KR20070024069A - A transgenic pig expressing csf gene in the milk and producing method thereof - Google Patents

A transgenic pig expressing csf gene in the milk and producing method thereof Download PDF

Info

Publication number
KR20070024069A
KR20070024069A KR1020050078585A KR20050078585A KR20070024069A KR 20070024069 A KR20070024069 A KR 20070024069A KR 1020050078585 A KR1020050078585 A KR 1020050078585A KR 20050078585 A KR20050078585 A KR 20050078585A KR 20070024069 A KR20070024069 A KR 20070024069A
Authority
KR
South Korea
Prior art keywords
csf
hgm
pig
mammary gland
cells
Prior art date
Application number
KR1020050078585A
Other languages
Korean (ko)
Other versions
KR100790514B1 (en
Inventor
박광욱
최기명
설재구
허기남
박창식
Original Assignee
(주)엠젠
박광욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠젠, 박광욱 filed Critical (주)엠젠
Priority to KR1020050078585A priority Critical patent/KR100790514B1/en
Publication of KR20070024069A publication Critical patent/KR20070024069A/en
Application granted granted Critical
Publication of KR100790514B1 publication Critical patent/KR100790514B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0273Cloned animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Humanized animals, e.g. knockin
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles

Abstract

A method for producing transgenic pig capable of expressing colony stimulating factor(CSF) gene in the mammary gland is provided to be able to easily obtain the transgenic pig, which is able to solve the problems of post-translational modification or mass-production and is used as a supplemental agent of treating leukemia and an immuno-potentiating agent, by expressing hGM-CSF in mammary gland. The method comprises the steps of: (a) isolating somatic cell from pig fetus on days 40-80 pregnancy; (b) after preparing an expression vector including a promoter specific to mammary gland such as alphas1-casein, beta-casein, beta-lactoglobulin and whey acidic protein; and a polynucleotide encoding the CSF such as hGM-CSF, introducing it into the somatic cell; (c) after selecting the expression vector-introduced clone somatic cell, culturing it; (d) removing nucleus of ovum collected from sow and fusing it with the clone somatic cell; and (e) transplanting the fused nuclear transfer embryos to surrogate mother pig and delivering piglets.

Description

CSF를 유선에서 발현하는 형질전환 복제 돼지 및 그의 제조 방법{A transgenic pig expressing CSF gene in the milk and producing method thereof}A transgenic pig expressing CSF gene in the milk and producing method etc.

1은 pBC1 유 발현 벡터(Milk Expression Vector, Invitrogen, USA)를 나타낸 것이고, Figure 1 shows the pBC1 expression vector u (Milk Expression Vector, Invitrogen, USA ),

도 2는 인간 GM-CSF의 유선(mammary grand) 특이적 발현을 위한 형질전환 컨스트럭트(transgenic construct)를 나타낸 것이고, Figure 2 shows a transgenic construct for mammary grand specific expression of human GM-CSF,

도 3은 형질전환된 HC11 세포주에서 도입된 hGM-CSF 유전자(transgene)의RT-PCR 결과이고, Figure 3 shows the RT-PCR results of the hGM-CSF transgene introduced in the transformed HC11 cell line,

M; 마커(Marker);M; Markers;

1; RT-PCR 양성 대조군;One; RT-PCR positive control;

2 : 비형질전환 HC11 세포주에서의 G3PDH;2: G3PDH in untransformed HC11 cell line;

3~6 : 형질전환 HC11 세포주에서의 G3PDH;3-6: G3PDH in transformed HC11 cell line;

7 : 비형질전환 HC11 세포주에서의 hGM-CSF;7: hGM-CSF in untransformed HC11 cell line;

8~11 : 형질전환 HC11 세포주에서의 hGM-CSF,8-11: hGM-CSF in transgenic HC11 cell line,

도 4는 마우스 HC11 세포주에서 hGM-CSF의 유선 특이적 발현을 나타내는 웨 스턴 블랏(Western blot) 분석을 나타낸 것이고, Figure 4 shows Western blot analysis showing mammary gland specific expression of hGM-CSF in mouse HC11 cell line,

Mock : 비-형질전환 대조군(non-transgenic control) HC11 세포;Mock: non-transgenic control HC11 cells;

GM-CSF : 형질전환 HC11 세포,GM-CSF: transformed HC11 cells,

도 5는 GM-CSF 및 NEO PCR 스크린 결과이고, 5 is a GM-CSF and NEO PCR screen result,

M : 마커; M: marker;

1 : 양성 대조군;1: positive control;

2 : 음성 대조군;2: negative control;

3~10 : 샘플,3 ~ 10: sample,

도 6은 서던 블랏(Southern blot) 결과이며, 6 is a Southern blot result,

M : 마커;M: marker;

P : 양성 대조군;P: positive control;

1: 클론번호 27-4;1: clone number 27-4;

2 : 클론번호 27-28;2: clone No. 27-28;

3 : 클론번호 27-32,3: clone number 27-32,

도 7은 형질전환 돼지의 자손에 대한 PCR 결과이다. 7 shows PCR results for the offspring of transgenic pigs.

M ; 마커(Marker); M; Markers;

1 : 양성 대조군; 1: positive control;

2 : 형질전환된 세포주(27-32);2: transformed cell line 27-32;

3 : 대리모(surrogate mother);3: surrogate mother;

4 : D.W;4: D.W;

5 : 형질 전환 돼지(Transgenic pig) 1;5: transgenic pig 1;

6 : 형질 전환 돼지 2;6: transgenic pig 2;

7 : 형질 전환 돼지 3.7: transgenic pig 3.

본 발명은 인간 GM-CSF를 유선에서 발현하는 형질전환 복제 돼지 및 그의 제조 방법에 관한 것이다.The present invention relates to a transgenic cloned pig expressing human GM-CSF in the mammary gland and a method for producing the same.

생물 형질전환 기술은 동식물의 개량, 생산성 향상 및 산업 의학적으로 유용한 산물을 얻기 위하여 외래 유전자를 인위적인 방법으로 생물의 염색체상에 전이시켜 발현시키는 기술과 내인성 유전자의 과발현을 유도, 조작하는 기술 및 염색체상의 특정 유전자의 기능을 삭제함으로써 그 유전자의 발현에 따른 표현형의 변화와 유전자의 기능을 규명하는 등의 일련의 기술을 총칭한다.Biotransformation technology is a technique for transferring and expressing foreign genes on the chromosome of an organism by artificial methods in order to improve the flora and fauna, to improve productivity and to obtain industrial medically useful products, and to induce and manipulate overexpression of endogenous genes. By deleting the function of a specific gene, a series of techniques such as changing the phenotype according to the expression of the gene and identifying the function of the gene are collectively referred to.

생물체에 외래유전자를 전이하는 기술은 형질전환 동물의 경우, 수정란에 미세주입기를 통한 미세주입방법, 여러 가지 형태의 바이러스를 이용하는 방법, 전자 기장을 이용하는 방법, 지질 등의 화합물을 이용하는 방법 등 추구하는 목적에 따라 이용방법이 다양하다. 외래유전자의 발현을 유도하는 프로모터에 따라 특정 조직, 즉 유선, 간, 혈액등에 국한되게 발현시키거나 생물체의 발달 단계에 따라 외래유전자의 발현 유도가 가능하다.In the case of transgenic animals, the technique of transferring foreign genes to living organisms is pursued by a microinjection method through a microinjector into a fertilized egg, a method using various types of viruses, a method using an electromagnetic field, and a method using a compound such as lipid There are many ways to use it for different purposes. Depending on the promoter that induces the expression of the foreign gene, it is possible to express it in a specific tissue, ie, mammary gland, liver, or blood, or induce the expression of the foreign gene according to the developmental stage of the organism.

동물에서의 형질전환 이용분야는 많은 연구결과에 의해 실용화 단계에 있으며, 특히 형질전환된 복제 동물은 가축의 개량 및 신품종 창출, 가축에 있어 다발하는 질병에 대한 내병성 향상, 가축에서 얻을 수 있는 부산물의 질 향상, 질환 모델 동물 생산, 사람의 질병 또는 재해로 인한 장기의 손실을 대체해 줄 수 있는 장기생산동물 개발, 생체 반응기(bioreactor) 시스템을 통한 유용물질 생산 등에 이용되고 있다.The field of transformation in animals has been put to practical use by many research results. In particular, the transgenic cloned animals can improve livestock and create new varieties, improve disease resistance to many diseases in livestock, and obtain by-products from livestock. It is used to improve quality, produce disease model animals, develop long-term production animals that can replace the loss of organs due to human diseases or disasters, and produce useful materials through bioreactor systems.

복제(cloning)는 유전적으로 동일한 개체를 만드는 것을 말하는데, 핵이식(nuclear transfer)은 진핵생물에 있어서의 복제의 한 방법으로 최근 분자생물학의 급격한 발달로 새로이 주목받게 된 기술이다. 초기의 핵이식은 핵의 공급원으로 수정란의 할구를 이용하였으나(Prather, et al., Biol . Reprod ., 1987, 37:856-866; Prather, et al., Biol . Reprod ., 1989, 41:414-418), 최근에는 체세포의 핵을 이용하게 되었다. Cloning refers to the creation of genetically identical organisms. Nuclear transfer is a technique that has attracted new attention due to the recent rapid development of molecular biology as a method of cloning in eukaryotes. Nuclear transfer of early, but using the blastomeres of embryos as a source of nuclei (Prather, et al, B iol Reprod, 1987, 37:...... 856-866; Prather, et al, Biol Reprod, 1989, 41 : 414-418) Recently, somatic nuclei have been used.

체세포 복제는 분화된 체세포를 핵이 제거된 난자에 넣어 활성화시킨 다음에 일반 수정란과 동일한 방법으로 발생시키는 기술이다. 이와 같은 복제기술은 발생생물학 분야를 비롯한 기초과학 분야의 연구에 널리 이용될 수 있을 뿐만 아니라 유용 단백질의 생산, 질환 모델의 개발 및 장기 이식 분야 등 다양한 의학 및 의약 분야에 크게 기여할 것으로 예상되어 그 산업적 유용성이 매우 크다고 할 수 있다. 즉, 상기와 같은 기술을 이용한 생산 시스템은 경제성이 매우 높아, 현재 고가로 판매되는 생리활성 물질을 저렴하게 공급할 수 있을 뿐만 아니라, 인체와 생리학적으로 가장 가까운 동물 자체를 생리활성 물질 생산 시스템으로 활용하기 때문에 고품질의 생리활성물질을 생산할 수 있고, 동물의 생체내 단백질 생산 시스템을 활용하기 때문에 대량 생산이 가능하고, 특히 섭취 백신과 같은 의약품 개발은 별도의 정제과정이 필요하지않는 등의 잇점이 있다.Somatic cloning is a technique in which differentiated somatic cells are activated by inserting them into an egg from which a nucleus has been removed and then in the same manner as a normal fertilized egg. Such cloning technology can be widely used in research in basic sciences including developmental biology, and is expected to contribute greatly to various medical and pharmaceutical fields such as production of useful proteins, development of disease models, and transplantation of organs. The usefulness is very large. In other words, the production system using the above technology is very economical, and can not only supply bioactive substances that are currently sold at a low price, but also utilize the bioactive substance production system closest to the human body physiologically. Therefore, it is possible to produce high-quality bioactive substances, and to use the animal protein production system in vivo, so that mass production is possible, and in particular, the development of medicines such as intake vaccines does not require a separate purification process. .

그러나, 이를 실현하기 위해서는 먼저 목적으로 하는 유전자의 확보가 선행되어야 하며, 발현의 정도와 부위를 결정하기 위해 조직 특이적 프로모터의 확보가 필요하다. 또한 동물의 경우에서는 배발생 단계에서 유전자를 이식해야 하므로 수정란의 배양 및 외래 유전자 핵내 미세 주입기술이 필수적이다. 그리고 외래 유전자가 주입된 수정란을 대리모에게 이식하는 기술이 요구되며, 여기서 태어난 산자에 대해서 염색체상에 외래 유전자 삽입 여부와 발현 정도를 검정하는 기술이 필요하다.However, in order to realize this, securing of a target gene must be preceded first, and a tissue-specific promoter must be secured to determine the degree and site of expression. In addition, in the case of animals, since the gene should be transplanted in the embryonic development stage, it is essential to culture fertilized eggs and to inject foreign genes into the nucleus. And a technique for transplanting fertilized eggs injected with foreign genes to surrogate mothers is required, and a technique for assaying whether the foreign genes are inserted on the chromosome and the degree of expression of the live births is required.

최초의 체세포 복제 동물인 돌리(Willmut, I. et al., Nature, 1997, 385:810-813)가 탄생한 이후, 체세포 복제 분야는 많은 발전을 거듭하여 소(Cibelli, JB. et al., Science, 1998, 280:1256-1258; Wells, DN. et al., Reprod. Fertil . Dev., 1998, 10:369-378), 생쥐(Wakayama, T. et al., Nature, 1998, 394:369-374), 산양(Bagusi, A. et al., Nat. Biotechnol., 1999, 17:456-461) 등의 복제에 성공을 하게 되었다. Since the birth of the first somatic cloning animal, Dollmut (I. et al., Nature , 1997, 385: 810-813), the field of somatic cloning has evolved a great deal (Cibelli, JB. Et al., Science, 1998, 280: 1256-1258; Wells, DN et al, Reprod Fertil Dev, 1998, 10:..... 369-378), mice (Wakayama, T. et al, Nature , 1998, 394:. 369-374), goats (Bagusi, A. et al., Nat. Biotechnol ., 1999, 17: 456-461) have been successfully cloned.

그러나, 돼지는 다른 종에 비하여 수정란에 대한 연구가 상대적으로 적게 이루어졌고, 최소한 4마리의 태아가 자궁에 착상해야만 임신이 유지되는 생리적 특성 등 여러 가지 어려움 때문에 주요 가축 중에서는 비교적 늦게 복제에 성공을 하게 되었다(Poleajaeva, IA. et al., Nature, 2000, 407:86-90; Onishi, A. et al., Science, 2000, 289:1188-1190; Betthauser, J. et al., Nat. Biotechnol., 2000, 18:1055-1059). 그 후, 돼지 체세포에 외부 유전자를 주입시켜 복제에 성공함으로써 최초의 형질전환 복제 돼지가 탄생하였고(Park, KW. et al., Anim . Biotechnol., 2001, 12:173-181), 특정유전자를 체세포에서 결손(knockout)시킨 복제 돼지도 성공하였다(Lai, L. et al., Nat. Biotechnol., 2002 Mar, 20(3):251-255). 그러나, 돼지 체세포 복제 분야의 급속한 발전에도 불구하고 아직도 복제의 효율은 1-5%로 낮아 효율을 개선시키기 위한 많은 연구가 진행 중이다.However, compared to other species, pigs have been relatively poorly studied in fertilized eggs, and due to various difficulties, such as physiological characteristics in which at least four fetuses are implanted in the uterus to maintain pregnancy, the pigs have been successfully replicated relatively late among major livestock. (Poleajaeva, IA. Et al., Nature , 2000, 407: 86-90; Onishi, A. et al., Science , 2000, 289: 1188-1190; Betthauser, J. et al., Nat. Biotechnol , 2000, 18: 1055-1059). Subsequently, the gene was successfully cloned by injecting an external gene into pig somatic cells to produce the first transgenic cloned pig (Park, KW. Et al., Anim . Biotechnol ., 2001, 12: 173-181). Cloned pigs knocked out in somatic cells were also successful (Lai, L. et al., Nat. Biotechnol. , 2002 Mar, 20 (3): 251-255). However, despite the rapid development of the porcine somatic cloning field, the efficiency of cloning is still low at 1-5%.

CSF(Colony stimulating factors, CSF)는 조혈모세포의 생존, 증식, 분화를 위해 필요한 당단백질(glycoprotein)이다. 혈구생성과정(hematopoiesis)을 촉진하는 사이토카인들은 골수의 전구세포에 작용하여, 특정한 세포의 분화 및 성장을 촉진하는 단백질 인자로서 발견되었다. 골수의 전구세포를 소프트 아가(soft agar)가 들어있는 배지에서 키우면서, 단백질 인자를 넣어주게 되면, 아가위에 특정한 세포의 집단이 콜로니(colony)를 이루어 자라게 된다. 이러한 콜로니 중에 있는 세포를 조사하게 되면 넣어준 단백질이 그러한 세포 타입의 분화에 관여하는 것을 알 수 있다. 이와 같이 전구세포에 작용하여 특정한 세포 집단의 분화를 촉진하는 사이토카인을 CSF라고 부른다. Colony stimulating factors (CSFs) are glycoproteins required for the survival, proliferation and differentiation of hematopoietic stem cells. Cytokines that promote hematopoiesis have been found as protein factors that act on progenitor cells in the bone marrow and promote differentiation and growth of specific cells. When progenitor cells of bone marrow are grown in a medium containing soft agar, and a protein factor is added, a specific population of cells grows in colonies. Examination of the cells in these colonies shows that the proteins put together are involved in the differentiation of those cell types. The cytokines that act on progenitor cells to promote differentiation of specific cell populations are called CSFs.

이러한 CSF에는 과립세포(granulocyte CSF, G-CSF), 과립세포-대식세포 CSF(granulocyte-macrophage CSF, GM-CSF), 대식세포 CSF(M-CSF), 인터루킨-3(interleukin-3, IL-3 또는 multi-CSF), IL-7 등이 있다. These CSFs include granulocyte CSF (G-CSF), granulocyte-macrophage CSF (GM-CSF), macrophage CSF (M-CSF), interleukin-3 (IL- 3 or multi-CSF), IL-7 and the like.

M-CSF(monocytes-macrophage CSF)는 대식세포, 내피세포(endothelial cells), 섬유아세포에 의해 만들어져, 단구세포가 될 세포들에 작용한다. IL-3는 CD4 T cell에 의해서 생산되어, 대부분의 미성숙 골수 세포(immature bone marrow cell)에 작용하여 여러 타입의 혈구를 생산해내는 사이토카인이다(multilineage CSF). IL-7은 골수 스트로마세포(bone marrow stromal cell)에 의해 생산되어, B 림프세포가 될 세포에 작용한다. G-CSF는 활성화된 T 세포(activated T cell), 대식세포, 혈관내피 세포, 섬유아세포에 의해 만들어져, 과립세포가 될 세포들에 작용한다. GM-CSF는 활성화된 T 세포(activated T cell), 대식세포, 혈관 내피세포(vascular endothelial cells), 섬유아세포(fibroblasts)등에 의해 만들어져, 과립세포와 단구세포(monocyte) 계통의 세포들이 분화되도록 조절한다. Monocytes-macrophage CSF (M-CSF) is made by macrophages, endothelial cells, and fibroblasts, acting on cells that become monocytes. IL-3 is a cytokine produced by CD4 T cells and acting on most immature bone marrow cells to produce several types of blood cells (multilineage CSF). IL-7 is produced by bone marrow stromal cells and acts on cells that will become B lymphocytes. G-CSF is made by activated T cells, macrophages, vascular endothelial cells, and fibroblasts, acting on cells that will become granular cells. GM-CSF is made by activated T cells, macrophages, vascular endothelial cells, fibroblasts, etc. to regulate the differentiation of granular and monocyte lineages do.

전 세계적으로 G-CSF와 GM-CSF만이 재조합 치료용 단백질로 사용되고 있을 뿐이다(표 1 참조). Globally, only G-CSF and GM-CSF are used as recombinant therapeutic proteins (see Table 1 ).

<표 1> 재조합 G-TABLE 1 Recombinant G- CSFCSF 및 GM- And GM- CSFCSF 의 상업적으로 이용가능한 제형 및 그 승인된 용도Commercially available formulations and approved uses thereof

Figure 112005047261335-PAT00001
Figure 112005047261335-PAT00001

G-CSF와 GM-CSF는 내인성(endogenous) 상태에서 다양한 형태의 당화(glycosylation) 양상을 보여주고 있다(표 2 참조).G-CSF and GM-CSF show various forms of glycosylation in endogenous states (see Table 2 ).

<표 2> G-TABLE 2 G- CSFCSF 및 GM- And GM- CSFCSF 의 생화학적 성질Biochemical Properties of

Figure 112005047261335-PAT00002
Figure 112005047261335-PAT00002

GM-CSF의 염색체상의 위치는 IL-3와 나란히 연결되어있으며, IL-4, IL-5, 그리고 M-CSF와는 가깝게 존재한다. hGM-CSF는 사이토카인이나 면역 및 감염 등의 자극을 받은 T-세포, B-세포, 대식세포, 비만세포(mast cell), 내피세포 및 섬유아세포등의 다양한 세포에 의하여 생산된다(표 3 참조). The chromosome location of GM-CSF is linked to IL-3 side by side and is close to IL-4, IL-5, and M-CSF. hGM-CSF is produced by various cells such as T-cells, B-cells, macrophages, mast cells, endothelial cells, and fibroblasts that are stimulated by cytokines, immunity, and infection (see Table 3 ). ).

<표 3> G-TABLE 3 G- CSFCSF 및 GM- And GM- CSFCSF 의 세포 출처Cell source

Figure 112005047261335-PAT00003
Figure 112005047261335-PAT00003

G-CSF가 호중구와 이의 전구세포에 대하여 제한적인 작용을 하는 반면, GM-CSF는 단구와 대식세포에 대한 많은 작용을 보여준다. 그러한 작용중에는 식균작용(phagocytosis)나 세포내 병균을 죽이는 식균작용등에 일부 관여한다. 또한, 직접적으로는 엔도톡신(endotoxin)이나 다른 염증반응등에 의하여 발현되는 조혈성장 인자(hematopoietic growth factor, M-CSF & G-CSF)나 IL-6, IL-1, TNF 등의 유전자 발현을 항진시키거나, 이러한 것들을 발현하는 세포들의 염증 및 면역반응에 대한 참여를 촉진한다. 특히, GM-CSF의 여러가지 작용들은 염증성 사이토카인(인터페론-γ)이나 조혈 인자(M-CSF)등과 함께 동반 상승 작용 효과를 보인다(표 4 참조). While G-CSF has a limited effect on neutrophils and their progenitor cells, GM-CSF shows many actions on monocytes and macrophages. Some of these actions are involved in phagocytosis or phagocytosis that kills intracellular germs. In addition, hematopoietic growth factor (M-CSF & G-CSF) or IL-6, IL-1, TNF, etc., which are directly expressed by endotoxin or other inflammatory reactions, can be enhanced. Or promote the participation in inflammatory and immune responses of cells expressing these. In particular, various actions of GM-CSF show a synergistic effect with inflammatory cytokines (interferon-γ) or hematopoietic factors (M-CSF) (see Table 4 ).

<표 4> 성숙 <Table 4> Maturity 이펙터Effector (( effectoreffector ) ) 세포상에서On the cell G- G- CSFCSF 및 GM- And GM- CSFCSF 의 생물학적 효과 Biological effects of

Figure 112005047261335-PAT00004
Figure 112005047261335-PAT00004

최근 hGM-CSF는 치료를 목적으로 한 재조합 DNA 기술을 이용한 다양한 방법에 의하여 생산되고 있다. 효모(yeast)와 조직세포 배양(tissue culture system)방법은 현재까지도 가장 폭넓게 사용되고 있는 방법이다. 하지만, 효모에서의 적절한 후-번역 수정 장치의 결여와 동물세포에서 대량생산의 어려움 때문에 수요량을 충분히 충족시킬 수 없는 상황이다.Recently, hGM-CSF has been produced by various methods using recombinant DNA technology for the purpose of treatment. Yeast and tissue culture system methods are still the most widely used methods. However, due to the lack of proper post-translational modifications in yeast and the difficulty of mass production in animal cells, the demand cannot be met.

상기와 같은 문제점들을 극복하고자 본 발명자들은 성체 체세포를 이용한 형질전환 복제 돼지 생산기술 및 유선 조직 특이적 발현에 의한 돼지 유즙을 통한 재조합 hGM-CSF의 생산하고자 노력한 결과, 염소의 β-카제인 프로모터(casein promoter) 및 hGM-CSF를 코딩하는 폴리펩티드를 포함하는 발현 벡터로 돼지 태아 세포를 형질전환시킨 다음 상기 형질전환된 세포와 탈핵 난자를 융합시켜 복제란을 제조하고 상기 복제란을 대리모돈에 이식하여 hGM-CSF가 유선에서 발현되는 복제 돼지가 생산됨을 확인함으로써 본 발명을 완성하였다.In order to overcome the above problems, the present inventors endeavored to produce recombinant hGM-CSF through pig milk by technology for production of transgenic cloned pigs using adult somatic cells and mammary tissue specific expression, resulting in a goat β-casein promoter (casein). pig fetal cells were transformed with an expression vector containing a promoter) and a polypeptide encoding hGM-CSF, and then the cloned eggs were fused with denuclearized eggs, and the cloned eggs were transplanted into surrogate sows. The present invention was completed by confirming that a cloned pig is produced in which -CSF is expressed in the mammary gland.

본 발명의 목적은 유선 조직 특이적으로 CSF를 발현하는 형질전환 복제 돼지의 제조 방법 및 상기 방법에 의하여 형질전환 돼지를 제공하는 것이다.It is an object of the present invention to provide a method for producing a transgenic cloned pig which expresses CSF specifically in mammary gland and provides a transgenic pig by the above method.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention

1) 돼지 태아로부터 체세포를 분리하는 단계; 1) isolating somatic cells from porcine fetuses;

2) 유선(mammary gland) 특이적 프로모터 및 CSF(Colony stimulating factor, 세포집락 자극 인자)를 코딩하는 폴리뉴클레오티드를 포함하는 발현벡터를 제조한 후 상기 체세포에 도입시키는 단계; 2) preparing an expression vector comprising a mammary gland specific promoter and a polynucleotide encoding a colony stimulating factor (CSF) and introducing the same into the somatic cells;

3) 상기 발현 벡터가 도입된 클론 체세포를 선별한 후 배양하는 단계; 3) selecting and culturing the cloned somatic cells into which the expression vector is introduced;

4) 모돈으로부터 채취한 난자의 핵을 제거하고 상기 클론 체세포와 융합시키는 단계; 및 4) removing the nucleus of the oocytes taken from the sows and fusing them with the clonal somatic cells; And

5) 상기 융합된 복제란을 대리 모돈에 이식하고 자돈을 출산하는 단계를 포함하는 CSF 단백질을 발현하는 형질전환 돼지의 제조 방법을 제공한다.5) Provides a method of producing a transgenic pig that expresses the CSF protein comprising the step of transplanting the fused cloned eggs into surrogate sows and giving birth to piglets.

또한, 본 발명은 상기 방법에 의해 제조되는 유선조직에서 특이적으로 CSF를 발현하는 형질전환 돼지를 제공한다.The present invention also provides a transgenic pig that specifically expresses CSF in the mammary gland prepared by the above method.

또한, 본 발명은 상기 형질 전환 돼지의 클론 세포주를 제공한다.The present invention also provides a clone cell line of the transgenic pig.

본 발명에 있어서, "클론 세포주"는 유전체에 도입된 벡터의 위치가 동일한 세포주를 가리킨다.In the present invention, " clone cell line " refers to a cell line having the same position of a vector introduced into the genome.

또한, "위란강"은 난자의 투명대와 난세포질 사이의 공간을 가리킨다.Also, " gastric cavity " refers to the space between the zona pellucida of the egg and the egg cytoplasm.

또한, "복제란"은 전기적 자극에 의하여 난자와 체세포가 융합된 단계를 가리킨다.In addition, " cloning " refers to the stage at which the ova and somatic cells are fused by electrical stimulation.

<약어 설명><Short description>

SS : 재생불량 빈혈(aplastic anemia),SS: aplastic anemia,

AL : 급성 빈혈(acute leukemia), AL: acute leukemia,

BMT : 골수 이식(bone marrow transplantation),BMT: bone marrow transplantation,

CIN : 화학요법-유도 호중성 백혈구 감소증(chemotherapy-induced neutropenia),CIN: chemotherapy-induced neutropenia,

MDS : 골수 형성 이상 증후군(myelodysplastic syndrome),MDS: myelodysplastic syndrome,

PBPC : 말초 혈액 전구 세포 이식(peripheral blood progenitor cell transplantation), PBPC: peripheral blood progenitor cell transplantation,

SCN : 중증 만성 호중성 백혈구 감소증(severe chronic neutropenia),SCN: severe chronic neutropenia,

HIV : 인간 면역 결핍 바이러스(human immunodeficiency virus)HIV: human immunodeficiency virus

ADCC : 항체-의존성 세포내 세포독성(antibody-dependent cellular cytotoxicity), ADCC: antibody-dependent cellular cytotoxicity,

sTNFR : 용해성 종양 괴사 인자 수용체(soluble tumor necrosis factor receptor), sTNFR: soluble tumor necrosis factor receptor,

IL-1 Rap : 인터루킨-1 수용체 대항제 단백질(interleukin-1 receptor antagonist protein), IL-1 Rap: interleukin-1 receptor antagonist protein,

LTB4R : 루코트리엔 B4 수용체(leukotriene B4 receptor), LTB4R: leukotriene B4 receptor,

LPS : 리포폴리사카라이드( lipopolysaccharide).LPS: lipopolysaccharide.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 The present invention

1) 돼지 태아로부터 체세포를 분리하는 단계; 1) isolating somatic cells from porcine fetuses;

2) 유선(mammary gland) 특이적 프로모터 및 CSF(Colony stimulating factor, 세포집락 자극 인자)를 코딩하는 폴리뉴클레오티드를 포함하는 발현벡터를 제조한 후 상기 체세포에 도입시키는 단계; 2) preparing an expression vector comprising a mammary gland specific promoter and a polynucleotide encoding a colony stimulating factor (CSF) and introducing the same into the somatic cells;

3) 상기 발현 벡터가 도입된 클론 체세포를 선별한 후 배양하는 단계; 3) selecting and culturing the cloned somatic cells into which the expression vector is introduced;

4) 모돈으로부터 채취한 난자의 핵을 제거하고 상기 클론 체세포와 융합시키는 단계; 및 4) removing the nucleus of the oocytes taken from the sows and fusing them with the clonal somatic cells; And

5) 상기 융합된 복제란을 대리 모돈에 이식하고 자돈을 출산하는 단계를 포함하는 CSF 단백질을 발현하는 형질전환 돼지의 제조 방법을 제공한다. 상기 단계 1)의 돼지 태아는 임신 40-80일령의 태아인 것이 바람직하며, 단계 1)의 돼지 태아는 임신 50-70일령의 태아인 것이 더욱 바람직하다. 본 발명의 바람직한 실시예에서는 60일령의 태아를 사용하여 돼지 체세포를 분리하였다. 체세포를 분리하기 위한 방법으로는 종래에 사용되는 일반적인 방법이 본 발명에 동일하게 적용될 수 있으며, 본 발명의 바람직한 실시예에서는 면도날을 이용하여 돼지 태아를 잘게 자른후 트립신을 처리하여 계대 배양함으로써 체세포를 분리하였다.5) Provides a method of producing a transgenic pig that expresses the CSF protein comprising the step of transplanting the fused cloned eggs into surrogate sows and giving birth to piglets. The pig fetus of step 1) is preferably a fetus of 40-80 days of gestation, and the pig fetus of step 1) is more preferably a fetus of 50-70 days of gestation. In a preferred embodiment of the present invention, pig somatic cells were isolated using a 60-day-old fetus. As a method for isolating somatic cells, a conventional method commonly used in the art may be applied to the present invention, and in a preferred embodiment of the present invention, the somatic cells may be obtained by slicing the pig fetus using a razor blade and then passaged with trypsin. Separated.

상기 단계 2)의 CSF는 hGM-CSF인 것이 바람직하나, 반드시 이에 한정되는 것은 아니다. 또한, 상기 CSF 단백질을 포함하는 발현벡터는 유선 세포에서 발현시킬 수 있는 공지된 모든 발현벡터를 제한 없이 사용할 수 있다. 본 발명의 바람직한 실시예에서는 pBC1-neo 벡터를 사용하였다. 또한 상기 CSF 단백질을 발현시키기 위한 프로모터로서 소 αs1-카제인, β-카제인, β-락토글로불린 및 유청 산성 단백질(whey acidic protein) 등의 조절 서열과 같은 유선에서 특이적으로 발현하는 것으로 알려진 프로모터는 모두 제한 없이 사용할 수 있으나, 본 발명의 바람직한 실시예에서는 염소의 β-카제인 프로모터(casein promoter)를 사용하였다. CSF of step 2) is preferably hGM-CSF, but is not necessarily limited thereto. In addition, the expression vector containing the CSF protein can be used without limitation any known expression vector that can be expressed in mammary cells. In a preferred embodiment of the present invention, a pBC1-neo vector was used. In addition, as promoters for expressing the CSF protein, all promoters known to specifically express in the mammary gland such as regulatory sequences such as bovine αs1-casein, β-casein, β-lactoglobulin, and whey acidic protein are all expressed. Although it can be used without limitation, in the preferred embodiment of the present invention, a β-casein promoter of chlorine was used.

상기 단계 3)에 있어서, 단계 2)의 발현 벡터가 도입된 체세포는 선별마커가 도입된 발현 벡터를 사용함으로써 용이하게 선별할 수 있다. 이러한 선별 마커로는 바람직하게는 항생제 내성 유전자가 사용될 수 있다. 상기 항생제 내성 유전자에는 neor,pacr, bsrr, hphr 등이 사용될 수 있으며, 본 발명에서는 neor을 사용하였다. 본 발명의 바람직한 실시예에서는 G418을 처리하여 CSF 유전자를 포함하는 발현 벡터가 도입된 체세포를 선별하였다. 상기 방법에 의하여 최종 확인된 클론 세포주를 한국 세포주 연구 재단에 2005년 7월 19일자로 기탁하였다(기탁번호 : KCLRF -BP-00115).In step 3), the somatic cells into which the expression vector of step 2) is introduced can be easily selected by using an expression vector into which a selection marker is introduced. As such a selection marker, an antibiotic resistance gene may be preferably used. The antibiotic resistance gene and the like, the neo r, pac r, r bsr, hph r may be used, according to the present invention was used as the neo r. In a preferred embodiment of the present invention, G418 was treated to select somatic cells into which the expression vector containing the CSF gene was introduced. Clonal cell lines finally confirmed by the method were deposited to the Korea Cell Line Research Foundation on July 19, 2005 ( Accession No .: KCLRF - BP -00115 ).

본 발명에서는 상기와 같은 방법으로 돼지 체세포에 CSF 유전자로서 hGM-CSF 유전자를 효율적으로 주입하여 hGM-CSF를 발현하는 돼지 클론 체세포주를 선별하고, 이를 핵이 제거된 돼지 난자에 이식하여 CSF를 유선 특이적으로 발현하는 형질전환 돼지를 제조하였다.In the present invention, by injecting the hGM-CSF gene as a CSF gene into the porcine somatic cells as described above, the pig clone somatic cell line expressing hGM-CSF is selected, and transplanted into the pig egg from which the nucleus has been removed, mammary glandular A transgenic pig expressing specifically was prepared.

따라서, 본 발명에 의하여 hGM-CSF를 돼지의 유선을 통하여 대량생산하고 생리적으로 인간과 가까운 돼지를 이용하여 인간과 유사한 당화 형태의 단백질을 얻을 수 있을 것으로 기대된다. 이를 위하여, pBC1 유발현 벡터 키트(Milk Expression Vector kit, Invitrogen, USA)을 이용하여 돼지의 유선에서 hGM-CSF를 발현할 수 있도록 유도하였다. hGM-CSF를 발현하는 형질전환 세포주 개발을 위하여 pBC1 벡터를 변형하여 pBC1/neo-hGM-CSF를 제작하였고, 이를 선형화(linearlization)하여 랜드레이스(Landrace) 돼지 체세포에 트랜스펙션하였다. 이때, 인간 게놈에서 PCR을 통하여 얻은 hGM-CSF 유전자의 ORF(Open reading frame)를 증폭하였고, 염기서열 분석(sequencing)을 통하여 염기서열이 게놈 유전자와 100% 일치하는 것을 사용하였다. 또한, 완성된 pBC1/neo-hGM-CSF 벡터가 효율적으로 발현하는지 확인하기 위하여 생쥐의 유선 세포에 트랜스펙션하였고, RT-PCR(도 3 참조)과 웨스턴 블랏(Western blot, 도 4 참조)을 통하여 RNA와 단백질의 발현을 확인하였다.Therefore, the present invention is expected to be able to mass-produce hGM-CSF through the mammary gland of pigs and to obtain a glycosylated protein similar to humans using physiologically close pigs. To this end, pBC1 induced expression vector kit (Milk Expression Vector kit, Invitrogen, USA) was used to induce hGM-CSF expression in the mammary gland of pigs. pBC1 vector was modified to develop a transformed cell line expressing hGM-CSF to prepare pBC1 / neo-hGM-CSF, which was linearized and transfected into Landrace porcine somatic cells. At this time, the ORF (Open reading frame) of the hGM-CSF gene obtained by PCR in the human genome was amplified, and sequencing was used in which the nucleotide sequence was 100% identical to the genomic gene. In addition, transfected mouse mammary gland cells to confirm the efficient expression of the completed pBC1 / neo-hGM-CSF vector, RT-PCR (see Figure 3 ) and Western blot (see Figure 4 ) RNA and protein expression was confirmed through.

돼지 태아 섬유아세포(Fetal fibroblast cell)를 이용하여 hGM-CSF 유전자의 형질전환(transfection)하고, G418로 선별된 체세포는 우선 PCR을 통하여 hGM-CSF와 neo 유전자(도 5 참조)을 확인하였다. PCR을 통하여 확인된 세포는 서던 블랏을 통하여 hGM-CSF가 삽입된 것을 재확인하였다(도 6 참조). 형질전환이 확인된 체세포를 이용하여(도 7 참조) 체세포 복제 방법을 이용하여 hGM-CSF를 갖는 형질전환 복제돼지를 생산하였다.HGM-CSF gene was transfected using pig fetal fibroblast cells, and somatic cells selected with G418 were first identified by PCR with hGM-CSF and neo gene (see FIG. 5 ). Cells identified through PCR reconfirmed that hGM-CSF was inserted through Southern blot (see FIG. 6 ). Transformed cloned pigs with hGM-CSF were produced using the somatic cloning method using somatic cells identified for transformation (see FIG. 7 ).

최근, hGM-CSF는 치료를 목적으로 한 재조합 DNA 기술을 이용한 다양한 방법에 의하여 생산되고 있다. 효모(Yeast)와 조직세포배양(tissue culture system)방법은 현재까지도 가장 폭넓게 사용되고 있는 방법이다. 하지만 효모에서의 적절한 후-번역 수정 장치(post-translational modification machinery)의 결여와 동물세포에서 대량생산의 어려움 때문에 수요량을 충분히 충족시킬 수 없는 상황이다. 따라서, 이러한 문제점들을 극복하고자 이제까지 많은 연구자들이 형질전환동물을 이용한 치료용 단백질의 대량 생산에 많은 노력을 기울여 왔다. 이러한 노력 중에는 원하는 유전자를 주요한 유단백질 유전자를 통하여 유선에서 직접적으로 발현하도록 하는 전략이 사용되어 왔다. 지금까지 소 αs1-카제인, β-카제인, β-락토글로불린 및 유청 산성 단백질(whey acidic protein) 등의 조절 서열들을 이용하여 유선에서 이종 단백질(heterologous protein)을 생산하는 마우스, 토끼 또는 가축들이 이용되어 왔다. Recently, hGM-CSF has been produced by various methods using recombinant DNA technology for the purpose of treatment. Yeast and tissue culture system methods are still the most widely used methods. However, due to the lack of proper post-translational modification machinery in yeast and the difficulty of mass production in animal cells, the demand cannot be met. Therefore, to overcome these problems, many researchers have put much effort into mass production of therapeutic proteins using transgenic animals. Among these efforts, strategies have been used to express desired genes directly in the mammary gland via major milk protein genes. To date, mice, rabbits or livestock have been used to produce heterologous proteins in the mammary gland using regulatory sequences such as bovine αs1-casein, β-casein, β-lactoglobulin and whey acidic protein. come.

본 발명에서는 돼지를 이용하여 인간 치료 단백질(therapeutic protein)을 생산하기 위하여 돼지의 체세포에 hGM-CSF를 효율적으로 주입하여 형질전환된 세포주를 확립하고 형질 전환 복제 돼지를 생산하였다. 이를 위하여, 염소 β-카제인 프로모터를 이용하여 돼지의 유선에서 hGM-CSF를 발현하도록 하는 형질전환돼지를 생산하였다. 따라서, 인간 조혈 성장인자(hematopoietic growth factor)와 유사한 재조합 hGM-CSF의 생산이 가능할 것으로 여겨진다. 그러므로, 돼지에 의하여 발현되는 hGM-CSF 양이 규모화(scaling up) 된다면 본래의 인간 단백질과 유사한 특징을 갖고, 치료용으로 사용가능한 재조합 인간 GM-CSF의 좋은 원천이 될 것으로 여겨진다.In the present invention, in order to produce human therapeutic protein using pigs, hGM-CSF was efficiently injected into pig somatic cells to establish a transformed cell line and produce a transgenic cloned pig. To this end, the goat β-casein promoter was used to produce a transformed pig to express hGM-CSF in the mammary gland of pigs. Thus, it is believed that the production of recombinant hGM-CSF similar to human hematopoietic growth factor is possible. Therefore, if the amount of hGM-CSF expressed by pigs is scaled up, it is considered to be a good source of recombinant human GM-CSF that has similar characteristics to the original human protein and can be used for treatment.

이하, 본 발명을 실시예에 의하여 상세히 설명한다. Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

<< 실시예Example 1> 돼지 체세포의 제작 1> Production of Porcine Somatic Cells

임신 60일령의 돼지 태아를 면도날로 잘게 자른 후 세포를 트립신(trysin)-EDTA(Gibco. Inc)가 첨가된 DMEM(bio-whittaka. Inc)에서 5분간 배양하였다. 상층액을 원심분리(1000 rpm, 5분)한 후 10% FBS가 포함된 DMEM에서 배양하고 세포가 90% confluency에 이르면 트립신 처리 후 계대배양하여 일부는 핵이식에 이용하고 나머지는 동결보존하였다. After 60 days of gestation, the pig fetus was chopped with a razor blade, and the cells were incubated for 5 minutes in DMEM (bio-whittaka. Inc) to which trysin-EDTA (Gibco. Inc) was added. The supernatant was centrifuged (1000 rpm, 5 minutes), cultured in DMEM containing 10% FBS, and when cells reached 90% confluency, subcultured after trypsin treatment, some were used for nuclear transfer, and the others were cryopreserved.

<< 실시예Example 2>  2> hGMhGM -- CSFCSF 발현 벡터의 제작 Construction of Expression Vectors

hGM-CSF 벡터는 pBC1 유 발현 벡터(Milk Expression Vector, Invitrogen, 도 1 참조)에 neo를 붙인 pBC1-neo를 이용하였다. Neo 내성 유전자는 pPNT 벡터를 NotⅠ이 포함된 프라이머를 사용하여 PCR로 증폭하고, pGEM-T-easy 벡터에 클로닝하였다. 이때 사용한 프라이머는 서열번호 1로 기재되는 Neo-Forward-5'-ATG CGG CCG CGA GGG CCC CTG CAG GTC AAT-3' 및 서열번호 2로 기재되는 Neo-Reverse-5'-GAG CGG CCG CTC GGT ACC CGG GGA TCC TCT-3’이다. pGEM-T-Neo 벡터와 pBC1 벡터를 NotⅠ으로 잘라 클로닝하여 pBC1-neo 벡터를 제작하였다. hGM-CSF는 인간 게놈 DNA에서 hGM-CSF 유전자의 ORF부분을 PCR로 증폭하고 이를 pGEM-T-easy 벡터에 클로닝하여 염기서열 분석으로 확인하였다. 이때 사용한 프라이머에는 XhoⅠ이 포함되었으며, 프라이머의 서열은 서열번호 3으로 기재되는 hGM-CSF-Forward-5'-GAC TCG AGA GGA TGT GGC TGC AGA GCC -3‘이며, 서열번호 4로 기재되는 hGM-CSF- Reverse-5'-GAC TCG AGC ATC TGG CCG GTC TCA CT-3' 이다. pGEM-T-hGM-CSF와 pBC-neo를 각각 XhoⅠ으로 잘라 클로닝하여 pBC/neo-hGM-CSF 벡터를 제작하였다(도 2 참조).As the hGM-CSF vector, pBC1-neo with neo attached to the pBC1 expression vector (Milk Expression Vector, Invitrogen, see FIG. 1 ) was used. The Neo resistance gene was amplified by PCR using primers containing NotI and cloned into pGEM-T-easy vector. The primers used Neo-Forward-5'-ATG CGG described in SEQ ID NO: 1 CCG CGA GGG CCC CTG CAG GTC AAT-3 ' and SEQ ID NO: 2 Neo-Reverse-5'-GAG is described in CGG CCG CTC GGT ACC CGG GGA TCC TCT-3 '. The pGEM-T-Neo vector and the pBC1 vector were cut and cloned into NotI to prepare pBC1-neo vectors. hGM-CSF was confirmed by sequencing by amplifying the ORF portion of the hGM-CSF gene in human genomic DNA by PCR and cloning it into a pGEM-T-easy vector. The primer was used include XhoⅠ, sequence of the primer is the hGM-CSF-Forward-5'- GAC TCG AGA GGA TGT GGC TGC AGA GCC -3 ' described in SEQ ID NO: 3, hGM- represented by SEQ. ID. NO: 4 CSF- Reverse-5'-GAC TCG AGC ATC TGG CCG GTC TCA CT-3 '. pGEM-T-hGM-CSF and pBC-neo were cut into XhoI and cloned, respectively, to prepare a pBC / neo-hGM-CSF vector (see FIG. 2 ).

<< 실시예Example 3> 3> hGMhGM -- CSFCSF 재조합 단백질 확인 Recombinant Protein Identification

pBC/neo-hGM-CSF 벡터가 유선조직에서 효율적으로 hGM-CSF를 발현하는지 확인하기 위하여 생쥐의 유선 암세포주인 HC11을 이용하였다. 형질전환 시약(LipofectamineTM 2000, Invitrogen)을 이용하여 DNA와 10 ㎕ : 4㎍ 의 비율로 6웰에서 20시간 동안 트랜스펙션을 실시하였다. 트리졸(Gibco)을 이용한 전체 RNA를 추출하고, One Step RNA PCR 키트(TaKaRa, Japan)를 이용하여 RT-PCR을 실시하였다(도 3 참조). 이때 사용한 프라이머의 서열은 서열번호 3으로 기재되는 hGM-CSF-Forward 프라이머 및 서열번호 5로 기재되는 Reverse-5'-ATC TGG GTT GCA CAG GAA GT-3'이다. 또한, 인간 게놈에서 PCR을 통하여 얻은 hGM-CSF 유전자의 ORF(Open reading fram)를 증폭하였고, 염기서열 분석(sequencing)을 통하여 염기서열이 게놈 유전자와 100% 일치하는 것을 사용하였다. 그 결과, 도 3에 나타난 바와 같이 RT-PCR 및 아가로스 젤 전기영동에 의하여 hGM-CSF의 밴드를 확인함으로써 pBC/neo-hGM-CSF 벡터가 유선조직에서 제대로 작동함을 확인할 수 있었다.In order to confirm whether the pBC / neo-hGM-CSF vector expresses hGM-CSF efficiently in the mammary gland, mouse mammary cancer cell line HC11 was used. Using transfection reagent (Lipofectamine 2000, Invitrogen), transfection was performed in 6 wells for 20 hours at a ratio of 10 μl: 4 μg with DNA. Total RNA was extracted using Trizol (Gibco), and RT-PCR was performed using a One Step RNA PCR kit (TaKaRa, Japan) (see FIG. 3 ). The primers used at this time were hGM-CSF-Forward primers as set out in SEQ ID NO: 3 and Reverse-5'-ATC TGG GTT GCA CAG GAA GT-3 'as set out in SEQ ID NO: 5 . In addition, the ORF (open reading fram) of the hGM-CSF gene obtained by PCR in the human genome was amplified, and sequencing was used in which the sequence was 100% identical to the genomic gene. As a result, as shown in FIG . 3 , the band of hGM-CSF was confirmed by RT-PCR and agarose gel electrophoresis to confirm that the pBC / neo-hGM-CSF vector works properly in the mammary gland.

또한, hGM-CSF(N-19, sc-1321, Santa Cruz Biotechnology, Inc.) 항체를 이용, 웨스턴 블랏팅을 실시하여 hGM-CSF 단백질이 발현함을 확인함으로써 hGM-CSF의 유선 특이적 발현이 이루어짐을 나타내었다(도 4 참조).In addition, Western blotting was performed using hGM-CSF (N-19, sc-1321, Santa Cruz Biotechnology, Inc.) antibody to confirm that the hGM-CSF protein was expressed, thereby mammary gland specific expression of hGM-CSF was observed. It was done (see Figure 4 ).

<< 실시예Example 4> 4> hGMhGM -- CSFCSF 발현 클론 세포주 제작 및  Expression clone cell line construction and hGMhGM -- CSFCSF 유전자의 유무 확인 Check for Gene

<4-1><4-1> hGMhGM -- CSFCSF 발현 클론 세포주 제작 Expression Clone Cell Line Construction

hGM-CSF 발현을 위해 제작된 pBC1/neo-hGM-CSF 벡터를 AatⅡ로 잘라 선형화하였다. 이렇게 준비된 DNA를 돼지 체세포 내에 주입하기 위하여 형질전환 시약(LipofectamineTM 2000, Invitrogen)을 사용하였다. 트랜스펙션 후 24시간 배양하고, G418(Genecitin, Gibco)을 300㎍/㎖로 약 3주간 처리하여 콜로니가 형성된 것을 채취하여 클론 세포주를 제작하였다.pBC1 / neo-hGM-CSF vectors prepared for hGM-CSF expression were cut with AatII and linearized. The transfection reagent (Lipofectamine 2000, Invitrogen) was used to inject the DNA thus prepared into porcine somatic cells. After transfection, the cells were cultured for 24 hours, and treated with G418 (Genecitin, Gibco) at 300 µg / ml for about 3 weeks to collect colony-formed clone cells.

<4-2><4-2> PCRPCR 분석에 의한 1차 확인 Primary confirmation by analysis

선별된 체세포 중 일부는 게놈 DNA를 분리하여 hGM-CSF 유전자의 유무를 확인하였다. 상기 체세포에 프로테이나제(Proteinase) K(Gibco. Inc)를 처리하여 단백질을 분해시킨 후 페놀로 단백질을 변성시켜 게놈 DNA를 분리하였다. PCR의 프라이머는 hGM-CSF의 경우 서열번호 6으로 기재되는 pBC1-Forward-5'-GAT TGA CAA GTA ATA CGC TGT TTC CTC-3’및 서열번호 7로 기재되는 pBC1-Reverse-5'-CAT CAG AAG TTA AAC AGC ACA GTT AG-3'이다. Neo 유전자에 대한 프라이머는 서열번호 8로 기재되는 5’-GGA TTG CAC GCA GGT TCT CCG-3' 및 서열번호 9로 기재되는 5‘-ATT CGG CAA GCA GGC ATC GCC-3' 이며, hGM-CSF 유전자에 대한 PCR 조건은 94℃, 4 분 과 94℃, 1 분, 59℃ 1 분, 72℃ 1 분 30 회 및 72℃ 10 분, 4℃이고, Neo 유전자에 대한 PCR 조건은 94℃, 4 분과 94℃, 1 분, 60℃ 1 분, 72℃ 1 분 30 회 및 72℃ 10 분, 4℃이었다. Some of the selected somatic cells were isolated genomic DNA to confirm the presence of hGM-CSF gene. The somatic cells were treated with proteinase K (Gibco. Inc) to decompose the protein and then denature the protein with phenol to separate genomic DNA. PCR primers of hGM-CSF in the case SEQ ID NO: 6 pBC1-Forward-5'-GAT TGA CAA GTA ATA CGC TGT TTC CTC-3 ' and SEQ ID NO: pBC1-Reverse-5'-CAT CAG described as 7 described in AAG TTA AAC AGC ACA GTT AG-3 '. Primers for the Neo gene is '5'-ATT CGG CAA GCA GGC ATC GCC-3 is described in SEQ ID NO: 9'5'-GGA TTG CAC GCA GGT TCT CCG-3 represented by SEQ. ID. NO: 8, hGM-CSF PCR conditions for the gene were 94 ° C, 4 minutes and 94 ° C, 1 minute, 59 ° C 1 minute, 72 ° C 1 minute 30 times and 72 ° C 10 minutes, 4 ° C. The PCR conditions for the Neo gene were 94 ° C, 4 Minutes, 94 ° C, 1 minute, 60 ° C 1 minute, 72 ° C 1 minute 30 times, and 72 ° C 10 minutes, 4 ° C.

상기 PCR 방법을 아가로스 젤 전기영동으로 GM-CSF 및 NEO 유전자 밴드를 확인함으로써 hGM-CSF 유전자가 존재함을 나타내었다(도 5 참조).The PCR method was used to identify GM-CSF and NEO gene bands by agarose gel electrophoresis, indicating the presence of hGM-CSF gene (see FIG. 5 ).

<4-3>서던 <4-3> Southern 블랏Blot (Southern blot) 분석에 의한 2차 확인(2nd confirmation by Southern blot analysis)

선별된 세포를 프로테이나제 K(Gibco. Inc)로 처리하여 단백질을 분해시킨 후 페놀로 단백질을 변성시켜 게놈 DNA를 분리하였다. 분리된 게놈 DNA를 EcoRI으로 잘라 서던 블랏 분석을 시행하였다. 프로브는 hGM-CSF 유전자(2kb)를 pBC1/neo-hGM-CSF에서 XhoⅠ으로 잘라 사용하였고, 표지(labeling) 키트(Gene Image Random Prime Labelling Module, Amersham, INC)를 사용하여 표지화하였다. 그 결과, PCR을 통하여 확인된 세포는 서던 블랏을 통하여 hGM-CSF가 삽입된 것을 재확인하였다(도 6 참조). Selected cells were treated with proteinase K (Gibco. Inc) to decompose the protein and then denature the protein with phenol to isolate genomic DNA. The separated genomic DNA was digested with EcoRI and subjected to Southern blot analysis. The probe was used to cut hGM-CSF gene (2 kb) from pBC1 / neo-hGM-CSF into XhoI and labeled using a labeling kit (Gene Image Random Prime Labeling Module, Amersham, INC). As a result, cells identified through PCR reconfirmed that hGM-CSF was inserted through Southern blot (see FIG. 6 ).

상기 방법에 의하여 최종 확인된 클론 세포주를 한국 세포주 연구 재단에 2005년 7월 19일자로 기탁하였다(기탁번호 : KCLRF -BP-00115).Clonal cell lines finally confirmed by the method were deposited to the Korea Cell Line Research Foundation on July 19, 2005 ( Accession No .: KCLRF - BP -00115 ).

<< 실시예Example 5> 체세포 복제 방법을 이용한  5> using somatic cloning hGMhGM -- CSFCSF 를 갖는 형질전환 복제 돼지 생산Production of transgenic cloned pigs

<5-1>배양액<5-1> culture

성숙 배양액은 TCM199(31100035; Gibco, Grand Island, NY)에 0.1% 폴리비닐 알콜(polyvinylalcohol), 3.05mM D-글루코스, 0.91 mM 소듐 피루베이트(sodium pyruvate), 0.57mM 시스테인(cysteine), 0.5 g/ml LH(Sigma, USA), 0.5 g/ml FSH(Sigma, USA), 10 ng/ml 내피 성장 인자(epidermal growth factor, Sigma, USA), 75 g/ml 페니실린 G(Sigma, USA) 및 50 g/ml 스트렙토마이신(Sigma, USA)을 첨가했다.Mature cultures were prepared in TCM199 (31100035; Gibco, Grand Island, NY) in 0.1% polyvinylalcohol, 3.05 mM D-glucose, 0.91 mM sodium pyruvate, 0.57 mM cysteine, 0.5 g / ml LH (Sigma, USA), 0.5 g / ml FSH (Sigma, USA), 10 ng / ml epidermal growth factor (Sigma, USA), 75 g / ml penicillin G (Sigma, USA) and 50 g / ml streptomycin (Sigma, USA) was added.

미세 조작용 배양액은 TCM199에 0.3% BSA와 7.5 g/ml 사이토칼라신(cytochalasin B, CB)를 첨가하였다. 활성화 배양액은 0.3 M 만니톨에 1.0 mM CaCl2H2O, 0.1 mM MgCl2·6H2O, 0.5 mM HEPES를 첨가하였다. 복제란의 발생 배양액은 NCSU(North Carolina State University)-23 배지에 0.4 % BSA를 첨가하였다.The micromanipulation culture medium was added 0.3% BSA and 7.5 g / ml cytochalasin (CB) to TCM199. The activated culture was added with 0.3 mM mannitol, 1.0 mM CaCl 2 H 2 O, 0.1 mM MgCl 2 · 6H 2 O, 0.5 mM HEPES. The embryonated culture of cloned eggs was added 0.4% BSA to NCSU (North Carolina State University) -23 medium.

<5-2>난자의 채취 및 미세 조작(<5-2> Oocyte collection and micromanipulation ( MicromanipulationMicromanipulation ))

도축장에서 미경산돈의 난소를 채취하여 35-39℃, 0.9% 생리적 식염수에 넣어 실험실까지 운반하였다. 난자는 일회용 10-ml 주사기에 18-게이지(gauge) 바늘을 연결하여 직경 2-6 mm 난포에서 난포액을 흡입하여 채취하였다. 난자를 성숙배양액에서 세척하고 500μl 배양액이 들어있는 4-웰 플레이트에 50-60개 넣어 42-44 시간 배양하였다.The ovaries of uncultivated pigs were collected from slaughterhouses and transported to 35-39 ° C and 0.9% physiological saline to the laboratory. Oocytes were collected by inhaling follicular fluid from a 2-6 mm diameter follicle by connecting an 18-gauge needle to a disposable 10-ml syringe. The eggs were washed in mature culture medium and 50-60 cells were placed in 4-well plates containing 500 μl culture medium and incubated for 42-44 hours.

상기 난자를 미세조작용 배양액에서 5-10분간 배양한 후 체세포를 배양액에 첨가하였다. 직경 30 μm의 미세 유리관으로 난자의 제1 극체와 그 주위의 세포질을 제거하고 이 유리관을 이용하여 체세포를 난자의 위란강에 주입시켰다. The oocytes were incubated for 5-10 minutes in a microalgae culture medium and then somatic cells were added to the culture solution. A 30 μm diameter glass tube was used to remove the first polar body of the egg and its surrounding cytoplasm, and somatic cells were injected into the egg's gastric cavity using the glass tube.

<5-3>세포융합 및 활성화<5-3> Cell fusion and activation

미세조작 후 간격이 1 mm 떨어진 플레티넘(platinum) 전기선 사이에 핵이식란을 위치시켰다. 세포융합 및 활성화는 2회의 DC 펄스 1.0-1.2 kV/cm, 30 μsec을 융합기(BTX Electro-Cell Manipulation 2001, BTX, USA)로 공급하여 유도한 다음 0.5-1시간 후 융합률을 검사하였다.After micromanipulation, the nuclear transfer embryos were placed between platinum electrical wires 1 mm apart. Cell fusion and activation were induced by supplying two DC pulses 1.0-1.2 kV / cm, 30 μsec to a fusion device (BTX Electro-Cell Manipulation 2001, BTX, USA) and examined the fusion rate after 0.5-1 hour.

<5-4><5-4> 복제란의Cloning 배양 culture

융합된 복제란만을 골라 500μl의 배양액이 들어있는 4-웰 플레이트에서 20-30개의 복제란을 6일간 배양하였다. 배양이 끝나면 5μg/ml 비스벤지미드(bisbenzimide, Hoechst 33342)로 염색하여 형광현미경 하에서 복제란의 핵수를 검사하였다.Only fused cloned eggs were selected and 20-30 cloned eggs were incubated for 6 days in a 4-well plate containing 500 μl of culture medium. After incubation, staining with 5μg / ml bisbenzimide (Hoechst 33342) was examined for the nucleus of the cloned eggs under a fluorescence microscope.

<5-5>복제란 이식에 의한 형질전환 돼지 생산<5-5> Transgenic pig production by cloning egg transplant

상기에서 검사한 융합된 복제란은 500μl의 배양액이 들어있는 4-웰 플레이트에서 1 내지 2일간 배양한 후 같은 배양액 2ml이 들어있는 동결튜브에 복제란을 넣고 39℃로 가온되어 있는 수정란 운송 장치(embryo transfer kit, Minitube, USA)로 수정란 이식 장소까지 수송하였다. 복제란 이식을 위한 대리모는 발정이 시작된 개체를 선별하여 준비한 후, 펜토탈 소듐(pentothal sodium, 중외제약) 0.5g을 귀정맥에 투여하여 일시 마취시킨다. 마취된 대리모를 수술대에 고정한 후 5% 이소플로레인(Isoflurane, 일성신약)을 공급하여 2차적으로 흡입마취를 실시하였다. 마취된 대리모는 복중선을 따라 약 5cm 가량 절개 후 자궁과 난소를 체외로 노출시켜 준비한다. 이때 복제란을 카테터(Tom-Cat catheter, Monoject, USA) 에 흡입하고 난관의 협부까지 밀어넣어 복제란을 이식한다. GM-CSF 형질전환 복제돼지 생산을 위하여 6마리의 대리모에 총 1243개의 복제란을 이식하였다. 복제란 이식이 완료된 대리모는 30일째 초음파를 이용하여 임신 검정을 실시하고 임신이 확인된 개체는 114일 후 분만을 유도하였다. 이 중, 4마리의 대리모가 임신하여 3마리가 정상적으로 분만하였으며, 10마리의 형질전환 복제 돼지를 생산하였다. 태어난 복제 돼지는 이표와 단미를 통하여 확보된 조직을 프로테이나제 K(Gibco. Inc., USA)로 처리하여 단백질을 분해시킨 후 페놀로 단백질을 변성시켜 게놈 DNA를 분리하였다. 분리된 게놈 DNA를 GM-CSF 유전자의 경우 서열번호 6서열번호 7, 그리고 Neo 유전자의 경우 서열번호 8서열번호 9를 이용하여 형질전환 여부를 확인한 결과, 10마리의 산자 모두 형질전환이 확인되었다(도 7 참조).The fused cloned eggs examined above were incubated for 1 to 2 days in a 4-well plate containing 500 μl of culture solution, and then put the cloned eggs in a freezing tube containing 2 ml of the same culture solution and heated to 39 ° C. ( embryo transfer kit (Minitube, USA) was transferred to the fertilized egg transplant site. Surrogate mothers for cloning embryos are screened and prepared for individuals whose estrus has begun, and then temporarily anesthetized by administering 0.5 g of pentotal sodium (foreign drug) to the vein. The anesthetized surrogate mother was fixed on the operating table and then inhaled anesthesia by supplying 5% isoflurane (Isoflurane). The anesthetized surrogate mother is prepared by making an incision about 5cm along the abdominal line and exposing the uterus and ovaries to the outside. At this time, the cloned eggs are inhaled in a catheter (Tom-Cat catheter, Monoject, USA) and pushed up to the buccal canal to transplant the cloned eggs. A total of 1243 cloned eggs were transplanted into 6 surrogate mothers for the production of GM-CSF transgenic cloned pigs. Surrogate mothers with cloned egg transplants were subjected to a pregnancy test using ultrasound on the 30th day, and those with confirmed pregnancy induced delivery after 114 days. Of these, four surrogate mothers became pregnant, three delivered normally, and produced 10 transgenic cloned pigs. Born cloned pigs were treated with protein and K. protein (Gibco. Inc., USA) to decompose the protein and denature the protein with phenol to isolate genomic DNA. The isolated genomic DNA was transformed using SEQ ID NO: 6 and SEQ ID NO: 7 for the GM-CSF gene, and SEQ ID NO: 8 and SEQ ID NO: 9 for the Neo gene. (See FIG. 7 ).

인간 GM-CSF는 조혈모세포 및 과립세포, 대식세포, 적혈구, 거대핵세포(megakaryocytes) 및 조혈모세포의 전구체 등의 증식, 분화 및 생존을 조절하는 중요한 조절자이다. 형질전환 복제돼지에서 hGM-CSF가 발현된다면, 이러한 hGM-CSF의 기작은 암이나 장기이식 등의 치료에 의하여 백혈병 치료 보조제 및 면역 강화제 등 면역력이 약화된 환자들에게 보조치료제로써 큰 역할을 할 것이며, 세포주의 핵이식을 통한 hGM-CSF 형질전환 돼지 개발은 발생공학 분야의 연구 및 산업적 이용성이 매우 클 것으로 기대된다.Human GM-CSF is an important regulator of proliferation, differentiation and survival of hematopoietic and granulocytes, macrophages, erythrocytes, megakaryocytes and precursors of hematopoietic stem cells. If hGM-CSF is expressed in transgenic cloned pigs, the mechanism of hGM-CSF will play a major role in adjuvant therapy for patients with weakened immunity such as leukemia adjuvant and immune enhancer by treatment of cancer or organ transplantation. The development of hGM-CSF transgenic pigs via nuclear transfer of cell lines is expected to be of great potential for research and industrial use in developmental engineering.

<110> MGenbio Inc. <120> A transgenic pig expressing CSF gene in the milk and producing method thereof <130> 5p-06-02 <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Neo-Forward primer 1 <400> 1 atgcggccgc gagggcccct gcaggtcaat 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Neo-Reverse primer 1 <400> 2 gagcggccgc tcggtacccg gggatcctct 30 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> hGM-CSF-Forward primer <400> 3 gactcgagag gatgtggctg cagagcc 27 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> hGM-CSF-Reverse primer 1 <400> 4 gactcgagca tctggccggt ctcact 26 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> hGM-CSF-Reverse primer 2 <400> 5 atctgggttg cacaggaagt 20 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> pBC1-Forward primer <400> 6 gattgacaag taatacgctg tttcctc 27 <210> 7 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pBC1-Reverse primer <400> 7 catcagaagt taaacagcac agttag 26 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Neo-Forward primer 2 <400> 8 ggattgcacg caggttctcc g 21 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Neo-Reverse primer 2 <400> 9 attcggcaag caggcatcgc c 21 <110> MGenbio Inc. <120> A transgenic pig expressing CSF gene in the milk and producing          method <130> 5p-06-02 <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Neo-Forward primer 1 <400> 1 atgcggccgc gagggcccct gcaggtcaat 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Neo-Reverse primer 1 <400> 2 gagcggccgc tcggtacccg gggatcctct 30 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> hGM-CSF-Forward primer <400> 3 gactcgagag gatgtggctg cagagcc 27 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> hGM-CSF-Reverse primer 1 <400> 4 gactcgagca tctggccggt ctcact 26 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> hGM-CSF-Reverse primer 2 <400> 5 atctgggttg cacaggaagt 20 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> pBC1-Forward primer <400> 6 gattgacaag taatacgctg tttcctc 27 <210> 7 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pBC1-Reverse primer <400> 7 catcagaagt taaacagcac agttag 26 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Neo-Forward primer 2 <400> 8 ggattgcacg caggttctcc g 21 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Neo-Reverse primer 2 <400> 9 attcggcaag caggcatcgc c 21

Claims (9)

1) 돼지 태아로부터 체세포를 분리하는 단계; 1) isolating somatic cells from porcine fetuses; 2) 유선(mammary gland) 특이적 프로모터 및 CSF(Colony stimulating factor, 세포집락 자극 인자)를 코딩하는 폴리뉴클레오티드를 포함하는 발현벡터를 제조한 후 상기 체세포에 도입시키는 단계; 2) preparing an expression vector comprising a mammary gland specific promoter and a polynucleotide encoding a colony stimulating factor (CSF) and introducing the same into the somatic cells; 3) 단계 2)의 발현 벡터가 도입된 클론 체세포를 선별한 후 배양하는 단계; 3) selecting and culturing cloned somatic cells into which the expression vector of step 2) is introduced; 4) 모돈으로부터 채취한 난자의 핵을 제거하고 단계 3)의 클론 체세포와 융합시키는 단계; 및 4) removing the nuclei of the eggs collected from the sows and fusing them with the clonal somatic cells of step 3); And 5) 상기 융합된 복제란을 대리모돈에 이식하고 자돈을 출산하는 단계를 포함하는 CSF 단백질을 발현하는 형질전환 돼지 제조 방법.5) A method of producing a transgenic pig comprising expressing a CSF protein comprising the step of transplanting the fused cloned eggs into surrogate sows and giving birth to piglets. 제 1항에 있어서, 단계 1)의 돼지 태아는 임신 40-80일령의 태아인 것을 특징으로 하는 방법.The method of claim 1, wherein the pig fetus of step 1) is a fetus of 40-80 days of gestation. 제 2항에 있어서, 단계 1)의 돼지 태아는 임신 60일령의 태아인 것을 특징으로 하는 방법.The method of claim 2, wherein the pig fetus of step 1) is a fetus of 60 days of gestation. 제 1항에 있어서, 단계 2)의 CSF는 hGM-CSF인 것을 특징으로 하는 방법.The method of claim 1, wherein the CSF of step 2) is hGM-CSF. 제 1항에 있어서, 단계 2)의 유선 특이적 프로모터는 αs1-카제인, β-카제인, β-락토글로불린 또는 유청 산성 단백질(whey acidic protein) 등의 프로모터로 부터 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the mammary gland specific promoter of step 2) is selected from promoters such as αs1-casein, β-casein, β-lactoglobulin or whey acidic protein. 제 5항에 있어서, 염소 β-카제인 프로모터인 것을 특징으로 하는 방법.6. The method of claim 5, which is a promoter of chlorine β-casein. 제 1항의 방법에 의해 제조되는 유선조직에서 특이적으로 CSF를 발현하는 형질전환 돼지.Transgenic pigs expressing CSF specifically in the mammary gland produced by the method of claim 1. 제 7항의 형질전환 돼지를 생산하기 위한 클론 세포주.Clonal cell line for producing the transgenic pig of claim 7. 제 8항에 있어서, 수탁번호 : KCLRF-BP-00115로 기탁되는 클론 세포주.The clonal cell line according to claim 8, deposited with Accession No .: KCLRF-BP-00115.
KR1020050078585A 2005-08-26 2005-08-26 A transgenic pig expressing CSF gene in the milk and producing method thereof KR100790514B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050078585A KR100790514B1 (en) 2005-08-26 2005-08-26 A transgenic pig expressing CSF gene in the milk and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050078585A KR100790514B1 (en) 2005-08-26 2005-08-26 A transgenic pig expressing CSF gene in the milk and producing method thereof

Publications (2)

Publication Number Publication Date
KR20070024069A true KR20070024069A (en) 2007-03-02
KR100790514B1 KR100790514B1 (en) 2008-01-02

Family

ID=38098842

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050078585A KR100790514B1 (en) 2005-08-26 2005-08-26 A transgenic pig expressing CSF gene in the milk and producing method thereof

Country Status (1)

Country Link
KR (1) KR100790514B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324345B1 (en) * 2011-04-04 2013-10-31 한화엘앤씨 주식회사 Transgenic pig expressing HO-1 and use thereof
WO2017209389A1 (en) * 2016-05-31 2017-12-07 제주대학교 산학협력단 Porcine thy1 gene promoter specifically expressed in neurons

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635474B1 (en) * 1998-09-11 2003-10-21 Hanmi Pharm Co., Ltd Mammary gland tissue-specific expression system using β-casein promoter site of Korean native goat
KR20010077563A (en) * 2000-02-03 2001-08-20 김태윤 Method for producing a human granulocyte/macrophage-colony stimulating factor
KR20040064507A (en) * 2003-01-13 2004-07-19 김남형 A in vitro culture methods of pig embryos

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324345B1 (en) * 2011-04-04 2013-10-31 한화엘앤씨 주식회사 Transgenic pig expressing HO-1 and use thereof
WO2017209389A1 (en) * 2016-05-31 2017-12-07 제주대학교 산학협력단 Porcine thy1 gene promoter specifically expressed in neurons
US11118191B2 (en) 2016-05-31 2021-09-14 Jeju National University Industry-Academic Cooperation Foundation Porcine Thy1 gene promoter specifically expressed in neurons
US11820998B2 (en) 2016-05-31 2023-11-21 Jeju National University Industry-Academic Cooperation Foundation Porcine Thy1 gene promoter specifically expressed in neurons

Also Published As

Publication number Publication date
KR100790514B1 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
Krimpenfort et al. Generation of transgenic dairy cattle using ‘in vitro’embryo production
RU2216592C2 (en) Method for obtaining animal embryos and method for raising animals out of embryos
JP4153878B2 (en) Replicated pig from which GT gene has been removed and production method thereof
KR100790514B1 (en) A transgenic pig expressing CSF gene in the milk and producing method thereof
KR100769291B1 (en) Mammary gland-specific human erythropoietin expression vector transgenic animal and method for producing human erythropoietin using same
KR101890978B1 (en) Transgenic cloned porcine Models for alzheimer&#39;s disease and the Use thereof
KR20090051716A (en) Methods for improvement of birth rates in canidae on somatic cell nuclear transfer
KR100905709B1 (en) Clonal Transg enic Goat Producing hGM-CSF and Preparation Method of the Same
Park et al. Production of transgenic recloned piglets harboring the human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene from porcine fetal fibroblasts by nuclear transfer
KR101763343B1 (en) Method for Producing Cloned Canidae Using Nuclear Transfer of Somatic Cells or Stem Cells
KR101276801B1 (en) Transgenic pig expressing sTNFR1-Fc and use thereof
KR100479704B1 (en) Method of producing a transgenic pig expressing green fluorescent protein
US7351876B2 (en) Efficient nuclear transfer with primordial gametes
KR101832485B1 (en) Method for Producing Cloned Canidae Conditionally Expressing Transgene
KR20090115081A (en) Cloning Method Of Canids
AU747070B2 (en) Efficient nuclear transfer using primordial germ cells
KR20060106590A (en) Transgenic pig expressing hla-g to inhibit activity of nk cell and the method of producing thereof
KR100827324B1 (en) Production of Transgenic Cloned Embryo by Somatic Cell Nucleus Transfected with hGM-CSF Gene and Preparation Method of The Same
Lian et al. Application status of genome-editing tools in sheep and goats
KR20230092097A (en) Transgenic cloned piglets defecting porcine GGTA1, CMAH, beta4GalNT2 and CD40 gene for xenotransplantation, and producing method thereof
KR100868245B1 (en) Effective producing method of cloned animal by demecolcine treatment
RU2157846C1 (en) Method of producing transgenic animal expressing human granulocyte colony-stimulating factor in mammary gland and hybrid gene h-gm-1 for method realization
KR20040101793A (en) Transgenic cloned cow producing human erythropoietin and method for producing the same
RU2390562C2 (en) Method of creating transgenic mammals which produce exogenous proteins in milk, and transgenic mammals created using said method
KR20110117841A (en) Transgenic cloned caninds with pepck gene and method for producing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130321

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140807

Year of fee payment: 7

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20141224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151221

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161221

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181031

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191021

Year of fee payment: 13