리부(110)와는 별도로 영상 처리 장치(100) 내에 구비될 수 있다. 물론, 이러한 구성부의 기능을 수행하는 프로그램의 형태로 영상 처리 장치(100) 내에 저장될 수 있다.In addition to the components illustrated in FIG. 1, it is obvious that the image processing apparatus 100 according to the present invention may further include various components for image processing. For example, the image processing apparatus 100 may include a scaler for adjusting the size of the image data, a Bayer filter for arranging the image data in a Bayer pattern, and an interpolation unit for performing inter-pixel interpolation of the image data ( Interpolation), gamma correction and color / luminance correction for image data, and color correction and color conversion unit for converting RGB image data into YUV image data (RGB to YCbCr). Converter) may be further included. All or some of these components may be included in the preprocessor 110 or may be included in the image processing apparatus 100 separately from the preprocessor 110. Of course, it may be stored in the image processing apparatus 100 in the form of a program that performs the function of such a component.

상술한 영상 처리 과정의 수행을 위하여 영상 처리 장치(100)는 디지털 처리 장치 전체의 동작을 제어하는 제어부의 제어를 받을 수 있다. 물론, 영상 처리 장치(100) 내부에 별도의 영상 제어부를 구비함으로써 영상 처리 과정을 제어할 수도 있을 것이다.In order to perform the above-described image processing process, the image processing apparatus 100 may be controlled by a controller that controls the operation of the entire digital processing apparatus. Of course, the image processing process may be controlled by providing a separate image controller inside the image processing apparatus 100.

도 2는 도 1에 도시된 영상 처리 장치에서의 차등 적용 필터부를 나타낸 도면이다. 도 2 이하의 모든 도면에 관한 설명에서는 도 2가 도시하는 바와 같이 차등 적용 필터부(115)내에 차단 주파수가 상이한 저역 통과 필터가 2개 구비된 경우를 중심으로 설명하지만, 필요에 따라서 각기 상이한 차단 주파수를 갖는 3개 이상의 저역 통과 필터를 포함하는 형태로 구현될 수 있음을 당업자는 이하의 설명을 통해서 쉽게 알 수 있을 것이다. 이하의 설명에서 저역 통과 필터(Low pass filter) 및 멀티 플렉서(Multiplexer)의 구성 및 기능은 당업자에게 자명한 사항이므로 이에 대한 상세한 설명은 생략하기로 한다.FIG. 2 is a diagram illustrating a differential applying filter unit in the image processing apparatus of FIG. 1. In the description of all the drawings below FIG. 2, the case where two low-pass filters having different cutoff frequencies are provided in the differential application filter unit 115 as shown in FIG. 2 will be described. It will be readily apparent to those skilled in the art that the following description may be implemented in the form of three or more low pass filters having a frequency. In the following description, since the configuration and function of the low pass filter and the multiplexer are obvious to those skilled in the art, a detailed description thereof will be omitted.

도 2를 참조하면, 본 발명에 따른 차등 적용 필터부(115)는 2개의 저역 통과 필터(211, 212), 선택부(220) 및 영역 지정 레지스터(230)를 포함한다.Referring to FIG. 2, the differential application filter unit 115 according to the present invention includes two low pass filters 211 and 212, a selection unit 220, and an area designation register 230.

2개의 저역 통과 필터(211, 212)는 각기 상이한 차단 주파수(cut-off frequency)를 갖는다. 약한 저역 통과 필터(211)는 2개의 저역 통과 필터 중 상대적으로 큰 차단 주파수를 갖는 저역 통과 필터를 의미하며, 강한 저역 통과 필터(212)는 상대적으로 작은 차단 주파수를 갖는 저역 통과 필터를 의미한다. 영상 데이터가 강한 저역 통과 필터(212)를 통과하게 되면 약한 저역 통과 필터(211)를 통과하는 경우보다 영상 데이터에 포함된 고주파 성분을 더 많이 차단시키게 된다.The two low pass filters 211, 212 have different cut-off frequencies. The weak low pass filter 211 means a low pass filter having a relatively large cutoff frequency of the two low pass filters, and the strong low pass filter 212 means a low pass filter having a relatively small cutoff frequency. When the image data passes through the strong low pass filter 212, more of the high frequency components included in the image data are blocked than when passing through the weak low pass filter 211.

보다 상세히 설명하면, 저역 통과 필터는 그 필터가 갖는 차단 주파수 이상의 주파수 성분을 통과시키지 않고 차단하므로, 차단 주파수가 작을수록 영상 데이터에서 차단되는 영상 정보(즉, 그 차단 주파수 이상의 주파수 성분에 해당하는 영상 정보)의 양이 많아지게 된다. 따라서, 강한 저역 통과 필터를 사용할수록 제거되는 고주파 영상 정보 및 잡음의 양이 많아지며, 후속하는 압축 과정을 통해 생성되는 압축 영상 데이터의 크기가 작아진다. 즉, 강한 저역 통과 필터를 사용하는 경우 영상 데이터의 압축률을 높일 수 있게 된다. 다만, 원래의 영상 데이터에서 제거되는 영상 정보의 양이 많다는 것은 그만큼 영상 처리된 데이터가 원래 영상 데이터로부터 왜곡이 심해진다는 것을 의미하기도 한다. 이와 반대로, 약한 저역 통과 필터를 사용하는 경우에는 영상 왜곡의 정도는 줄일 수 있지만, 그 압축률 및 잡음 제거 효율이 떨어지게 된다. 이러한 이유로 1개의 저역 통과 필터만을 사용하는 경우 영상 데이터의 압축률 향상 및 영상 왜곡의 방지라는 2가지 요구를 동시에 달성할 수 없다. 이는 결국 제조자가 영상 처리 장치의 제조 시에 이러한 요구를 최대한 절충시킬 수 있는 차단 주파수를 선택할 수 밖에 없다는 것을 의미한다.In more detail, since the low pass filter cuts without passing a frequency component above the cutoff frequency of the filter, the lower the cutoff frequency, the smaller the cutoff frequency is. Information). Therefore, the more the use of the strong low pass filter, the greater the amount of high frequency image information and noise removed, and the smaller the size of the compressed image data generated through the subsequent compression process. That is, when a strong low pass filter is used, the compression rate of the image data can be increased. However, a large amount of video information removed from the original video data also means that the image-processed data is severely distorted from the original video data. On the contrary, when the weak low pass filter is used, the degree of image distortion can be reduced, but the compression rate and noise removal efficiency are inferior. For this reason, when only one low pass filter is used, the two requirements of improving the compression ratio of image data and preventing image distortion cannot be simultaneously achieved. This, in turn, means that the manufacturer has no choice but to select a cutoff frequency that will make the most of this requirement in the manufacture of the image processing device.

그러나, 본 발명에 따른 차등 적용 필터부(115)는 2개의 저역 통과 필터(211,212)를 이용함으로써 영상 데이터의 영역별 중요도에 따라 영역별로 보다 더 요구되는 영상 특성을 선택할 수 있다. 차등 적용 필터부(115)는 전체 영상 데이터 중 정보의 중요도가 높은 영역에 대해서는 영상의 왜곡 방지를 위해 약한 저역 통과 필터(211)에 의한 결과 영상을 선택하고, 정보의 중요도가 낮은 영역에 대해서는 영상의 왜곡 방지가 크게 요구되지 않으므로 압축률의 향상을 위해 강한 저역 통과 필터(212)에 의한 결과 영상을 선택할 수 있다.However, the differential application filter unit 115 according to the present invention may select more image characteristics required for each region according to the importance of each region of the image data by using two low pass filters 211 and 212. The differential application filter 115 selects the resultant image by the weak low pass filter 211 to prevent distortion of the image in an area of high importance of information among all image data, and selects an image in an area of low importance of information. Since distortion prevention is not greatly required, the resultant image of the strong low pass filter 212 may be selected to improve the compression ratio.

예를 들면, 촬영 대상인 인물은 보통 촬영된 이미지의 중앙에 존재하게 됨이 일반적이다. 이는 사용자가 카메라 등을 이용한 촬상시 화면의 중앙 부분에 촬영 대상을 위치시키기 때문이다. 이러한 이유로 촬영된 이미지에서 주변 부분보다 그 중앙 부분에 중요 정보가 많이 위치하게 된다. 또한, 사람들은 촬영된 이미지를 바라볼 때 상술한 정보의 중요도를 불문하고서라도 이미지의 중앙 부분을 그 주변 부분보다 더욱 주목함이 일반적이다. 사용자는 영상의 중앙 부분에 위치하는 영상 데이터에 더욱 비중을 두어 바라보므로, 사용자에게 있어서 영상의 중앙 부분의 영상 데이터는 정보의 중요도가 높고 주변 부분의 영상 데이터는 정보의 중요도가 낮다고 할 수 있다. 따라서, 본 발명에 따른 차등 적용 필터부(115)는 정보의 중요도가 높은 영상의 중앙 부분에 대해서는 약한 저역 통과 필터(211)를 통해 필터링된 결과 영상을 선택함으로써 영상의 왜곡 방지를 할 수 있다. 또한, 정보의 중요도가 낮은 영상의 주변 부분에 대해서는 강한 저역 통과 필터(212)를 통해 필터링된 결과 영상을 선택함으로써 압축률을 향상시킬 수 있다. 이처럼 차등 적용 필터부(115)를 이용한 차등 필터링 과정을 통하여 사용자는 동일한 압축률을 갖는 영상 데이터라도 하나의 저역 통과 필터를 이용하여 영상 필터링한 것에 비해 영상 데이터의 화질이 보다 양호하다고 느끼게 된다(도 6 내지 도 8 참조).For example, a person to be photographed is usually present in the center of the photographed image. This is because the user places the photographing target in the center of the screen when the user photographs using the camera or the like. For this reason, more important information is located in the center of the captured image than in the peripheral. Also, when viewing a photographed image, people generally pay more attention to the center portion of the image than the surrounding portion, regardless of the importance of the above-described information. Since the user places more emphasis on the image data located in the center of the image, the user can say that the image data of the center portion of the image is of high importance and the image data of the peripheral portion of the image is of low importance. . Therefore, the differential filter unit 115 according to the present invention can prevent distortion of the image by selecting the resultant image filtered through the weak low pass filter 211 for the central portion of the image having high information importance. In addition, the compression ratio may be improved by selecting a resultant image filtered through the strong low pass filter 212 for the peripheral portion of the image having low information importance. Through the differential filtering process using the differential filter unit 115 as described above, the user may feel that the image data of the image data having the same compression ratio is better than the image filtered using one low pass filter (FIG. 6). To FIG. 8).

여기서, 저역 통과 필터(211,212)는 FIR(Finite Impulse Response) 필터를 비롯한 다양한 디지털 필터에 의해 구현될 수 있다. 특히, FIR 필터의 경우 그 출력이 현재 및 과거의 입력에만 의존하며, 귀환 루프(feedback loop)가 필요없어 필 터의 안정성이 보장된다. 동일한 진폭 특성을 얻기 위해 IIR(Infinite Impulse Response) 필터에 비해 그 차수가 증가하는 단점이 있음에도 불구하고, FIR 필터는 그 구현의 간편성 및 필터의 안정성 측면에서 저역 통과 필터의 설계에 이용되기에 적당하다고 할 수 있다.Here, the low pass filters 211 and 212 may be implemented by various digital filters including a finite impulse response (FIR) filter. In particular, for FIR filters, their output depends only on current and past inputs, eliminating the need for a feedback loop to ensure filter stability. Despite the disadvantage of increasing the order of Infinite Impulse Response (IIR) filters to achieve the same amplitude characteristics, FIR filters are suitable for use in the design of lowpass filters in terms of their implementation simplicity and filter stability. can do.

또한, FIR 필터에서는 그 필터의 특성을 나타내는 임펄스 응답(Impulse response)의 계수(weight coefficient)의 간단한 조정만으로도 구현되는 저역 통과 필터의 강도를 변경시킬 수 있는 이점이 있다. 여기서, 저역 통과 필터의 강도는 그 필터의 차단 주파수와 관련된다.In addition, the FIR filter has an advantage of changing the strength of the low pass filter implemented by simple adjustment of the weight coefficient of the impulse response indicating the characteristic of the filter. Here, the strength of the low pass filter is related to the cutoff frequency of the filter.

예를 들어, 차수가 3차인 FIR 필터의 임펄스 응답은 아래의 수학식 1과 같이 되며, 임펄스 응답의 각 계수 값을 달리 조정함으로써 간단하게 저역 통과 필터의 차단 주파수의 크기를 선택해낼 수 있게 된다. FIR 필터의 임펄스 응답의 계수 조정은 필터의 구성의 변경없이 영상 처리 장치(100)에 별도로 구비된 레지스터(미도시)의 설정 값의 변경을 통하여 쉽게 할 수 있다.For example, the impulse response of the 3rd order FIR filter is expressed by Equation 1 below, and by adjusting different coefficient values of the impulse response, it is possible to simply select the magnitude of the cutoff frequency of the low pass filter. Coefficient adjustment of the impulse response of the FIR filter can be easily performed by changing a setting value of a register (not shown) separately provided in the image processing apparatus 100 without changing the filter configuration.

y[n] = {A x[n] + B x[n-1] + C x[n-2]}/(A+B+C) y [n] = {A x [n] + B x [n-1] + C x [n-2]} / (A + B + C)

여기서, x[n], x[n-1] 및 x[n-2] 는 FIR 필터로 순차 입력되는 각 픽셀을 의미하며, A, B 및 C는 임펄스 응답의 계수임.Here, x [n], x [n-1] and x [n-2] mean each pixel sequentially input to the FIR filter, and A, B and C are coefficients of an impulse response.

선택부(220)는 수평 픽셀 카운터(horizontal pixel counter)(221), 수직 픽 셀 카운터(vertical pixel counter)(222) 및 3개의 멀티 플렉서(이하, 도 2에 도시된 바와 같이'MUX1','MUX2','MUX3'라 약칭함)를 포함한다.The selector 220 includes a horizontal pixel counter 221, a vertical pixel counter 222, and three multiplexers (hereinafter, 'MUX1', as shown in FIG. 2). 'MUX2', short for 'MUX3').

수평 픽셀 카운터(221)는 입력된 임의의 픽셀이 영상 데이터 전체에서 위치하는 수평 방향의 순서를 계산하며, 수직 픽셀 카운터(222)는 수평 픽셀 카운터(221)를 거친 동일한 픽셀이 영상 데이터 전체에서 위치하는 수직 방향의 순서를 계산한다. 선택부(220)는 수평 픽셀 카운터(221) 및 수직 픽셀 카운터(222)를 이용하여 입력된 임의의 픽셀이 전체 영상 데이터 내에 존재하는 위치를 확인해 낼 수 있다. 또한, 선택부(220)는 MUX1 및 MUX2을 이용하여 앞서 확인된 픽셀의 위치에 상응하는 미리 설정된 레지스터 값을 영역 지정 레지스터(230)로부터 추출해낼 수 있다. 추출된 레지스터 값에 따라 선택부(220)는 MUX3을 이용하여 약한 저역 통과 필터(211) 및 강한 저역 통과 필터(212)를 각각 거친 결과 영상 중 어느 하나를 선택할 수 있다.The horizontal pixel counter 221 calculates the horizontal order in which any input pixel is positioned throughout the image data, and the vertical pixel counter 222 locates the same pixel across the horizontal pixel counter 221 in the entire image data. Calculate the vertical order. The selector 220 may determine a position where any input pixel exists in the entire image data using the horizontal pixel counter 221 and the vertical pixel counter 222. In addition, the selector 220 may extract, from the region designation register 230, a preset register value corresponding to the position of the pixel identified above using MUX1 and MUX2. According to the extracted register value, the selector 220 may select one of the resultant images that pass through the weak low pass filter 211 and the strong low pass filter 212 using MUX3.

도 2가 도시하는 차등 적용 필터부(115)의 기능 및 그 구성 요소간의 유기적 연결관계는 이하의 도 3 내지 도 5의 설명을 통해 더욱 분명해질 것이다.The function of the differential applied filter unit 115 shown in FIG. 2 and the organic connection relationship between the components thereof will become more apparent through the description of FIGS. 3 to 5 below.

도 3은 본 발명의 바람직한 일 실시예에 따른 차등적인 영상 필터링을 수행하기 위한 영상 데이터의 영역 구분 방법을 예시한 도면이고, 도 4는 도 3의 경우에 있어 구분 영역별로 미리 설정된 레지스터 값을 예시한 도면이다.FIG. 3 is a diagram illustrating an area classification method of image data for performing differential image filtering according to an exemplary embodiment of the present invention, and FIG. 4 is a diagram illustrating a preset register value for each division area in FIG. 3. One drawing.

도 3이 도시하는 바와 같이, 전체 영상 데이터는 수평 픽셀수 640개 및 수직 픽셀수 480개(640×480)의 크기를 갖는 것으로 가정한다. 이를 위해 영상 데이터는 영상 처리 장치(100)의 스케일러(미도시) 등을 통해 640×480의 크기를 갖도록 그 영상 데이터의 크기가 조정될 수 있다. 또한, 수평 픽셀수 32개 및 수직 픽셀수 32개(32×32)의 크기에 해당하는 영역을 영상 데이터의 영역 구분을 위한 단위 영역으로 선택한 것으로 가정한다. 이하의 설명에서 (m, n)은 영상 데이터의 원점(0, 0)을 기준으로 한 픽셀의 위치를 나타낸다. 여기서, m은 0 내지 639 사이의 값을 갖는 수평 픽셀수를 의미하고, n은 0 내지 479 사이의 값을 갖는 수직 픽셀수를 의미한다.As shown in Fig. 3, it is assumed that the total image data has a size of 640 horizontal pixels and 480 vertical pixels (640 x 480). To this end, the size of the image data may be adjusted to have a size of 640 × 480 through a scaler (not shown) of the image processing apparatus 100. In addition, it is assumed that an area corresponding to a size of 32 horizontal pixels and 32 vertical pixels (32 × 32) is selected as a unit area for area division of image data. In the following description, (m, n) indicates the position of the pixel with respect to the origin (0, 0) of the image data. Here, m means the number of horizontal pixels having a value between 0 and 639, and n means the number of vertical pixels having a value between 0 and 479.

도 3이 예시하는 전체 영상 데이터는 수평 방향으로 총 20개(640(총 수평 픽셀수)/32(단위 수평 픽셀수))의 영역으로 구분(이하, 이를 '수평 라인'이라 함)되고, 수직 방향으로 총 15개(480(총 수직 픽셀수)/32(단위 수직 픽셀수))의 영역으로 구분(이하, 이를 '수직 라인'이라 함)된다. 따라서, 영상 데이터는 총 300개(20개의 수평 라인×15개의 수직 라인)의 구분 영역으로 나뉠 수 있다. 구분 영역은 단위 영역의 크기(32×32)를 갖는 영상 데이터의 부분 영역들을 의미한다.All image data illustrated in FIG. 3 is divided into 20 regions (640 (total horizontal pixels) / 32 (unit horizontal pixels)) in total in the horizontal direction (hereinafter, referred to as a 'horizontal line'), and is vertical. Direction is divided into 15 regions (480 (total number of vertical pixels) / 32 (number of vertical pixels)) in the direction (hereinafter referred to as 'vertical line'). Accordingly, the image data may be divided into 300 divided regions (20 horizontal lines x 15 vertical lines). The division areas mean partial areas of the image data having a size (32 × 32) of the unit area.

영상 데이터의 총 15개의 수직 라인(제1 수직 라인부터 제15 수직 라인까지)에 해당되는 모든 픽셀은 각각 별개의 레지스터에 할당된다. 즉, 영상 데이터의 원점을 기준으로 제1 수직 라인에 해당하는 모든 픽셀(즉, 0번(m, 0) ~ 31번(m, 31) 픽셀)은 AREA_SEL_00[19:0] 레지스터에 할당되고, 제2 수직 라인에 해당하는 모든 픽셀(즉, 32번(m, 32) ~ 63번(m, 63) 픽셀)은 AREA_SEL_01[19:0] 레지스터에 할당되며, 최종적으로 제15 수직 라인에 해당하는 모든 픽셀(즉, 448번(m, 448) ~ 479번(m, 479) 픽셀)은 AREA_SEL_14[19:0] 레지스터에 할당된다.All pixels corresponding to a total of 15 vertical lines (from the first vertical line to the fifteenth vertical line) of the image data are each assigned to separate registers. That is, all pixels corresponding to the first vertical line (ie, pixels 0 (m, 0) to 31 (m, 31)) based on the origin of the image data are allocated to the AREA_SEL_00 [19: 0] registers. All pixels corresponding to the second vertical line (that is, pixels 32 (m, 32) to 63 (m, 63)) are allocated to the AREA_SEL_01 [19: 0] register and finally correspond to the 15th vertical line. All pixels (ie, pixels 448 (m, 448) to 479 (m, 479)) are assigned to the AREA_SEL_14 [19: 0] register.

여기서, AREA_SEL_00[19:0] 내지 AREA_SEL_14[19:0] 레지스터는 각각 20 비트(bit)로 구성되며, 하나의 레지스터를 구성하는 각 1 비트에는 영상 데이터의 각각의 수평 라인(제1'수평 라인 내지 제20'수평 라인)이 할당된다. AREA_SEL_00[19:0] 레지스터의 경우를 예로 들면, AREA_SEL_00[0] 비트에는 제1 수직 라인에 속하는 것으로서 영상 데이터의 원점을 기준으로 제1'수평 라인에 해당하는 모든 픽셀(즉, 0번(0, k) ~ 31번(31, k) 픽셀)이 할당되고, AREA_SEL_00[1] 비트에는 제1 수직 라인에 속하는 것으로서 제2'수평 라인에 해당하는 모든 픽셀(즉, 32번(32, k) ~ 63번(63, k) 픽셀)이 할당되며, 최종적으로 AREA_SEL_00[19] 비트에는 제1 수직 라인에 속하는 것으로서 제20'수평 라인에 해당하는 모든 픽셀(즉, 608번(608, k) ~ 639번(639, k) 픽셀)이 할당된다. 여기서, k는 0 내지 31 사이의 값을 갖는 수직 픽셀수를 의미한다.Here, the AREA_SEL_00 [19: 0] to AREA_SEL_14 [19: 0] registers each consist of 20 bits, and each 1 bit constituting one register has a horizontal line (first'horizontal line) of image data. To 20 'horizontal line). For example, in the case of the AREA_SEL_00 [19: 0] register, the AREA_SEL_00 [0] bits belong to the first vertical line, and all pixels corresponding to the first 'horizontal line with respect to the origin of the image data (that is, zero (0) k) to 31 (31, k) pixels are allocated, and in the AREA_SEL_00 [1] bits, all pixels corresponding to the second 'horizontal line as belonging to the first vertical line (that is, 32 (32, k)) 63 (63, k) pixels are allocated, and finally, in the AREA_SEL_00 [19] bit, all pixels corresponding to the 20 'horizontal line as belonging to the first vertical line (ie, 608 (608, k) ~) 639 (639, k) pixels) are allocated. Here, k means the number of vertical pixels having a value between 0 and 31.

도 4가 예시하는 바와 같이 영상 데이터의 각 구분 영역별로 할당되는 AREA_SEL_00[19:0] 내지 AREA_SEL_14[19:0] 레지스터의 각각의 비트에는 미리 설정된 "0" 또는 "1"의 값이 저장된다.As illustrated in FIG. 4, a predetermined value of "0" or "1" is stored in each bit of the AREA_SEL_00 [19: 0] to AREA_SEL_14 [19: 0] registers allocated to each division area of the image data.

예를 들어, 도 4의 AREA_SEL_02[19:0] 레지스터를 구성하는 AREA_SEL_02[0] 내지 AREA_SEL_02[19] 비트에는 미리 설정된 "1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1"와 같은 값이 비트별로 하나씩 순서대로 저장되고 있다. 각각의 비트에 저장되는 "0" 또는 "1"의 값(이하, 이를 '레지스터 값'이라 함)은 약한 저역 통과 필터(211)와 강한 저역 통과 필터(212) 중 어느 하나와 각각 대응된다. 이와 같은 레지스터 값의 설정을 통해 차등 적용 필터부(115)는 영상 데이터의 구분 영역별로 차 등적인 영상 필터링의 수행을 할 수 있게 된다. 영역별 차등 영상 필터링 방법에 대해서는 이하 도 5의 흐름도를 참조하여 상세히 설명하기로 한다.For example, bits AREA_SEL_02 [0] to AREA_SEL_02 [19] configuring the AREA_SEL_02 [19: 0] register of FIG. 4 are set to "1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 Values such as 1 "are stored in order one bit at a time. A value of "0" or "1" (hereinafter, referred to as a 'register value') stored in each bit corresponds to either the weak low pass filter 211 or the strong low pass filter 212, respectively. By setting the register value as described above, the differential application filter unit 115 may perform differential image filtering for each region of the image data. The differential image filtering method for each region will be described in detail with reference to the flowchart of FIG. 5.

도 3 및 도 4에서 영상 데이터의 크기는 640×480로, 단위 영역의 크기는 32×32인 것으로 가정하여 설명하였지만, 이에 한정되지 않으며 다양한 응용이 가능함은 물론이다. 즉, 영상 데이터의 크기 및 설정한 단위 영역의 크기를 달리함에 따라 요구되는 레지스터의 개수 및 크기가 상이해질 수 있다. 만일, 상용 레지스터의 개수 및 크기가 제한적이라면 단위 영역의 크기를 더 크게 함으로써(즉, 영상 데이터의 각 구분 영역을 보다 크게 나눔으로써) 필요한 레지스터의 개수 및 크기를 줄일 수 있을 것이다.In FIG. 3 and FIG. 4, the size of the image data is assumed to be 640 × 480, and the size of the unit area is 32 × 32. However, the present invention is not limited thereto and various applications are possible. That is, the number and size of registers required may be different according to the size of the image data and the size of the set unit region. If the number and size of commercial registers is limited, the number and size of necessary registers may be reduced by increasing the size of the unit area (that is, by dividing each divided area of the image data into larger ones).

또한, 도 3 및 도 4에서는 2개의 저역 통과 필터만을 이용하였으므로 해당 레지스터 값("0" 또는 "1")의 설정을 위해 1 비트만이 필요하였지만, 3개 이상의 저역 통과 필터를 이용하는 경우에는 그 저역 통과 필터의 개수에 상응하여 해당 레지스터 값의 설정을 위해 2 비트 이상이 필요할 수도 있음은 물론이다.In addition, since only two low pass filters are used in FIGS. 3 and 4, only one bit is required for setting a corresponding register value ("0" or "1"). Of course, more than two bits may be required to set the corresponding register value corresponding to the number of low pass filters.

도 5는 도 2에 도시된 차등 적용 필터부에서의 영상 필터링 과정을 나타낸 흐름도이다. 도 5의 차등 적용 필터부를 통한 영상 필터링 과정(단계 S501 내지 단계 S505)은 영상 데이터를 구성하는 모든 픽셀이 필터링될 때까지 픽셀별로 하나씩 순차 입력되는 방식으로 진행되는 것이나, 이하에서는 설명의 편의를 위하여 임의의 1개 픽셀의 데이터(이하, '원시 픽셀 데이터'라 함)에 대한 필터링 과정만을 설명한다. 차등 적용 필터부(115)에 입력되는 영상 데이터는 영상 처리 장치(100)의 전처리 과정을 통해 RGB 형태의 컬러 영상 데이터로부터 변환 처리된 YCrCb 형태를 가질 수 있다.FIG. 5 is a flowchart illustrating an image filtering process in the differential applying filter unit illustrated in FIG. 2. The image filtering process (steps S501 to S505) through the differential applying filter of FIG. 5 is performed in such a manner that the pixels are sequentially input one by one until all the pixels constituting the image data are filtered. Only the filtering process for data of any one pixel (hereinafter referred to as 'raw pixel data') will be described. The image data input to the differential application filter unit 115 may have a YCrCb form converted from RGB color image data through a preprocessing process of the image processing apparatus 100.

S501에서, 원시 픽셀 데이터는 약한 저역 통과 필터(211) 및 강한 저역 통과 필터(212) 각각에 입력되며, 이와 동시에 선택부(220) 내의 수평 픽셀 카운터(221)에도 입력된다.In S501, the raw pixel data is input to each of the weak low pass filter 211 and the strong low pass filter 212, and simultaneously to the horizontal pixel counter 221 in the selector 220.

원시 픽셀 데이터는 2개의 저역 통과 필터(211, 212)를 거치면서 각각 상이한 차단 주파수에 의해 필터링된다. 입력된 하나의 원시 픽셀 데이터에 대해 필터링된 2개의 상이한 픽셀 데이터(이하, '결과 픽셀 데이터'이라 함)가 생성된다. 생성된 2개의 결과 픽셀 데이터는 후술할 단계 S504 및 단계 S505를 거치면서 해당 레지스터 값에 따라 그 중 어느 하나의 결과 픽셀 데이터만이 선택될 것이다.The raw pixel data is filtered by different cutoff frequencies, respectively, passing through two low pass filters 211 and 212. Two different pixel data (hereinafter, referred to as 'result pixel data') that are filtered for the input raw pixel data are generated. The generated two result pixel data will be selected according to the corresponding register value only through the step S504 and step S505 to be described later.

이와 동시에, 원시 픽셀 데이터는 수평 픽셀 카운터(221)를 거치게 되며, 수평 픽셀 카운터(221)는 영상 데이터 전체에서 원시 픽셀 데이터가 위치하는 수평 방향의 순서를 계산한다. 수평 픽셀 카운터(221)를 거친 원시 픽셀 데이터는 다시 수직 픽셀 카운터(222)를 거치게 되며, 수직 픽셀 카운터(222)는 영상 데이터 전체에서 원시 픽셀 데이터가 위치하는 수직 방향의 순서를 계산한다. 이처럼 수평 픽셀 카운터(221) 및 수직 픽셀 카운터(222)를 거치면서 선택부(220)는 전체 영상 데이터 내에 존재하는 원시 픽셀 데이터의 위치를 확인할 수 있게 된다.At the same time, the raw pixel data passes through the horizontal pixel counter 221, and the horizontal pixel counter 221 calculates the horizontal order in which the raw pixel data is located in the entire image data. The raw pixel data that has passed through the horizontal pixel counter 221 passes through the vertical pixel counter 222 again, and the vertical pixel counter 222 calculates an order of the vertical direction in which the raw pixel data is positioned in the image data. As described above, the selection unit 220 may check the position of the raw pixel data existing in the entire image data while passing through the horizontal pixel counter 221 and the vertical pixel counter 222.

단계 S502에서, 원시 픽셀 데이터의 위치가 확인되면 선택부(220)는 그 픽셀의 위치에 상응하여 미리 설정된 해당 레지스터 값을 영역 지정 레지스터(230)로부터 추출해낸다.In step S502, when the position of the raw pixel data is confirmed, the selector 220 extracts from the region designation register 230 a corresponding register value preset in accordance with the position of the pixel.

예를 들어, 선택부(220)가 입력된 원시 픽셀 데이터가 전체 영상 데이터의 원점(0, 0)을 기준으로 하여 수평 방향으로 620번째 그리고 수직 방향으로 70번째에 위치하는 것(즉, (620, 70))으로 확인하였다고 가정한다. 이때, 원시 픽셀 데이터(620, 70)는 제20'수평 라인(즉, 608번 ~ 639번 픽셀) 및 제3 수직 라인(즉, 64번 ~ 95번 픽셀) 내에 속한다. 따라서, 선택부(220)는 제3 수직 라인에 속하는 것(즉, AREA_SEL_02[19:0] 레지스터에 해당함)으로서 제20'수평 라인에 포함되는 레지스터 내 해당 비트가 AREA_SEL_02[19] 비트인 것으로 결정할 수 있다(도 4 참조). 결국, 선택부(220)는 MUX1 및 MUX2를 이용하여 확인된 원시 픽셀 데이터의 위치에 상응하는 해당 레지스터의 해당 비트에서 미리 설정되어 저장된 레지스터 값(도 4의 경우에는 "1")을 추출해낼 수 있게 된다.For example, the raw pixel data input by the selector 220 is positioned 620th in the horizontal direction and 70th in the vertical direction with respect to the origin (0, 0) of the entire image data (ie, (620). , 70). In this case, the raw pixel data 620 and 70 belong to a 20 'horizontal line (ie, pixels 608 to 639) and a third vertical line (ie, pixels 64 to 95). Accordingly, the selector 220 determines that the corresponding bit in the register included in the 20 'horizontal line as belonging to the third vertical line (ie, corresponding to the AREA_SEL_02 [19: 0] register) is the AREA_SEL_02 [19] bit. (See FIG. 4). As a result, the selector 220 may extract a preset register value (“1” in FIG. 4) stored in the corresponding bit of the corresponding register corresponding to the position of the raw pixel data identified using MUX1 and MUX2. Will be.

단계 S503에서, 선택부(220)는 추출된 레지스터 값이 "1"인지 여부를 판단한다. 선택부(220)는 추출된 레지스터 값이 "1"인 경우에는 MUX3을 이용하여 강한 저역 통과 필터(212)에 의한 결과 픽셀 데이터를 선택하고(단계 S504), 추출된 레지스터 값이 "1"이 아닌 경우(즉, "0"인 경우)에는 약한 저역 통과 필터(211)에 의한 결과 픽셀 데이터를 선택한다(단계 S505).In step S503, the selector 220 determines whether the extracted register value is "1". When the extracted register value is "1", the selector 220 selects the resultant pixel data by the strong low pass filter 212 using MUX3 (step S504), and the extracted register value is "1". If not (ie, "0"), the resultant pixel data by the weak low pass filter 211 is selected (step S505).

즉, 일반적으로 화상 통화를 위한 영상 데이터는 중앙에 인물이 위치하고, 동영상에서도 중앙 부분에 중심 정보가 존재함을 고려할 때, 화면 중앙 부분에 위치한 픽셀 데이터들은 약한 저역 통과 필터(211)에 의해 처리되도록 하고, 주변부에 위치한 픽셀 데이터들은 강한 저역 통과 필터(212)에 의해 처리되도록 할 수 있을 것이다. 이러한 방법에 의해 사진 촬영시 조리개를 열어 심도를 얇게 함으로써 주제를 부각시킨 사진과 유사한 효과를 생성할 수도 있을 것이다. 물론, 이외에도 각 필터가 처리할 이미지 영역을 다양하게 설정함으로써 보다 다양한 효과가 나타나도록 할 수도 있을 것이다.That is, in general, considering that the video data for a video call is located in the center and the center information exists in the center of the video, the pixel data located at the center of the screen is processed by the weak low pass filter 211. In addition, the pixel data located at the periphery may be processed by the strong low pass filter 212. In this way, by opening the iris and taking a thinner depth when taking a picture, it may be possible to create an effect similar to the picture that emphasizes the subject. Of course, in addition to this, by setting various image areas to be processed by each filter, various effects may be produced.

도 6 내지 도 8은 본 발명의 일 실시예에 따른 차등 적용 필터부를 통한 영상 필터링을 거친 경우와 종래의 방식에 의한 영상 필터링을 거친 경우의 압축률 대비 화질의 양호도를 비교한 도면이다. 도 6은 원시 영상을 나타내고, 도 7은 종래의 방식에 의한 영상 필터링을 거친 경우의 처리 영상을 나타내며, 도 8은 본 발명에 따른 차등 적용 필터부(115)를 통한 영상 필터링을 거친 경우의 처리 영상을 나타낸다. 여기서, 도 8은 차등 적용 필터부(115)를 통한 영상 필터링에 있어 도 4에서 예시하는 영상 데이터의 영역별 레지스터 값을 적용한 것이다. 또한, 도 7 및 도 8에 도시된 처리 영상은 모두 영상 필터링 과정 및 후속하는 JPEG 압축 처리 과정까지 거친 뒤에 생성된 것이다.6 to 8 are diagrams comparing the goodness of the image quality with the compression ratio when the image filtering through the differential application filter unit according to an embodiment of the present invention and the image filtering by the conventional method. FIG. 6 shows a raw image, FIG. 7 shows a processed image when the image is filtered according to a conventional method, and FIG. 8 shows a processed image when the image is filtered through the differential applying filter 115 according to the present invention. Display the image. Here, FIG. 8 applies register values for respective regions of the image data illustrated in FIG. 4 in filtering an image through the differential applying filter 115. In addition, the processed images shown in FIGS. 7 and 8 are all generated after the image filtering process and the subsequent JPEG compression process.

도 6에 도시된 원시 영상의 크기는 31KB(Kilo Byte)이며, 도 7 및 도 8의 처리 영상은 각각 24KB(Kilo Byte)의 크기를 갖는다. 즉, 도 7 및 도 8의 처리 영상은 JPEG 압축 처리 후 동일한 영상 데이터 크기를 갖고 있다.The size of the raw image shown in FIG. 6 is 31 kilobytes (KB), and the processed images of FIGS. 7 and 8 each have a size of 24 kilobytes (Kilo Byte). That is, the processed images of FIGS. 7 and 8 have the same image data size after JPEG compression processing.

그러나, 도 7의 경우에는 원시 영상 데이터 전체가 하나의 저역 통과 필터에의해 동일한 강도(즉, 동일한 차단 주파수)로 영상 필터링된 것으로서, 처리 영상이 도 6의 원시 영상에 비해 전체적으로 흐릿해 보임을 알 수 있다.However, in the case of FIG. 7, the entire raw image data is image filtered by the same intensity (ie, the same cutoff frequency) by one low pass filter, and it is understood that the processed image is generally blurred compared to the raw image of FIG. 6. Can be.

도 8의 경우에는 원시 영상 데이터가 도 4에서 예시된 영역별 레지스터 값에 의해 영역별로 차등적인 영상 필터링을 거친 것으로서, 처리 영상의 중앙 부분이 도 7의 경우보다 한결 선명해 보임을 알 수 있다.In the case of FIG. 8, the raw image data is subjected to differential image filtering for each region by the region-specific register values illustrated in FIG. 4, and it can be seen that the center portion of the processed image is clearer than that of FIG. 7.

즉, 도 7과 도 8은 그 압축 효율에 대해서는 동일한 비율을 갖고 있지만, 사용자는 도 8의 처리 영상이 도 7의 처리 영상에 비해 훨씬 화질이 좋다고 느끼게 되는 것이다. 따라서, 본 발명에 따른 차등 적용 필터부를 이용한 영상 필터링 방법은 사용자가 느끼는 압축률 대비 화질 양호도의 개선을 가져오는 효과가 있다. 이와 같은 압축률 대비 화질 양호도의 개선 효과는 초당 24 프레임(frame) 이상의 영상이 순간적으로 바뀌게 되는 동영상의 경우에 더욱 확연히 나타나게 될 것이다.That is, although FIG. 7 and FIG. 8 have the same ratio with respect to the compression efficiency, the user feels that the processed image of FIG. 8 is much higher in quality than the processed image of FIG. Therefore, the image filtering method using the differential applied filter unit according to the present invention has the effect of improving the quality of image quality compared to the compression ratio that the user feels. Such an improvement in the quality of the image quality compared to the compression ratio will be more apparent in the case of a video in which an image of more than 24 frames per second is changed instantly.

또한, 본 발명에 따른 영상 필터링 방법은 전체 영상 중 중앙 부분의 대상을 그 주변 부분 보다 부각시키는 것과 같은 영상 효과(예를 들어, 카메라의 조리개를 개방한 상태에서 대상 물체를 촬상하였을 때, 인화된 사진 전체의 심도가 얇아지는 것과 같이 전체 영상 중 주변 부분이 흐릿하게 보이는 효과 등)를 만들어내는 것을 알 수 있다.In addition, the image filtering method according to the present invention prints the image effect (for example, when the target object is photographed with the aperture of the camera open, such as to highlight the object of the center portion of the entire image than its peripheral portion) As the depth of the entire picture becomes thinner, the peripheral part of the entire image is blurred.

상술한 바와 같이, 본 발명에 따른 차등 적용 필터부를 가지는 영상 처리 장치 및 방법에 의하면 영상 처리를 함에 있어 영상 데이터의 영역별 중요도를 고려할 수 있는 효과가 있다.As described above, according to the image processing apparatus and method having the differential application filter unit according to the present invention, there is an effect that can consider the importance of each area of the image data in the image processing.

또한, 본 발명은 영역별 중요도를 고려한 필터링을 수행함으로써 압축률 대비 화질의 양호도를 향상시킬 수 있는 효과가 있다.In addition, the present invention has an effect of improving the good quality of the compression ratio compared to the compression ratio by performing filtering considering the importance of each region.

또한, 본 발명은 영역별로 차등 필터링을 수행함으로써 영상에서 주제가 되는 대상을 부각시키는 등과 같은 다양한 영상 효과를 만들어낼 수 있는 효과가 있다.In addition, the present invention has an effect that can produce a variety of image effects, such as highlighting the subject of the subject in the image by performing differential filtering for each region.

또한, 본 발명은 기존의 영상 처리 장치에 단순히 1개 이상의 저역 통과 필터 및 선택부만을 더 추가하는 방법으로 간단하게 구현가능하며, 영상 압축률을 향상시킴으로써 영상 저장 장치의 부담을 줄일 수 있는 효과가 있다.In addition, the present invention can be easily implemented by simply adding one or more low pass filters and a selection unit to the existing image processing apparatus, and has an effect of reducing the burden on the image storage device by improving the image compression ratio. .

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art to which the present invention pertains without departing from the spirit and scope of the present invention as set forth in the claims below It will be appreciated that modifications and variations can be made.

Claims (8)

각기 상이한 차단 주파수를 갖는 N개의 저역 통과 필터-여기서, 상기 N은 2 이상의 자연수임-;N lowpass filters, each having a different cutoff frequency, wherein N is a natural number of two or more; 영상 데이터의 구분 영역별로 상기 N개의 저역 통과 필터 중 어느 하나의 저역 통과 필터에 대응되는 미리 설정된 레지스터 값을 저장하는 영역 지정 레지스터-여기서, 상기 구분 영역은 상기 영상 데이터를 구성하는 부분 영역으로서 소정의 수평 픽셀수 및 소정의 수직 픽셀수를 갖는 영역들을 의미함-; 및An area designation register for storing a predetermined register value corresponding to any one of the N low pass filters for each of the division areas of the image data, wherein the division area is a partial area constituting the image data. Means regions having a horizontal number of pixels and a predetermined vertical number of pixels; And 입력된 영상 데이터의 임의의 픽셀의 위치에 상응하는 구분 영역에 대한 상기 레지스터 값을 상기 영역 지정 레지스터로부터 추출하고, 상기 임의의 픽셀 데이터가 상기 N개의 저역 통과 필터에 의해 차등 필터링되어 생성된 N개의 결과 픽셀 데이터 중 상기 추출된 레지스터 값에 대응되는 저역 통과 필터에 의한 결과 픽셀 데이터를 선택하여 출력하는 선택부를 포함하는 차등 적용 필터부를 가지는 영상 처리 장치.N registers generated by extracting the register value for the divided region corresponding to the position of any pixel of the input image data from the region designation register, and the arbitrary pixel data being differentially filtered by the N low pass filters. And a selector for selecting and outputting result pixel data by a low pass filter corresponding to the extracted register value among result pixel data. 제1항에 있어서,The method of claim 1, 상기 저역 통과 필터는 FIR(Finite Impulse Response) 필터로 구현되는 것을 특징으로 하는 차등 적용 필터부를 가지는 영상 처리 장치.The low pass filter is an image processing device having a differential applied filter unit, characterized in that implemented as a Finite Impulse Response (FIR) filter. 제2항에 있어서,The method of claim 2, 상기 FIR 필터의 계수의 조정을 통해 상기 저역 통과 필터의 상기 차단 주파수가 상이해지는 것을 특징으로 하는 차등 적용 필터부를 가지는 영상 처리 장치.And a cutoff frequency of the low pass filter is different by adjusting a coefficient of the FIR filter. 제1항에 있어서,The method of claim 1, 상기 선택부는 수평 픽셀 카운터(Horizontal pixel counter) 및 수직 픽셀 카운터(Vertical pixel counter)를 포함하되,The selection unit includes a horizontal pixel counter and a vertical pixel counter, 상기 수평 픽셀 카운터 및 상기 수직 픽셀 카운터를 통한 연산을 통해 상기 픽셀의 위치를 계산하는 것을 특징으로 하는 차등 적용 필터부를 가지는 영상 처리 장치.And a differential applying filter unit to calculate a position of the pixel through calculation through the horizontal pixel counter and the vertical pixel counter. 제1항에 있어서,The method of claim 1, 상기 저역 통과 필터의 개수는 2개이되,The number of the low pass filter is two, 상기 영역 지정 레지스터에 저장된 상기 레지스터 값은 상기 영상 데이터 중 제1 영역의 레지스터 값과 제2 영역의 레지스터 값이 상이하고, 상기 제1 영역의 레지스터 값은 상기 2개의 저역 통과 필터 중 상대적으로 큰 차단 주파수를 갖는 저역 통과 필터와 대응되며, 상기 제2 영역의 레지스터 값은 상기 2개의 저역 통과 필터 중 상대적으로 작은 차단 주파수를 갖는 저역 통과 필터와 대응되는 것을 특징으로 하는 차등 적용 필터부를 가지는 영상 처리 장치.The register value stored in the region designation register is different from the register value of the first region and the register value of the second region of the image data, and the register value of the first region is a relatively large cutoff of the two low pass filters. A low pass filter having a frequency, and a register value of the second region corresponds to a low pass filter having a relatively small cutoff frequency among the two low pass filters. . 제5항에 있어서,The method of claim 5, 상기 제1 영역은 상기 영상 데이터의 중앙 부분에 형성되고, 상기 제2 영역은 상기 영상 데이터의 상기 중앙 부분 이외의 영역에 형성되는 것을 특징으로 하는 차등 적용 필터부를 가지는 영상 처리 장치.And the first area is formed at a center portion of the image data, and the second area is formed at a region other than the center portion of the image data. 제5항에 있어서,The method of claim 5, 상기 제1 영역 및 상기 제2 영역을 각각 구성하는 구분 영역의 개수는 상기 영역 지정 레지스터의 개수 및 각 레지스터의 비트 수에 의해 결정되는 것을 특징으로 하는 영상 처리 장치.And the number of division areas respectively constituting the first area and the second area is determined by the number of the area designation registers and the number of bits of each register. (a) 입력되는 영상 데이터의 임의의 1개 픽셀 데이터에 대하여 N개의 저역 통과 필터에 의해 차등 필터링된 N개의 결과 픽셀 데이터를 생성하는 단계-여기서, 상기 N개의 저역 통과 필터는 각기 상이한 차단 주파수를 갖음-;(a) generating N result pixel data differentially filtered by the N low pass filters for any one pixel data of the input image data, wherein the N low pass filters each have a different cutoff frequency. Has-; (b) 상기 임의의 픽셀의 위치에 상응하는 구분 영역에 대한 미리 설정된 레 지스터 값을 영역 지정 레지스터로부터 추출하는 단계; 및(b) extracting from the region designation register a preset register value for the division region corresponding to the position of the arbitrary pixel; And (c) 상기 N개의 저역 통과 필터 중 상기 추출된 레지스터 값에 대응되는 저역 통과 필터에 의한 결과 픽셀 데이터를 선택하는 단계-여기서, 상기 레지스터 값은 상기 N개의 저역 통과 필터 중 어느 하나의 저역 통과 필터와 대응됨-를 포함하되,(c) selecting the resultant pixel data by the low pass filter corresponding to the extracted register value among the N low pass filters, wherein the register value is a low pass filter of any one of the N low pass filters. Matches-, but 상기 영상 데이터의 모든 픽셀에 대하여 상기 단계 (a) 내지 상기 단계 (c)가 반복적으로 수행되는 것을 특징으로 하는 차등 적용 필터부를 가지는 영상 처리 장치에서의 영상 처리 방법.And (c) the step (a) to the step (c) are repeated for all the pixels of the image data.
KR1020060009757A 2006-02-01 2006-02-01 Image processing device KR100778924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060009757A KR100778924B1 (en) 2006-02-01 2006-02-01 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060009757A KR100778924B1 (en) 2006-02-01 2006-02-01 Image processing device

Publications (2)

Publication Number Publication Date
KR20070079215A true KR20070079215A (en) 2007-08-06
KR100778924B1 KR100778924B1 (en) 2007-11-22

Family

ID=38599899

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060009757A KR100778924B1 (en) 2006-02-01 2006-02-01 Image processing device

Country Status (1)

Country Link
KR (1) KR100778924B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9805450B2 (en) 2012-12-28 2017-10-31 Samsung Display Co., Ltd. Image processing device and display device having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236757B1 (en) 1998-06-18 2001-05-22 Sharp Laboratories Of America, Inc. Joint coding method for images and videos with multiple arbitrarily shaped segments or objects
KR100555419B1 (en) * 2003-05-23 2006-02-24 엘지전자 주식회사 Moving picture coding method
JP2005026746A (en) * 2003-06-30 2005-01-27 Matsushita Electric Ind Co Ltd Filter processing apparatus, image coding apparatus, and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9805450B2 (en) 2012-12-28 2017-10-31 Samsung Display Co., Ltd. Image processing device and display device having the same

Also Published As

Publication number Publication date
KR100778924B1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
EP2368226B1 (en) High dynamic range image combining
EP2556464B1 (en) Skin tone and feature detection for video conferencing compression
US7136536B2 (en) Adaptive filter
US8559744B2 (en) Method for processing a digital object and related system
AU2010350738A1 (en) Skin tone and feature detection for video conferencing compression
KR20090039824A (en) Adaptive spatial image filter for filtering image information
CN111145114B (en) Image enhancement method and device and computer readable storage medium
DE112017000500T5 (en) Motion-adaptive flow processing for temporal noise suppression
WO2013106266A1 (en) Super-resolution image using selected edge pixels
WO2004077357A1 (en) Apparatus and method for producing thumbnail images and for improving image quality of re-sized images
CN111429357A (en) Training data determination method, video processing method, device, equipment and medium
JP4460447B2 (en) Information terminal
US8718376B2 (en) Apparatus and method for enhancing image in portable terminal
JP5092536B2 (en) Image processing apparatus and program thereof
JP6685198B2 (en) Imaging device, control method thereof, and program
JP2004246644A (en) Apparatus, method, and program for image processing
Adams Jr et al. Digital camera image processing chain design
KR20060021665A (en) Apparatus and method of controlling screen contrast for mobile station
KR100778924B1 (en) Image processing device
JP2006197096A (en) Television telephone
JP6087720B2 (en) Imaging apparatus and control method thereof
Pillman et al. Image quality in consumer digital cameras
JP2023538649A (en) Data processing methods and systems
JP2024049798A (en) Image processing device, image processing method, and computer program
JPH09327005A (en) Method for displaying picture and its device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141028

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171030

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181029

Year of fee payment: 12