KR20070039704A - A MONOCLONAL ANTIBODY FOR DETECTION OF HYDROXYLATED ASPARAGINE 803 OF HIF-1alpha; AND ANTIGEN PEPTIDE - Google Patents

A MONOCLONAL ANTIBODY FOR DETECTION OF HYDROXYLATED ASPARAGINE 803 OF HIF-1alpha; AND ANTIGEN PEPTIDE Download PDF

Info

Publication number
KR20070039704A
KR20070039704A KR1020050094890A KR20050094890A KR20070039704A KR 20070039704 A KR20070039704 A KR 20070039704A KR 1020050094890 A KR1020050094890 A KR 1020050094890A KR 20050094890 A KR20050094890 A KR 20050094890A KR 20070039704 A KR20070039704 A KR 20070039704A
Authority
KR
South Korea
Prior art keywords
peptide
hif
hydrated
monoclonal antibody
fih
Prior art date
Application number
KR1020050094890A
Other languages
Korean (ko)
Other versions
KR100759389B1 (en
Inventor
이명규
이상협
신소연
류성언
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020050094890A priority Critical patent/KR100759389B1/en
Priority to PCT/KR2006/004072 priority patent/WO2007043792A1/en
Publication of KR20070039704A publication Critical patent/KR20070039704A/en
Application granted granted Critical
Publication of KR100759389B1 publication Critical patent/KR100759389B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 803번 아스파라진 잔기가 수화된 HIF-1α(hypoxia inducible factor 1α)를 특이적으로 인식하는 단일클론항체 및 항원에 관한 것으로, 아스파라진 잔기가 수화된 펩티드를 사용하여 단일클론항체를 제조하였다. 본 발명의 단일클론항체는 FIH-1에 의해 803번 아스파라진 잔기가 수화된 HIF-1α에 대하여 반응성이 있지만 803번 아스파라진 잔기가 수화되지 않은 HIF-1α에 대해서는 반응이 없으므로, FIH-1 효소 활성 측정 및 억제제 탐색에 유용하게 사용할 수 있다. The present invention relates to monoclonal antibodies and antigens that specifically recognize hypoxia inducible factor 1α (HIF-1α) in which asparagine residues are hydrated, and to produce monoclonal antibodies using peptides in which asparagine residues are hydrated. It was. The monoclonal antibody of the present invention is responsive to HIF-1α in which 803 asparagine residues are hydrated by FIH-1, but does not react to HIF-1α in which 803 asparagine residues are not hydrated. It can be usefully used for measuring activity and searching for inhibitors.

Hypoxia inducible factor 1α Hypoxia inducible factor 1α

Description

803번 아스파라진 잔기가 수화된 HIF-1α를 특이적으로 인식하는 단일클론항체 및 항원 펩티드{A Monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1α and antigen peptide}Monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1α and antigen peptide, where the asparagine residue 803 specifically recognizes hydrated HIF-1α

도 1은 수화된 아스파라진 잔기 도입을 위한 (2S,3R)-L-threo-FmocNH-β-OTBDMS-Asn-OH[Fmoc-Asn(βO-TBDMS)]의 구조이고, 1 is the structure of (2S, 3R) -L-threo-FmocNH-β-OTBDMS-Asn-OH [Fmoc-Asn (βO-TBDMS)] for the introduction of hydrated asparagine residues,

도 2는 항체 제조를 위해 사용된 펩티드의 서열 및 분자량 분석 결과이고,2 shows the results of sequence and molecular weight analysis of peptides used for antibody preparation,

도 3은 항원 펩티드와 BSA 및 OVA 단백질을 결합시킨 결과로서, M은 마커를, 1은 EVN(OH)-BSA, EVN(OH)-OVA, GGL(OH)-BSA 및 GGL(OH)-OVA를 나타내고, Figure 3 shows the result of binding the antigen peptide and BSA and OVA protein, M is a marker, 1 is EVN (OH) -BSA, EVN (OH) -OVA, GGL (OH) -BSA and GGL (OH) -OVA Indicates,

도 4는 항체 역가 분석을 위하여 사용한 HIF-1α의 C-말단 펩티드 서열 및 분자량 분석 결과이고,4 is a C-terminal peptide sequence and molecular weight analysis of HIF-1α used for antibody titer analysis,

도 5는 FIH-1(Factor inhibiting HIF-1α)을 정제한 결과이고, 5 is a result of purifying Factor inhibiting HIF-1α (FIH-1),

도 6은 FIH-1에 의하여 아스파라진 잔기가 수화된 HIF-1α의 C-말단 펩티드들의 구조 및 분자량을 분석한 결과이고,6 is a result of analyzing the structure and molecular weight of C-terminal peptides of HIF-1α hydrated asparagine residue by FIH-1,

도 7은 면역효소 분석법(ELISA)에 의하여 수화 펩티드 및 비수화 펩티드를 단일 클론 항체와 결합시킨 결과로서, A는 수화 펩티드 및 비수화 펩티드와 단일클론항체(SHN-HIF1α) 농도에 따른 반응 결과이고, B는 수화 펩티드 및 비수화 펩티 드 항원 농도에 따른 단일클론항체의 반응 결과로, ○,△ 및 □는 비수화 펩티드를, ●, ▲ 및 ■는 수화 펩티드를 나타낸 것이고, 7 is a result of binding a hydrated peptide and a non-hydrated peptide with a monoclonal antibody by immunoassay (ELISA), A is a reaction result according to the concentration of the hydrated peptide and the non-hydrated peptide and monoclonal antibody (SHN-HIF1α) , B is the result of the reaction of monoclonal antibody according to the concentration of the hydrated peptide and the non-hydrated peptide antigen, ○, △ and □ represents the non-hydrated peptide, ●, ▲ and ■ represents the hydrated peptide,

도 8은 FIH-1 억제제 활성 측정시 항체 유용성을 측정한 것으로서, A는 수화된 펩티드 양을 조절하여 반응성을 확인한 결과이고, ○는 0% 수화, ●는 20% 수화, ▲는 40% 수화, ■는 70% 수화, ◆는 100% 수화를 나타내고, B는 FIH-1 활성 억제제인 NOG(N-oxyalylglycine)의 농도에 따른 수화 펩티드의 생성을 SHN-HIF-1α로 분석한 결과이고, ■는 0.2mM NOG, ◆는 0.4mM NOG, ▲는 1mM NOG, ●는 5mM NOG를 나타낸다.8 is a measure of antibody usefulness when measuring FIH-1 inhibitor activity, A is the result of confirming the reactivity by adjusting the amount of hydrated peptide, ○ is 0% hydration, ● is 20% hydration, ▲ is 40% hydration, ■ is 70% hydration, ◆ is 100% hydration, B is the result of analysis of SHN-HIF-1α production of hydrated peptides according to the concentration of NOG (N-oxyalylglycine), a inhibitor of FIH-1 activity. 0.2mM NOG, ◆ represents 0.4mM NOG, ▲ represents 1mM NOG, and ● represents 5mM NOG.

본 발명은 FIH-1에 의해 803번 아스파라진이 수화된 HIF-1α를 특이적으로 인식하는 단일클론항체 및 이를 생산하기 위한 항원 펩티드에 관한 것이다.The present invention relates to a monoclonal antibody that specifically recognizes HIF-1α hydrated by FIH-1 asparagine 803, and an antigen peptide for producing the same.

생체 세포 내 산소 농도는 세포 생존에 매우 필수적인 요소이나, 산소 농도가 높은 경우 산소 스트레스에 의해 활성 산소가 과다하게 발생하므로 세포사멸을 유발하고, 정상적으로 산소가 공급되고 있는 상태(normoxia)에서는 PHD(proline hydroxylase) 및 FIH-1(Hygroxia-inducible factor HIF inhibitor-1)에 의하여, 혈관 생성 및 조직의 에너지 공급에 중요한 HIF-1α의 활성이 억제된다. 낮은 산소 농도(hypoxia)에서는 산소를 기질로 사용하는 PHD 및 FIH-1의 활성이 억제되어 HIF-1α가 활성화되어 HIF-1β와 결합하여 핵으로 이동하여, 300/CBP 등의 단백질과 결합한 후, HRE 프로모터에 결합하여 혈관 생성 및 세포 내 에너지 공급에 필수적인 단백질들의 발현을 증가시킨다(Nathali 등, Biochem . Pharmacol., 68, 971-980, 2004). 그러나 산소공급이 원활하지 않을 경우에도 PHD 및 FIH-1의 활성이 억제되지 않아 HIF-1α의 활성이 억제되면서 혈관 생성이 억제되어 뇌세포의 괴사가 일어나 뇌졸증을 유발한다. Oxygen concentration in living cells is a very essential factor for cell survival, but when oxygen concentration is high, excessive oxygen is generated by oxygen stress, causing apoptosis, and in normal oxygen supply (normoxia), PHD (proline) Hydroxylase and FIH-1 (Hygroxia-inducible factor HIF inhibitor-1) inhibit HIF-1α activity, which is important for blood vessel formation and tissue energy supply. At low oxygen concentrations (hypoxia), PHD and FIH-1, which use oxygen as a substrate, are inhibited, HIF-1α is activated, binds to HIF-1β, moves to the nucleus, and binds to proteins such as 300 / CBP. Binding to the HRE promoter increases expression of proteins essential for angiogenesis and intracellular energy supply (Nathali et al . , Biochem . Pharmacol ., 68, 971-980, 2004). However, even when the oxygen supply is not smooth, the activities of PHD and FIH-1 are not inhibited, and thus HIF-1α activity is inhibited and blood vessel formation is inhibited, resulting in necrosis of brain cells, leading to stroke.

FIH-1은 최근 발견되어 그 활성이 알려진 효소로 그 3차 구조가 밝혀졌다 (Lee 등, J. Biol . Chem, 278, 7558-7563, 2003; Elkins 등, J. Biol . Chem , 278, 1802-1806, 2003). FIH-1도 PHD와 마찬가지로 Fe2 +를 보조인자(cofactor)로 사용하고, 2-옥소글루타레이트(oxoglutarate), 산소(O2)를 기질로 사용하여 HIF-1α의 803 아스파라진 잔기를 수화시키는 것이 밝혀졌다(Lando 등, Science, 295, 858-865, 2002). 상기 효소는 PHD보다 2-옥소글루타레이트 및 산소에 대한 Km 값이 2배 이상 낮아, PHD가 작용할 수 없는 산소 분압에서도 일부 기능을 할 수 있는 것으로 밝혀졌다(Koivunen 등, J. Biol . Chem ., 279, 9899-9904, 2004). 뇌졸증 발병시 세포내 산소 분압이 낮아지는데 이때 FIH-1이 계속 기능을 하면, 산소공급을 위한 새로운 혈관 형성이 계속 억제되어 많은 뇌세포가 괴사될 가능성이 높아진다. 그러므로 FIH-1의 억제제는 새로운 뇌졸중 치료제로서 사용될 수 있는 가능성이 높다. FIH-1 has recently been discovered and its tertiary structure is known for its activity (Lee et al . , J. Biol . Chem , 278, 7558-7563, 2003; Elkins et al . , J. Biol . Chem , 278, 1802). -1806, 2003). Used as FIH-1 is also a cofactor for Fe 2 + (cofactor) as in the PHD and hydration of 2-oxoglutarate (oxoglutarate), 803 asparagine residue in the use as an oxygen (O 2) substrate HIF-1α (Lando et al., Science , 295, 858-865, 2002). The enzyme has been found to be more than two times lower in Km values for 2-oxoglutarate and oxygen than PHD, so that some enzymes can function even at partial pressures of oxygen that PHD cannot act on (Koivunen et al . , J. Biol . Chem . , 279, 9899-9904, 2004). In the event of stroke, intracellular oxygen partial pressure decreases, and if FIH-1 continues to function, the formation of new blood vessels for oxygen supply is continuously suppressed, which increases the probability of necrosis of many brain cells. Therefore, inhibitors of FIH-1 are likely to be used as novel stroke treatments.

FIH-1 활성을 측정하는 방법으로는 효소 반응 산물인 이산화탄소(CO2) 발생을 측정하거나(Koivunen 등, J. Biol . Chem., 279, 9899-9904, 2004), 펩티드 기질을 이용한 질량 증가(산소원자 첨가로 16 증가) 측정법(Lando 등, Science, 295, 858-865, 2002) 및 p300과 HIF-1α결합이 HIF-1α의 수화에 의하여 억제된다는 점을 이용하여, HIF-1α/p300 결합 억제를 측정하는 방법(Freedman 등, Nature Struct . Biol., 10, 505-512, 2003)등이 사용될 수 있다. 그러나 이산화탄소 발생을 측정하기 위해서는 특정 장치 및 방사선 동위원소를 사용하여 수천 종 이상의 시료의 고속측정(high throughput screening; HTS)이 용이하지 않으며, FIH-1에 의해 수화된 펩티드가 p300과 결합 억제를 측정하는 방법은 펩티드 농도 조절 등 검색조건이 까다로운 단점이 있다. 또한 질량 분석에 의한 FIH-1 활성 측정 방법은 HIF-1α 펩티드 기질 농도가 높아야 하므로, 효소가 많이 소비되고 정량적이지 않아 HTS에 사용할 수 없다. 그러므로 수화된 HIF-1α 펩티드에 특이성이 높은 단일클론항체 개발이 필요하다.Methods for measuring FIH-1 activity include measuring the generation of carbon dioxide (CO 2 ), an enzyme reaction product (Koivunen et al ., J. Biol . Chem ., 279, 9899-9904, 2004), or increasing mass using peptide substrates ( HIF-1α / p300 binding using the method of increasing oxygen by addition of oxygen atoms (Lando et al., Science , 295, 858-865, 2002) and the fact that p300 and HIF-1α binding are inhibited by hydration of HIF-1α. How to measure inhibition (Freedman et al ., Nature Struct . Biol., 10, 505-512, 2003) and the like can be used. However, high throughput screening (HTS) of thousands of samples using specific devices and radioisotopes is not easy to measure carbon dioxide generation, and peptides hydrated by FIH-1 measure p300 and binding inhibition. This method has a disadvantage in that the search conditions such as peptide concentration control are difficult. In addition, the method for measuring FIH-1 activity by mass spectrometry requires high HIF-1α peptide substrate concentrations, and therefore cannot be used for HTS due to high enzyme consumption and quantitative. Therefore, it is necessary to develop monoclonal antibodies with high specificity for hydrated HIF-1α peptides.

본 발명의 발명자들은 FIH-1 억제제의 HTS에 이용할 수 있고, 나아가서 세포생물학 분야에서 아스파라진이 수화된 HIF-1α 연구에 이용될 수 있는 항체를 제조하고자 시도하였으며, 그 결과, 803번 아스파라진 잔기가 수화된 HIF-1α를 특이적으로 인식하는 단일클론항체를 개발함으로서 본 발명을 완성하였다. . The inventors of the present invention have attempted to prepare antibodies that can be used in the HTS of FIH-1 inhibitors, and furthermore, in the field of cell biology, asparagine can be used for hydrated HIF-1α studies. As a result, residue 803 asparagine The present invention was completed by developing a monoclonal antibody that specifically recognizes hydrated HIF-1α. .

본 발명의 주된 목적은 803번 아스파라진 잔기가 수화된 HIF-1α를 특이적으로 인식하는 단일클론항체를 제공하는 것이다.The main object of the present invention is to provide a monoclonal antibody that specifically recognizes HIF-1α hydrated asparagine residue 803.

상기 목적을 달성하기 위하여, 본 발명은 803 아스파라진 잔기가 수화된 HIF-1α를 특이적으로 인식하는 단일클론항체를 제공한다.In order to achieve the above object, the present invention provides a monoclonal antibody that specifically recognizes HIF-1α hydrated 803 asparagine residues.

또한 상기 단일클론항체를 생산하는 세포주를 제공한다.It also provides a cell line producing the monoclonal antibody.

또한 본 발명은 상기 항체 제작을 위한 아스파라진 잔기가 수화된 항원 펩티드를 제공한다.In another aspect, the present invention provides an antigen peptide hydrated asparagine residue for the antibody production.

또한 본 발명은 상기 항체를 이용하여 FIH 억제제를 스크리닝하는 방법을 제공한다. The present invention also provides a method for screening a FIH inhibitor using the antibody.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 단일클론항체는 803번 아스파라진 잔기가 수화된 HIF-1α를 특이적으로 인식하며, 하기의 단계를 포함하는 제조방법에 의해 생산된다. The monoclonal antibody of the present invention specifically recognizes HIF-1α hydrated with the asparagine residue No. 803, and is produced by a preparation method comprising the following steps.

1) HIF-1α의 활성부분으로부터 유래된 단편으로 HIF-1α의 803번 잔기가 수화된 아스파라진을 포함하는 펩티드를 준비하는 단계; 1) preparing a peptide comprising asparagine in which residue 803 of HIF-1α is hydrated as a fragment derived from an active portion of HIF-1α;

2) 상기 펩티드를 이용하여 생쥐에 면역하는 단계; 2) immunizing mice using said peptide;

3) 생쥐의 비장세포를 골수종 세포주와 융합하고 단계 1)의 단일클론항체를 생산하는 하이브리도마 세포주를 선별하는 단계; 및 3) fusing mouse splenocytes with myeloma cell line and selecting the hybridoma cell line producing monoclonal antibody of step 1); And

4) 단계 3)의 세포주로부터 단일클론항체를 분리 정제하는 단계. 4) separating and purifying the monoclonal antibody from the cell line of step 3).

본 발명에 있어서, 1) 단계에서 사용되는 펩티드는 HIF-1α의 아스파라진 잔기가 수화되는 활성화 부분에서 유래한 것으로서 아스파라진 잔기가 수화된 서열번호 5으로 기재되는 아미노산 서열을 포함한다. 상기 항원 펩티드는 서열번호 1 또는 2로 기재되는 아미노산 서열을 가지는 것이 가장 바람직하나 이에 한정되는 것은 아니다. 상기 펩티드 서열은 아미노산 말단 및 카르복시 말단에 항체 생산력을 높이거나 운반 단백질을 결합시키기 위해 다른 아미노산 및 화학물질이 결합될 수 있으며, 본 발명에서는 운반 단백질로서 BSA 또는 OVA를 사용하였으나 이에 한정되는 것은 아니다. 항원 펩티드는 서열번호 1로 기재되는 아미노산 서열을 가진 펩티드는 3번 아스파라진이 수화된 것이 바람직하며, 서열번호 2로 기재되는 아미노산 서열을 가진 펩티드는 11번 아스파라진이 수화된 것이 바람직하다. 상기 펩티드는 9-fluorenylmethoxycarbonyl(Fmoc)기를 Nα-아미노 보호기로 사용하는 고상 합성법에 의하여 합성될 수 있다. 수화 아스파라진 잔기 도입을 위해 본 발명자들은 펩티드 항원 합성시 Fmoc-Asn(βO-TBDMS)(도 1)을 이용하였다. 상기 펩티드 합성은 decyclohexylcarbodiimide(DCC) 및 N-hydroxyboenzotriazole(HOBt)를 사용하는 방법으로 합성하였으며, 각각의 합성 펩티드를 HPLC로 정제하여 MALDI-TOF 분석으로 확인하고 각각 EVN(OH), GGL(OH)로 명명하였다(도 2 참조). 상기 합성한 펩티드 항원들은 운반 단백질 BSA 또는 OVA에 결합시켰다. EVN(OH)-BSA 및 EVN(OH)- OVA는 GMBS(N-γ-maleimidobutyryloxylsuccinimide ester)를 사용하여 결합시키고, GGL(OH)-BSA 및 GGL(OH)-OVA는 GA(glutaraldehyde)를 사용하여 결합하는 것이 바람직하다. In the present invention, the peptide used in step 1) is derived from an active moiety in which the asparagine residue of HIF-1α is hydrated, and includes the amino acid sequence described in SEQ ID NO: 5 in which the asparagine residue is hydrated. The antigen peptide is most preferably one having an amino acid sequence represented by SEQ ID NO: 1 or 2, but is not limited thereto. The peptide sequence may be combined with other amino acids and chemicals in order to increase the antibody production capacity or to bind the carrier protein to the amino acid terminal and the carboxy terminus, in the present invention, but BSA or OVA is used as a carrier protein, but is not limited thereto. As for the antigen peptide, it is preferable that the peptide which has the amino acid sequence described by SEQ ID NO: 1 is hydrated asparagine, and the peptide which has the amino acid sequence described by SEQ ID NO: 2 is preferably hydrated asparagine 11. The peptide can be synthesized by solid phase synthesis using a 9-fluorenylmethoxycarbonyl (Fmoc) group as a N-amino protecting group. For the introduction of hydrated asparagine residues we used Fmoc-Asn (βO-TBDMS) (FIG. 1) in peptide antigen synthesis. The peptide synthesis was synthesized by using decyclohexylcarbodiimide (DCC) and N-hydroxyboenzotriazole (HOBt), and each synthetic peptide was purified by HPLC and confirmed by MALDI-TOF analysis, respectively, by EVN (OH) and GGL (OH). Named (see Figure 2). The synthesized peptide antigens were linked to the carrier protein BSA or OVA. EVN (OH) -BSA and EVN (OH)-OVA are bound using GMBS (N-γ-maleimidobutyryloxylsuccinimide ester), and GGL (OH) -BSA and GGL (OH) -OVA using GA (glutaraldehyde) It is preferable to combine.

본 발명에 있어서, 2) 단계에서는 각각의 펩티드 항원을 생쥐(mouse)에 투여하여 펩티드에 대한 항체를 유도한다. 상기 펩티드의 투여 방법 및 사용 방법은 당업계에서 잘 알려져 있으며, 특별히 제한되는 것이 아니다. 상기 펩티드는 보조제(adjuvant)와 조합되어 투여할 수 있다. 본 발명에서는 펩티드를 Balb/c 생쥐의 복강에 주사하여 항체 형성을 유도하였다. In the present invention, in step 2), each peptide antigen is administered to a mouse to induce antibodies to the peptide. Methods of administering and using the peptides are well known in the art and are not particularly limited. The peptide can be administered in combination with an adjuvant. In the present invention, peptides were injected into the abdominal cavity of Balb / c mice to induce antibody formation.

본 발명에 있어서, 3)단계에서는 펩티드 항원으로 면역화된 생쥐의 비장세포를 적출한 후 골아종 세포주와 융합하고, 수화된 펩티드에 대하여 특이성이 높은 항체를 생산하는 세포주를 선별하였다. 선별된 세포주에서 생산한 단일클론항체는 SHN-HIF1α라 명명하였으며, 이소타입결정(isotyping) 결과 상기 단일클론항체는 IgG2b이며, κ가벼운 사슬임을 확인하였다.In the present invention, in step 3), splenocytes of mice immunized with peptide antigens were extracted, fused with osteoblastic cell lines, and cell lines producing antibodies with high specificity to the hydrated peptide were selected. The monoclonal antibody produced in the selected cell line was named SHN-HIF1α, and isotyping confirmed that the monoclonal antibody was IgG2b and was a κ light chain.

본 발명에 있어서, 4) 단계에서는 상기 제작된 단일클론항체를 분리 및 정제는 당업자에게 보편적으로 알려진 방법으로 수행하였다.In the present invention, in step 4), the prepared monoclonal antibody was isolated and purified by a method commonly known to those skilled in the art.

본 발명의 단일클론항체를 생산하는 하이브리도마 세포주는 상기 제조방법의 단계 3의 과정 중에 제조되고 선별된 세포주로서 2005년 9월 26일자로 대한민국 소재 한국생명공학연구원 생명자원센터에 수탁번호 KCTC10850BP로 기탁되었다. Hybridoma cell line producing the monoclonal antibody of the present invention as a cell line prepared and selected during the process of step 3 of the manufacturing method as the accession number KCTC10850BP to the Korea Institute of Bioscience and Biotechnology as of September 26, 2005 Deposited.

본 발명은 상기 단일클론항체를 이용하여 FIH-1 억제제를 스크리닝하는 방법을 제공한다. FIH-1은 뇌졸증 등 세포에 산소 및 영양분이 필요한 경우 표적이 되는 효소이므로 FIH-1 활성 억제제는 뇌졸증 치료제의 후보물질이다. 그러므로 FIH-1 활성 억제 후보물질을 투여하고 본 발명의 단일클론항체를 이용하여 HIF-1α의 활성 정도를 측정함으로, 투여된 후보물질이 FIH-1 활성억제 효과를 갖는지를 간접적으로 측정할 수 있다. The present invention provides a method for screening a FIH-1 inhibitor using the monoclonal antibody. Since FIH-1 is an enzyme that targets oxygen and nutrients to cells such as stroke, FIH-1 activity inhibitors are candidates for stroke treatment. Therefore, by administering a candidate inhibitor of FIH-1 activity and measuring the activity of HIF-1α using the monoclonal antibody of the present invention, it is possible to indirectly determine whether the administered candidate substance has an effect of inhibiting FIH-1 activity. .

이하 본 발명을 실시예에 의해 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정하는 것은 아니다.However, the following examples are merely to illustrate the present invention, but the content of the present invention is not limited by the following examples.

<< 실시예Example 1> 수화  1> sign language 아스파라진이Asparagine 포함된 펩티드 항원 및 항체 분석용 펩티드 제작 Construction of Peptide Antigen and Antibody Analysis Peptides

면역화를 위한 펩티드 항원(도 2 참조) 및 항체 분석용 펩티드(도 4 참조)의 합성은 9-fluorenylmethoxycarbonyl(Fmoc)기를 Nα-아미노 보호기로 사용하는 고상합성법에 의하여 수행하였다(Merrifield, Science, 232, 341, 1986). 수화 아스파라진 잔기 도입을 위해 본 발명자들이 합성한 Fmoc-Asn(βO-TBDMS)(도 1 참조)를 제외한 다른 Fmoc-아미노산들 및 Fmoc-아미노산이 붙은 레진들은 Novabiochem사(Swiss)에서 구입하여 사용하였다. 합성은 dicyclohexylcarbodiimide(DCC) 및 N-hydroxybenzotriazole(HOBt)를 사용하는 방법을 이용하여 합성하였으며, 최종 합성이 끝난 다음, Fmoc 보호기를 piperidine으로 제거하고, trifluoroacetic acid:water:ethandithiol:triisopropylsilane이 95:2.5:2.5:1로 들어있는 용액으로 2시간 동안 처리하여 크루드(crude) 펩티드를 얻었으며, HPLC로 정제한 다음 분자량을 MALDI-TOF 분석에 의하여 확인하고 펩티드 항원은 EVN, GGL로, 바이오틴으로 표지된 항체 분석용 펩티드는 bDES35 및 bSMD로 각각 명명하였고 서열번호 1,2,3, 및 4로 기재되는 아미노산 서열을 가졌다 (도 2 및 4 참조).Synthesis of peptide antigen for immunization (see FIG. 2) and antibody assay peptide (see FIG. 4) was performed by solid phase synthesis using 9-fluorenylmethoxycarbonyl (Fmoc) as a N-amino protecting group (Merrifield, Science , 232, 341, 1986). Resin with Fmoc-amino acids and Fmoc-amino acids except for Fmoc-Asn (βO-TBDMS) (see FIG. 1) synthesized by the inventors for the introduction of hydrated asparagine residues were purchased from Novabiochem (Swiss). . Synthesis was performed using dicyclohexylcarbodiimide (DCC) and N-hydroxybenzotriazole (HOBt). After the final synthesis, the Fmoc protecting group was removed with piperidine, and trifluoroacetic acid: water: ethandithiol: triisopropylsilane was 95: 2.5: Crude peptides were obtained by treatment with a solution containing 2.5: 1 for 2 hours, purified by HPLC and then confirmed by MALDI-TOF analysis and the peptide antigens were labeled with EVN, GGL and biotin. Peptides for antibody analysis were named bDES35 and bSMD, respectively, and had amino acid sequences set forth in SEQ ID NOs: 1,2,3, and 4 (see FIGS. 2 and 4).

<< 실시예Example 2> 펩티드-단백질 결합체 제조 2> Peptide-protein conjugate preparation

실시예 1에서 합성된 펩티드 항원들을 생쥐에 면역시키기 위하여 펩티드-단백질 결합체를 제조하였다. 이때 운반 단백질로는 BSA(bovine serum albuimin) 또는 OVA(ovalbumin)를 사용하였다. Peptide-protein conjugates were prepared to immunize the peptide antigens synthesized in Example 1 with mice. At this time, BSA (bovine serum albuimin) or OVA (ovalbumin) was used as a carrier protein.

EVA(OH) 펩티드(도 2 참조)를 단백질에 결합시키기 위해 사용한 시료로 GMBS(N-[γ-maleimidobutyryloxy]succinimide ester)를 사용하였다. 먼저 2mg BSA 또는 OVA 단백질을 200㎕ 결합완충액(0.083M sodium phosphate, 0.9M sodium chloride 및 0.1M ethylenediaminedihydrochloride, pH 7.2)에 녹이고, 상기 반응물에 10㎎/㎖ 농도로 dimethylsulfoxide(DMSO)에 녹아 있는 GMBS 20㎕를 첨가하고, 1시간 동안 상온에서 반응시켰다. 반응액은 결합완충액으로 평형시킨 Sephadex G50 culumn에 통과시켜 GMBS로 활성화된 단백질을 얻었으며, 1㎎의 펩티드 분말을 첨가하여 녹인 다음 2시간 동안 반응시켰다. 최종 반응액은 분자량 10,000 이하를 투과시키는 투석막을 이용하여 PBS로 투석시켜, 단백질 정량 후 냉동 보관하였다. 펩티드-단백질 결합체는 EVN(OH)-BSA 또는 EVN(OH)-OVA라 명명하였다. GMBS (N- [γ-maleimidobutyryloxy] succinimide ester) was used as the sample used to bind the EVA (OH) peptide (see FIG. 2) to the protein. First, 2 mg BSA or OVA protein was dissolved in 200 μl binding buffer (0.083 M sodium phosphate, 0.9 M sodium chloride and 0.1 M ethylenediaminedihydrochloride, pH 7.2), and GMBS 20 dissolved in dimethylsulfoxide (DMSO) at a concentration of 10 mg / ml in the reaction. Μl was added and reacted at room temperature for 1 hour. The reaction solution was passed through Sephadex G50 culumn equilibrated with binding buffer to obtain GMBS-activated protein, and dissolved by adding 1 mg of peptide powder and reacted for 2 hours. The final reaction solution was dialyzed with PBS using a dialysis membrane permeating a molecular weight of 10,000 or less, and stored frozen after quantitating proteins. Peptide-protein conjugates were named EVN (OH) -BSA or EVN (OH) -OVA.

GGL(OH) 펩티드(도 2 참조)와 단백질 결합은 glutaraldehyde(GA)를 이용하여 수행하였다. 먼저 1㎎ BSA 또는 OVA 단백질과 0.5㎎의 펩티드를 PBS에 녹이고, 이 용액에 2㎕의 25% glutaraldehyde를 첨가하고 1시간 동안 반응시키고, 다시 2㎕의 25% glutaraldehyde를 더 첨가하여 1시간 동안 반응시켰다. 반응하지 않은 GA 및 펩티드는 실시예 1의 방법같이 투석시켜 제거하여 냉동보관하였다. 펩티드-단백질 결합체는 GGL(OH)-BSA 또는 GGL(OH)-OVA라 명명하였다.Protein binding with GGL (OH) peptide (see FIG. 2) was performed using glutaraldehyde (GA). First, 1 mg BSA or OVA protein and 0.5 mg of peptide are dissolved in PBS, and 2 µl of 25% glutaraldehyde is added to the solution for 1 hour, and 2 µl of 25% glutaraldehyde is further added for 1 hour. I was. Unreacted GA and peptides were removed by dialysis and stored in the same manner as in Example 1. Peptide-protein conjugates were named GGL (OH) -BSA or GGL (OH) -OVA.

상기 형성된 EVN(OH)-BSA, EVN(OH)-OVA, GGL(OH)-BSA 또는 GGL(OH)-OVA 결합체를 하기와 같은 SDS-PAGE 방법으로 확인하였다. 먼저 단백질-펩티드 결합체 3-5㎍을 5㎕의 시료완충액(50 mM Tris-HCl, 2% SDS, 15% glycerol, 5% 2-mercaptoethanol, 0.024% bromophenol blue)과 혼합하여 95℃에서 2분간 가열한 다음, 10% SDS-PAGE에 로딩한 후 젤 당 20 mA에서 1시간 30분간 전기영동을 수행하였으며, 전기영동이 끝난 젤은 쿠마시 염색액(0.1% Coomassie brilliant blue R-250, 50% 메탄올, 10% 초산)에 30% 메탄올, 10% 초산이 들어 있는 용액에 탈색시켜 염색된 단백질을 관찰한 결과, 단백질이 펩타이드와 잘 결합되어 있음을 확인하였다 (도 3 참조). The formed EVN (OH) -BSA, EVN (OH) -OVA, GGL (OH) -BSA or GGL (OH) -OVA conjugates were identified by the following SDS-PAGE method. First, 3-5 μg of protein-peptide conjugate was mixed with 5 μl of sample buffer (50 mM Tris-HCl, 2% SDS, 15% glycerol, 5% 2-mercaptoethanol, 0.024% bromophenol blue) and heated at 95 ° C. for 2 minutes. Then, electrophoresis was performed for 1 hour and 30 minutes at 20 mA per gel after loading on 10% SDS-PAGE, and the gel was subjected to Coomassie stain solution (0.1% Coomassie brilliant blue R-250, 50% methanol). , 10% acetic acid) was decolorized in a solution containing 30% methanol, 10% acetic acid to observe the stained protein, it was confirmed that the protein is well coupled to the peptide (see Figure 3).

<< 실시예Example 3> 항 펩티드 항체 생산 및 단일클론 항체 제조 3> Anti-peptide antibody production and monoclonal antibody production

실시예 2 방법으로 얻어진 각각의 펩티드-단백질 결합체는 30㎍/100㎕ 농도로 PBS에 희석하고, 희석액 100㎕를 complete Freund's adjuvant 100㎕와 혼합하여 이멀젼화시키고, Balb/c 생쥐의 복강에 주사하였다. 이후 2주 간격으로 30㎍/100 ㎕ 농도로 PBS에 희석한 펩티드-단백질 결합체 100㎕를 incomplete Freund's adjuvant 100㎕와 혼합하여 이멀젼화하고, 복강에 3회 주사한 후 최종 주사였다. 일주일 혈청으로 펩티드에 대한 면역활성을 분석한 후 면역이 잘된 생쥐에 30㎍/100㎕ 농도의 펩티드-단백질 결합체 100㎕를 꼬리 정맥에 주사하였다. 3일 후 생쥐에서 비장(spleen)을 적출한 후, 비장세포를 분리하고 무혈청 RPMI1640 배지로 세척하고, 동일 배지로 세척한 P3/NS1/1-Ag4-1 골수종(myeloma) 세포와 평균 분자량 1450의 폴리에틸렌 글라이콜(polyethylene glycol) 1㎖을 1분간 가하여 주고, 10㎖의 무혈청 RPMI1640 배지를 서서히 첨가해 주면서 5분간 방치하여 융합시켰다. 융합시킨 세포는 동일 배지로 세척한 다음, 10% 태아 소혈청이 포함된 RPMI1640 배지를 비장 1개당 30-40㎖ 첨가하여 현탁하였다. 이후 96 웰 플레이트(well plate)에 100㎕씩 분주하였다. 3시간 동안 배양한 후 2 × HAT(hypoxanthine-amin㎖opterine-thymidine)이 포함된 RPMI1640 배지 100㎕를 가한 후 5% 이산화탄소, 37℃ 조건으로 세포 배양기에서 7-10일간 배양한 다음, 100㎕의 배지로 수화된 HIF-1α 펩티드 특이 활성을 도 3과 같은 방법에 조사하였다. 이중 특이성이 높은 항체를 생산하는 세포들은 웰 당 2/3 세포가 들어가도록 희석한 다음, 최종적으로 수화 펩티드에 특이성이 매우 높은 항체를 생산하는 세포주를 선별하였다. 상기 세포주는 EVA(OH)-OVA로 면역시킨 생쥐로부터 단일클론항체를 얻었으며 이를 SHN-HIF1α라 명명하였으며, 이소타입결정 결과 중쇄 불변지역은 IgG2b로 밝혀졌고, 경쇄 불변영역은 카파(κ) 이소타입을 가지는 것으로 확인되었다.Each peptide-protein conjugate obtained by the Example 2 method was diluted in PBS at a concentration of 30 µg / 100 µl, emulsified by mixing 100 µl of the dilution with 100 µl of complete Freund's adjuvant, and injected into the abdominal cavity of Balb / c mice. . Thereafter, 100 μl of the peptide-protein conjugate diluted in PBS at a concentration of 30 μg / 100 μl at 2 weeks intervals was emulsified by mixing with 100 μl of incomplete Freund's adjuvant, and injected into the abdominal cavity three times, followed by final injection. One week serum activity was analyzed for peptides and then well immunized mice were injected with 100 μl of peptide-protein conjugate at 30 μg / 100 μl into the tail vein. Three days later, after spleen was removed from the mice, splenocytes were isolated, washed with serum-free RPMI1640 medium, and washed with the same medium, and P3 / NS1 / 1-Ag4-1 myeloma cells with an average molecular weight of 1450. 1 ml of polyethylene glycol was added for 1 minute, and 10 ml of serum-free RPMI1640 medium was added slowly, followed by fusion for 5 minutes. The fused cells were washed with the same medium, and then suspended by adding 30-40 ml of RPMI1640 medium containing 10% fetal bovine serum per spleen. Thereafter, 100 μl was dispensed into a 96 well plate. After incubation for 3 hours, 100 μl of RPMI1640 medium containing 2 × hypoxanthine-aminmlopterine-thymidine was added thereto, followed by incubation for 7-10 days in a cell incubator at 37 ° C. with 5% carbon dioxide. HIF-1α peptide specific activity hydrated in the medium was investigated in the same manner as in FIG. Cells producing high bispecific antibodies were diluted to contain 2/3 cells per well, and finally cell lines producing antibodies with very high specificity for the hydrated peptide were selected. The cell line obtained monoclonal antibody from mice immunized with EVA (OH) -OVA and named SHN-HIF1α. As a result of isotype determination, the heavy chain constant region was found to be IgG2b, and the light chain constant region was kappa (κ) iso It was found to have a type.

<< 실시예Example 4>  4> HIFHIF -1α 펩티드를 수화시키기 위한 To hydrate the -1α peptide FIHFIH -1의 분리정제-1 separation and purification

pET-28a 벡터에 삽입한 재조합 pET-FIH-1 유전자를 대장균[E. coli BL21(DE3)]에 삽입한 다음, 항생제(50㎍/㎖ kanamycine)가 첨가된 LB(Luria-Bertani) 아가 플레이트에서 콜로니(colony)를 선별하였고, 이를 LB 배지에서 600 nm 흡광도가 0.6-0.8 될 때까지 37℃에서 배양하였다. 이후 0.5mM IPTG (isopropyl-β-thiogalactoside)를 첨가하여 18℃에서 16-20 시간 동안 배양하여 6×His 테그된 FIH-1의 발현을 유도하였고, 6,000RPM에서 5분간 원심분리를 수행하여 FIH-1을 발현하는 대장균을 수거하였다. 이후 대장균을 완충액(buffer) A(20mM Tris-HCl (pH7.5), 300mM NaCl, 1mM PMSF 및 5% glycerol)에 2g/㎖ 농도로 현탁시키고 초음파분쇄법으로 세포를 파괴한 다음, 16,500rpm에서 30분간 원심분리를 수행하여 상등액을 수거하였다. 상등액 중 20㎖은 글리세롤(glycerol)이 첨가되지 않은 완충액 A로 평형시킨 5㎖ Ni-NTA-agarose(Invitrogen, USA)에 첨가한 다음 같은 완충액 100㎖로 젤을 세척하고 완충액 B(20mM Tris-HCl pH7.5, 300mM imidazole, 1mM PMSF)를 10-90% 농도 기울기(gradient)로 흘려주어 FIH-1을 용출하였다. 용출된 FIH1-1에 50unit의 트롬빈(trombin)을 가하고 투석 방법을 이용하여 완충액 C(50mM Tris-HCl pH7.5, 1mM DTT, 1mM PMSF)로 평형시키면서 6×His 테그를 제거한 다음, 완충액 C로 평형시킨 7㎖ 농도 기울기(gradient)의 Q-Sepharose(Pharmacia amersham, Sweden)에 얹은 다음, 완충액 50㎖로 세척하고, 완충액 D(50mM Tris-HCl pH7.5, 500mM NaCl, 0.1mM DTT, 1mM PMSF)를 0-100% 농도 기울기(gradient)로 흘려주면서 FIH-1를 정제하였다. 도 5는 정제된 FIH-1 5㎍을 10% 젤을 이용하여 SDS-PAGE를 수행하여 염색한 그림이다. The recombinant pET-FIH-1 gene inserted into the pET-28a vector was inserted into E. coli BL21 (DE3), and then in an LB (Luria-Bertani) agar plate with antibiotic (50 μg / ml kanamycine). Colonies were selected and cultured at 37 ° C. until 600 nm absorbance was 0.6-0.8 in LB medium. Thereafter, 0.5mM IPTG (isopropyl-β-thiogalactoside) was added to incubate at 18 ° C. for 16-20 hours to induce the expression of 6 × His tagged FIH-1, followed by centrifugation at 6,000 RPM for 5 minutes. E. coli expressing 1 was harvested. E. coli was then suspended in buffer A (20 mM Tris-HCl (pH 7.5), 300 mM NaCl, 1 mM PMSF and 5% glycerol) at a concentration of 2 g / ml and the cells were disrupted by sonication and then at 16,500 rpm. The supernatant was collected by centrifugation for 30 minutes. 20 ml of the supernatant was added to 5 ml Ni-NTA-agarose (Invitrogen, USA) equilibrated with glycerol-free buffer A, then the gel was washed with 100 ml of the same buffer and buffer B (20 mM Tris-HCl). FIH-1 was eluted by flowing a pH 7.5, 300 mM imidazole, 1 mM PMSF) at a 10-90% concentration gradient. 50 units of trombin were added to the eluted FIH1-1 and 6 × His tags were removed while equilibrating with buffer C (50 mM Tris-HCl pH7.5, 1 mM DTT, 1 mM PMSF) using dialysis. Place on equilibrated 7 ml gradient Q-Sepharose (Pharmacia amersham, Sweden), wash with 50 ml of buffer, buffer D (50 mM Tris-HCl pH7.5, 500 mM NaCl, 0.1 mM DTT, 1 mM PMSF) FIH-1 was purified by flowing) at 0-100% concentration gradient. 5 is a diagram stained by SDS-PAGE using 5 μg purified FIH-1 using 10% gel.

<< 실시예Example 5> 단일클론항체  5> monoclonal antibody SHISHI -- HIF1HIF1 α의 수화 hydration of α HIFHIF -1α 펩티드에 대한 특이적 인식 검증Specific recognition verification for -1α peptide

실제 생체 내 환경을 모방하기 위해, 바이오틴기를 N-말단에 결합시킨 실시예 1에서 제조한 펩티드인 bSMD41 및 bDES35를 FIH-1로 37℃에서 1시간 수화시켰고 수화된 펩티드는 bDES35(OH) 및 bSMD41(OH)라 명명하였다. 이때 45㎕ 반응용액(50 mM Tris-HCl, 4 mM 아스코빈산, 2 mM dithiothreitol, 0.6 mM 2-oxoglutarate (2OG) 및 0.1 mM ammonium ferrous sulfate)에는 15㎍ FIH-1, 15㎍ bDES35 또는 bSMD41 펩티드, 20㎍ 카탈레이스(catalase)가 포함되어 있다. 수화되지 않은 펩티드를 얻고자 할 때는 위 반응액에서 2OG가 제거된 상태로 반응시켰다. 이후 반응액을 95℃로 2분간 효소를 변성시킨 후, 10,000rpm에서 5분 동안 원심분리를 수행하였다. 이후 상등액을 MALDI 분자량 분석에 의하여 펩티드의 수화를 분석한 결과, 2OG가 존재할 경우 펩티드 분자량이 16 가량 증가하였으나, 2OG가 없을 경우 분자량의 증가가 없었다 (도 6 참조). 이를 통해 bSMD41 및 bDES35 펩티드가 생체내에서처럼 수화됨을 확인하였다.To mimic the actual in vivo environment, the peptides bSMD41 and bDES35 prepared in Example 1 in which the biotin group was bound to the N-terminus were hydrated with FIH-1 at 37 ° C. for 1 hour and the hydrated peptides were bDES35 (OH) and bSMD41. It was named (OH). At 45 μl reaction solution (50 mM Tris-HCl, 4 mM ascorbic acid, 2 mM dithiothreitol, 0.6 mM 2-oxoglutarate (2OG) and 0.1 mM ammonium ferrous sulfate), 15 μg FIH-1, 15 μg bDES35 or bSMD41 peptide, 20 μg catalase is included. In order to obtain an unhydrated peptide, the reaction was carried out with 2OG removed from the reaction solution. The reaction solution was denatured at 95 ° C. for 2 minutes, and then centrifuged at 10,000 rpm for 5 minutes. Subsequently, the supernatant was analyzed for hydration of the peptide by MALDI molecular weight analysis. As a result, in the presence of 20G, the molecular weight of the peptide was increased by about 16, but in the absence of 20G, there was no increase in molecular weight (see FIG. 6). This confirmed that the bSMD41 and bDES35 peptides are hydrated as in vivo.

SHN-HIF1α의 수화 펩티드 특이적 인식은 ELISA 방법으로 검사하였다. 먼저 100ng/웰의 농도로 스트렙토아비딘(streptoavidin)을 ELISA 플레이트에 흡착시킨 다음, 50ng(도 7A 참조) 또는 다양한 농도(도 7B 참조, 100ng부터 1/5로 순차적 희석)의 상기에서 얻어진 100% 내지 0% FIH-1으로 반응시킨 펩티드를 TBSS(20mM Tris-HCl, pH7.5, 150nM sodium chloride, 1% skim milk)와 결합시키고 1시간 반응시킨 후 TBST(20mM Tris-HCl, pH7.5, 150mM sodium chloride, 0.1% tween 20)로 3회 세척하였다. 다음 TBSS로 희석된 SHN-HIF1α항체를 다양한 농도(도 7A 참조, 60-70% 포화되게 자란 SHN-HIF1α세포 배양액 희석을 표시함) 또는 1/20 희석 배양액(도 7B 참조)을 가하여 1시간 동안 반응시킨 다음 TBST로 3회 세척하였다. 이후 TBSS에 1/10,000으로 희석된 horseradish peroxidase가 결합된 항 마우스 IgG 염소항체를 첨가하여 1시간 반응시킨 다음 TBST로 3회 세척하고, 결합된 항체를 o-phenylene diamine 및 hydrogen peroxide를 기질로 발색시켜 490nm에서 흡광도를 분석하였다. 도 7에서 보듯이 SHN-HIF1α는 수화된 HIF-1α 펩티드에 매우 높은 특이성을 갖는 것으로 나타났다Hydration peptide specific recognition of SHN-HIF1α was examined by ELISA method. First, streptoavidin was adsorbed onto an ELISA plate at a concentration of 100 ng / well, and then 100% to 50 ng (see FIG. 7A) or various concentrations (see FIG. 7B, sequential dilution from 100 ng to 1/5) to Peptides reacted with 0% FIH-1 were combined with TBSS (20 mM Tris-HCl, pH7.5, 150 nM sodium chloride, 1% skim milk) and reacted for 1 hour before TBST (20 mM Tris-HCl, pH7.5, 150 mM). 3 times with sodium chloride, 0.1% tween 20). SHN-HIF1α antibody diluted with TBSS was then added at various concentrations (see Figure 7A, indicating SHN-HIF1α cell culture dilution grown 60-70% saturated) or 1/20 dilution culture (see Figure 7B) for 1 hour. The reaction was then washed three times with TBST. Thereafter, an anti-mouse IgG goat antibody conjugated with horseradish peroxidase diluted 1 / 10,000 was added to TBSS, which was then reacted for 1 hour, washed three times with TBST, and the bound antibody was developed with a substrate of o-phenylene diamine and hydrogen peroxide. Absorbance at 490 nm was analyzed. As shown in FIG. 7, SHN-HIF1α was found to have very high specificity for hydrated HIF-1α peptide.

<< 실시예Example 6> 단일클론항체를 이용한  6> using monoclonal antibody FIHFIH -1 억제제 검출-1 inhibitor detection

본 발명자들은 단일클론항체가 bSMD41 수화 비율에 따른 반응성을 알아보기 위하여 도 8A와 같이 수화된 bSMD41(OH)와 수화되지 않은 bSMD41을 혼합하여 사용하였다. 먼저 스트렙토아비딘 50ng을 ELISA 플레이트에 코팅하고, bSMD41(OH)가 0, 20, 40, 70 및 100%가 되도록 준비된 펩티드들을 TBSS에 5ng/웰의 펩티드 농도부터 1/5씩 순차적 희석을 하여 첨가하였다. 다음 단일클론항체 SHN-HIF1α가 들어있는 실시예 5에서 사용한 배양 배지를 TBSS에 1/20로 희석하여 가하고, 그 다음부터는 실시예 5와 같은 방법으로 수행하였다. 도 8A에서 보듯이 단일클론항체 SHN-HIF1α가 펩티드의 아스파라진 잔기가 수화 정도에 따른 결합을 한다는 것을 확인하였다. The present inventors used a mixture of hydrated bSMD41 (OH) and unhydrated bSMD41 as shown in Figure 8A to determine the reactivity of the monoclonal antibody according to the bSMD41 hydration ratio. First, 50 ng of streptovidin was coated on an ELISA plate, and peptides prepared so that bSMD41 (OH) was 0, 20, 40, 70 and 100% were added to TBSS by sequential dilution of 5 ng / well from peptide concentration of 5 ng / well. . Next, the culture medium used in Example 5 containing the monoclonal antibody SHN-HIF1α was added by diluting 1/20 to TBSS, and then the same method as in Example 5 was performed. As shown in FIG. 8A, it was confirmed that the monoclonal antibody SHN-HIF1α binds asparagine residue of the peptide according to the degree of hydration.

본 발명의 FIH-1 억제제 탐색에 유용한가를 알아보기 위하여, 본 발명자들은 2OG와 경쟁하여 FIH-1의 활성을 억제한다고 알려진 N-oxalylglycine(NOG) (Koivunen 등, J. Biol . Chem., 279, 9899-9904, 2004)을 이용하여 SHN-HIF1α의 억제제 탐색 유용성을 확인하였다. 9㎕ FIH-1 반응액(반응조건은 실시예 2와 같으나 FIH-1 농도는 1/20, bSMD41 농도는 1/40로 사용하였다)에 DMSO에 녹아있는 다양한 농도로 녹아 있는 NOG 억제제 1㎕를 첨가하여 30분간 반응시킨 다음, 50ng의 스트렙토아비딘이 코팅된 플레이트에 반응액 2㎕를 TBSS 100㎕에 희석하여 첨가하고 1/5씩 순차적인 희석을 한 후 실시예 5와 같은 방법으로 분석하였다. 도 8B에서 보듯이 억제제인 NOG 농도에 따른 항체-펩티드 결합 억제가 나타나는데, 0.2mM에서는 활성이 일부 저해되었으며, 1mM NOG는 펩티드의 수화를 강력하게 억제하였으며, 5mM NOG는 완벽하게 활성을 저해하였다. To find out whether the present invention is useful in the search for FIH-1 inhibitors, the inventors have found that N-oxalylglycine (NOG) (Koivunen et al ., J. Biol . Chem ., 279, known to compete with 2OG to inhibit the activity of FIH-1). 9899-9904, 2004) was used to confirm the inhibitory search utility of SHN-HIF1α. 1 μl of a NOG inhibitor dissolved in various concentrations dissolved in DMSO in 9 μl FIH-1 reaction solution (reaction conditions are the same as in Example 2 but FIH-1 concentration was 1/20 and bSMD41 concentration was used as 1/40). After the reaction for 30 minutes, 2 μl of the reaction solution was added to 50 ng of streptoavidine-coated plates in 100 μl of TBSS, and serially diluted 1/5, and analyzed in the same manner as in Example 5. As shown in FIG. 8B, inhibition of antibody-peptide binding was shown according to the inhibitor NOG concentration. At 0.2 mM, the activity was partially inhibited, 1 mM NOG strongly inhibited hydration of the peptide, and 5 mM NOG completely inhibited the activity.

이로부터 본 발명의 단일클론항체는 FIH-1 억제제 탐색에 매우 유용하다는 것을 증명하였다. This demonstrates that the monoclonal antibodies of the present invention are very useful for the search for FIH-1 inhibitors.

상기에서 살펴본 바와 같이, 본 발명 항체 생산용 펩티드(EVN(OH) 및 GGL(OH))는 수화 펩티드 특이성이 높은 항체를 생산하며, 상기 항원에 의해 얻어진 단일클론항체(SHN-HIF1α)는 FIH-1에 의하여 수화된 HIF-1α 펩티드에 대하여 반응성이 높지만, 수화되지 않은 펩티드에 대해서는 반응성이 거의 없으므로 상기 단일 클론항체는 FIH-1에 의하여 수화된 HIF-1α 검출에 매우 유용하며, FIH-1 억제제 탐색에 유용하게 사용할 수 있다.As described above, the antibody-producing peptides of the present invention (EVN (OH) and GGL (OH)) produce antibodies with high hydration peptide specificity, and the monoclonal antibody (SHN-HIF1α) obtained by the antigen is FIH-. The monoclonal antibody is very useful for the detection of HIF-1α hydrated by FIH-1, because it is highly reactive with the HIF-1α peptide hydrated by 1, but has little reactivity with the non-hydrated peptide. This can be useful for navigation.

<110> Korea Research Institute of Bioscience and Biotechnology <120> A monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1a and antigen peptide <130> 5p-08-33 <160> 5 <170> KopatentIn 1.71 <210> 1 <211> 16 <212> PRT <213> EVN <220> <221> VARIANT <222> (3) <223> hydroxylated asparagine <400> 1 Glu Val Asn Ala Pro Ile Gln Gly Ser Arg Asn Leu Leu Gln Gly Cys 1 5 10 15 <210> 2 <211> 16 <212> PRT <213> GGL <220> <221> VARIANT <222> (11) <223> hydroxylated asparagine <400> 2 Gly Gly Leu Thr Ser Tyr Asp Cys Glu Val Asn Ala Pro Ile Gln Gly 1 5 10 15 <210> 3 <211> 35 <212> PRT <213> bDES35 <400> 3 Asp Glu Ser Gly Leu Pro Gln Leu Thr Ser Tyr Asp Cys Glu Val Asn 1 5 10 15 Ala Pro Ile Gln Gly Ser Arg Asn Leu Leu Gln Gly Glu Glu Leu Leu 20 25 30 Arg Ala Leu 35 <210> 4 <211> 41 <212> PRT <213> bSMD41 <400> 4 Ser Met Asp Glu Ser Gly Leu Pro Gln Leu Thr Ser Tyr Asp Cys Glu 1 5 10 15 Val Asn Ala Pro Ile Gln Gly Ser Arg Asn Leu Leu Gln Gly Glu Glu 20 25 30 Leu Leu Arg Ala Leu Asp Gln Val Asn 35 40 <210> 5 <211> 8 <212> PRT <213> antigen motif <220> <221> VARIANT <222> (3) <223> hydroxylated asparagine <400> 5 Glu Val Asn Ala Pro Ile Gln Gly 1 5 <110> Korea Research Institute of Bioscience and Biotechnology <120> A monoclonal antibody for detection of hydroxylated asparagine          803 of HIF-1a and antigen peptide <130> 5p-08-33 <160> 5 <170> KopatentIn 1.71 <210> 1 <211> 16 <212> PRT <213> EVN <220> <221> VARIANT <222> (3) <223> hydroxylated asparagine <400> 1 Glu Val Asn Ala Pro Ile Gln Gly Ser Arg Asn Leu Leu Gln Gly Cys   1 5 10 15 <210> 2 <211> 16 <212> PRT <213> GGL <220> <221> VARIANT <222> (11) <223> hydroxylated asparagine <400> 2 Gly Gly Leu Thr Ser Tyr Asp Cys Glu Val Asn Ala Pro Ile Gln Gly   1 5 10 15 <210> 3 <211> 35 <212> PRT <213> bDES35 <400> 3 Asp Glu Ser Gly Leu Pro Gln Leu Thr Ser Tyr Asp Cys Glu Val Asn   1 5 10 15 Ala Pro Ile Gln Gly Ser Arg Asn Leu Leu Gln Gly Glu Glu Leu Leu              20 25 30 Arg Ala Leu          35 <210> 4 <211> 41 <212> PRT <213> bSMD41 <400> 4 Ser Met Asp Glu Ser Gly Leu Pro Gln Leu Thr Ser Tyr Asp Cys Glu   1 5 10 15 Val Asn Ala Pro Ile Gln Gly Ser Arg Asn Leu Leu Gln Gly Glu Glu              20 25 30 Leu Leu Arg Ala Leu Asp Gln Val Asn          35 40 <210> 5 <211> 8 <212> PRT <213> antigen motif <220> <221> VARIANT <222> (3) <223> hydroxylated asparagine <400> 5 Glu Val Asn Ala Pro Ile Gln Gly   1 5

Claims (6)

803 아스파라진 잔기가 수화된 HIF-1α를 특이적으로 인지하는 단일클론항체.803 A monoclonal antibody that specifically recognizes hydrated HIF-1α with an asparagine residue. 제 1항의 단일클론항체를 생산하는 하이브리도마 세포주(수탁번호:KCTC10850BP).A hybridoma cell line producing the monoclonal antibody of claim 1 (Accession No .: KCTC10850BP). 아스파라진 잔기가 수화된 하기의 아미노산 서열을 포함하는 제 1항의 단일클론항체 제작용 항원 펩티드: An antigen peptide for producing the monoclonal antibody of claim 1, wherein the asparagine residue is hydrated and comprises the following amino acid sequence: EVN(OH)APIQG.EVN (OH) APIQG. 제 3항에 있어서, 서열번호 1로 표시되는 것을 특징으로 하는 항원 펩티드.The antigenic peptide of claim 3, wherein the antigenic peptide is represented by SEQ ID NO: 1. 제 3항에 있어서, 서열번호 2로 표시되는 것을 특징으로 하는 항원 펩티드. The antigenic peptide of claim 3, wherein the antigenic peptide is represented by SEQ ID NO: 2. 제 1항의 단일클론항체를 이용하여 HIF의 활성 정도를 측정하여 FIH-1 활성 억제 억제제를 스크리닝하는 방법. Method for screening inhibitors of FIH-1 activity by measuring the degree of HIF activity using the monoclonal antibody of claim 1.
KR1020050094890A 2005-10-10 2005-10-10 803 -1 A Monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1 and antigen peptide KR100759389B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050094890A KR100759389B1 (en) 2005-10-10 2005-10-10 803 -1 A Monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1 and antigen peptide
PCT/KR2006/004072 WO2007043792A1 (en) 2005-10-10 2006-10-10 A monoclonal antibody for detection of hydroxylated asparagine 803 of hif-1 alpha and antigen peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050094890A KR100759389B1 (en) 2005-10-10 2005-10-10 803 -1 A Monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1 and antigen peptide

Publications (2)

Publication Number Publication Date
KR20070039704A true KR20070039704A (en) 2007-04-13
KR100759389B1 KR100759389B1 (en) 2007-09-19

Family

ID=37942989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050094890A KR100759389B1 (en) 2005-10-10 2005-10-10 803 -1 A Monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1 and antigen peptide

Country Status (2)

Country Link
KR (1) KR100759389B1 (en)
WO (1) WO2007043792A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072726A1 (en) * 2007-12-04 2009-06-11 Korea Research Institute Of Bioscience And Biotechnology Method for large scale preparation of the active domain of human protein tyrosine phosphatase without fusion protein
US8298775B2 (en) 2007-12-04 2012-10-30 Korea Research Institute Of Bioscience And Biotechnology Method for diagnosis of disease using quantitative monitoring of protein tyrosine phosphatase

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944437B1 (en) * 2009-04-16 2013-05-10 Oreal USE OF HIF 1 ALPHA EXPRESSION INHIBITORS TO PROTECT THE SKIN FROM DERMAL DAMAGE INDUCED BY UVA RADIATION

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR773801A0 (en) 2001-09-18 2001-10-11 Adelaide Research & Innovation Pty Ltd Asparagine hydroxylation of the cad domain of a hif protein
GB0211920D0 (en) * 2002-05-23 2002-07-03 Isis Innovations Ltd Assay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072726A1 (en) * 2007-12-04 2009-06-11 Korea Research Institute Of Bioscience And Biotechnology Method for large scale preparation of the active domain of human protein tyrosine phosphatase without fusion protein
US8298775B2 (en) 2007-12-04 2012-10-30 Korea Research Institute Of Bioscience And Biotechnology Method for diagnosis of disease using quantitative monitoring of protein tyrosine phosphatase

Also Published As

Publication number Publication date
KR100759389B1 (en) 2007-09-19
WO2007043792A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JPS60231624A (en) Monoclonal antibody against human-rennin and use
Kiehart et al. Monoclonal antibodies demonstrate limited structural homology between myosin isozymes from Acanthamoeba.
NO862144L (en) RACE ONCOGEN PEPTIDES AND ANTIBODIES.
JP3107225B2 (en) Antibodies against PACAP and uses thereof
JPH07509778A (en) Immunoassay for the detection of collagen or collagen fragments
KR100759389B1 (en) 803 -1 A Monoclonal antibody for detection of hydroxylated asparagine 803 of HIF-1 and antigen peptide
EP0972781B1 (en) Proteins polypeptides and uses thereof
DK175191B1 (en) Monoclonal and polyclonal antibody to HbA1C
JP2898293B2 (en) Antibodies to endothelin and uses thereof
US5648469A (en) Monoclonal antibodies reactive with transferrin receptor cytoplasmic domain
KR101130786B1 (en) A Monoclonal antibody for detection of hydroxylated proline 402 of HIF-1a peptide and its usage
EP0592600B1 (en) Proteins s polypeptides and uses thereof
NO174005B (en) MONOCLONAL ANTIBODY, HYBRIDOM, AND REAGENT FOR IMMUNOLOGICAL ANALYSIS OF ALFA-HANP
Mintz et al. Detection of procollagen biosynthesis using peptide-specific antibodies
JPH02265498A (en) Monoclonal antibody recognizing reg protein
WO1990015993A1 (en) Assay for human ventricular myosin lc1 and monoclonal antibody thereto
CA2026666A1 (en) Method of detecting human tissue factor active substance
JP3194762B2 (en) Monoclonal antibodies, their production and use
JPH09121888A (en) Monoclonal antibody
JP3522877B2 (en) Anti-tyrosinase monoclonal antibody F (ab &#39;) 2 fragment
JP3167024B2 (en) Monoclonal antibodies against endothelin-3 or endothelin-3 precursor and uses thereof
JP2000513742A (en) Anti-peptide antibody against human cytochrome P450 3A4
KR100372557B1 (en) Monoclonal antibody specific for the neuropeptide urocortin, the hybridoma cell line secreting this antibody and the preparation method thereof
JP3419746B2 (en) Monoclonal antibody against endothelin-3 precursor and use thereof
JP3024987B2 (en) Antibodies, their production and uses

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120904

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150312

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150910

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160907

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 19