KR20070067860A - Lead-free solder with low boiling point and method of producing same - Google Patents

Lead-free solder with low boiling point and method of producing same Download PDF

Info

Publication number
KR20070067860A
KR20070067860A KR1020050129293A KR20050129293A KR20070067860A KR 20070067860 A KR20070067860 A KR 20070067860A KR 1020050129293 A KR1020050129293 A KR 1020050129293A KR 20050129293 A KR20050129293 A KR 20050129293A KR 20070067860 A KR20070067860 A KR 20070067860A
Authority
KR
South Korea
Prior art keywords
lead
low melting
melting point
alloy
free solder
Prior art date
Application number
KR1020050129293A
Other languages
Korean (ko)
Other versions
KR100743190B1 (en
Inventor
김숙환
권영각
김성욱
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020050129293A priority Critical patent/KR100743190B1/en
Publication of KR20070067860A publication Critical patent/KR20070067860A/en
Application granted granted Critical
Publication of KR100743190B1 publication Critical patent/KR100743190B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A lead-free solder with a low melting point which is economically efficient by enabling the lead-free solder to perform a low temperature soldering, and a method of producing the same are provided. A lead-free solder with a low melting point comprises: a lead-free substrate; and a low melting point alloy plating layer formed on a surface of the lead-free substrate. The low melting point alloy plating layer includes an alloy with a melting point of 200 deg.C or lower. The alloy comprises two or more selected from the group consisting of tin, bismuth, and zinc. The alloy is a tin-bismuth alloy or a tin-zinc alloy. The lead-free substrate includes Sn, and one or more selected from the group consisting of Ag, Bi, In, and Cu. The low melting point alloy plating layer has a thickness of 8 to 25 mum. A method of producing a lead-free solder with a low melting point comprises the process of plating a lead-free substrate using a plating solution comprising a low melting point alloy. The plating process is an electroplating process or an electroless plating process. The plating process comprises performing an electroplating operation at a current density of 1 to 10 A/dm^2 and a temperature of 20 to 80 deg.C for 3 to 20 minutes.

Description

저융점 무연 솔더 및 그의 제조 방법{LEAD-FREE SOLDER WITH LOW BOILING POINT AND METHOD OF PRODUCING SAME}Low-melting lead-free solder and its manufacturing method {LEAD-FREE SOLDER WITH LOW BOILING POINT AND METHOD OF PRODUCING SAME}

도 1은 본 발명에 따른 저융점 솔더링 과정을 나타내는 도면. 1 is a view showing a low melting point soldering process according to the present invention.

도 2a 및 도 2b는 각각 본 발명의 실시예 1 및 2에 따라 제조된 무연 솔더의 SEM 사진.2A and 2B are SEM photographs of lead-free solders prepared according to Examples 1 and 2 of the present invention, respectively.

도 3a, 도 3b 및 도 3c는 각각 본 발명의 실시예 3 내지 5에 따라 제조된 무연 솔더의 측면 SEM 사진.3A, 3B and 3C are side SEM photographs of lead-free solders prepared according to Examples 3 to 5, respectively, of the present invention.

[산업상 이용 분야][Industrial use]

본 발명은 저융점 무연 솔더 및 그의 제조 방법에 관한 것으로서, 보다 상세하게는 저온 솔더링이 가능하여 경제적인 저융점 무연 솔더 및 그의 제조 방법에 관한 것이다. The present invention relates to a low melting point lead-free solder and a method for manufacturing the same, and more particularly, to a low melting point lead-free solder and a method for manufacturing the same, which are economically low temperature solderable.

[종래 기술][Prior art]

최근 들어 혼성 집적 회로의 설계 및 조립 기술이 발전함에 따라 고기능화가 이루어지면서, 혼성 집적 회로의 패키지도 SIP(Single In-line Package)에서 DIP(Dual In-line Package), QFP(Quad Flat Package) 형태로 발전하였으며, 입/출력 단자의 간격도 100밀(1밀 1/1000인치), 75밀, 50밀로 더욱더 집전도가 높아지고 있다.In recent years, with the development of hybrid integrated circuit design and assembly technology, high functionalization has been achieved. Hybrid integrated circuits have a single in-line package (DIP), dual in-line package (DIP), and quad flat package (QFP) forms. The input and output terminals are also 100 mils (1 mil 1/1000 inch), 75 mils, 50 mils, and the current collector is increasing.

또한 입/출력 단자수가 수백개이며 표면 실장이 가능한 소자가 요구되어 리드없는 볼 그리드 어레이(Ball Grid Array: BGA) 반도체 패키지가 최근들어 혼성 집적 회로 패키지로서 개발되고 있는 추세이다.In addition, since hundreds of input / output terminals are required and a surface mountable device is required, a leadless ball grid array (BGA) semiconductor package is recently being developed as a hybrid integrated circuit package.

이러한 BGA 패키지는 볼의 종류에 따라 금, 은 BGA 및 솔더 BGA로 나누어지며, 경제적으로 저렴한 솔더 볼 형태의 BGA 패키지가 혼성 집적 회로 패키지로 많이 적용되고 있다. 상기 솔더 볼은 납과 주석이 주성분이며, PCB(Printed Circuit Board)의 하면에 형성되어 패키지 내부의 회로와 패키지 외부의 회로를 연결시켜주는 기능을 갖는다.The BGA package is divided into gold, silver BGA, and solder BGA according to the ball type, and an economically inexpensive solder ball type BGA package is widely used as a hybrid integrated circuit package. The solder ball is mainly composed of lead and tin, and is formed on a lower surface of a printed circuit board (PCB) to connect a circuit inside the package and a circuit outside the package.

그러나 이러한 솔더볼은 패키지 제조 공정 중 공기와 접촉함에 따라 산화 및 부식되고 또한 솔더볼 상호간의 마찰 및 충격으로 변형되거나 변색됨으로서 패키지 제조시 불량 또는 전기적인 접촉저항으로 인한 오동작을 발생시키는 등의 여러 가지 문제점을 안고 있다. However, these solder balls are oxidized and corroded as they come into contact with air during the package manufacturing process and are deformed or discolored due to friction and impact between the solder balls, resulting in malfunctions due to poor or electrical contact resistance during package manufacturing. Holding it.

이러한 문제점을 해결하기 위하여 국내특허공개 제2001-18636호에서는 납과 주석으로 구성된 구에 주석, 구리-주석, 은-주석, 은-구리 등을 코팅하여 산화 및 부식을 방지할 수 있는 솔더볼 및 그의 제조 방법에 관한 내용이 기술되어 있다.In order to solve this problem, Korean Patent Publication No. 2001-18636 discloses a solder ball and a solder ball which can prevent oxidation and corrosion by coating tin, copper-tin, silver-tin, and silver-copper on a sphere composed of lead and tin. A description of the manufacturing method is described.

그러나 이 방법으로는 산화 및 부식 문제를 충분히 해결할 수 없고 또한, 최근에는 이러한 납을 포함하는 솔더볼을 사용하는 경우 환경 오염을 야기하는 문제 가 있어 무연(Lead-free) 솔더볼에 관한 연구가 이루어지고 있다. 그러나 이러한 무연 솔더볼은 융점이 높아 무연 솔더볼을 PCB의 하면에 형성시킬 때 고온 공정을 실시해야하는 문제가 있다.However, this method is not enough to solve the oxidation and corrosion problems, and recently, there is a problem that lead to environmental pollution when using such a solder ball containing lead has been studied for lead-free solder ball . However, such a lead-free solder ball has a high melting point, there is a problem that a high temperature process must be performed when forming the lead-free solder ball on the lower surface of the PCB.

본 발명의 목적은 상기와 같은 종래의 문제점을 해소하고 저융점 무연 솔더를 제공하는 것이다.An object of the present invention is to solve the above conventional problems and provide a low melting lead-free solder.

본 발명의 다른 목적은 상기 무연 솔더의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the lead-free solder.

상기 목적을 달성하기 위하여, 본 발명은 무연 기재 및 이 기재의 표면에 형성된 저융점 합금 도금층을 포함하는 저융점 무연 솔더를 제공한다.In order to achieve the above object, the present invention provides a low melting lead-free solder comprising a lead-free substrate and a low melting alloy plating layer formed on the surface of the substrate.

본 발명은 또한, 무연 기재에 저융점 합금을 포함하는 도금액으로 도금하는 공정을 포함하는 저융점 무연 솔더의 제조 방법을 제공한다.The present invention also provides a method for producing a low melting lead-free solder including the step of plating a lead-free substrate with a plating solution containing a low melting point alloy.

이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 융점이 낮은 무연 솔더에 관한 것으로서, 본 발명의 무연 솔더는 무연 기재 및 이 기재의 표면에 형성된 저융점 합금 도금층을 포함한다.The present invention relates to a lead-free solder having a low melting point, wherein the lead-free solder of the present invention includes a lead-free substrate and a low melting point alloy plating layer formed on the surface of the substrate.

상기 무연 기재는 Sn를 포함하고, Ag, Bi, In 및 Cu로 이루어진 군에서 선택되는 금속을 1종 혹은 2종 이상 복합으로 포함한다. 이들 성분 사이의 비율은 적절하게 혼합되면 되며, 이는 당해 분야에 종사하는 사람들에게는 쉽게 이해될 수 있다.The lead-free substrate includes Sn, and includes one or two or more kinds of metals selected from the group consisting of Ag, Bi, In, and Cu. The ratio between these components needs to be properly mixed, which can be easily understood by those skilled in the art.

상기 저융점 합금 도금층은 융점이 200℃ 이하의 융점을 갖는 합금을 포함하 는 것이 바람직하며, 120 내지 200℃의 융점을 갖는 합금을 포함하는 것이 더욱 바람직하다. 바람직한 합금 조성은 주석, 비스무스 및 아연으로 이루어진 군에서 선택되는 2종 이상의 금속을 포함하는 것이다. 가장 바람직하게는 융점이 138℃인 주석-비스무스 합금 또는 융점이 199℃인 주석-아연 합금을 포함하는 것이 가장 바람직하다. 이러한 합금 도금층을 구성하는 성분의 융점이 낮으므로, 솔더를 패키지 제조 과정에 적용시 표면층의 저융점 코팅층이 1차 용융되고 확산에 의하여 내부가 균일한 조성으로 형성됨에 따라, 전체 용융 온도가 저하되고 따라서 열팽창 수축력이 작아지므로 열응력을 최소화 할 수 있고 또한 무연 솔더의 성능은 그대로 유지할 수 있으므로, 종래 납-주석 솔더를 사용하는 저온 솔더링 작업이 가능한 작업 설비 및 공정을 그대로 이용할 수 있어 경제적인 장점이 있다.The low melting point alloy plating layer preferably includes an alloy having a melting point of 200 ° C. or lower, and more preferably includes an alloy having a melting point of 120 to 200 ° C. Preferred alloy compositions include at least two metals selected from the group consisting of tin, bismuth and zinc. Most preferably, it comprises a tin-bismuth alloy having a melting point of 138 ° C or a tin-zinc alloy having a melting point of 199 ° C. Since the melting point of the components constituting the alloy plating layer is low, when the solder is applied to the package manufacturing process, as the low melting point coating layer of the surface layer is first melted and the inside is formed to have a uniform composition by diffusion, the overall melting temperature is lowered. Therefore, the thermal expansion shrinkage force is reduced, so that thermal stress can be minimized and the performance of lead-free solder can be maintained. Therefore, it is possible to use a work equipment and a process capable of low temperature soldering using a conventional lead-tin solder as it is economically advantageous. have.

상기 저융점 합금 도금층의 두께는 8 내지 25 ㎛인 것이 바람직하다. The low melting point alloy plating layer has a thickness of 8 to 25 It is preferable that it is micrometer.

본 발명의 상기 기재는 볼 타입의 구형 또는 판상 등 어떠한 형상도 가능하다.The base material of the present invention may have any shape such as a ball type sphere or plate shape.

본 발명의 무연 솔더는 무연 기재에 저융점 합금을 포함하는 도금액을 도금하여 제조될 수 있다. The lead-free solder of the present invention may be prepared by plating a plating solution containing a low melting point alloy on a lead-free substrate.

상기 도금 공정은 전해 또는 무전해 도금으로 실시할 수 있다. The plating step can be carried out by electrolytic or electroless plating.

상기 전해 도금 공정은 1 내지 10 A/dm2의 전류 밀도 및 20 내지 80℃의 온도 조건 하에서, 3 내지 20분 동안 실시하는 것이 바람직하다. 상기 전해 도금 공정을 상기 전류 밀도, 온도 및 시간 범위 미만인 너무 낮은 영역에서는 도금이 되 지 않으며, 전류 밀도, 온도 및 시간 범위를 초과하는, 너무 높은 영역에서는 도금층을 원하는 두께로 제어하기 곤란할 뿐 아니라 도금액의 조성을 일정하게 관리하기 곤란하기 때문에 바람직하지 않다. 상기 전해 도금 공정에서 사용되는 도금액은 Sn, Bi 및 Zn을 2종 이상 포함하는 도금액을 사용할 수 있으며, 이때 용매로는 메탄설포네이트 계열 유기 용매를 사용할 수 있으나 이에 한정되는 것은 아니다.The electrolytic plating process is preferably carried out for 3 to 20 minutes, under a current density of 1 to 10 A / dm 2 and temperature conditions of 20 to 80 ℃. The electroplating process is not plated in too low a region below the current density, temperature, and time range, and in a too high region, which exceeds the current density, temperature, and time range, it is difficult to control the plating layer to a desired thickness, as well as a plating solution. It is not preferable because it is difficult to constantly manage the composition of. The plating solution used in the electrolytic plating process may use a plating solution containing two or more types of Sn, Bi, and Zn. In this case, a methanesulfonate-based organic solvent may be used, but is not limited thereto.

또한, 상기 무전해 도금 공정은 Sn, Bi 등의 무전해 도금액을 사용하여 20 내지 80℃의 조건 하에서 실시하는 것이 바람직하다. 상기 무전해 도금액에서 용매로는 벤즈이미다졸 등과 같은 유기 용매를 사용할 수 있다. 상기 무전해 도금 공정을 20℃ 보다 낮은 온도에서 실시하면, 도금속도가 너무 늦거나 도금이 되지 않으며 80℃ 보다 고온에서 실시하면 도금층 두께의 제어가 곤란할뿐만 아니라 증발에 의한 도금액 조성 변화로 균일한 도금이 곤란하기 때문에 바람직하지 않다. In addition, it is preferable to perform the said electroless-plating process on 20-80 degreeC conditions using electroless plating liquids, such as Sn and Bi. In the electroless plating solution, an organic solvent such as benzimidazole may be used as the solvent. When the electroless plating process is performed at a temperature lower than 20 ° C., the plating speed is too slow or the plating is not performed. When the electroless plating process is performed at a temperature higher than 80 ° C., it is difficult to control the thickness of the plating layer and uniform plating due to the change of the plating liquid composition by evaporation. This is not preferable because it is difficult.

이와 같이, 본 발명은 도금온도, 도금용액, 전류밀도 및 도금시간 등을 제어함으로서 무연 솔더의 표면에 원하는 조성과 두께로 균일한 저융점 도금층을 형성시킬 수 있고 또한 기재의 크기나 두께에 따라 저융점 도금층의 두께를 요구 특성에 따라 제어할 수 있고, 접합부 특성을 충분히 확보할 수 있도록 도금층을 제어할 수 있다.As described above, the present invention can form a uniform low melting point plating layer having a desired composition and thickness on the surface of the lead-free solder by controlling the plating temperature, the plating solution, the current density and the plating time, and according to the size or thickness of the substrate. The thickness of the melting point plating layer can be controlled according to the required characteristics, and the plating layer can be controlled so as to sufficiently secure the joint portion characteristics.

아울러, 무연 솔더가 가지고 있는 단점인 고온에서 작업을 대체하여 종래 무연 솔더링 작업보다 30 내지 40℃ 정도 이상 낮은 온도, 즉 유연 솔더로 작업하고 있는 수준인 저온(200℃ 이하)에서 솔더링이 가능하므로, 종래 적용하던 장비를 그대로 적용할 수 있어 경제적이고 또한, 저온에서 작업을 수행함으로서 접합부 열응 력을 최소화하여 접합부 신뢰성을 크게 향상시킬 수 있고, 고온 산화 문제 등도 해결할 수 있다. In addition, it is possible to solder at a low temperature (below 200 ℃) that is working with a flexible solder 30 to 40 ℃ lower than the conventional lead-free soldering work, replacing the work at a high temperature, which is a disadvantage of the lead-free solder, Existing equipment can be applied as it is, economical, and by performing the operation at low temperatures can minimize the thermal stress of the junction to greatly improve the reliability of the junction, it can also solve the problem of high temperature oxidation.

본 발명의 무연 솔더가 용융되는 과정을 도 1에 나타내었다. 도 1의 (가)는 용융 초기 상태로서 기재(30) 및 저융점 합금 도금층(32)이 계면(31)을 두고 구성된다. 도 1의 (나)는 용융 공정이 진행되면서, 도금층(32)이 확산되는 과정을 나타낸 것으로서, 도금층이 용융되면서 고상과 액상의 혼합층(34)이 형성되고, 이에 따라 기재(30) 및 저융점 합금 도금층(32)의 계면(31)에서 상기 도금층(32)과 상기 기재(30)가 서로 반응하여 반응층(33)을 형성하면서, 도금층의 성분이 점차 기재(30)로 확산되어 그 농도가 변화된다(35).1 shows a process of melting the lead-free solder of the present invention. In Fig. 1A, the base 30 and the low-melting alloy plating layer 32 are formed with the interface 31 as a melting initial state. FIG. 1B illustrates a process in which the plating layer 32 is diffused while the melting process is performed. As the plating layer is melted, a mixed layer 34 of a solid phase and a liquid is formed, and thus the substrate 30 and the low melting point are formed. At the interface 31 of the alloy plating layer 32, the plating layer 32 and the substrate 30 react with each other to form the reaction layer 33, and the components of the plating layer gradually diffuse into the substrate 30, and the concentration thereof is increased. Is changed (35).

용융 공정이 점차 진행되어 최종적으로는 도 1의 (다)에 나타낸 것과 같이, 전체가 균질화될 수 있다. 이에 따라 무연 솔더가 가지고 있는 강도, 융점 등의 물성을 그대로 유지할 수 있다.As the melting process proceeds, finally, as shown in FIG. 1C, the whole may be homogenized. As a result, physical properties such as strength and melting point of the lead-free solder can be maintained.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention and the present invention is not limited by the following examples.

(실시예 1)(Example 1)

판상의 Sn-Ag 조성을 갖는 기재에 주석-비스무스 합금 도금액으로 2A/dm2, 40℃, 10분 조건 하에서 전해 도금하여 무연 솔더판을 제조하였다. A lead-free solder plate was prepared by electroplating a substrate having a plate-like Sn-Ag composition with a tin-bismuth alloy plating solution under a condition of 2 A / dm 2 , 40 ° C., and 10 minutes.

(실시예 2)(Example 2)

볼 타입의 Sn-Ag 조성을 갖는 기재에 주석-비스무스 합금 도금액으로 40℃, 4A/dm2, 10분 조건 하에서 전해 도금하여 무연 솔더볼을 제조하였다.A lead-free solder ball was prepared by electroplating a substrate having a ball-type Sn-Ag composition under a tin-bismuth alloy plating solution at 40 ° C. and 4 A / dm 2 for 10 minutes.

(실시예 3)(Example 3)

볼 타입의 Sn-Ag 조성을 갖는 기재에 주석-비스무스 합금 도금액으로 전류 밀도 2A/dm2에서 5분 동안 전해 도금을 실시하여 주석-비스무스 합금 도금층이 형성된 무연 솔더볼을 제조하였다.A lead-free solder ball in which a tin-bismuth alloy plating layer was formed was electroplated on a substrate having a ball-type Sn-Ag composition at a current density of 2 A / dm 2 for 5 minutes with a tin-bismuth alloy plating solution.

(실시예 4)(Example 4)

전해 도금을 10분간 실시한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다.Except that the electroplating was carried out for 10 minutes it was carried out in the same manner as in Example 3.

(실시예 5)(Example 5)

전해 도금을 20분간 실시한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다.The same procedure as in Example 3 was carried out except that the electroplating was performed for 20 minutes.

상기 실시예 1 및 2에 따라 제조된 무연 솔더볼의 SEM 사진을 도 2A 및 도 2B에 각각 나타내었다. 도 2A 및 도 2B에서 40a 및 40b는 무연 기재를 나타내고, 41a 및 41b는 합금 도금층을 나타내는 것으로서, 기재의 형태에 관계없이 균일한 도금층을 형성할 수 있음을 알 수 있다.SEM pictures of the lead-free solder balls prepared according to Examples 1 and 2 are shown in FIGS. 2A and 2B, respectively. 2A and 2B, 40a and 40b represent a lead-free substrate, and 41a and 41b represent an alloy plating layer, and it can be seen that a uniform plating layer can be formed regardless of the form of the substrate.

또한, 상기 실시예 3 내지 5에 따라 제조된 무연 솔더볼의 측면 SEM 사진을 도 3a, 도 3b 및 도 3c에 각각 나타내었다. 도 3a 내지 도 3c에서, 50a, 50b 및 50c는 무연 기재를 나타내고, 51a, 51b 및 51c는 합금 도금층을 나타내는 것이다. 도 3a 내지 도 3c에 나타낸 것과 같이, 도금층의 두께를 8 내지 25㎛까지 다양하게 변화시킬 수 있음을 알 수 있다.In addition, side SEM photographs of the lead-free solder balls prepared according to Examples 3 to 5 are shown in FIGS. 3A, 3B, and 3C, respectively. 3A to 3C, 50a, 50b and 50c represent lead-free substrates, and 51a, 51b and 51c represent alloy plating layers. As shown in Figures 3a to 3c, it can be seen that the thickness of the plating layer can be variously changed to 8 to 25㎛.

상술한 바와 같이, 본 발명의 무연 솔더는 표면에 융점이 낮은 저융점 합금 도금층이 형성되어 있어 이를 사용하여 패키지를 제조시 종래 유연 솔더를 사용한 경우와 유사한 낮은 온도에서 솔더링 공정을 실시할 수 있으므로 유연 솔더링 작업공정을 그대로 사용할 수 있어 경제적일 뿐만 아니라 접합부의 열응력 저감, 고온산화 등의 문제를 해결할 수 있고, 접합부 신뢰성을 향상시킬 수 있다.As described above, the lead-free solder of the present invention has a low melting point alloy plating layer is formed on the surface is a flexible soldering process can be carried out at a low temperature similar to the case using a conventional flexible solder when manufacturing a package using the lead-free solder The soldering work process can be used as it is, which is economical, and can solve problems such as thermal stress reduction and high temperature oxidation of the joint, and improve joint reliability.

Claims (10)

무연 기재;Lead-free substrates; 상기 무연 기재의 표면에 형성된 저융점 합금 도금층Low melting point alloy plating layer formed on the surface of the lead-free substrate 을 포함하는 저융점 무연 솔더.Low melting lead-free solder containing. 제1 항에 있어서,According to claim 1, 상기 저융점 합금 도금층은 융점이 200℃ 이하의 합금을 포함하는 것인 저융점 무연 솔더.The low melting point alloy plating layer is a low melting point lead-free solder that contains an alloy with a melting point of 200 ℃ or less. 제2 항에 있어서,The method of claim 2, 상기 합금은 주석, 비스무스 및 아연으로 이루어진 군에서 선택되는 2종 이상을 포함하는 합금인 저융점 무연 솔더.The alloy is a low melting lead-free solder is an alloy containing two or more selected from the group consisting of tin, bismuth and zinc. 제3 항에 있어서,The method of claim 3, wherein 상기 합금은 주석-비스무스 합금 또는 주석-아연인 저융점 무연 솔더.The alloy is a tin-bismuth alloy or tin-zinc. 제1 항에 있어서,According to claim 1, 상기 무연 기재는 Sn를 포함하고, Ag, Bi, In 및 Cu로 이루어진 군에서 선택되는 금속을 1종 혹은 2종 이상 포함하는 것인 저융점 무연 솔더.The lead-free base material is a low-melting point lead-free solder containing Sn, one or two or more metals selected from the group consisting of Ag, Bi, In and Cu. 제1 항에 있어서,According to claim 1, 상기 저융점 합금 도금층의 두께는 8 내지 25㎛인 무연 솔더.The low melting point alloy plating layer has a thickness of 8 to 25㎛ lead-free solder. 무연 기재를 저융점 합금을 포함하는 도금액으로 도금하는 공정으로 제조되는 것인 저융점 무연 솔더의 제조 방법.A method for producing a low melting lead-free solder, which is produced by plating a lead-free base material with a plating solution containing a low melting point alloy. 제7 항에 있어서, The method of claim 7, wherein 상기 도금 공정은 전해 도금 또는 무전해 도금인 저융점 무연 솔더의 제조 방법.The plating process is a method for producing a low melting lead-free solder is electrolytic plating or electroless plating. 제7 항에 있어서, The method of claim 7, wherein 도금 공정은 1 내지 10 A/dm2의 전류 밀도 및 20 내지 80℃의 온도의 조건 하에서, 3 내지 20분 동안 전해 도금을 실시하는 것인 저융점 무연 솔더의 제조 방법.The plating process is a method for producing a low melting lead-free solder, which is subjected to electroplating for 3 to 20 minutes under conditions of a current density of 1 to 10 A / dm 2 and a temperature of 20 to 80 ° C. 제7 항에 있어서, The method of claim 7, wherein 상기 도금 공정은 20 내지 80℃ 조건 하에서 무전해 도금하는 공정 저융점 무연 솔더의 제조 방법.The plating process is 20 to 80 ℃ Process for the production of low melting lead-free solder , which is a process of electroless plating under conditions.
KR1020050129293A 2005-12-26 2005-12-26 Lead-free solder with low boiling point and method of producing same KR100743190B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050129293A KR100743190B1 (en) 2005-12-26 2005-12-26 Lead-free solder with low boiling point and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050129293A KR100743190B1 (en) 2005-12-26 2005-12-26 Lead-free solder with low boiling point and method of producing same

Publications (2)

Publication Number Publication Date
KR20070067860A true KR20070067860A (en) 2007-06-29
KR100743190B1 KR100743190B1 (en) 2007-07-27

Family

ID=38366381

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050129293A KR100743190B1 (en) 2005-12-26 2005-12-26 Lead-free solder with low boiling point and method of producing same

Country Status (1)

Country Link
KR (1) KR100743190B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109352207A (en) * 2018-11-14 2019-02-19 清华大学 A kind of preparation method of SnZn base low-temperature lead-free solder
CN112518167A (en) * 2018-04-04 2021-03-19 史国民 Corrosion-resistant low-temperature welding material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099501B1 (en) * 2008-06-20 2011-12-27 주식회사 아이에스시테크놀러지 Test socket, and fabrication method thereof and electrical connection apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102579B2 (en) 1986-04-24 1994-12-14 日本電信電話株式会社 Solder for ceramic
KR100209241B1 (en) * 1996-09-25 1999-07-15 구자홍 Lead free solder
JP3622462B2 (en) 1997-12-16 2005-02-23 株式会社日立製作所 Semiconductor device
JP2000061683A (en) 1998-08-27 2000-02-29 Totoku Electric Co Ltd Solder plated wire
JP2002120086A (en) 2000-10-12 2002-04-23 Sanyo Electric Co Ltd Lead-free solder and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112518167A (en) * 2018-04-04 2021-03-19 史国民 Corrosion-resistant low-temperature welding material
CN109352207A (en) * 2018-11-14 2019-02-19 清华大学 A kind of preparation method of SnZn base low-temperature lead-free solder
CN109352207B (en) * 2018-11-14 2020-10-20 北京联金新材科技有限公司 Preparation method of SnZn-based low-temperature lead-free solder

Also Published As

Publication number Publication date
KR100743190B1 (en) 2007-07-27

Similar Documents

Publication Publication Date Title
US7122894B2 (en) Wiring substrate and process for manufacturing the same
US6919137B2 (en) High-strength solder joint
US6586683B2 (en) Printed circuit board with mixed metallurgy pads and method of fabrication
JPH08273431A (en) Dendrite powder material
JP2007031826A (en) Connection terminal and substrate for mounting semiconductor having the same
US6603205B2 (en) Material for electronic components, method of connecting material for electronic components, ball grid array type electronic components and method of connecting ball grid array type electronic components
KR100567611B1 (en) Solder for use on surfaces coated with nickel by electroless plating
KR20100102033A (en) Soldering method and related device for improved resistance to brittle fracture
JPH08164495A (en) Leadless solder for connecting organic substrate, and mounted substrate using it
JP2009239278A (en) Substrate for mounting electronic component, and method of manufacturing the same
JP3233268B2 (en) Soldering method
KR101184108B1 (en) Wiring board, process for producing the same, and process for manufacturing electronic device
KR100671394B1 (en) REFLOW SOLDERING METHOD USING Pb-FREE SOLDER ALLOY AND HYBRID PACKAGING METHOD AND STRUCTURE
US20060011482A1 (en) Electrocodeposition of lead free tin alloys
EP1209958A2 (en) Laminated structure for electronic equipment and method of electroless gold plating
KR100743190B1 (en) Lead-free solder with low boiling point and method of producing same
US20050242443A1 (en) Electronic part and surface treatment method of the same
JP4888096B2 (en) Semiconductor device, circuit wiring board, and manufacturing method of semiconductor device
KR101073485B1 (en) Preparation method of lead free solder bump having improved mechanical reliability
Gorywoda et al. On the failure mechanism in lead-free flip-chip interconnects comprising ENIG finish during electromigration
US20060196917A1 (en) Metallic plating for socket application in ball grid array packages
KR102579478B1 (en) Metal pin for conductive connection
KR102579479B1 (en) Connecting Pin
Schetty Lead-free finishes for printed circuit boards and components
Roberts et al. Lead-Free Board Surface Finishes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20111220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130704

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee