KR20070072017A - Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization - Google Patents

Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization Download PDF

Info

Publication number
KR20070072017A
KR20070072017A KR1020050135937A KR20050135937A KR20070072017A KR 20070072017 A KR20070072017 A KR 20070072017A KR 1020050135937 A KR1020050135937 A KR 1020050135937A KR 20050135937 A KR20050135937 A KR 20050135937A KR 20070072017 A KR20070072017 A KR 20070072017A
Authority
KR
South Korea
Prior art keywords
dispersion
dispersion stabilizer
polymerization
distilled water
nanoparticles
Prior art date
Application number
KR1020050135937A
Other languages
Korean (ko)
Other versions
KR100779255B1 (en
Inventor
장정식
남연희
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020050135937A priority Critical patent/KR100779255B1/en
Publication of KR20070072017A publication Critical patent/KR20070072017A/en
Application granted granted Critical
Publication of KR100779255B1 publication Critical patent/KR100779255B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A massive production process of conductive polypyrrol nano-particles through dispersion polymerization is provided to produce the nano-particles with low production cost, short polymerization time and simple polymerization condition by preparing a dispersion of dispersion stabilizer and oxidation agent and adding pyrrol monomer to the dispersion to conduct dispersion polymerization. The process includes the steps of: dispersing a dispersion stabilizer in distilled water by adding the dispersion stabilizer to the distilled water and stirring the mixture to form the dispersion; adding an oxidation agent to the prepared dispersion and stirring the mixture to form a solution; dropping pyrrol monomer to the treated solution then polymerizing the mixture to form the completed solution; adding the distilled water to the completed solution to dissolve unreacted stabilizer and the oxidation agent in the solution and recovering conductive polymer nano-particles in a spherical form. The dispersion stabilizer is polyvinyl alcohol and used in an amount of 0.001-20 wt.% relative to total weight of the product.

Description

분산 중합을 이용한 전도성 폴리피롤 나노입자의 대량 제조 방법 {Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization}Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization

도 1은 본 발명의 실시예 1에서 제조된 63 nm 의 직경을 갖는 폴리피롤 나노 입자의 주사전자현미경(Scanning Electron Microscope) 사진이고;1 is a Scanning Electron Microscope photograph of polypyrrole nanoparticles having a diameter of 63 nm prepared in Example 1 of the present invention;

도 2는 본 발명의 실시예 1에서 제조된 폴리피롤 나노입자의 퓨리에 변환 적외선 분광(FT-IR) 그래프이고;2 is a Fourier transform infrared spectroscopy (FT-IR) graph of the polypyrrole nanoparticles prepared in Example 1 of the present invention;

도 3은 본 발명의 실시예 2에서 제조된 폴리피롤 나노입자의 투과전자현미경(Transmission Electron Microscope) 사진이다. 3 is a transmission electron microscope (Transmission Electron Microscope) photograph of the polypyrrole nanoparticles prepared in Example 2 of the present invention.

본 발명은 분산 중합을 이용하여 수십 나노미터 직경 크기의 전도성 폴리피롤 나노입자를 대량으로 제조하는 방법을 제공한다.The present invention provides a method for producing large quantities of conductive polypyrrole nanoparticles of several tens of nanometers in diameter using dispersion polymerization.

나노 기술은 물질을 분자, 원자 단위에서 규명하고 제어하는 기술로서 원자, 분자들을 적절히 결합시킴으로서 기존 물질의 변형과 개조 그리고 신물질의 창조를 가능하게 하는 기술을 말하며 최근 차세대 산업 및 경제 발전의 핵심적 기반 기 술로 인식되고 있다. Nanotechnology is a technology to identify and control materials at the molecular and atomic level, and it is a technology that enables the transformation and modification of existing materials and the creation of new materials by combining atoms and molecules as appropriate, and is a key foundation for recent industrial and economic development of the next generation. It is recognized as alcohol.

나노재료는 일반적으로 1~100 나노미터 정도 크기의 기능을 가지는 소재로서, 덩어리 고체상태에서는 볼 수 없는 새로운 전자적, 자기적, 광학적, 전기적인 성질들을 나타낸다. 이러한 성질 때문에 금속, 금속 산화물, 무기 재료를 이용한 나노재료의 제조에 관한 연구가 지속적으로 행하여져 왔으며, 그 결과 나노미터 크기의 금속, 무기계 반도체 나노입자를 제조하는 기술은 잘 정립되어 산업적 응용이 활발히 연구되고 있다. Nanomaterials are generally 1-100 nanometers in size and exhibit new electronic, magnetic, optical, and electrical properties not found in solid state. Because of these properties, research on the manufacture of nanomaterials using metals, metal oxides, and inorganic materials has been continuously conducted. As a result, technologies for manufacturing nanometer-sized metal and inorganic semiconductor nanoparticles have been well established, and industrial applications are actively studied. It is becoming.

반면 유기 고분자 나노재료의 경우, 대량 생산이 어렵고 균일한 크기를 가지는 나노입자의 제조가 상대적으로 복잡하여 응용 범위가 한정되어 있다. 이러한 한계를 극복하고 유기 재료의 나노구조물질을 제조하고 응용하기 위한 연구에 대해 관심이 커지면서, 전도성 고분자의 나노구조물질의 제조를 위한 연구 또한 활발히 진행되어 왔다.On the other hand, in the case of organic polymer nanomaterials, it is difficult to mass-produce and the production of nanoparticles having a uniform size is relatively complicated, thereby limiting the application range. Overcoming these limitations and increasing interest in researches for manufacturing and applying nanostructured materials of organic materials, researches for the production of nanostructured materials of conductive polymers have also been actively conducted.

전기 전도성 재료의 관점에서 전도성 고분자는 하중이 큰 전선의 대체, 투명한 전도 필름, 광학 디스플레이소자, 정전기 방지재, 전자기 차폐재 등의 물질로 활용될 가능성을 가지고 있다. 이를 가능하게 하기 위해서는 전기 전도도가 높을 뿐 아니라 재료의 가공성, 내열성, 내화학성, 상용 고분자와의 상용성의 향상이 요구된다. 최근에는 안정성이 우수한 폴리아닐린, 폴리피롤, 폴리티오펜 등 잘 알려진 전도성 고분자를 중심으로 제조법의 개선 및 물성 향상 등의 연구가 진행되고 있으며 실용화 단계에 접근하고 있다. In view of the electrically conductive material, the conductive polymer has a possibility of being used as a substitute for a heavy load, a transparent conductive film, an optical display element, an antistatic material, an electromagnetic shielding material, and the like. In order to enable this, not only high electrical conductivity but also improvement of workability, heat resistance, chemical resistance, and compatibility with commercial polymers are required. Recently, researches on improving the manufacturing method and improving the physical properties of well-known conductive polymers, such as polyaniline, polypyrrole, and polythiophene, which are excellent in stability, have been conducted, and are approaching the commercialization stage.

전도성 고분자 나노 재료의 실용화를 위해서는 상기 조건 외에도 높은 수득 률과 입자의 균일성 향상, 그리고 그램 단위의 대량 생산이 필수적인 요소로 요구되어 왔으며, 그 중요성이 점점 높아져가고 있는 실정이다. In addition to the above conditions, high yields, improved uniformity of particles, and mass production in grams have been required as essential elements for the practical application of conductive polymer nanomaterials, and their importance is increasing.

폴리피롤 나노입자를 얻기 위한 방법으로는 옥틸트리메틸암모늄 브롬이나 테실트리메틸암모늄 브롬과 같은 계면 활성제를 이용하여 미셀을 형성시킨 후 피롤 단량체를 적가하여 중합하는 연구가 진행 되어왔다. 하지만 이 마이크로유화중합 방법은 높은 제조 단가와 중합 시 사용된 계면활성제를 제거하는 공정을 수반하기 때문에 대량 생산에는 한계를 지니고 있다.As a method for obtaining polypyrrole nanoparticles, studies have been conducted to form micelles using a surfactant such as octyltrimethylammonium bromide or tesyltrimethylammonium bromine, and then add and drop pyrrole monomer to polymerize it. However, this microemulsion polymerization method is limited in mass production because it involves a high manufacturing cost and a process for removing the surfactant used in the polymerization.

따라서, 분산성과 균일성이 뛰어난 폴리피롤 나노입자를 제조하면서도 대량 생산이 가능한 새로운 제조 방법이 강력히 요구되고 있다. Therefore, there is a strong demand for a new production method capable of mass production while producing polypyrrole nanoparticles having excellent dispersibility and uniformity.

본 발명의 목적은 입자의 응집 현상, 크기의 불균일성, 소량 제조와 같은 종래 기술의 문제점과 과거로부터 요구되어온 기술적 과제를 일거에 해결하고 경제적이고 편리한 대량 제조 방법을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art, such as agglomeration of particles, nonuniformity in size, small amount of production, and technical problems that have been required in the past, and to provide an economical and convenient mass production method.

본 발명자들은 수많은 실험과 심도있는 연구를 거듭한 끝에, 지금까지 알려진 방법과는 차별화되는 분산 안정제를 이용한 분산 중합 방법을 통하여 나노미터 크기의 구형 물질을 얻을 수 있는 획기적인 제조 방법을 발견하였다. 이러한 제조 방법을 이용하여 단시간에 매우 간편한 방법으로 폴리피롤 나노입자를 균일한 크기로 대량 제조할 수 있는 실험 조건을 확인하고 본 발명에 이르게 되었다.After numerous experiments and in-depth studies, the inventors have found a breakthrough method for obtaining nanometer-sized spherical materials through dispersion polymerization using a dispersion stabilizer that is different from the known methods. By using this preparation method, the experimental conditions for mass production of polypyrrole nanoparticles in a uniform size in a very simple manner in a short time were confirmed, and the present invention was achieved.

본 발명은 분산 중합 방법을 이용하여 수십 나노미터 크기의 고분자 나노입 자를 제조하는 방법과 제조 공정에 있어서 균일성과 분산성을 향상시키고 대량 생산을 가능하게 하는 실험 방법을 제공한다.The present invention provides a method for producing polymer nanoparticles of several tens of nanometers in size using a dispersion polymerization method and an experimental method for improving uniformity and dispersibility in a manufacturing process and enabling mass production.

본 발명에 따르면 전도성 고분자 나노입자의 제조 공정은,According to the invention the manufacturing process of the conductive polymer nanoparticles,

(A) 증류수에 분산 안정제를 첨가하고 교반(stirring)하여 분산 안정제를 증류수에 분산시키는 단계;(A) adding a dispersion stabilizer to distilled water and stirring to disperse the dispersion stabilizer in distilled water;

(B) 상기 분산 안정제가 분산되어 있는 수용액에 산화제(oxidant)를 첨가하여 교반하는 단계; 및,(B) adding and stirring an oxidant to the aqueous solution in which the dispersion stabilizer is dispersed; And,

(C) 상기 분산 안정제와 산화제가 분산되어 있는 수용액에 피롤 단량체를 적하하여 중합하는 단계; 및,(C) polymerizing by dropping a pyrrole monomer in an aqueous solution in which the dispersion stabilizer and the oxidant are dispersed; And,

(D) 상기 중합이 끝난 용액에 증류수를 첨가하여 미반응 안정제와 산화제를 용해시켜 구형의 전도성 고분자 나노입자를 회수하는 단계로 구성되어 있다. (D) distilled water is added to the solution after the polymerization to dissolve unreacted stabilizer and oxidizing agent to recover spherical conductive polymer nanoparticles.

본 명세서에서 특별히 명시되지 않는 한, 함량, 크기, 온도 등의 수치 범위는 본 발명의 제조 방법을 최적화 할 수 있는 범위를 의미한다.Unless specifically stated in the specification, the numerical range of the content, size, temperature and the like means a range capable of optimizing the manufacturing method of the present invention.

본 발명에 따른 전도성 고분자 나노 입자의 제조 방법은 분산 안정제를 이용하여 중합체의 엉김 현상을 방지하고, 입자 크기를 나노미터 수준으로 제한하여 이렇게 얻어진 유기 중합체를 침전을 통해 회수하는 과정을 거친다.In the method for preparing conductive polymer nanoparticles according to the present invention, a dispersion stabilizer is used to prevent entanglement of the polymer and limit the particle size to nanometer level to recover the organic polymer thus obtained through precipitation.

단계 (A)에서 이용될 수 있는 분산 안정제는 특별히 정해져 있거나 제한되는 것은 아니며, 폴리비닐알코올(polyvinylalcohol), 폴리비닐아세테이트(polyvinylacetate), 폴리비닐피롤리딘(polyvinylpyrrolidone), 폴리비닐메틸에테르(polyvinylmethylether) 등이 모두 사용될 수 있다. 하지만 대량 생산과 상업성 차원에서 폴리비닐알코올이 바람직하다. 분산 안정제의 분자량 또한 특별히 제한되는 것은 아니다. 다만 분산 안정제의 분자량이 지나치게 높아서 중합을 방해하지 않는 것이 바람직하다. 분산 안정제의 분자량이 높으면 분산 효과는 향상되는 반면 제조된 고분자 입자의 침전이 어렵고, 분자량이 낮으면 제조된 고분자 입자의 침전이 용이하다. 물에 대한 분산 안정제의 농도 역시 특별히 제한되는 것은 아니며 제조되는 고분자 나노입자의 직경에 변수로 작용한다. 분산 안정제의 농도가 높으면 제조되는 나노 입자의 크기는 작아지며, 분산 안정제의 농도가 낮으면 제조되는 고분자 나노입자의 크기는 커진다. 또한, 분산 안정제의 농도가 높으면 분산성은 좋아지나 고분자 나노입자를 포함한 혼합 용액에서 고분자 나노입자를 분리해 내기가 어려우며, 분산 안정제의 농도가 낮으면 분산성은 조금 떨어지지만 고분자 나노입자의 분리는 용이하다. Dispersion stabilizers that can be used in step (A) are not specifically defined or limited, and include, but are not limited to, polyvinylalcohol, polyvinylacetate, polyvinylpyrrolidone, polyvinylmethylether And the like can all be used. However, polyvinyl alcohol is preferred for mass production and commercial purposes. The molecular weight of the dispersion stabilizer is also not particularly limited. However, it is preferable that the molecular weight of the dispersion stabilizer is too high so as not to interfere with the polymerization. If the molecular weight of the dispersion stabilizer is high, the dispersion effect is improved while precipitation of the prepared polymer particles is difficult. If the molecular weight is low, precipitation of the prepared polymer particles is easy. The concentration of the dispersion stabilizer in water is also not particularly limited and acts as a variable in the diameter of the polymer nanoparticles produced. If the concentration of the dispersion stabilizer is high, the size of the nanoparticles produced is small, and if the concentration of the dispersion stabilizer is low, the size of the polymer nanoparticles is made large. In addition, when the concentration of the dispersion stabilizer is high, the dispersibility is good, but it is difficult to separate the polymer nanoparticles from the mixed solution containing the polymer nanoparticles, and when the concentration of the dispersion stabilizer is low, the dispersibility is slightly decreased, but the separation of the polymer nanoparticles is easy. .

단계 (B)에서 사용되는 산화제는 단량체를 중합시킬 수 있는 산화제로 삼염화철(FeCl3), 이염화구리(CuCl2), 세릭암모늄나이트레이트(ceric ammonium nitrate)를 예로 들 수 있으며 사용되는 분산 안정제와 단량체, 그리고 중합 온도 등에 따라 자유롭게 선택이 가능하다. 그 중 피롤 단량체를 중합시키기 위한 산화제로는 삼염화철이 가장 바람직하며 피롤 단량체의 몰 비를 기준으로 1~13 배를 넣어줄 수 있다. 이론적으로 삼염화철을 피롤 단량체 몰비의 2.3배를 넣어 주어 2몰은 선형 단위로 뻗어나가는 활성싸이트 (active site)를 제공하며, 0.3 몰은 단량체 3개당 하나의 도펀트 역할을 하는 도핑 콤플렉스로 작용한다고 알려져 있으나 본 발명에 서는 나노크기의 전도성 고분자 입자를 제조하기 위하여 과량의 산화제를 사용하는 것이 바람직하다. The oxidizing agent used in step (B) is an oxidizing agent capable of polymerizing monomers. Examples thereof include iron trichloride (FeCl 3 ), copper dichloride (CuCl 2 ), and ceric ammonium nitrate. It can be freely selected depending on the monomers and the polymerization temperature. Of these, iron trichloride is most preferred as an oxidizing agent for polymerizing the pyrrole monomer, and may be added 1 to 13 times based on the molar ratio of the pyrrole monomer. Theoretically, iron trichloride was added at 2.3 times the molar ratio of pyrrole monomers to provide an active site with 2 moles extending linearly, with 0.3 moles acting as a doping complex that acts as a dopant per 3 monomers. However, in the present invention, it is preferable to use an excess of oxidizing agent to prepare nano-sized conductive polymer particles.

단계 (C)에서 사용된 단량체는 구상의 나노입자를 형성하고, 분산 중합이 가능한 단량체이면 특별히 제한 되는 것이 아니며 대표적인 예로는 피롤, 티오펜, 아닐린, 에틸렌다이옥틸씨오펜 등을 들 수 있다. 특히 바람직한 단량체는 도전성 고분자인 폴리피롤을 제공하는 피롤 단량체이다. 단량체의 양은 물에 대하여 0.1 내지 0.5몰이 바람직하다.The monomer used in step (C) is not particularly limited as long as it forms a spherical nanoparticle and is a monomer capable of dispersion polymerization, and typical examples thereof include pyrrole, thiophene, aniline, ethylenedioctylthiophene, and the like. Particularly preferred monomers are pyrrole monomers which provide polypyrrole which is a conductive polymer. The amount of monomer is preferably 0.1 to 0.5 moles with respect to water.

상기 중합 반응을 위한 시간과 온도는 단량체, 분산 안정제, 산화제, 기타 반응 조건에 따라 달라질 수 있으며 중합 시간은 1분에서 2시간 정도이며 온도는 -20 ℃ 에서 60 ℃ 정도이다. The time and temperature for the polymerization reaction may vary depending on monomers, dispersion stabilizers, oxidizing agents, and other reaction conditions. The polymerization time is about 1 minute to 2 hours, and the temperature is about −20 ° C. to 60 ° C.

단계 (D)에서 상기 중합이 끝난 용액으로부터 분산 안정제와 남아있는 산화제를 제거하게 되면 나노미터 크기의 고분자 구형 물질이 얻어진다. 분산 안정제를 제거하는 용매의 종류 및 양에 대해서도 특별한 제한이 없는바, 바람직하기로는 분산 안정제를 녹일 수 있으며 인체에 독성이 없고 환경적으로 유해하지 않은 용매가 바람직하며 폴리비닐알코올을 분산안정제로 사용시 바람직한 용매는 증류수이다.In step (D), the dispersion stabilizer and the remaining oxidant are removed from the solution after polymerization, thereby obtaining a nanometer sized polymer spherical material. There is no particular limitation on the type and amount of the solvent for removing the dispersion stabilizer. Preferably, the dispersion stabilizer can be dissolved, and a solvent which is not toxic to the human body and is not environmentally harmful is preferable, and when polyvinyl alcohol is used as the dispersion stabilizer. Preferred solvent is distilled water.

본 발명은 상기 방법에 의해 폴리피롤 나노입자를 대량 제조하는 방법에 관한 것이다.The present invention relates to a method for mass production of polypyrrole nanoparticles by the above method.

본 발명의 방법에 의해 제조된 폴리피롤 나노입자는 그 크기가 균일하고 구형의 입자 형태를 띄며 그램 단위의 대량으로 제조가 가능하다는 특징을 갖는다. 또한 나노 크기의 폴리피롤 입자는 전기 전도성을 가지는 물질이므로, 광학 디스플 레이 재료, 전자기파 차폐 물질, 그리고 정전기 방지재 등으로 사용될 수 있을 것으로 예상된다. 그러나, 본 발명에 따른 폴리피롤 나노입자는 예시적인 용도에 한정됨이 없이 추후 예상되는 다양한 용도에 응용, 적용될 수 있으며, 이것의 용도가 본 발명의 범주를 벗어나는 것은 아니다. Polypyrrole nanoparticles produced by the method of the present invention is characterized in that the size is uniform, spherical particles in the form of grams can be produced in large quantities. In addition, since the nano-sized polypyrrole particles are electrically conductive materials, they may be used as optical display materials, electromagnetic shielding materials, and antistatic materials. However, the polypyrrole nanoparticles according to the present invention can be applied and applied to various anticipated future applications without being limited to exemplary uses, and their use does not depart from the scope of the present invention.

[실시예]EXAMPLE

이하 실시예를 들어 본 발명에 대한 구체적인 예를 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Examples will be described below with reference to specific examples of the present invention, but the scope of the present invention is not limited thereto.

[실시예 1]Example 1

25℃로 설정된 항온조 내에 설치된 반응 용기에 150 mL 의 증류수를 넣은 다음 분산 안정제로 평균 41,000의 분자량을 가지는 폴리바이닐알코올 (poly(vinylalcohol): PVA)을 0.5g 첨가하여 녹였다. 8.4 g 의 삼염화철을 반응 용기에 첨가한 후 대략 3,000 rpm의 속도로 5분간 교반하였다. 여기에 1 g 의 피롤 단량체 ([피롤 단량체]:[삼염화철] = 1:3.5)를 피펫을 이용하여 주입하였다. 25℃에서 10분간 교반하며 중합시킨 후, 약 500 mL 의 증류수를 반응기에 첨가하였다. 이는 반응에 참여하지 않은 삼염화철과 안정제로 사용된 폴리바이닐알코올을 용해하여 제거하기 위함이다. 반응 용액을 분별 깔대기에 옮긴 후, 폴리피롤 나노입자를 침전시켜 혼합 용액에서 분리하였다. 침전된 폴리피롤 나노입자를 회수하기 위해 증류수의 윗층을 피펫을 이용하여 제거하였다. 증류수를 첨가하여 폴리피롤 나노입자를 침전시키고 상층액을 제거하는 과정을 3회 반복 시행하였다. 남은 하층을 상온에서 자연 증발시켜 폴리피롤 나노입자를 얻을 수 있었다. 제조된 폴리피롤 나 노입자를 주사 전자 현미경을 이용하여 분석한 결과 도 1에서 보는 바와 같이 평균 53 nm 의 구형 입자가 균일하게 얻어진 것을 확인하였다. 4 탐침법을 이용하여 8 S/cm의 전도도를 가짐을 관찰하였고, 또한 퓨리에 변환 적외선 분광기 (FT-IR) 그래프가 도 2에 제시되어 있는 바, 폴리피롤임을 확인하였다.150 mL of distilled water was added to a reaction vessel installed in a thermostat set at 25 ° C., and 0.5 g of poly (vinylalcohol: PVA) having an average molecular weight of 41,000 was added and dissolved as a dispersion stabilizer. 8.4 g of iron trichloride was added to the reaction vessel and stirred for 5 minutes at a rate of approximately 3,000 rpm. 1 g of pyrrole monomer ([pyrrole monomer]: [iron trichloride] = 1: 3.5) was injected into the pipette. After polymerization with stirring at 25 ° C. for 10 minutes, about 500 mL of distilled water was added to the reactor. This is to dissolve and remove the iron trichloride and polyvinyl alcohol used as a stabilizer did not participate in the reaction. After the reaction solution was transferred to a separatory funnel, polypyrrole nanoparticles were precipitated and separated from the mixed solution. The upper layer of distilled water was removed using a pipette to recover the precipitated polypyrrole nanoparticles. The process of precipitating polypyrrole nanoparticles by adding distilled water and removing the supernatant was repeated three times. The remaining lower layer was naturally evaporated at room temperature to obtain polypyrrole nanoparticles. As a result of analyzing the prepared polypyrrole nanoparticles using a scanning electron microscope, it was confirmed that spherical particles having an average of 53 nm were uniformly obtained as shown in FIG. 1. It was observed to have a conductivity of 8 S / cm using the four probe method, and also confirmed that the Fourier transform infrared spectroscopy (FT-IR) graph is polypyrrole as shown in FIG. 2.

[실시예 2]Example 2

실시예 1에서 도입하는 분산 안정제의 양에 대한 제조되는 고분자 나노 입자의 크기 변화를 알아보기 위하여 반응 시간, 교반 속도, 단량체의 양 등의 반응 조건을 일정하게 유지시키고 분산 안정제의 양을 0.25 g 에서 5 g 으로 증가시키며 실험하였다. 분산 안정제의 양을 증가시킴에 따라서 제조된 폴리피롤 나노입자의 평균 직경은 60 nm에서 30 nm로 줄어들며 분산 정도는 점차 향상됨을 확인하였다. 분산 안정제의 양이 0.25 g인 경우 60 nm의 구형 나노입자가 얻어진 반면, 0.5 g인 경우에는 53 nm, 1.0 g인 경우 50 nm, 2.0 g인 경우엔 44 nm, 3.0 g인 경우에는 42nm, 4.0 g인 경우에는 36 nm, 5.0 g인 경우에는 30 nm의 구형 나노입자가 제조된 것을 확인하였다. 분산 안정제를 4.5 g으로 하여 폴리피롤 나노입자를 제조하여 투과전자현미경으로 분석한 결과 , 평균 43 nm 의 직경을 갖는 폴리피롤 나노입자가 형성된 것을 확인할 수 있었으며 이는 도 3에서 개시되어 있다.In order to determine the size change of the prepared polymer nanoparticles with respect to the amount of the dispersion stabilizer introduced in Example 1, the reaction conditions such as the reaction time, the stirring speed, and the amount of the monomer were kept constant and the amount of the dispersion stabilizer was 0.25 g. Experiment with increasing to 5 g. As the amount of dispersion stabilizer was increased, the average diameter of the prepared polypyrrole nanoparticles decreased from 60 nm to 30 nm and the degree of dispersion was gradually improved. When the amount of dispersion stabilizer is 0.25 g, 60 nm spherical nanoparticles are obtained, whereas 0.5 nm is 53 nm, 1.0 g is 50 nm, 2.0 g is 44 nm, and 3.0 g is 42 nm and 4.0. In the case of g, it was confirmed that spherical nanoparticles of 36 nm and 30 nm were prepared in the case of 5.0 g. Polypyrrole nanoparticles were prepared using 4.5 g of the dispersion stabilizer, and analyzed by transmission electron microscopy. As a result, it was confirmed that polypyrrole nanoparticles having an average diameter of 43 nm were formed, which is disclosed in FIG. 3.

[실시예 3]Example 3

실시예 1과 마찬가지 방법을 이용하여 단량체, 개시제, 분산 안정제의 양은 그대로 두고, 분산 안정제의 분자량을 41,000과 105,000, 그리고 140,000으로 변화시켜 실험을 진행하였다. 분산 안정제의 분자량이 41,000인 경우 63 nm의 구형 입 자가 얻어진 반면, 분자량이 105,000인 경우 평균 52 nm, 분자량이 140,000인 경우에는 평균 46 nm의 구형 입자가 균일하게 얻어진 것을 확인하였다.Using the same method as in Example 1, the amount of monomer, initiator, and dispersion stabilizer was left as it was, and the experiment was carried out by changing the molecular weight of the dispersion stabilizer to 41,000, 105,000, and 140,000. It was confirmed that when the molecular weight of the dispersion stabilizer was 41,000, spherical particles of 63 nm were obtained, whereas when the molecular weight was 105,000, an average of 52 nm and a molecular weight of 140,000, an average of 46 nm spherical particles were obtained uniformly.

[실시예 4]Example 4

실시예 1과 마찬가지 방법을 이용하여 주입되는 피롤 단량체에 따른 형태와 전도도의 변화를 알아보기 위하여 피롤 단량체의 양을 0.25 g, 0.5 g, 0.75 g, 1.0 g, 1.5 g, 2.0 g으로 변화시켜 실험을 진행하였다. 피롤 단량체의 양이 0.25 g인 경우 평균 43 nm의 구형 입자를 얻었으며, 피롤 단량체의 양이 0.5 g인 경우 평균 47 nm, 1.0 g의 경우 평균 53 nm, 1.5 g인 경우 평균 56 nm, 2.0 g인 경우에는 평균 59 nm의 구형 입자가 제조된 것을 확인하였다. 전기 전도도는 4탐침법(four-probe method)으로 측정하였다. 그 결과를 하기 표 1에 나타낸다.Experiment to change the amount of pyrrole monomer to 0.25 g, 0.5 g, 0.75 g, 1.0 g, 1.5 g, 2.0 g to determine the change in form and conductivity according to the pyrrole monomer injected using the same method as in Example 1 Proceeded. When the amount of pyrrole monomer is 0.25 g, an average of 43 nm spherical particles is obtained. When the amount of pyrrole monomer is 0.5 g, an average of 47 nm is obtained, when 1.0 g is an average of 53 nm, and when 1.5 g is an average of 56 nm and 2.0 g In the case of the average spherical particles of 59 nm was confirmed to be produced. Electrical conductivity was measured by four-probe method. The results are shown in Table 1 below.

피롤 단량체의 양Amount of pyrrole monomer 전도도 (S/cm)Conductivity (S / cm) 0.50.5 0.920.92 0.750.75 1.651.65 1.01.0 8.048.04 1.51.5 14.6514.65 2.02.0 43.3743.37

상기 표 1로 부터 알 수 있는 바와 같이, 주입되는 피롤 단량체의 양이 증가함에 따라서 전도도가 점차 증가하여 43.37 S/cm까지 증가하였다.As can be seen from Table 1, as the amount of pyrrole monomer injected was increased, the conductivity gradually increased to 43.37 S / cm.

[실시예 5]Example 5

실시예 1과 마찬가지 방법을 이용하여 삼염화철과 피롤 단량체의 몰 비에 따른 변화를 알아보기 위해 [삼염화철]/[피롤]= 1.2, 2.3, 4.6, 6.9, 12.4로 변화시켜 실험을 진행하였다. [삼염화철]/[피롤]의 비가 증가함에 따라 폴리피롤 나노입자의 크기는 평균 50 nm에서 53 nm 정도로 유사하게 얻어졌다. In order to determine the change according to the molar ratio of iron trichloride and pyrrole monomer using the same method as in Example 1, the experiment was carried out by changing to [iron trichloride] / [pyrrole] = 1.2, 2.3, 4.6, 6.9, 12.4. As the ratio of [iron trichloride] / [pyrrole] was increased, the size of the polypyrrole nanoparticles was similarly obtained on average from 50 nm to 53 nm.

[실시예 6]Example 6

실시예 1과 마찬가지 방법을 이용하여 증류수의 양을 100 ml, 150 ml, 200 ml, 250 ml, 300 ml로 변화시켜 실험을 진행하였다. 투과 전자 현미경으로 확인한 결과, 제조된 폴리피롤 나노입자의 직경은 증류수의 양이 100 ml인 경우 평균 50 nm의 구형 입자가 얻어진 반면, 150 ml의 경우 평균 53 nm, 200 ml인 경우 평균 55 nm, 250 ml의 경우 평균 60 nm, 300 ml인 경우 평균 70 nm의 구형 입자가 제조됨을 확인하였다.The experiment was carried out by changing the amount of distilled water to 100 ml, 150 ml, 200 ml, 250 ml, 300 ml using the same method as in Example 1. As a result of the transmission electron microscopy, the diameter of the prepared polypyrrole nanoparticle was 50 spherical particles having an average of 50 nm when the amount of distilled water was 100 ml, while the average was 53 nm at 150 ml and 55 nm, 250 at 200 ml. In the case of ml, it was confirmed that spherical particles having an average of 60 nm and 300 ml had an average of 70 nm.

[실시예 7]Example 7

실시예 1과 마찬가지 방법을 이용하여 피롤 단량체의 중합 시간을 1분, 5분, 10분, 1시간, 2시간으로 변화시켜 실험을 진행하였다. 투과 전자 현미경으로 확인한 결과 1분 안에 폴리피롤 나노입자가 성공적으로 제조되는 것을 확인하였다.The experiment was conducted by changing the polymerization time of the pyrrole monomer into 1 minute, 5 minutes, 10 minutes, 1 hour, and 2 hours using the same method as in Example 1. As a result of transmission electron microscopy, it was confirmed that polypyrrole nanoparticles were successfully prepared within 1 minute.

[실시예 8]Example 8

2L 반응 용기에 300 mL 의 증류수를 넣은 다음 평균 41,000의 분자량을 가지는 폴리바이닐알코올 (poly(vinylalcohol): PVA)을 9 g 첨가하여 녹였다. 30 g 의 삼염화철을 반응 용기에 첨가한 후 대략 3,000 rpm의 속도로 5분간 교반하였다. 여기에 1 g 의 피롤 단량체 ([피롤 단량체]:[삼염화철] = 1:12.4)를 피펫을 이용하여 주입하고 10분간 교반하며 중합시켰다. 폴리바이닐알코올을 제거하지 않은 상300 mL of distilled water was added to a 2 L reaction vessel, and 9 g of polyvinyl alcohol (poly (vinylalcohol): PVA) having a molecular weight of 41,000 was added and dissolved. 30 g of iron trichloride was added to the reaction vessel and stirred for 5 minutes at a speed of approximately 3,000 rpm. 1 g of a pyrrole monomer ([pyrrole monomer]: [iron trichloride] = 1: 12.4) was injected using a pipette and stirred for 10 minutes to polymerize. Phase without polyvinyl alcohol

태로 증류수를 추가로 첨가하여, 폴리피롤 나노입자의 중량비를 전제 중량을 기준으로 0.03, 0.15, 0.3, 0.6, 2 중량비로 변화시켜 블렌드 용액을 제조하였다. 이 블렌드 용액을 1회, 2회, 3회 스핀 코팅하여 두께를 변화시켜 전도성 필름을 제조하였다. 이들 필름의 투과도를 가시광선 영역에서 UV/VIS spectrophotometer를 사용하여 측정하여, 파장에 따른 평균 투과도를 확인하였다. 그중 폴리피롤 나노입자의 중량비를 0.03, 0.3 중량비로 하는 전도성 필름의 투과도를 표 2에 제시하였다.Distilled water was further added, and the blend solution was prepared by changing the weight ratio of polypyrrole nanoparticles to 0.03, 0.15, 0.3, 0.6, and 2 weight ratios based on the total weight. The blend solution was spin coated once, twice and three times to vary the thickness to produce a conductive film. The transmittance of these films was measured using a UV / VIS spectrophotometer in the visible region, and the average transmittance according to the wavelength was confirmed. Among them, the transmittance of the conductive film having a weight ratio of polypyrrole nanoparticles at 0.03 and 0.3 weight ratio is shown in Table 2.

폴리 피롤 양 (중량비)Polypyrrole amount (weight ratio) 스핀 코팅 회수 (회)Spin coating count (times) 평균 투과도 (%)Average transmittance (%) 0.03 0.03 1One 9797 22 9595 33 9494 0.3 0.3 1One 8282 22 6969 33 5656

본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 가하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

본 발명에 따른 분산 중합을 이용한 수십 나노미터 수준의 균일하고 분산성이 뛰어난 폴리피롤 나노입자를 대량으로 제조하는 방법은 이제껏 보고된 바가 없는 전혀 새로운 방법으로서, 제조 과정이 매우 간편하고 효과적인 방법이다. 분산 안정제를 이용한 분산 중합 방법은 기존 방법에 비해 경제적이고 반응 시간이 짧으며 대량 생산을 가능하게 할 뿐만 아니라 나노 크기의 물질의 균일한 제조도 가능하게 하였다. 본 발명에 따른 간단한 대량 생산을 통해 만들어진 전도성 나노 입자는 전자 재료로의 실제 적용에도 많은 기여를 할 것으로 예상된다.The method for producing large amounts of uniform and dispersible polypyrrole nanoparticles on the order of tens of nanometers using the dispersion polymerization according to the present invention is a completely new method that has not been reported so far, and the manufacturing process is very simple and effective. The dispersion polymerization method using the dispersion stabilizer is economical, shorter reaction time than the conventional method, and enables mass production as well as uniform production of nano-sized materials. Conductive nanoparticles made through simple mass production according to the present invention are expected to contribute a great deal to the practical application to electronic materials.

Claims (11)

증류수에 분산 안정제를 첨가하고 교반하여 분산 안정제를 증류수에 분산시키는 단계;Adding a dispersion stabilizer to distilled water and stirring to disperse the dispersion stabilizer in distilled water; 상기 분산 안정제가 분산되어 있는 수용액에 산화제를 첨가하여 교반하는 단계; 및,Adding and stirring an oxidizing agent into the aqueous solution in which the dispersion stabilizer is dispersed; And, 상기 분산 안정제와 산화제가 분산되어 있는 수용액에 피롤 단량체를 적하하여 중합하는 단계; 및,Dropping and polymerizing a pyrrole monomer into an aqueous solution in which the dispersion stabilizer and the oxidant are dispersed; And, 상기 중합이 끝난 용액에 증류수를 첨가하여 미반응 안정제와 산화제를 용해시켜 구형의 전도성 고분자 나노입자를 회수하는 단계를 포함하는 것을 특징으로 하는 폴리피롤 나노입자 대량 제조 방법.And distilled water is added to the polymerization solution to dissolve unreacted stabilizers and oxidants to recover spherical conductive polymer nanoparticles. 제 1항에 있어서, 분산 안정제인 폴리비닐알코올 양을 전체 중량을 기준으로 0.0001 ~ 20 중량퍼센트로 변화시켜 나노 입자의 직경을 조절하는 제조 방법.The method of claim 1, wherein the diameter of the nanoparticles is controlled by changing the amount of polyvinyl alcohol as a dispersion stabilizer to 0.0001 to 20% by weight based on the total weight. 제 1항에 있어서, 분산 안정제인 폴리비닐알코올의 분자량을 1,000 ~ 500,000의 범위에서 택일하여 이루어짐을 특징으로 하는 제조 방법.The production method according to claim 1, wherein the molecular weight of polyvinyl alcohol, which is a dispersion stabilizer, is alternatively selected in the range of 1,000 to 500,000. 제 1항에 있어서, 교반 속도가 100 ~ 10,000 rpm의 범위에서 택일하여 이루어짐을 특징으로 하는 제조 방법.The method according to claim 1, wherein the stirring speed is alternatively made in the range of 100 to 10,000 rpm. 제 1항에 있어서, 피롤 단량체의 양을 전체 중량을 기준으로 0.001 ~ 30 중량퍼센트의 범위에서 택일하여 이루어짐을 특징으로 하는 제조 방법.The method according to claim 1, wherein the amount of pyrrole monomer is alternatively made in the range of 0.001 to 30% by weight based on the total weight. 제 1항에서, 증류수의 양을 전체 중량을 기준으로 1 ~ 99 중량퍼센트의 범위에서 택일하여 이루어짐을 특징으로 하는 제조 방법.The method according to claim 1, wherein the amount of distilled water is alternatively made in the range of 1 to 99% by weight based on the total weight. 제 1항에서, 중합 시간을 1분에서 24 시간인 것을 특징으로 하는 제조 방법.A process according to claim 1 wherein the polymerization time is from 1 minute to 24 hours. 제 1항에 있어서, 중합 온도를 -20 ~ 100 ℃ 인 것을 특징으로 하는 제조 방법.The production method according to claim 1, wherein the polymerization temperature is -20 to 100 ° C. 제 1항에 있어서, 삼염화철과 피롤의 몰 비를 [삼염화철]/[피롤]= 0.1 ~ 20에서 택일하여 이루어짐을 특징으로 하는 제조 방법.The production method according to claim 1, wherein the molar ratio of iron trichloride and pyrrole is alternatively selected from [iron trichloride] / [pyrrole] = 0.1 to 20. 제 1항에 있어서, 반응물들의 양을 배가함으로써 대량 제조 가능한 것을 특징으로 하는 제조 방법.2. A process according to claim 1 wherein the mass production is possible by doubling the amount of reactants. 분산 안정제를 이용한 분산 중합 방법을 이용하여 폴리피롤 나노입자의 전도 도가 10-2에서 103 S/cm의 범위를 가지는 것을 특징으로 하는 제조 방법.A method for producing polypyrrole nanoparticles having a conductivity of 10 -2 to 10 3 S / cm using a dispersion polymerization method using a dispersion stabilizer.
KR1020050135937A 2005-12-30 2005-12-30 Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization KR100779255B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050135937A KR100779255B1 (en) 2005-12-30 2005-12-30 Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050135937A KR100779255B1 (en) 2005-12-30 2005-12-30 Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization

Publications (2)

Publication Number Publication Date
KR20070072017A true KR20070072017A (en) 2007-07-04
KR100779255B1 KR100779255B1 (en) 2007-11-28

Family

ID=38507100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050135937A KR100779255B1 (en) 2005-12-30 2005-12-30 Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization

Country Status (1)

Country Link
KR (1) KR100779255B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959400B1 (en) * 2007-12-10 2010-05-24 한양대학교 산학협력단 Method of preparing a conductive polymer using albumin and a water-dispersive conductive polymer prepared thereby
KR101436061B1 (en) * 2011-12-30 2014-09-01 에스케이씨 주식회사 Complex Particle for Transparent Conducting Film and the Transparent Conducting Film using Thereof
KR101963038B1 (en) * 2017-09-19 2019-03-27 서울대학교산학협력단 Fabrication of conductive paste based on polypyrrole nanoparticles for smart diaper electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949399B1 (en) * 2008-07-11 2010-03-24 광 석 서 Organic solvent dispersible conductive polymers and producing method for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4300468B2 (en) 2003-11-27 2009-07-22 アキレス株式会社 Conductive composite fine particle dispersion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959400B1 (en) * 2007-12-10 2010-05-24 한양대학교 산학협력단 Method of preparing a conductive polymer using albumin and a water-dispersive conductive polymer prepared thereby
KR101436061B1 (en) * 2011-12-30 2014-09-01 에스케이씨 주식회사 Complex Particle for Transparent Conducting Film and the Transparent Conducting Film using Thereof
KR101963038B1 (en) * 2017-09-19 2019-03-27 서울대학교산학협력단 Fabrication of conductive paste based on polypyrrole nanoparticles for smart diaper electrode

Also Published As

Publication number Publication date
KR100779255B1 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
Bhadra et al. Effects of aniline concentrations on the electrical and mechanical properties of polyaniline polyvinyl alcohol blends
Hong et al. Kinetic study of the formation of polypyrrole nanoparticles in water‐soluble polymer/metal cation systems: a light‐scattering analysis
Li et al. Facile high‐yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity
Li et al. Self‐stabilized nanoparticles of intrinsically conducting copolymers from 5‐sulfonic‐2‐anisidine
Hazarika et al. Controllable synthesis and characterization of polypyrrole nanoparticles in sodium dodecylsulphate (SDS) micellar solutions
Woo et al. Synthesis and dispersion of polypyrrole nanoparticles in polyvinylpyrrolidone emulsion
Karim et al. Preparation of conducting polyaniline/TiO2 composite submicron-rods by the γ-radiolysis oxidative polymerization method
Karim et al. Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization
Li et al. Facile Synthesis of Self‐Assembled Polyaniline Nanodisks
Zhang et al. Magnetic properties of hydrophilic iron oxide/polyaniline nanocomposites synthesized by in situ chemical oxidative polymerization
Ma et al. Cetyl trimethyl ammonium bromide (CTAB) micellar templates directed synthesis of water-dispersible polyaniline rhombic plates with excellent processability and flow-induced color variation
KR100779255B1 (en) Mass fabrication method for preparing conductive polypyrrole nanoparticles using dispersion polymerization
Kim et al. Preparation and characterizations of C 60/polystyrene composite particle containing pristine C 60 clusters
Suhailath et al. Synthesis, characterization, thermal properties and temperature-dependent AC conductivity studies of poly (butyl methacrylate)/neodymium oxide nanocomposites
Lu et al. Synthesis of submicron PEDOT particles of high electrical conductivity via continuous aerosol vapor polymerization
Mendoza et al. Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self‐assembly of block copolymers
Khodaei et al. Synthesis and characterization of copper nanoparticles stabilized with polyvinyl pyrrolidone and its performance on the conductivity and stability of polyindole
Abutalip et al. Strategic synthesis of 2D and 3D conducting polymers and derived nanocomposites
Jang et al. Ice-assisted synthesis and characterization of water-dispersible nanocomposites based on polyaniline and polymer acid surfactants
Wang et al. Uniform Fe 3 O 4–PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres
Kumar et al. Bimodal Co0. 5Zn0. 5Fe2O4/PANI nanocomposites: Synthesis, formation mechanism and magnetic properties
Haldorai et al. Nanostructured materials with conducting and magnetic properties: preparation of magnetite/conducting copolymer hybrid nanocomposites by ultrasonic irradiation
Miao et al. Synthesis of polyaniline nanofibrous networks with the aid of an amphiphilic ionic liquid
Chauhan et al. Synthetic route of PANI (III): Ultrasound-assisted polymerization
Meristoudi et al. Self‐assembly in solutions of block and random copolymers during metal nanoparticle formation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131106

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141110

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151028

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171023

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 12