KR20070026111A - 에어포일 및 압축기 및 고정자 조립체 - Google Patents
에어포일 및 압축기 및 고정자 조립체 Download PDFInfo
- Publication number
- KR20070026111A KR20070026111A KR1020060082412A KR20060082412A KR20070026111A KR 20070026111 A KR20070026111 A KR 20070026111A KR 1020060082412 A KR1020060082412 A KR 1020060082412A KR 20060082412 A KR20060082412 A KR 20060082412A KR 20070026111 A KR20070026111 A KR 20070026111A
- Authority
- KR
- South Korea
- Prior art keywords
- airfoil
- compressor
- profile
- base
- distance
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/541—Specially adapted for elastic fluid pumps
- F04D29/542—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/74—Shape given by a set or table of xyz-coordinates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S416/00—Fluid reaction surfaces, i.e. impellers
- Y10S416/02—Formulas of curves
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
표 1에 나타낸 X, Y, Z의 데카르트 좌표값을 실질적으로 따르는 미코팅 프로파일을 갖는 고정자 베인(40)용 에어포일(60)이 제공된다. 상기 프로파일은 3개의 소수 자리까지만 진행되며, Z는 에어포일이 장착되는 플랫폼(62)으로부터의 거리이고, X 및 Y는 플랫폼으로부터의 각각의 거리 Z에서의 프로파일을 규정하는 좌표이다.
고정자 베인, 프로파일, 에어포일, 플랫폼, 회전자
Description
도 1은 예시적인 가스 터빈 엔진의 개략도,
도 2는 도 1에 도시된 가스 터빈 엔진과 함께 사용될 수 있는 예시적인 고정자 베인의 확대 사시도,
도 3은 도 2에 도시된 한 쌍의 고정자 베인의 정면도로서, 도 1에 도시된 가스 터빈 엔진과 같은 엔진 내에 조립될 때 위치되는 인접하는 고정자 베인들의 상대적 원주방향 배향을 도시하는 정면도.
도면의 주요 부분에 대한 부호의 설명
10: 가스 터빈 엔진 12: 압축기
16: 발전기 18: 샤프트
20: 연소기 40: 고정자 베인
60: 에어포일 62: 베이스
70, 72: 베인 100, 102: 행어
본 발명은 일반적으로 가스 터빈용 고정자 베인에 관한 것이고, 보다 구체적으로는 신규하고 개량된 제 9 스테이지 압축기 고정자 베인용 프로파일에 관한 것이다.
터빈 엔진의 설계, 제조 및 사용에 있어서, 터빈 성능을 최적화하기 위해 더 높은 온도 및 더 높은 작동 압력에서의 작동을 향한 경향이 증가하고 있다. 또한, 기존의 터빈 에어포일(airfoil) 및 고정자 베인이 이들의 수명 사이클의 종료점에 도달함에 따라, 에어포일을 교체하는 동시에, 증가된 작동 온도 및 압력을 수용하기 위해 에어포일의 재설계를 통해서 가스 터빈의 성능을 향상시키는 것이 바람직하다.
가스 터빈용 에어포일 프로파일은 종래의 에어포일에 비해 향상된 성능, 더 낮은 작동 온도, 증가된 크리프 한계, 및 연장된 수명을 제공하도록 제안되어 왔다. 예를 들면, 향상된 터빈 블레이드 에어포일 프로파일을 개시하는 미국 특허 제 5,980,209 호를 참조하기 바란다. 진보된 재료 및 신규한 증기 냉각 시스템은 현재 가스 터빈이 적어도 일부 공지된 터빈 엔진에서 가능한 것보다 더 높은 작동 온도, 기계적 부하 및 압력에서 작동하고 이들을 수용할 수 있게 한다. 그 결과, 전체적인 향상된 효율 및 에어포일 부하를 포함하는 설계 목표에 부합하려면 터빈 엔진과 함께 사용되는 각각의 압축기의 각 스테이지에 있어서 여러가지 시스템 요건이 충족되어야 한다. 특히, 압축기 내에 위치된 고정자 베인의 에어포일은 각각의 특정 스테이지에 대한 열적 및 기계적 작동 요건을 충족해야 한다.
일 실시예에서, 고정자 베인용 에어포일이 제공된다. 에어포일은 4개의 소수 자리까지만 진행된 표 1에 나타낸 X, Y, Z의 데카르트(Cartesian) 좌표값을 실질적으로 따르는 미코팅(uncoated) 프로파일을 가지며, Z는 에어포일이 장착되는 플랫폼(62)으로부터의 거리이고, X 및 Y는 플랫폼으로부터의 각각의 거리 Z에서의 프로파일을 규정하는 좌표이다.
다른 실시예에서, 적어도 한 줄의 고정자 베인을 포함하는 압축기가 제공된다. 이들 고정자 베인의 각각은 베이스 및 그로부터 연장하는 에어포일을 포함한다. 에어포일 중 적어도 하나는 에어포일 형상을 갖는다. 에어포일 형상은 3개의 소수 자리까지만 진행된 표 1에 나타낸 X, Y, Z의 데카르트 좌표값을 실질적으로 따르는 공칭 프로파일을 가지며, Z는 에어포일이 장착되는 플랫폼으로부터의 거리이고, X 및 Y는 플랫폼으로부터의 각각의 거리 Z에서의 프로파일을 규정하는 좌표이다.
추가 실시예에서, 고정자 조립체가 제공된다. 고정자 조립체는 베이스 및 상기 베이스로부터 연장되는 에어포일을 구비하는 적어도 하나의 고정자 베인을 포함한다. 상기 에어포일은 3개의 소수 자리까지만 진행된 표 1에 나타낸 X, Y, Z의 데카르트 좌표값을 실질적으로 따르는 미코팅 프로파일을 가지며, Z는 에어포일이 장착되는 플랫폼으로부터의 거리이고, X 및 Y는 베이스로부터의 각각의 거리 Z에서의 프로파일을 규정하는 좌표이다. 상기 프로파일은 소정의 정수 n에 의해 스케일 링될 수 있고, 소정의 제조 공차로 제조가능하다.
도 1은 발전기(16)에 연결된 예시적인 가스 터빈 엔진(10)의 개략도이다. 예시적인 실시예에서, 가스 터빈 시스템(10)은 단일 모놀리식 회전자 또는 샤프트(18)에 배열되는 압축기(12), 터빈(14), 및 발전기(16)를 포함한다. 대안 실시예에서, 샤프트(18)는 복수의 샤프트 세그먼트로 분할되고, 각각의 샤프트 세그먼트는 샤프트(18)를 형성하도록 인접 샤프트 세그먼트에 연결된다. 압축기(12)는 연소기(20)에 압축 공기를 공급하고, 연소기에서 압축 공기는 공급되는 연료(22)와 혼합된다. 일 실시예에서, 엔진(10)은 Greenville, South Carolina 소재의 General Electric Company로부터 구입가능한 6C 가스 터빈 엔진이다.
작동 중에, 공기는 압축기(12)를 통해서 유동하고, 압축 공기가 연소기(20)에 공급된다. 연소기(20)로부터의 연소 가스(28)가 터빈(14)을 추진한다. 터빈(14)은 샤프트(18), 압축기(12) 및 발전기(16)를 종축(30) 주위로 회전시킨다.
도 2는 가스 터빈 엔진(10)(도 1에 도시됨)과 함께 사용될 수 있는 예시적인 고정자 베인(40)의 확대 사시도이다. 보다 구체적으로, 예시적인 실시예에서, 고정자 베인(40)은 압축기(12)(도 1에 도시됨)와 같은 압축기 내에 연결된다. 도 3은 한 쌍의 고정자 베인(40)의 정면도이고, 가스 터빈 엔진(10)(도 1에 도시됨)과 같은 회전자 조립체 내에 조립될 때 인접하는 고정자 베인(40)들의 상대적 원주방향 배향을 도시한다. 예시적인 실시예에서, 고정자 베인(40)은 압축기(12)(도 1에 도시됨)와 같은 압축기의 제 9 스테이지의 일부를 형성한다. 당업자에 의해 이해될 수 있는 바와 같이, 본원에 기술되는 고정자 베인은 당해 기술분야에 공지된 다른 회전 부재와 함께할 때 유리할 수 있다. 따라서, 본원에서의 설명은 단지 예시적인 목적으로 설명되는 것이며, 본 발명의 적용을 특정 고정자 베인, 압축기 또는 터빈에 한정하려는 의도가 아닌 것이다.
본 발명의 에어포일 프로파일은, 후술하듯이, 압축기(12)의 다른 스테이지들 사이의 바람직한 상호작용을 달성하고, 압축기(12)의 공기역학 효율을 향상시키고, 압축기 작동 중에 각각의 고정자 베인의 공기역학적 및 기계적 부하를 최적화하기 위해 압축기(12)의 제 9 스테이지에서 최적할 것으로 판단된다.
회전자 조립체 내에 조립될 때, 각각의 고정자 베인(40)은 샤프트(18)(도 1에 도시됨)와 같은 회전자 샤프트 주위에서 원주방향으로 연장하는 엔진 케이싱(도시 생략)에 연결된다. 당해 기술분야에 공지된 바와 같이, 완전히 조립되었을 때, 고정자 베인(40)의 각각의 원주방향 열은 인접하는 회전자 블레이드(도시 생략) 열 사이에 축방향으로 위치된다. 보다 구체적으로, 고정자 베인(40)은 엔진 성능의 향상을 촉진하는 방식으로 유체를 회전자 조립체를 통해서 유동시키도록 배향된다. 예시적인 실시예에서, 원주방향으로 인접한 고정자 베인(40)들은 동일하고, 그 각각은 회전자 조립체 내에 형성된 유동 경로를 반경방향으로 가로질러 연장된다. 더욱이, 각각의 고정자 베인(40)은, 베이스 또는 플랫폼(62)으로부터 반경방향 외측으로 연장되고 예시적인 실시예에서는 그와 일체로 형성되는 에어포일(60)을 포함한다.
각각의 에어포일(60)은 제 1 측벽(70) 및 제 2 측벽(72)을 포함한다. 상기 제 1 측벽(70)은 볼록형이고 에어포일(60)의 흡입측을 형성하며, 상기 제 2 측벽(72)은 오목형이고 에어포일(60)의 압력측을 형성한다. 측벽(70, 72)은 에어포일(60)의 선단 에지(74)에서 및 축방향 이격된 말단 에지(76)에서 함께 결합된다. 보다 구체적으로, 에어포일 말단 에지(76)는 에어포일 선단 에지(74)로부터 현방향(chord-wise)으로 하류에 이격되어 있다. 제 1 및 제 2 측벽(70, 72)은 각각 인접 베이스(62)에 위치된 루트(root)(78)로부터 에어포일 팁(80)에 걸쳐서 종방향으로 또는 반경방향 외측으로 연장된다.
베이스(62)는 케이싱에 대한 고정자 베인(40)의 고정을 용이하게 한다. 예시적인 실시예에서, 베이스(62)는 "정사각형면(square-faced)" 베이스로서 공지되어 있고, 상류면(92) 및 하류면(94)에 의해 함께 연결되는 한 쌍의 원주방향 이격 측면(90, 91)을 포함한다. 예시적인 실시예에서, 측면(90, 91)은 동일하고 서로 거의 평행하다. 더욱이, 예시적인 실시예에서, 상류면(92) 및 하류면(94)은 서로 거의 평행하다.
한 쌍의 일체 형성된 행어(hanger)(100, 102)가 각각의 면(92, 94)으로부터 연장된다. 행어(100, 102)는, 당해 기술분야에 공지된 바와 같이, 고정자 베인(40)을 회전자 조립체 내에 고정하는 것을 용이하게 하도록 케이싱에 결합된다. 예시적인 실시예에서, 각각의 행어(100, 102)는 베이스(62)의 반경방향 외표면(104) 근처에서 각각의 면(92, 94)으로부터 외향으로 연장된다.
예시적인 실시예에서, 에어포일(60)은 고용 경화 및 석출 경화 열처리를 통 해서 강화되는 방향성 응고 합금으로부터 각각의 베이스(62)와 함께 일체로 주조된다. 방향성 응고는 횡단 결정 입계를 회피하여 크리프 수명을 증가시키는 장점을 제공한다.
소스 코드, 모델 및 설계 실시의 개발을 통해서, 압축기(12)의 제 9 스테이지 요건의 고유 요구에 부합하는 공간 내의 1456 지점들의 자취(loci)가, 적용가능한 작동 파라미터 하에서 블레이드의 공기역학적 부하 및 기계적 부하를 고려하여 반복적인 프로세스에서 결정되어 왔다. 지점들의 자취는 압축기의 다른 스테이지들 사이의 바람직한 상호 작용, 압축기의 공기역학적 효율, 및 압축기 작동 중에 고정자 베인의 최적 공기역학적 및 기계적 부하를 달성하는 것으로 생각된다. 추가로, 지점들의 자취는 고정자 베인의 제조를 위한 제조가능한 에어포일 프로파일을 제공하며, 압축기가 효율적이고 안전하며 원활한 방식으로 작동할 수 있게 한다.
도 2를 참조하면, 후술하는 표 1에 나타낸 X, Y, Z값에 대한 데카르트 좌표계가 도시되어 있다. 데카르트 좌표계는 직교하는 관계의 X, Y, Z축을 가지며, Z축 또는 데이터는 플랫폼(62)에 거의 수직하게 놓이고 일반적으로 에어포일을 통해서 반경방향으로 연장된다. Y축은 기계 중심선, 즉 회전축에 평행하게 놓인다. X 및 Y 좌표값을 반경방향, 즉 Z방향으로 선택된 위치에서 한정함으로써, 에어포일(60)의 프로파일이 확정될 수 있다. X 및 Y값을 매끄럽게 이어지는 원호로 연결함으로써, 각각의 반경방향 거리 Z에서의 각각의 프로파일 섹션이 고정된다. 반경방향 거리들(Z) 사이의 다양한 표면 위치에서의 표면 프로파일은 인접하는 프로파 일을 연결함으로써 확정될 수 있다.
각각의 반경방향 위치 또는 에어포일 높이(Z)에서의 에어포일 섹션 프로파일을 결정하기 위한 X 및 Y 좌표가 이하의 표 1에 일람되어 있으며, 여기에서 Z는 플랫폼(62)의 상면에서 0과 동일하고 에어포일 선단부(80)에서 1.593과 동일한 무차원 값이다. X, Y, Z 좌표에 대한 표의 값들은 인치(inch) 단위로 제공된 것이며, 미코팅 에어포일에 대한 주위의 비작동 또는 비고온 조건에서의 실제 에어포일 프로파일을 나타내고, 이에 대한 코팅은 후술된다. 추가로, 부호 약정은 데카르트 좌표계에서 통상 사용되는 바와 같이, 값 Z에 대해 양의 값을 할당하고, 좌표 X 및 Y에 대해 양의 값 및 음의 값을 할당한다.
표 1의 값은 컴퓨터 생성되었고 3개의 소수 자리까지 나타낸다. 그러나, 제조 요건을 감안하여, 에어포일을 형성하는데 유용한 실제값은 에어포일의 프로파일을 결정하기 위해 3개의 소수 자리까지만 유효한 것으로 간주된다. 또한, 에어포일의 프로파일에 고려되어야 하는 일반적인 제조 공차가 존재한다. 따라서, 표 1에 주어지는 프로파일에 대한 값은 공칭 에어포일에 대한 것이다. 따라서, 이들 X, Y, Z값에는 플러스 또는 마이너스의 통상적인 제조 공차가 적용될 수 있고, 이들 값에 따른 프로파일을 갖는 에어포일은 이러한 공차를 포함하는 것을 이해할 수 있을 것이다. 예를 들면, 에어포일에 대해서는 약 ±0.160in(4.06mm)의 제조 공차가 설계 한도 이내에 있다. 따라서, 에어포일의 기계적 및 공기역학적 기능이 제조 결함 및 공차에 의해 손상되지 않는 바, 다른 실시예에서 이는 전술한 값보다 크거나 작을 수 있다. 당업자들에 의해 이해되는 바와 같이, 제조 공차는 표 1에 나타낸 이상적인 에어포일 프로파일 지점과 관련하여, 제조되는 에어포일의 바람직한 평균 및 표준 편차를 달성하도록 결정될 수 있다.
추가로, 전술했듯이, 에어포일은 또한 표 1의 값에 따라서 그리고 전술한 공차 내에서 에어포일이 제조된 후에 부식 및 산화에 대한 보호를 위해 코팅될 수 있다. 예시적인 실시예에서, 부식 방지 코팅 또는 코팅들에는 약 0.100in(2.54mm)의 전체 평균 두께가 제공된다. 따라서, 표 1에 나타낸 X 및 Y값의 제조 공차에 부가적으로, 코팅 두께를 책임지기 위한 이들 값에 대한 가산이 또한 존재한다. 본 발명의 대안 실시예에서는 더 크거나 낮은 코팅 두께값이 이용될 수 있는 것으로 생각된다.
상기 에어포일을 포함하는 제 9 스테이지 고정자 베인 조립체가 작동 중에 가열됨에 따라, 터빈 블레이드에 가해지는 응력 및 온도는 불가피하게 에어포일 형상의 어느 정도의 변형을 초래하고, 따라서 엔진이 작동될 때 표 1에 나타낸 X, Y, Z 좌표에 약간의 변경 또는 변위가 존재한다. 작동 중에 에어포일 좌표의 변화를 측정하는 것은 불가능하지만, 표 1에 나타낸 지점들의 자취와 사용 중의 변형을 합산하면 압축기가 효과적이고, 안전하며 원활한 방식으로 작동할 수 있는 것으로 알려졌다.
표 1에 나타낸 에어포일 프로파일은 다른 유사한 기계 설계에 도입되기 위해서는 기하학적으로 확대 또는 축소 스케일링될 수 있음을 알아야 한다. 따라서, X 및 Y 좌표값 각각에 소정 정수 n을 곱하거나 나눔으로써 표 1에 나타낸 에어포일 프로파일의 스케일링된 버전을 얻을 수 있을 것으로 생각된다. 표 1은 1과 동일하 게 설정된 n의 스케일링된 프로파일로 간주될 수 있으며, n을 각각 1보다 크거나 작은 값으로 조정함으로써 보다 크거나 작게 치수설정된 에어포일이 얻어질 수 있을 것으로 생각된다.
상기 고정자 베인은 회전자 조립체의 성능을 최적화하기 위한 비용 효율적이고 신뢰적인 방법을 제공한다. 보다 구체적으로, 각각의 고정자 베인 에어포일은 압축기에서의 다른 스테이지들 사이의 바람직한 상호 작용, 압축기의 공기역학적 효율, 및 압축기 작동 중의 고정자 베인의 최적의 공기역학적 및 기계적 부하 달성을 촉진하는 에어포일 형상을 갖는다. 그 결과, 재규정된 에어포일 기하학적 형상은 고정자 조립체의 사용 수명을 연장시키고, 압축기의 작동 효율을 비용 효율적이고 신뢰적인 방식으로 향상시키는 것을 촉진한다.
이상에서 고정자 베인 및 회전자 조립체의 예시적인 실시예를 상세히 설명하였다. 고정자 베인은 본원에 설명된 특정 실시예에 한정되지 않으며, 오히려 각각의 고정자 베인의 부품들은 독립적으로 및 본원에 개시된 다른 부품들과 별개로 사용될 수 있다. 예를 들어, 각각의 고정자 베인 오목부는 또한 다른 고정자 베인 또는 다른 회전자 조립체에 포함되거나 이들과 조합하여 사용될 수 있으며, 본원에 설명된 바와 같이 고정자 베인(40)에만 실시되도록 한정되지 않는다. 오히려, 본 발명은 여러가지 다른 베인 및 회전자 구조와 연관하여 실시되고 이용될 수 있다.
본 발명을 다양한 특정 실시예의 측면에서 설명했지만, 당업자라면 본 발명이 청구범위의 정신 및 범주 내에서 수정 실시될 수 있음을 알 수 있을 것이다.
본 발명에 따르면, 압축기의 다른 스테이지들 사이의 바람직한 상호 작용을 달성하고, 압축기의 공기역학 효율을 향상시키고, 압축기 작동 중에 각각의 고정자 베인의 공기역학적 및 기계적 부하를 최적화하는 에어포일 및 고정자 베인 프로파일이 제공된다.
Claims (10)
- 고정자 베인(40)용 에어포일(60)로서,4개의 소수 자리까지만 진행된 표 1에 나타낸 X, Y, Z의 데카르트 좌표값을 실질적으로 따르는 미코팅 프로파일을 가지며,Z는 에어포일이 장착되는 플랫폼(62)으로부터의 거리이고, X 및 Y는 플랫폼으로부터의 각각의 거리 Z에서의 프로파일을 규정하는 좌표인 것을 특징으로 하는에어포일.
- 제 1 항에 있어서,상기 에어포일은 압축기(12)의 제 9 스테이지를 포함하는 것을 특징으로 하는에어포일.
- 제 1 항에 있어서,상기 에어포일 프로파일은 임의의 에어포일 표면 위치에 대해 수직인 방향으로 ±0.160in(4.06mm) 내의 포락선(envelope)에 놓이는 것을 특징으로 하는에어포일.
- 제 1 항에 있어서,상기 에어포일 프로파일은 상기 에어포일의 공기역학적 효율의 최적화를 촉진하는 것을 특징으로 하는에어포일.
- 제 1 항에 있어서,상기 플랫폼으로부터 일체로 연장하는 베이스(62)와 조합하며,상기 에어포일은 주조 프로세스를 통해서 형성되는 것을 특징으로 하는에어포일.
- 적어도 한 줄의 고정자 베인(60)을 포함하는 압축기(12)로서,상기 고정자 베인의 각각은 베이스(62) 및 그로부터 연장하는 에어포일(60)을 포함하고, 상기 에어포일들 중 적어도 하나는 에어포일 형상을 가지며, 상기 에어포일 형상은 3개의 소수 자리까지만 진행된 표 1에 나타낸 X, Y, Z의 데카르트 좌표값을 실질적으로 따르는 공칭 프로파일을 가지며, Z는 상기 에어포일이 그로부터 연장되는 상기 베이스의 상면으로부터의 거리이고, X 및 Y는 상기 베이스로부터의 각각의 거리 Z에서의 프로파일을 규정하는 좌표인 것을 특징으로 하는압축기.
- 제 6 항에 있어서,각각의 상기 에어포일 형상은, 완전한 에어포일 형상을 형성하도록 서로 매 끄럽게 결합되는 Z 거리에서의 프로파일 섹션에 의해 규정되는 것을 특징으로 하는압축기.
- 제 6 항에 있어서,상기 적어도 하나의 에어포일(60)은 상기 적어도 하나의 에어포일 상에서 연장되는 코팅을 추가로 포함하고, 상기 코팅은 약 0.100in(2.54mm) 이하의 두께를 갖는 것을 특징으로 하는압축기.
- 제 6 항에 있어서,상기 적어도 한 줄의 고정자 베인(40)은 상기 압축기의 제 9 스테이지를 포함하는 것을 특징으로 하는압축기.
- 베이스(62) 및 상기 베이스로부터 연장되는 에어포일(60)을 포함하는 적어도 하나의 고정자 베인(40)을 포함하는 고정자 조립체로서,상기 에어포일은 3개의 소수 자리까지만 진행된 표 1에 나타낸 X, Y, Z의 데카르트 좌표값을 실질적으로 따르는 미코팅 프로파일을 가지며, Z는 상기 에어포일이 그로부터 연장되는 베이스의 상면으로부터의 거리이고, X 및 Y는 상기 베이스로부터의 각각의 거리 Z에서의 프로파일을 규정하는 좌표이며, 상기 프로파일은 소정 의 정수 n에 의해 스케일링될 수 있고 소정의 제조 공차로 제조가능한 것을 특징으로 하는고정자 조립체.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/214,499 US7384243B2 (en) | 2005-08-30 | 2005-08-30 | Stator vane profile optimization |
US11/214,499 | 2005-08-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070026111A true KR20070026111A (ko) | 2007-03-08 |
KR101338585B1 KR101338585B1 (ko) | 2013-12-06 |
Family
ID=37489861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060082412A KR101338585B1 (ko) | 2005-08-30 | 2006-08-29 | 에어포일 및 압축기 및 고정자 조립체 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7384243B2 (ko) |
EP (1) | EP1760263A3 (ko) |
JP (1) | JP2007064221A (ko) |
KR (1) | KR101338585B1 (ko) |
CN (1) | CN1924299B (ko) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7329092B2 (en) * | 2006-01-27 | 2008-02-12 | General Electric Company | Stator blade airfoil profile for a compressor |
US7329093B2 (en) * | 2006-01-27 | 2008-02-12 | General Electric Company | Nozzle blade airfoil profile for a turbine |
US7306436B2 (en) * | 2006-03-02 | 2007-12-11 | Pratt & Whitney Canada Corp. | HP turbine blade airfoil profile |
US7467926B2 (en) * | 2006-06-09 | 2008-12-23 | General Electric Company | Stator blade airfoil profile for a compressor |
US7581930B2 (en) * | 2006-08-16 | 2009-09-01 | United Technologies Corporation | High lift transonic turbine blade |
US7611326B2 (en) * | 2006-09-06 | 2009-11-03 | Pratt & Whitney Canada Corp. | HP turbine vane airfoil profile |
US7572105B2 (en) * | 2006-10-25 | 2009-08-11 | General Electric Company | Airfoil shape for a compressor |
US7517190B2 (en) * | 2006-10-25 | 2009-04-14 | General Electric Company | Airfoil shape for a compressor |
US7513749B2 (en) * | 2006-10-25 | 2009-04-07 | General Electric Company | Airfoil shape for a compressor |
US7530793B2 (en) * | 2006-10-25 | 2009-05-12 | General Electric Company | Airfoil shape for a compressor |
US7517196B2 (en) * | 2006-10-25 | 2009-04-14 | General Electric Company | Airfoil shape for a compressor |
US7534092B2 (en) * | 2006-10-25 | 2009-05-19 | General Electric Company | Airfoil shape for a compressor |
US7513748B2 (en) * | 2006-10-25 | 2009-04-07 | General Electric Company | Airfoil shape for a compressor |
US7510378B2 (en) * | 2006-10-25 | 2009-03-31 | General Electric Company | Airfoil shape for a compressor |
US7566202B2 (en) * | 2006-10-25 | 2009-07-28 | General Electric Company | Airfoil shape for a compressor |
US7572104B2 (en) * | 2006-10-25 | 2009-08-11 | General Electric Company | Airfoil shape for a compressor |
US7517188B2 (en) * | 2006-10-25 | 2009-04-14 | General Electric Company | Airfoil shape for a compressor |
US7520729B2 (en) * | 2006-10-25 | 2009-04-21 | General Electric Company | Airfoil shape for a compressor |
US7517197B2 (en) * | 2006-10-25 | 2009-04-14 | General Electric Company | Airfoil shape for a compressor |
US7497665B2 (en) * | 2006-11-02 | 2009-03-03 | General Electric Company | Airfoil shape for a compressor |
US7524170B2 (en) * | 2006-11-02 | 2009-04-28 | General Electric Company | Airfoil shape for a compressor |
US7537434B2 (en) * | 2006-11-02 | 2009-05-26 | General Electric Company | Airfoil shape for a compressor |
US7568892B2 (en) * | 2006-11-02 | 2009-08-04 | General Electric Company | Airfoil shape for a compressor |
US7559747B2 (en) * | 2006-11-22 | 2009-07-14 | Pratt & Whitney Canada Corp. | Turbine exhaust strut airfoil profile |
US7559746B2 (en) * | 2006-11-22 | 2009-07-14 | Pratt & Whitney Canada Corp. | LP turbine blade airfoil profile |
US7559748B2 (en) * | 2006-11-28 | 2009-07-14 | Pratt & Whitney Canada Corp. | LP turbine blade airfoil profile |
US8113786B2 (en) * | 2008-09-12 | 2012-02-14 | General Electric Company | Stator vane profile optimization |
WO2010071499A1 (en) * | 2008-12-19 | 2010-06-24 | Volvo Aero Corporation | Spoke for a stator component, stator component and method for manufacturing a stator component |
US7988424B2 (en) * | 2009-03-25 | 2011-08-02 | General Electric Company | Bucket for the last stage of a steam turbine |
US8356975B2 (en) * | 2010-03-23 | 2013-01-22 | United Technologies Corporation | Gas turbine engine with non-axisymmetric surface contoured vane platform |
US9976433B2 (en) | 2010-04-02 | 2018-05-22 | United Technologies Corporation | Gas turbine engine with non-axisymmetric surface contoured rotor blade platform |
US8105044B2 (en) * | 2010-04-23 | 2012-01-31 | Pratt & Whitney Canada Corp. | Compressor turbine blade airfoil profile |
US8734113B2 (en) | 2010-07-26 | 2014-05-27 | Snecma | Optimized aerodynamic profile for a turbine vane, in particular for a nozzle of the fourth stage of a turbine |
US8529210B2 (en) | 2010-12-21 | 2013-09-10 | Hamilton Sundstrand Corporation | Air cycle machine compressor rotor |
US8714930B2 (en) | 2011-09-12 | 2014-05-06 | General Electric Company | Airfoil shape for turbine bucket and turbine incorporating same |
US8845296B2 (en) * | 2011-09-19 | 2014-09-30 | General Electric Company | Airfoil shape for turbine bucket and turbine incorporating same |
US8979499B2 (en) | 2012-08-17 | 2015-03-17 | United Technologies Corporation | Gas turbine engine airfoil profile |
US10151321B2 (en) | 2013-10-16 | 2018-12-11 | United Technologies Corporation | Auxiliary power unit impeller blade |
WO2015112222A2 (en) | 2013-11-04 | 2015-07-30 | United Technologies Corporation | Gas turbine engine airfoil profile |
US9523284B2 (en) * | 2013-11-22 | 2016-12-20 | General Electric Technology Gmbh | Adjusted stationary airfoil |
GB201406822D0 (en) * | 2014-04-16 | 2014-05-28 | Rolls Royce Plc | Method of designing guide vane formations |
US9746000B2 (en) | 2015-09-04 | 2017-08-29 | General Electric Company | Airfoil shape for a compressor |
US9745994B2 (en) | 2015-09-04 | 2017-08-29 | General Electric Company | Airfoil shape for a compressor |
US9938985B2 (en) | 2015-09-04 | 2018-04-10 | General Electric Company | Airfoil shape for a compressor |
US9732761B2 (en) | 2015-09-04 | 2017-08-15 | General Electric Company | Airfoil shape for a compressor |
US10041370B2 (en) | 2015-09-04 | 2018-08-07 | General Electric Company | Airfoil shape for a compressor |
US9951790B2 (en) | 2015-09-04 | 2018-04-24 | General Electric Company | Airfoil shape for a compressor |
US9777744B2 (en) | 2015-09-04 | 2017-10-03 | General Electric Company | Airfoil shape for a compressor |
US9957964B2 (en) | 2015-09-04 | 2018-05-01 | General Electric Company | Airfoil shape for a compressor |
US9759076B2 (en) | 2015-09-04 | 2017-09-12 | General Electric Company | Airfoil shape for a compressor |
US9759227B2 (en) | 2015-09-04 | 2017-09-12 | General Electric Company | Airfoil shape for a compressor |
US9771948B2 (en) | 2015-09-04 | 2017-09-26 | General Electric Company | Airfoil shape for a compressor |
CN105626163B (zh) * | 2015-12-28 | 2017-09-26 | 无锡透平叶片有限公司 | 一种隔板静叶锻造转角的确定方法 |
US10443392B2 (en) * | 2016-07-13 | 2019-10-15 | Safran Aircraft Engines | Optimized aerodynamic profile for a turbine vane, in particular for a nozzle of the second stage of a turbine |
US10443393B2 (en) * | 2016-07-13 | 2019-10-15 | Safran Aircraft Engines | Optimized aerodynamic profile for a turbine vane, in particular for a nozzle of the seventh stage of a turbine |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5088892A (en) * | 1990-02-07 | 1992-02-18 | United Technologies Corporation | Bowed airfoil for the compression section of a rotary machine |
US5117626A (en) * | 1990-09-04 | 1992-06-02 | Westinghouse Electric Corp. | Apparatus for cooling rotating blades in a gas turbine |
US5445498A (en) * | 1994-06-10 | 1995-08-29 | General Electric Company | Bucket for next-to-the-last stage of a turbine |
US5472316A (en) * | 1994-09-19 | 1995-12-05 | General Electric Company | Enhanced cooling apparatus for gas turbine engine airfoils |
US5980209A (en) * | 1997-06-27 | 1999-11-09 | General Electric Co. | Turbine blade with enhanced cooling and profile optimization |
US6461110B1 (en) * | 2001-07-11 | 2002-10-08 | General Electric Company | First-stage high pressure turbine bucket airfoil |
US6503059B1 (en) * | 2001-07-06 | 2003-01-07 | General Electric Company | Fourth-stage turbine bucket airfoil |
US6715990B1 (en) * | 2002-09-19 | 2004-04-06 | General Electric Company | First stage turbine bucket airfoil |
US6779977B2 (en) * | 2002-12-17 | 2004-08-24 | General Electric Company | Airfoil shape for a turbine bucket |
US6887041B2 (en) * | 2003-03-03 | 2005-05-03 | General Electric Company | Airfoil shape for a turbine nozzle |
US6739838B1 (en) * | 2003-03-17 | 2004-05-25 | General Electric Company | Airfoil shape for a turbine bucket |
US6854961B2 (en) * | 2003-05-29 | 2005-02-15 | General Electric Company | Airfoil shape for a turbine bucket |
US6857855B1 (en) * | 2003-08-04 | 2005-02-22 | General Electric Company | Airfoil shape for a turbine bucket |
US6881038B1 (en) * | 2003-10-09 | 2005-04-19 | General Electric Company | Airfoil shape for a turbine bucket |
US6932577B2 (en) * | 2003-11-21 | 2005-08-23 | Power Systems Mfg., Llc | Turbine blade airfoil having improved creep capability |
US6994520B2 (en) * | 2004-05-26 | 2006-02-07 | General Electric Company | Internal core profile for a turbine nozzle airfoil |
US7094034B2 (en) * | 2004-07-30 | 2006-08-22 | United Technologies Corporation | Airfoil profile with optimized aerodynamic shape |
US7186090B2 (en) * | 2004-08-05 | 2007-03-06 | General Electric Company | Air foil shape for a compressor blade |
-
2005
- 2005-08-30 US US11/214,499 patent/US7384243B2/en active Active
-
2006
- 2006-08-17 EP EP06254333A patent/EP1760263A3/en not_active Withdrawn
- 2006-08-29 JP JP2006231841A patent/JP2007064221A/ja not_active Withdrawn
- 2006-08-29 KR KR1020060082412A patent/KR101338585B1/ko active IP Right Grant
- 2006-08-30 CN CN200610126621XA patent/CN1924299B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
EP1760263A3 (en) | 2010-03-10 |
JP2007064221A (ja) | 2007-03-15 |
US20070048143A1 (en) | 2007-03-01 |
EP1760263A2 (en) | 2007-03-07 |
CN1924299B (zh) | 2013-12-25 |
US7384243B2 (en) | 2008-06-10 |
CN1924299A (zh) | 2007-03-07 |
KR101338585B1 (ko) | 2013-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101338585B1 (ko) | 에어포일 및 압축기 및 고정자 조립체 | |
KR100871195B1 (ko) | 터빈 버킷과 터빈 | |
US8113786B2 (en) | Stator vane profile optimization | |
US7997861B2 (en) | Airfoil shape for a compressor | |
US7993100B2 (en) | Airfoil shape for a compressor | |
US6474948B1 (en) | Third-stage turbine bucket airfoil | |
KR100871196B1 (ko) | 터빈 노즐 및 이를 포함하는 터빈 | |
US6558122B1 (en) | Second-stage turbine bucket airfoil | |
US6450770B1 (en) | Second-stage turbine bucket airfoil | |
US6503059B1 (en) | Fourth-stage turbine bucket airfoil | |
US6739839B1 (en) | First-stage high pressure turbine bucket airfoil | |
US8038390B2 (en) | Airfoil shape for a compressor | |
US7497663B2 (en) | Rotor blade profile optimization | |
US7494323B2 (en) | Airfoil shape for a compressor | |
US8133030B2 (en) | Airfoil shape | |
US8591193B2 (en) | Airfoil shape for a compressor blade | |
EP1482125A2 (en) | Airfoil shape for a turbine bucket | |
EP1522676A2 (en) | Airfoil shape for a turbine bucket | |
EP1965025B1 (en) | Turbine blade | |
JP2004332738A (ja) | 第2段タービンバケット翼形部 | |
KR20040080375A (ko) | 터빈 버킷 및 터빈 | |
EP1507065A2 (en) | Turbine bucket tip shroud edge profile | |
US6893210B2 (en) | Internal core profile for the airfoil of a turbine bucket | |
CN113272519A (zh) | 改进的第一级涡轮叶片 | |
US9234428B2 (en) | Turbine bucket internal core profile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20161123 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20171124 Year of fee payment: 5 |