KR20070007823A - 네트워크를 통하여 수집된 센서 데이터의 신뢰도를개선하기 위한 장치 및 방법 - Google Patents

네트워크를 통하여 수집된 센서 데이터의 신뢰도를개선하기 위한 장치 및 방법 Download PDF

Info

Publication number
KR20070007823A
KR20070007823A KR1020067021401A KR20067021401A KR20070007823A KR 20070007823 A KR20070007823 A KR 20070007823A KR 1020067021401 A KR1020067021401 A KR 1020067021401A KR 20067021401 A KR20067021401 A KR 20067021401A KR 20070007823 A KR20070007823 A KR 20070007823A
Authority
KR
South Korea
Prior art keywords
data
sensor
value
node
sensor data
Prior art date
Application number
KR1020067021401A
Other languages
English (en)
Other versions
KR101271876B1 (ko
Inventor
쇼브힉 머코파디야이
슈짓 데이
드베이시스 패니그라히
Original Assignee
더 리젠트스 오브 더 유니이버시티 오브 캘리포니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 리젠트스 오브 더 유니이버시티 오브 캘리포니아 filed Critical 더 리젠트스 오브 더 유니이버시티 오브 캘리포니아
Publication of KR20070007823A publication Critical patent/KR20070007823A/ko
Application granted granted Critical
Publication of KR101271876B1 publication Critical patent/KR101271876B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

본 발명은 네트워크를 통하여 수집된 센서 데이터의 신뢰도를 개선하는 데 적합한 장치 및 방법에 관한 것이다. 1 개 이상의 일시적인 오류들은 정정된 데이터의 상관 관계를 이용해서 예측되어 정정되고 있다. 예를 들면, 센서 데이터는 네트워크 내의 하나 이상의 센서 노드들로부터 수집될 수 있다. 센서 노드 이외의 장치는 수집된 데이터를 이용하여 상기 센서 데이터 내의 고유의 리던던시(redundancy)에 기초하여 예측 모델을 전개하고, 신뢰성이 낮은 것으로 간주 되고 있는 1 개 이상의 나중에 수신된 값들을 정정할 수 있다.

Description

네트워크를 통하여 수집된 센서 데이터의 신뢰도를 개선하기 위한 장치 및 방법{APPARATUS AND METHOD FOR IMPROVING RELIABILITY OF COLLECTED SENSOR DATA OVER A NETWORK}
본 발명은 센서 네트워크에 관한 것이다.
통신을 감지하여 처리하는 기술이 무선 센서 네트워크들의 출현으로 유도되고 있다. 최근, 대규모의 감지 기술이 저 비용 저 에너지의 무선 센서 노드들의 사용으로 실현 가능하게 되었다. 예를 들면 제조, 테스트 및 모니터링에 있어서 많은 시스템들은 다수의 무선 센서들로부터 데이터를 수집하고 있다. 이들 센서 네트워크들의 유효성은 물질계(physical world)의 감지 및 모니터링을 가능하게 한다.
따라서, 만약 데이터를 기계들 간의 데이터 수집 프레임워크 내에서 판정하기 위해서 데이터를 수집해서 처리되어 사용됨에 따라서 신뢰할 수 있는 데이터 수집이 센서 네트워크들 내에서 최고의 관심사라면, 무선 데이터 전송을 사용하는 다른 응용 분야에서 제공하는 것이 훨씬 더 낫다. 그러나, 데이터의 신뢰도 및 데이터의 정정과 관련된 무선 데이터 전송에 있어서 잘 알려진 문제점들이 존재하고 있다.
예를 들면, 센서 노드의 무선 네트워크는 신뢰성이 없는 통신 채널과 같은 불신감이 있는 여러 가지 데이터 원, 노드 실패, 악성 노드의 간섭 및 도청(eavesdropping)에 본질적으로 노출되고 있다. 불신감이 있는 데이터 원은 일반적으로 2 개의 카테고리, 즉 동작을 영구히 변경하는 결점과, 본원 명세서에서 "소프트 실패(soft failure)"라고 불리는 정상적인 동작으로부터 과도 편차를 유도하는 실패로 분류될 수 있다.
소프트 실패는 수신기에서의 잡음, 채널 간섭 및/또는 다중 경로 페이딩 효과(multi-path fading effect)에 의해 초래되는 일시적인 오류(transient error)로서 무선 채널 내에서 발생한다. 또한, 각각의 노드의 비용을 감소시키기 위해 깊은 서브 미크론(DSM) 및 매우 깊은 서브 미크론(UDSM)과 같은 적극적인 설계 기술들의 사용에 의해 상기 노드들을 계산 및 감지 처리시에 상이한 타입들의 일시적인 오류들에 추가로 노출되고 있다.
센서 노드의 신뢰도를 측정하기 위한 대부분의 기술들은 수집에 높은 비용이 들게 된다. 통상적인 기존의 신뢰도 방법들은 여분의 하드웨어를 부가하든가, 또는 회로 또는 통신 채널 내에서 각각 변조된 데이터에 대해 정정하기 위해 데이터 원에서 별도의 데이터를 송신할 수도 있다. 이것에 의해 종래의 방법들은 극도로 억제된 센서 노드로 사용하기 위해서 불합리하게 고 비용이 된다. 회로와 통신 채널들 내에서 실패를 지정하기 위해서, 그러한 방법은 에너지 예산과 센서 노드들 내에서의 설계 및 제조 비용 면에서 높은 비용을 초래하게 된다.
데이터 정정을 위한 다른 종래의 방법들은 무선 통신 채널 상의 비트 검출 에러를 정정하기 위한 방법과 하드웨어 내의 소프트 실패를 정정하는 방법들을 포 함하고 있다. 하드웨어 내에서의 유연한 에러를 정정하기 위한 기술들은 회로 레벨 및 모듈 레벨 방법, 예컨대 하드웨어 내에서의 삼중 모듈 리던던시 및 오류 정정 부호화의 양쪽 모두를 포함하고 있다. 무선 통신 채널 상의 비트 검출 오류를 정정하기 위한 기술들에는 채널 코드화와 같은 패리티 기반 순방향 오류 정정(FEC) 부호화 기술 및 ARQ와 같은 재송신 기반 기술을 포함하고 있다.
본 발명의 바람직한 실시예들은 다른 것들 중에서 네트워크를 통하여 수집된 센서 데이터의 신뢰도를 개선하는 데 적합한 장치 및 방법을 제공한다. 1 개 이상의 일시적인 오류들은 정정된 데이터의 상관 관계를 이용해서 예측되어 정정되고 있다. 예를 들면, 센서 데이터는 네트워크 내의 하나 이상의 센서 노드들로부터 수집될 수 있다. 센서 노드 이외의 장치는 수집된 데이터를 이용하여 센서 데이터 내의 고유의 리던던시(redundancy)에 기초하여 예측 모델을 계산하고, 신뢰성이 낮은 것으로 간주 되고 있는 1 개 이상의 나중에 수신된 값들을 정정할 수 있다.
추가적인 특징 및 이점들은 첨부한 도면을 참조하여 예시된 바와 같은 본 발명의 예시적인 실시예들의 이하의 보다 많은 특정 설명으로부터 더욱 명확하게 이해할 수 있을 것이다.
도 1은 본 발명의 바람직한 실시예에 따른 데이터 수집 및 정정 방법을 실행하기 위해서 사용되는 장치를 포함한 네트워크를 도시하고 있다.
도 2는 본 발명의 바람직한 실시예에 따라서 데이터 원으로부터 데이터를 수 집 및 정정하기 위한 수집기 노드(aggregator node)에 의해 구현되는 알고리즘을 개략적으로 예시하는 도면이다.
도 3은 본 발명의 바람직한 실시예에 따라서 데이터 정정을 실행하기 위한 예시 동작을 설명하는 도면이다.
도 4는 본 발명의 예시적인 실시예에 따른 3 개의 샘플들의 지연에 대한 예시적인 예측 이력 트리(PHT)를 나타내는 도면이다.
도 5는 본 발명의 바람직한 실시예에 따른 데이터 수집과 정정 방법을 구현하기 위한 예시적인 의사 코드(pseudo-code)를 나타내는 도면이다.
본 발명의 바람직한 실시예들은 오류 보호의 최소의 비용, 즉 센서 노드의 비용과 통신 오버헤드의 최소의 비용을 갖춘 개선된 신뢰도를 제공한다. 바람직한 실시예에서는, 일시적인 오류의 런 타임 정정이 센서 노드의 회로에서 발생되거나 또는 상기 센서 노드 상의 설계나 운용상의 오버헤드가 없이 유도되는 통신 채널 상에서 발생되고 있다.
본 발명의 바람직한 실시예에 따르면, 센서 데이터 자체의 특성에 대한 지식은 데이터 체킹 및 정정을 달성하기 위해서 사용되고 있다. 본 발명의 실시예는 센서 데이터 내의 상관 관계, 센서 응용의 목적 및 각종 오류들에 대한 취약성에 관한 정보를 사용한다.
예를 들면, 센서 데이터는 일반적으로 노드 단위당, 혹은 노드의 클러스터에 관해서 일시적 기간에 걸친 리던던시를 나타낸다. 센서 데이터의 그와 같은 고유의 리던던시는 비용/에너지가 훨씬 적게 억제되는 데이터 수집기 노드들에서 명목상의 버퍼 요구 조건의 비용으로 센서 노드에 오버헤드를 부과함이 없이 데이터 수집 시에 높은 신뢰도를 가능하게 할 수 있다. 본 발명의 바람직한 실시예에 따른 소프트 실패를 정정하기 위한 저비용의 오류 정정 장치, 시스템 및 방법은 데이터 예측 모델 내에서 포착된 데이터 특성들을 사용해서 제공된다.
이와는 반대로, 이전의 종래의 신뢰도 기술들은 리던던시의 하드웨어를 추가하거나 혹은 회로 또는 통신 채널들 내에서 각각 변조된 데이터에 대해 정정하기 위해서 데이터 원에서 별도의 데이터를 송신하게 된다. 극도로 억제된 센서 노드와 함께 그와 같은 종래의 기술들이 사용되는 것은 불합리하게 고가이고, 또한 그 종래의 기술들은 응용 데이터의 특성들을 사용하지 않는다. 따라서, 회로 및 통신 채널들 내에서 실패를 지정하기 위해서, 이들 종래의 기술들은 에너지 예산과 센서 노드들 내에서의 설계 및 제조 비용 면에서 불합리하게 높은 부담을 초래하게 되었다.
본 발명의 일 실시예는 예를 들면 센서 데이터의 수집 및 필터링이 센서 데이터 네트워크 내에서 발생하는 수집 노드에서의 센서 데이터의 일시적인 오류들의 정정에 적합한 장치로 소프트웨어의 구현 및 부호화되는 응용 레벨의 데이터 인지(data-aware) 방법을 포함하고 있다. 이 양호한 방법은 바람직하게 센서 노드에 임의의 설계 또는 재료비, 또는 실행 부담을 부과하지 않고서, 무선 통신 채널 상에서 센서 노드와 같은 데이터 원으로부터 수신되는 데이터의 런 타임 정정을 달성한다. 바람직하게, 이와 같은 실행 부담은 수집을 위해 데이터를 버퍼링하는 수집 기 노드(들)와 같은 데이터 수신기에서의 저장 및 계산 비용에 대해서 단독으로 발생된다. 이 방법은 바람직하게 수집기에서 응용 및 자원 제약의 실행 요구 조건들에 대해서 조정될 수 있다.
일반적으로, 바람직한 방법은 일시적인 오류의 존재를 정정하기 위해서 센서 데이터 내의 리던던시를 식별하여 사용한다. 예시적인 실시예에서는, 센서 데이터 내의 리던던시의 상세한 분석은 예측 모델의 상관 관계 특성들을 포착한다. 이어서, 예측 모델은 데이터의 온라인 예측 정정을 위해 데이터 수집 중에 사용되고 있다. 이러한 바람직한 방법은 센서 데이터의 소프트 실패를 필터링한다.
특히, 예시적인 실시예에 있어서는, 수집기 노드와 같은 장치가 네트워크의 센서 노드로부터의 센서 데이터의 분석에 기초하여 예측 모델을 전개한다. 이어서, 수집기 노드는 센서 노드로부터 수신된 데이터의 신뢰도를 체크하는 한편, 오류 정정 판정을 행하기 위해서 상기 예측 모델을 사용하여 런 타임에서 신뢰도 체크를 수행한다. 본 발명의 바람직한 방법은 고유의 센서 데이터 예측 모델에 대해서는 오프라인에서 데이터를 수집하는 단계와, 런 타임에서 온라인으로 모델을 적용하는 단계를 포함하고 있다.
데이터 예측이 통상적으로 관측 값들의 대부분의 오류를 필터링하고 있지만, 예측이 데이터 처리를 항상 정확하게 추적할 수 없을 수 있는 가능성이 있다. 예를 들면, 수집된 데이터 상에서의 응용에 의해 실행되는 수집 조작은 오류 데이터에 대해서 취약성이 있는 변화하는 레벨을 가지고 있다. 이에 따라, 본 발명의 바람직한 방법은 응용의 지연 제한 내에서 데이터의 보고를 지연시킬 수도 있다. 지연된 보고는 관측 값들이 예측 값과 관측 값 사이의 정정된 값의 선택을 안내하기 위해서 바람직하게 나중 샘플들의 작은 세트로서 사용되는 것을 가능하게 한다. 과거의 데이터 샘플들은 정정된 값을 선택하는 것을 지원하기 위해서 사용될 수도 있다. 바람직한 방법은 데이터 수신기 및 지연을 조절함으로써 응용의 지연 요구 조건들에 이용 가능한 계산 자원들로 조절될 수 있다.
본 발명의 네트워크 실시예는 1 개 이상의 수집기 노드에 데이터를 무선으로 전달하는 1 개 이상의 센서 노드를 포함하고 있다. 센서 데이터의 고유의 리던던시는 데이터 처리 지점에서 오류 정정을 실행하기 위해서 이용되고 있다. 그와 같은 데이터 처리는 예를 들면 수집기 노드가 될 수 있다. 이에 따라, 상기 수집기 노드가 상기 센서 노드들보다 더욱 계산적인 기억 장치 및 에너지 자원들을 통상적으로 가지고 있기 때문에 이점이 있다. 본 발명의 추가의 실시예는 무선 네트워크에서 사용하기 위해 구성된 수집기 노드를 포함하고 있다.
이하, 도면을 참조하면, 도 1은 본 발명에 따른 예시적인 방법을 실행하도록 구성된 장치를 포함하는 센서 네트워크(10)를 도시하고 있다. 바람직하게, 이 장치는 무선 채널(14) 상에서 데이터 원으로부터 데이터를 수신하는 수집기 노드(12)이다. 데이터 원은 예를 들면 1 개 이상의 센서 노드(16)와, 무선 채널(14)을 통해서 데이터를 무선으로 송신하는 복수의 센서들을 바람직하게 포함하고 있다. 도 1에는 도시를 명확하게 하기 위해서 단지 하나의 수집기 노드만을 도시하고 있지만, 네트워크(10)는 복수 개의 수집기 노드(12)를 포함하는 것이 바람직하다.
수집기 노드(12)는 예를 들면 센서 데이터를 수신 및 수집하기 위한 1 개 이 상의 모듈을 포함할 수 있다. 이들 모듈에 의해 수행되는 수집 기능들은 특정 센서로부터 데이터를 수집하는 노드 레벨 또는 임시 집합(18) 및/또는 상이한 센서 노드들로부터 데이터를 수집하는 공간 또는 클러스터 레벨 집합(20)을 포함할 수 있다. 데이터 수집기 노드(12)로부터 수집되어 정정된 데이터는 처리 또는 기억을 위해서 서버(22) 또는 다른 장치로 차례대로 전송(즉, 보고)될 수 있다.
도 2는 본 발명의 바람직한 실시예에 따른 데이터 정정 방법을 실행하기 위한 응용 레벨 알고리즘의 일반 개요도를 나타낸다. 이 알고리즘은 예를 들면 임의의 적합한 방법에 의해 수집기 노드(18)와 같은 장치 내에서 구현될 수 있다.
예시적인 센서 데이터 정정 방법에 있어서, 데이터 생성 처리의 예측 모델은 센서 노드(16)로부터 최초에 수집된 데이터(대표적인 샘플들)의 사전 처리에 의해여 바람직하게 오프라인에서 구성된다. 예를 들면, 데이터 모델 블록(24)으로서 도 2에 나타내는 적절한 사전 처리 로직은 수집기 노드(12) 내에서 구현될 수 있다. 이러한 예측 모델은 센서 데이터의 상관 관계를 이용한다. 바람직하게, 상기 상관 관계는 센서 데이터 내의 고유의 일시적인(노드 당) 리던던시에 기초하여 예측 모델이 바람직하게 계산되는 경우에는 일시적이다. 그러나, 그것은 그 외의 상관 관계의 타입이 추가적으로 사용되거나 또는 다른 대체안으로서 사용될 수도 있는 것이 고려되고 있다.
선택된 모델은 예측이 데이터 생성 프로세스와 실질적으로 일치시키는데 충분하게 될 수 있다. 또한, 이러한 모델은 수집기 노드(12) 또는 다른 장치의 임의의 실행 성능 요구 조건을 만족시키기 위해서 자원 소비 및 복잡도에 대해서 효율 적인 예측 처리를 가능하게 한다. 전술한 요구 조건을 양호하게 제공하는 데이터 모델 블록(24)에 의해 생성되는 모델의 선택은 데이터의 일시적인 상관 관계의 레벨 및 특성에 대부분 의존할 수 있다. 데이터 상관 관계 특성을 나타내기 위해서 여러 가지의 모델링 기법들이 사용될 수 있지만, 정정 방법의 실행은 모델링의 정확도 및 예측의 효율성에 주로 의존한다. 본 발명의 실시예를 테스트하기 위해서 실험 중에 사용되는 예시적인 모델은 자기 회귀 이동 평균(ARMA; auto-regressive moving average) 모델이다. 이것은 데이터 이력 블록(26)으로서 도 2에 나타낸 이전의 관찰 이력뿐만 아니라 오류 이력 블록(28)으로서 나타낸 예측 실행 이력을 사용하는 선형 예측 모델이다. ARMA 모델에 대한 순서 식별(즉, 새로운 예측 값을 계산하기 위해 사용될 과거의 값들과 오류 이력의 수)은 예를 들어 최소의 최종 예측 오차 기준을 사용함으로써 실행될 수도 있다.
또한, 도 2 및 도 3에 나타낸 바와 같이, 이러한 예측 모델은 다음에 판독하는 유사 값을 계산하기 위해서 런 타임으로 사용되고, 데이터 정정 방법은 관측된 데이터와 예측 오류들의 이력에 기초하여 센서로부터 획득되는 값이거나 예측 모델에 의해 제공되는 값이 장래의 사용을 위해서 기록되거나 또는 보고되며, 또한 사용될 수 있는지의 여부를 판정한다. 다른 방식으로 나타내면, 상기 데이터 정정은 센서에 의하여 획득된 값이 유사 값에 대해서 신뢰할 수 있는지의 여부를 판정할 수 있고, 또한 만일 판정할 수 없는 경우에는 예측 값을 사용해서 그 값을 정정하거나 또는 필터링한다.
이것은 예컨대 데이터 정정 블록(30)으로서 도 2에 도시된 응용 레벨의 예측 정정 로직를 통하여 구현될 수 있다. 바람직한 접근 방법은 관측 데이터의 이력[데이터 이력 블록(26)]을 유지하는 단계와, 계산된 예측 모델을 사용해서 그 데이터 이력으로부터 장래의 예측 값(32)을 생성하는 단계를 포함하고 있다. 센서 노드(16)로부터 다음에 관측된 데이터 값(34)을 수신한 후에는 이들 후보 값들을 판정하여 기록한다. 바람직하게, 데이터 정정 블록(30)의 동작은 예측에 사용된 데이터 모델에 의존하지 않는다. 그러나, 예측 정정을 위한 데이터 정정 블록 로직(30)은 예측 모델을 형성하기 위해 사용되는 데이터 모델 로직(24)을 부분적이거나 또는 완전하게 중첩되는 것이 고려된다.
일반적인 데이터 정정 방법에 있어서, 도 3에 도시한 바와 같이 수집기 노드(12)의 데이터 모델 블록(24)은 센서 노드(16)로부터 최초의 데이터를 무선으로 수집하고(단계 40), 최초의 데이터를 처리하여(단계 42), 처리된 최초의 데이터에 기초하여 예측 모델을 전개한다(단계 44). 런 타임 동작 중에, 수집기 노드(12)는 관측된 센서 데이터를 무선으로 수신 및/또는 수집하고(단계 46), 이어서 센서 노드(16)로부터 다음에 판독하는 유사 값을 상기 전개된 데이터 모델을 사용해서 예측한다(단계 48). 다음에, 데이터 정정 블록(30)은 수신된 값의 신뢰도를 판정함으로써 수신된 값을 사용할지 여부를 판정한다(단계 50). 만일 수신된 값이 신뢰할 수 있는 경우라면, 이 수신된 값을 정정된 데이터로서 보고된다(단계 52). 만일 수신된 값이 신뢰할 수 없는 경우에는, 일시적인 오류는 수집기 노드(12)에 의해 예측된다. 이 경우, 예측 값은 일시적인 오류를 정정하기 위해서 정정된 데이터로서 보고된다(단계 54).
예측 기반 정정의 실행에 있어서의 중요한 문제는 모델로부터의 데이터 원들의 동작의 순수한 오류나 이탈에 의해 발생할 수 있는 수신기[즉, 수집기 노드(12)]에서의 예측 값과 관측 값 사이의 미스 매칭을 취급하는 방법을 선택하고 있다. 그와 같은 오류는 이들 2 개의 경우에 있어서 상이하게 취급될 수 있다. 본 발명의 바람직한 실시예에 있어서는, 이러한 판정이 과거의 샘플들뿐만 아니라 다음에 관측된 많은 샘플들에 기초해서 이루어지고 있다. 이러한 동작은 판정 지연 파라미터(K)(58)에 의해 도 2에 표시된 지연을 사용하여 실행된다.
도 2를 다시 참조하면, Y는 센서 데이터의 관측 값(34)의 순서를 나타내고, Y'은 예측 블록[예측된 데이터(32)]의 결과를 나타내며, Yc는 데이터 정정 블록(30)으로부터의 정정된 값(60)을 나타내고 있다. 데이터 정정 블록(30)은 상이한 예측의 이력의 상이한 가능한 버젼을 생성 및 저장함으로써 오류를 정정하는 과정에 있는 데이터 모델 블록(24)에 의해 전개된 예측 모델을 사용한다. 시간 n의 시점에서, 관측 데이터 Y(n)(34)가 제공되면, 데이터 정정 블록(30)은 정정된 값 Yc(n-K)(60)을 계산하고, 여기에서 K는 사후 정정을 위해 유지된 예측 이력의 깊이를 나타내고 있다.
예를 들면 도 4를 참조하면, 시간 n의 경우, Y(n)까지의 관측 값, 및 Y'(n)까지의 대응하는 예측은 정정된 값 Yc(n-K)(60)을 보고하기 위해서 K 샘플의 지연 후에 사용되고 있다. 센서 노드(16)의 모든 샘플이 관측되는 경우, 데이터 정정 블록(30)은 그 관측 값을 예측 모델과 과거의 이력으로부터의 예측된 값과 비교하여, 실제로 예측된 관측 값에 보다 근접하는 값을 보고하도록 시도한다. 이러한 판정을 지연시키는 것은 그와 같은 단계가 거기에서 계속되는 K 샘플에 대한 예측 정밀도로 이루어지는 모든 선택의 영향을 고려하는 것을 가능하게 한다.
바람직한 실시예에서는, 이러한 지연된 판정은 예측 이력 트리(PHT)(70)를 사용하여 구현되고 있는데, 상기 예측 이력 트리에는 과거의 K 샘플들에 대한 가능한 예측 값 및 대응하는 예측 오류를 포함하고 있다. 각 노드들의 PHT의 값에 대응하는 예측 오류는 병렬 오류 이력 트리(도시 생략됨)에 저장되어 있고, 상기 병렬 오류 이력 트리에는 양쪽 트리 상에서 동일한 갱신 조작을 실행함으로써 PHT(70)와 동시에 유지되고 있다.
예시적인 PHT(70)는 K+1의 깊이를 가지며, 최종 K 샘플, 즉 Yc(i)[여기서, i = n-K: n-1임]에 대한 여러 가지 잠재적인 값들을 나타내고 있다. 도 4는 K=3의 PHT(70)의 예를 나타내고 있다. PHT(70)의 임의의 레벨(j)의 각각의 노드(72)는 Yc(n-K-1)를 이미 선택된 값을 표시하는 루트 노드(레벨 0)(74)와 함께 Yc(n-K+j-1)의 가능한 값을 나타내고 있다.
모든 노드는 도 4에서 각각 0과 1로 라벨이 붙여진 2 개의 외부 경로(76, 78)를 가지고 있다. 이것들은 거기에서 계속되는 샘플에 대해서 각각 Y(관측 값)와 Y'(예측 값)의 선택을 나타낸다. 따라서, 레벨 K+l에서 루트로부터 잎(80)까지의 모든 경로는 Yc(n-K: n-1)의 값의 순서로 유도되는 2K 선택까지의 시리즈를 표시한다. 도 4의 PHT의 노드(72)는 그것들에 포함되는 가능한 값들로 나타내고 있다. 예를 들면, Y'(n-1|01)로 나타낸 잎 노드(leaf node)(82)는 루트 노드로부터 011의 선택에 대응하는 루트 노드(74)로부터 노드(84)와 노드(86)를 통한 경로에 후속된 이후에 얻을 수 있는 예측 값 Y'(n-1)을 나타낸다.
바람직한 방법은 서버(22)로 진행하는 값을 선택하기 위해서 PHT를 사용한다. PHT를 사용하여 수신기에서 오류를 정정하기 위해서 사용되는 방법의 예시적인 의사 코드는 도 5에 도시되고 있다. 시간 n(단계 90)에서는, 관측 값 Y(n)이 수신되고(단계 92), 2K까지 그 샘플에 대한 가능한 예측 값이 루트로부터 모든 잎 노드까지의 각각의 경로 i에 대해서는 1이 계산된다(단계 94). 각각의 예측된 값 Y'(n, i)은 그 경로 상의 노드에 기초하여 상이한 데이터 세트와 오류 이력을 사용하여 계산된다(단계 96). 또한, 모든 경로에 대해서, 예측 오류가 계산되고(단계 98). 그 예측 오류를 사용하여 샘플당 평균 예측 오류(PathErr)가 계산된다(단계 100). 최소 경로 오류에 기초하여, PHT의 루트의 자 노드(child node)들 중 하나는 새로운 루트로서 선택되고(단계 102), 그 선택된 자 노드의 내용이 Yc(n-K)의 정정된 값을 판정한다(단계 104 및 단계 106). 그 다음에, 이 자 노드에서 정착된 트리가 PHT 구조를 대체하기 위해서 사용된다.
예를 들면, 다음 레벨의 PHT가 생성된다(단계 104). PHT를 생성하는 바람직한 방법에서는, 경로 i를 포함하는 레벨 1 노드[예를 들면, 도 4의 노드(84)]가 선택되고 있다(단계 106). 이 노드는 노드 s가 되고 있다. 노드 s에 대한 관측 값 및 오류 값은 정정된 값 Yc로 사용되고, 예측 오류는 데이터 및 오류 이력으로 입력되며 응용을 위해 보고된다(단계 108). 루트로부터 다른 분기에 정착되는 서브트리는 폐기되고(단계 110), 나머지 트리는 각각의 잎 노드에 대해 하나 또는 2 개의 자 노드[그 경로에 대해 관측된 Y(n) 및 예측 Y'(n)]를 부가함으로써 다른 레벨로 확장된다(단계 112).
효율을 개선하기 위해서, 예측 이력(즉, PHT)의 크기는 예측으로부터 일시적인 오류이기 보다는 감지된 물리적인 처리에서 랜덤성에 의하여 매우 작은 변화를 가정함으로써 다소 감소될 수 있다. 예시적인 구현으로서, 오류 임계치 ETH 114는 E(n)이 ETH 이하인 경우에 새로운 Y'(n) 값을 부가하는 것을 방지하기 위해서 양호한 방법의 제어 파라미터로서 사용될 수 있다(단계 116). 이것은 특히 잎 노드가 N 단계 이후에 루트가 되는 경우, 관측 값 Y가 Yc를 위해서 사용될 수 있는 것을 의미한다. 따라서, 이 트리 구조는 종종 완전하게는 차지할 수 없을 수 있다.
지연 값 K의 선택은 정정된 값을 보고할 때의 지연과는 별도로 판정되고, 정정 레벨은 주어진 특정 데이터 및 오류 특성하에서 바람직한 데이터 정정 방법에 의해 달성된다. 각각의 샘플의 정정을 위해서 이력 정보의 양이 사용되는 것이 결정되기 때문에, 방법의 저장 및 계산상의 복잡성은 파라미터 K에 직접 의존하게 된다. 바람직한 방법이 센서 노드(16) 및/또는 무선 채널(14)에서 발생하는 모델링 오류와 실제의 랜덤 오류들 사이에서 식별하기 때문에, K의 최적의 선택은 사용되는 모델링 기법의 실행뿐만 아니라 오류의 특성에도 의존한다. 잠재적으로, K를 변화시킴으로써 성능과 자원에 대한 정정 정밀도는 절충 가능하고, 수집기 노드(12)의 용용 요구 조건 및 제약에 그것들을 일치시키는 것이 가능하게 된다.
바람직한 정정 방법의 실행은 예측 알고리즘의 실행에 부분적으로 의존하게 된다. 예측 알고리즘은 모든 샘플의 각각의 경로가 그 순서의 다음 값을 예측하기 위해서 바람직하게 기동되고 있다. 정정 블록에 의해 소비된 주요 자원은 저장되고, 그 공간상의 복잡성은 PHT 70에 대해서 O(2K)이다.
이러한 방법에 의해, 예를 들면 상기 지연은 수집기 노드(12), 또는 K의 선택 및 상기 선택된 K에 따른 PHT(70)의 형성에 의한 무선 센서 네트워크(10)와 같은 특정 장치로 조절될 수 있다. 예측 이력의 상이한 깊이는 응용의 지연 감도, 상대 오차 레벨 및 수신 노드 상의 자원 제약에 의존해서 사용될 수 있다.
데이터 수집 및 정정을 위한 다수의 방법, 장치 및 시스템들은 많은 특징 및 장점을 가지고서 도시 및 설명되고 있다. 응용 레벨에 바람직한 데이터 정정 방법을 실행함으로써, 본 발명의 방법을 구현하는 장치 또는 시스템의 설계는 보다 용이하게 될 수 있다. 데이터 정정 단계를 실행하기 위해서 수집기 노드(12)를 사용함으로써 센서 노드(16) 상의 오버헤드는 증가시키지 않고, 통상적으로 보다 큰 오버헤드를 갖는 장치를 사용해서 계산을 수행할 수 있다. 지연의 사용에 의해 바람직한 방법의 효능을 개선하고, 또한 그와 같은 지연에 의해서는 여러 가지 장치 또는 시스템에 방법을 동조시키기 위해 선택될 수 있다. 오류 임계치는 바람직하게 수집기 노드(12) 상의 불필요한 오버헤드를 감소시킨다.
본 발명의 실시예에 따르면 센서 네트워크의 여러 가지의 구성들도 가능할 수 있지만, 양호한 데이터 수집 및 정정 방법은 비교적 보다 큰 에너지 및 자원 예산을 갖춘 수집기 노드들에 의해 관리되는 많은 다수의 값싸고 경량의 광 센서 노 드들을 포함하고 있는 네트워크 구조 내에서 특히 유용하다.
본 발명의 특정 실시예들을 도시하여 설명하였지만, 이 기술 분야에 숙련된 당업자들에게는 다른 변경, 수정 및 대안이 가능함을 이해할 수 있을 것이다. 그러한 변경, 수정 및 대안은 본 발명의 기술적 사상 및 범주에서 이탈하지 않는 범위 내에서 이루어질 수 있고, 이하의 특허 청구의 범위로부터 결정되어야 한다.
본 발명의 여러 가지 특징들은 이하의 특허 청구의 범위에서 기술되고 있다.

Claims (25)

  1. 수집된 데이터 내의 일시적인 오류들(transient errors)을 필터링하는 방법으로서,
    상기 수집된 데이터의 상관 관계를 이용하여 상기 일시적인 오류들을 예측하는 단계와;
    상기 상관 관계에 적어도 부분적인 상관 관계에 기초해서 상기 일시적인 오류들을 정정하는 단계
    를 포함하는 일시적인 오류 필터링 방법.
  2. 제1항에 있어서, 상기 일시적인 오류들을 정정하는 단계는 상기 데이터를 지연시키는 단계를 포함하는 것인 일시적인 오류 필터링 방법.
  3. 제2항에 있어서, 상기 데이터를 지연시키는 단계는 특정 무선 센서 네트워크에 대해 지연량을 조절하는 단계를 포함하는 것인 일시적인 오류 필터링 방법.
  4. 제3항에 있어서, 상기 지연량을 조절하는 단계는 예측 이력 트리(prediction history tree)를 형성하는 단계를 포함하는 것인 일시적인 오류 필터링 방법.
  5. 제2항에 있어서, 상기 데이터를 지연시키는 단계는 예측 이력 트리를 형성하 는 단계를 포함하는 것인 일시적인 오류 필터링 방법.
  6. 제1항에 있어서, 상기 상관 관계는 자기 회귀 이동 평균(ARMA; auto-regressive moving average) 상관 관계를 포함하는 것인 일시적인 오류 필터링 방법.
  7. 제1항에 있어서, 상기 일시적인 오류들을 예측하는 단계와 상기 일시적인 오류들을 정정하는 단계는 무선 장치에 의해 실행되는 것인 일시적인 오류 필터링 방법.
  8. 네트워크(10)의 하나 이상의 센서(16)를 통하여 수신된 센서 데이터의 노드 당 리던던시(redundancy)에 기초해서 적어도 부분적으로 예측 모델을 오프라인에서 생성하도록 구성되고, 상기 하나 이상의 센서를 통하여 수신된 관측 데이터의 정정 여부를 상기 예측 모델에 기초해서 부분적으로 판정하도록 구성되는 장치(12, 18)를 포함하는 네트워크.
  9. 제8항에 있어서, 상기 하나 이상의 센서는 하나의 장치인 것인 네트워크.
  10. 제8항에 있어서, 상기 예측 모델은 선형 모델인 것인 네트워크.
  11. 하나 이상의 센서(16)로부터 센서 데이터의 노드 당 리던던시에 기초해서 적어도 부분적으로 예측 모델을 오프라인에서 생성하도록 구성된 제1 로직(24)과;
    상기 하나 이상의 센서로부터의 관측 데이터의 정정 여부를 상기 예측 모델에 기초해서 부분적으로 판정하도록 구성된 제2 로직(30)
    을 포함하는 장치(12, 18).
  12. 제11항에 있어서, 상기 제1 로직은 상기 제2 로직의 적어도 일부분을 포함하는 것인 장치.
  13. 제11항에 있어서, 상기 제2 로직은 상기 제1 로직의 적어도 일부분을 포함하는 것인 장치.
  14. 제11항에 있어서, 상기 제1 로직 및 상기 제2 로직은 중첩되지 않는 것인 장치.
  15. 네트워크를 통하여 수집된 센서 데이터의 신뢰도를 개선하는 방법으로서,
    센서 노드 이외의 장치에 의해, 상기 네트워크 내의 하나 이상의 센서 노드로부터 최초의 센서 데이터를 수집하는 단계와;
    데이터의 고유의 일시적인 리던던시의 레벨을 판정하기 위해서 최초의 센서 데이터의 사전 처리 단계와;
    상기 최초의 센서 데이터의 고유의 일시적인 리던던시에 기초한 예측 모델을 전개하는 단계와;
    센서 노드 이외의 장치에 의해, 상기 예측 모델에 기초한 네트워크 내의 센서 노드로부터 판독하는 다음 센서의 유사 값을 계산하는 단계와;
    상기 센서 노드로부터 수신된 값이 상기 유사 값에 대해서 신뢰할 수 있는지의 여부를 판정하고, 상기 수신된 값이 신뢰할 수 없는 경우에는 상기 센서 노드로부터 수신된 값을 정정하는 단계
    를 포함하는 수집된 센서 데이터의 신뢰도 개선 방법.
  16. 제15항에 있어서, 상기 최초의 센서 데이터를 수집하는 단계, 상기 최초의 센서 데이터의 사전 처리 단계 및 상기 예측 모델을 전개하는 단계는 오프라인에서 실행되는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  17. 제15항에 있어서, 상기 판독하는 다음 센서의 유사 값을 계산하는 단계 이후에, 상기 판독하는 다음 센서를 수신하는 단계를 더 포함하는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  18. 제15항에 있어서, 상기 예측 모델은 자기 회귀 이동 평균(ARMA) 모델을 포함하는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  19. 제15항에 있어서, 상기 판독하는 다음 센서의 유사 값을 계산하는 단계는 이전에 수신된 센서 데이터의 이력 및 오류의 이력에 기초하여 추가로 수행되는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  20. 제15항에 있어서, 상기 센서 노드로부터 수신된 값을 정정하는 단계는 샘플 n에 대해서 정정된 값 Yc(n-K)[여기서, K는 샘플 수 내의 판정 지연임]를 판정하는 단계를 포함하는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  21. 제20항에 있어서, 상기 판정 단계는 상기 센서로부터 수신된 값과 예측 값 사이의 선택을 나타내는 경로를 포함하는 예측 이력 트리를 형성하는 단계를 더 포함하는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  22. 네트워크를 통하여 수집된 센서 데이터의 신뢰도를 개선하는 방법으로서,
    센서 노드 이외의 장치에 의해, 센서 데이터 내의 고유의 일시적인 리던던시에 기초한 예측 모델에 따라 상기 네트워크 내의 센서 노드로부터 판독하는 다음 센서의 유사 값을 계산하는 단계와;
    상기 센서 노드로부터 수신된 값이 상기 유사 값에 대해서 신뢰할 수 있는지의 여부를 판정하고, 상기 수신된 값이 신뢰할 수 없는 경우에는 상기 센서 노드로부터 수신된 값을 정정하는 단계
    를 포함하는 수집된 센서 데이터의 신뢰도 개선 방법.
  23. 제22항에 있어서, 상기 판독하는 다음 센서의 유사 값을 계산하는 단계는 이전에 수신된 센서 데이터의 이력 및 오류의 이력에 기초하여 추가로 수행되는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  24. 제22항에 있어서, 상기 센서 노드로부터 수신된 값을 정정하는 단계는 샘플 n에 대해서 정정된 값 Yc(n-K)[여기서, K는 샘플 수 내의 판정 지연임]를 판정하는 단계를 포함하는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
  25. 제24항에 있어서, 상기 판정 단계는 상기 센서로부터 수신된 값과 예측 값 사이의 선택을 나타내는 경로를 포함하는 예측 이력 트리를 형성하는 단계를 더 포함하는 것인 수집된 센서 데이터의 신뢰도 개선 방법.
KR1020067021401A 2004-03-23 2005-03-23 네트워크를 통하여 수집된 센서 데이터의 신뢰도를개선하기 위한 장치 및 방법 KR101271876B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US55559604P 2004-03-23 2004-03-23
US60/555,596 2004-03-23
PCT/US2005/009701 WO2005094493A2 (en) 2004-03-23 2005-03-23 Apparatus and method for improving reliability of collected sensor data over a network

Publications (2)

Publication Number Publication Date
KR20070007823A true KR20070007823A (ko) 2007-01-16
KR101271876B1 KR101271876B1 (ko) 2013-06-10

Family

ID=35064391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067021401A KR101271876B1 (ko) 2004-03-23 2005-03-23 네트워크를 통하여 수집된 센서 데이터의 신뢰도를개선하기 위한 장치 및 방법

Country Status (7)

Country Link
US (1) US7793188B2 (ko)
EP (1) EP1738470B1 (ko)
JP (2) JP5020807B2 (ko)
KR (1) KR101271876B1 (ko)
CN (1) CN1981446B (ko)
AT (1) ATE539489T1 (ko)
WO (1) WO2005094493A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969158B1 (ko) * 2008-06-30 2010-07-08 경희대학교 산학협력단 무선 센서 네트워크에서의 신뢰성 관리 방법
KR101415717B1 (ko) * 2012-07-26 2014-07-04 주식회사 내비오닉스코리아 이동 표준 편차를 이용한 데이터 처리 장치 및 방법

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079280A2 (en) * 2005-11-08 2007-07-12 Nortel Networks Limited Selective multicasting of sensor data for reliable delivery
US7885929B2 (en) 2006-01-03 2011-02-08 Motio, Inc. Continuous integration of business intelligence software
US7826910B2 (en) * 2007-07-20 2010-11-02 Siemens Aktiengesellschaft Systems and methods for control over unreliable networks
US8626889B2 (en) * 2008-02-22 2014-01-07 Hewlett-Packard Development Company, L.P. Detecting anomalies in a sensor-networked environment
US8797178B2 (en) 2008-03-10 2014-08-05 Microsoft Corporation Efficient stream sharing for multi-user sensor data collection
US8423852B2 (en) * 2008-04-15 2013-04-16 Qualcomm Incorporated Channel decoding-based error detection
US8022822B2 (en) 2008-06-27 2011-09-20 Microsoft Corporation Data collection protocol for wireless sensor networks
US8289150B2 (en) * 2008-12-05 2012-10-16 Industrial Technology Research Institute Wireless sensor network and data sensing method thereof
TWI395151B (zh) * 2008-12-05 2013-05-01 Ind Tech Res Inst 無線感測器網路與其資料感測方法
JP5640341B2 (ja) * 2009-08-04 2014-12-17 オムロン株式会社 データ通信システム、データ通信方法、およびセンサ制御装置
US7920983B1 (en) 2010-03-04 2011-04-05 TaKaDu Ltd. System and method for monitoring resources in a water utility network
CN101932012B (zh) * 2010-07-27 2013-09-18 杭州电子科技大学 基于最优阶估计与分布式分簇的传感器网络数据压缩方法
US8583386B2 (en) 2011-01-18 2013-11-12 TaKaDu Ltd. System and method for identifying likely geographical locations of anomalies in a water utility network
US8341106B1 (en) 2011-12-07 2012-12-25 TaKaDu Ltd. System and method for identifying related events in a resource network monitoring system
US9053519B2 (en) 2012-02-13 2015-06-09 TaKaDu Ltd. System and method for analyzing GIS data to improve operation and monitoring of water distribution networks
US10242414B2 (en) 2012-06-12 2019-03-26 TaKaDu Ltd. Method for locating a leak in a fluid network
US10679131B2 (en) * 2012-07-12 2020-06-09 Eaton Intelligent Power Limited System and method for efficient data collection in distributed sensor measurement systems
US9644991B2 (en) 2012-10-01 2017-05-09 Cooper Technologies Company System and method for support of one-way endpoints in two-way wireless networks
US9323695B2 (en) * 2012-11-12 2016-04-26 Facebook, Inc. Predictive cache replacement
US9078157B2 (en) * 2012-12-31 2015-07-07 Verizon Patent And Licensing Inc. Quick recovery of RF sessions after backhaul link failure
JP6183016B2 (ja) * 2013-07-10 2017-08-23 住友電気工業株式会社 センサ情報処理装置、センサ情報処理方法およびセンサ情報処理プログラム
US9699708B2 (en) 2014-01-17 2017-07-04 Cooper Technologies Company Dynamically-selectable multi-modal modulation in wireless multihop networks
US20160155098A1 (en) * 2014-12-01 2016-06-02 Uptake, LLC Historical Health Metrics
WO2017098193A1 (en) * 2015-12-11 2017-06-15 Toshiba Research Europe Limited Configuration of a wireless connection used to transmit sensor readings from a sensor to a data collection facility
KR102502952B1 (ko) * 2016-07-28 2023-02-22 삼성에스디에스 주식회사 통계 분석 기반 데이터 측정 방법 및 장치
KR102131922B1 (ko) * 2018-08-29 2020-07-08 국방과학연구소 복수의 주변 디바이스로부터 데이터를 수신하는 방법 및 디바이스
CN109218130B (zh) * 2018-08-31 2020-07-17 中建科技有限公司深圳分公司 一种传感器网络的监听方法、监听器以及检测装置
US11809943B2 (en) * 2020-07-09 2023-11-07 MonoLets, Inc. Wireless node network to assess and model a physical characteristic associated with an object or space
US11816967B2 (en) 2020-07-16 2023-11-14 MonoLets, Inc. Wireless node network for automatic serialization of objects
US11769318B2 (en) 2020-11-23 2023-09-26 Argo AI, LLC Systems and methods for intelligent selection of data for building a machine learning model
US11657591B2 (en) 2021-01-15 2023-05-23 Argo AI, LLC Autonomous vehicle system for intelligent on-board selection of data for building a remote machine learning model
CN117406162B (zh) * 2023-12-14 2024-02-27 北京京仪北方仪器仪表有限公司 一种网状电能传感器误差校验方法及系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023359A1 (en) * 1993-04-02 1994-10-13 Vir Systems Pty Limited Sensor data processing
US5835509A (en) * 1994-10-24 1998-11-10 Sony Corporation Method of and apparatus for recording and reproducing data and transmitting data
US5930741A (en) * 1995-02-28 1999-07-27 Virtual Technologies, Inc. Accurate, rapid, reliable position sensing using multiple sensing technologies
JP3769786B2 (ja) * 1995-09-29 2006-04-26 株式会社デンソー 画像信号の復号化装置
FI955489A0 (fi) * 1995-11-15 1995-11-15 Antti Aarne Ilmari Lange Foerfarande foer adaptiv Kalmanfiltrering i dynamiska system
US7764231B1 (en) * 1996-09-09 2010-07-27 Tracbeam Llc Wireless location using multiple mobile station location techniques
US6240372B1 (en) * 1997-11-14 2001-05-29 Arch Development Corporation System for surveillance of spectral signals
US6611726B1 (en) * 1999-09-17 2003-08-26 Carl E. Crosswhite Method for determining optimal time series forecasting parameters
US6346911B1 (en) * 2000-03-30 2002-02-12 Motorola, Inc. Method and apparatus for determining time in a GPS receiver
US6475153B1 (en) * 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
EP1172961A1 (fr) * 2000-06-27 2002-01-16 Koninklijke Philips Electronics N.V. Système de communication, récepteur, méthode d'estimation d'erreurs dues au canal
US6556939B1 (en) * 2000-11-22 2003-04-29 Smartsignal Corporation Inferential signal generator for instrumented equipment and processes
US6704890B1 (en) * 2000-12-22 2004-03-09 Nortel Networks Limited Skew compensating interface for operation with arbitrary data
DE10213838B4 (de) * 2002-03-27 2008-10-02 Advanced Micro Devices, Inc., Sunnyvale Frequenzfehlerkorrektureinheit und -verfahren in einem drahtlosen Lan-System
US6932509B2 (en) * 2002-06-28 2005-08-23 S. C. Johnson Home Storage, Inc. Recloseable storage bag with secondary closure members
DE10228999B4 (de) 2002-06-28 2006-12-14 Advanced Micro Devices, Inc., Sunnyvale Konstellationsmanipulation zur Frequenz/Phasenfehlerkorrektur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969158B1 (ko) * 2008-06-30 2010-07-08 경희대학교 산학협력단 무선 센서 네트워크에서의 신뢰성 관리 방법
KR101415717B1 (ko) * 2012-07-26 2014-07-04 주식회사 내비오닉스코리아 이동 표준 편차를 이용한 데이터 처리 장치 및 방법

Also Published As

Publication number Publication date
CN1981446B (zh) 2010-10-06
JP5020807B2 (ja) 2012-09-05
JP2007531409A (ja) 2007-11-01
KR101271876B1 (ko) 2013-06-10
CN1981446A (zh) 2007-06-13
WO2005094493A2 (en) 2005-10-13
WO2005094493A3 (en) 2006-11-23
JP2012161085A (ja) 2012-08-23
EP1738470A2 (en) 2007-01-03
EP1738470A4 (en) 2009-01-21
EP1738470B1 (en) 2011-12-28
US7793188B2 (en) 2010-09-07
US20080250301A1 (en) 2008-10-09
ATE539489T1 (de) 2012-01-15

Similar Documents

Publication Publication Date Title
KR101271876B1 (ko) 네트워크를 통하여 수집된 센서 데이터의 신뢰도를개선하기 위한 장치 및 방법
Mukhopadhyay et al. Data aware, low cost error correction for wireless sensor networks
EP3439241B1 (en) Using machine learning to monitor link quality and predict link faults
US8144626B2 (en) Determining disjoint paths with an optimized number of regenerators
Savic et al. Deep learning anomaly detection for cellular IoT with applications in smart logistics
Ntalampiras et al. A fault diagnosis system for interdependent critical infrastructures based on HMMs
Mukhopadhyay et al. Model based error correction for wireless sensor networks
CN116302841B (zh) 一种工业物联网安全监测方法及系统
US8397142B2 (en) Shared information generating apparatus and recovering apparatus
CN107210927A (zh) 协议处理中的异常检测
CN105929723A (zh) 通过纠错功能进行寿命预测的控制装置
CN111611097A (zh) 故障检测方法、装置、设备及存储介质
Boudargham et al. Toward fast and accurate emergency cases detection in BSNs
KR102624950B1 (ko) 시계열 데이터를 이용한 주기성을 갖는 이상 수치 검출 시스템
CN117336228A (zh) 一种基于机器学习的igp仿真推荐方法、装置及介质
CN117580046A (zh) 一种基于深度学习的5g网络动态安全能力调度方法
CN115720095A (zh) 一种基于深度学习辅助的极化码译码方法、装置、电子设备和计算机可读存储介质
EP4131090A1 (en) Machine learning device, learning model generation method, and program
CN111160603B (zh) 一种端到端电力通信业务可靠性保障方法及系统
JP2022037107A (ja) 障害分析装置、障害分析方法および障害分析プログラム
Papataxiarhis et al. Event correlation and forecasting over high-dimensional streaming sensor data
KR101505627B1 (ko) 서비스 품질 기반의 보조그래프 생성 방법 및 그 시스템
WO2021002298A1 (ja) 故障影響推定装置、故障影響推定方法、及びプログラム
US20240171486A1 (en) Leveraging temporal-based datapoints for predicting network events
CN109379216B (zh) 一种自适应切换贝叶斯网络的动态任务影响估计方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160513

Year of fee payment: 4