KR20060131311A - A self-assembled monolayer for urease immobilization of biosensor - Google Patents

A self-assembled monolayer for urease immobilization of biosensor Download PDF

Info

Publication number
KR20060131311A
KR20060131311A KR1020050051645A KR20050051645A KR20060131311A KR 20060131311 A KR20060131311 A KR 20060131311A KR 1020050051645 A KR1020050051645 A KR 1020050051645A KR 20050051645 A KR20050051645 A KR 20050051645A KR 20060131311 A KR20060131311 A KR 20060131311A
Authority
KR
South Korea
Prior art keywords
self
biosensor
assembled monolayer
electrode
immobilization
Prior art date
Application number
KR1020050051645A
Other languages
Korean (ko)
Other versions
KR100726963B1 (en
Inventor
김경훈
홍석인
윤동화
Original Assignee
김경훈
한메딕스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김경훈, 한메딕스 주식회사 filed Critical 김경훈
Priority to KR1020050051645A priority Critical patent/KR100726963B1/en
Publication of KR20060131311A publication Critical patent/KR20060131311A/en
Application granted granted Critical
Publication of KR100726963B1 publication Critical patent/KR100726963B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • B29B2017/0296Dissolving the materials in aqueous alkaline solutions, e.g. NaOH or KOH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2610/00Assays involving self-assembled monolayers [SAMs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A self-assembled monolayer for urease immobilization of a biosensor is provided to enhance sensitivity at low urea concentration, reduce reaction time of the biosensor by direct electron transfer of the self-assembled monolayer, and especially enhance sensitivity of the biosensor when porous silicone is used as a substrate. The self-assembled monolayer for urease immobilization of the biosensor is used as an immobilization membrane of the biosensor and is manufactured with 3-mercaptopropionic acid, wherein the biosensor is prepared by depositing the gold thin layer on the surface of a planar electrode and porous silicone to produce an electrode, and forming the self-assembled monolayer on the gold thin layer. The urea sensor comprises the self-assembled monolayer made of 3-mercaptopropionic acid as the immobilization membrane.

Description

바이오센서의 고정화막용 자기조립 단일층{A self-assembled monolayer for urease immobilization of biosensor}A self-assembled monolayer for urease immobilization of biosensor}

도 1은 다공질 실리콘에 형성된 금 박막 전극에 대한 SEM 사진도를 나타낸 것이다.1 shows an SEM photograph of a gold thin film electrode formed on porous silicon.

도 2는 자기조립 단일층과 우레아제의 공유결합을 통한 고정화를 간략하게 도시한 것이다.2 is a simplified illustration of immobilization via covalent bonding of a self-assembled monolayer and urease.

도 3은 다공질 실리콘층 형성, Au 및 Ag 박막 증착, 자기조립 단일층 형성, 우레아제 고정화 등의 반도체 공정에 대한 전체 공정도를 도시하였다. FIG. 3 shows an overall process diagram for semiconductor processes such as porous silicon layer formation, Au and Ag thin film deposition, self-assembled monolayer formation, urease immobilization, and the like.

도 4는 각 전극의 형태와 전극의 형태에 따른 전류량을 시간대 전류법으로 측정한 결과를 도시한 것이다.Figure 4 shows the results of measuring the amount of current according to the shape of each electrode and the shape of the electrode by the time zone current method.

도 5는 인산염 완충액에서 금 평면 전극과 다공질 실리콘을 기질로 한 전극의 순환전압전류곡선을 나타낸 것이다.FIG. 5 shows a cyclic voltammogram of the gold plane electrode and the porous silicon substrate in phosphate buffer.

도 6은 인산염 완충액에서 금 평면 전극과 다공질 실리콘을 기질로 한 전극 상에 자기조립 단일층을 형성한 후 순환전압전류곡선을 나타낸 것이다.FIG. 6 shows a cyclic voltammogram after forming a self-assembled monolayer on a gold plane electrode and a porous silicon substrate in phosphate buffer.

도 7은 Urease/SAM/Au/PSi 층의 XPS 스펙트럼을 나타낸 것이다.7 shows the XPS spectrum of the Urease / SAM / Au / PSi layer.

도 8은 시간대 전류법에 의한 요소 농도에 따른 센서 전극의 감도를 나타낸 그래프이다.8 is a graph showing the sensitivity of the sensor electrode according to the urea concentration by the time zone current method.

도 9는 시간대 전류법에 의한 감도를 보정곡선으로 나타낸 것이다. 9 shows the sensitivity by the time zone current method as a correction curve.

본 발명은 바이오센서의 고정화막용 자기조립 단일층에 관한 것이다. 보다 상세하게는, 본 발명은 3-머캅토프로핀온산(3-mercaptopropionic acid)으로 된 자기조립 단일층의 전기화학적 특성을 고찰하여 바이오센서의 고정화막으로 사용하기 위한 자기조립 단일층에 관한 것이다.The present invention relates to a self-assembled monolayer for an immobilization film of a biosensor. More specifically, the present invention relates to a self-assembled monolayer for use as an immobilization film of a biosensor considering the electrochemical properties of a self-assembled monolayer of 3-mercaptopropionic acid. .

바이오센서는 효소, 생분자, 항체, 세포 등의 생물학적 재료를 인지 물질로 하여 측정하고자 하는 분석 대상(analyte) 과 높은 선택성으로 반응을 일으키게 하여 그 결과를 기존의 물리, 화학센서로 감지해내는 방식이므로 기존의 의료용 화학센서를 대체하는 추세이다. Biosensors use biomaterials such as enzymes, biomolecules, antibodies, and cells as cognitive substances to cause reactions with analytes to be measured with high selectivity and detect the results with existing physical and chemical sensors. Therefore, it is a trend to replace the conventional medical chemical sensor.

바이오센서가 기존의 센서와 구별되는 점은 생물질의 선택적인 반응 및 결합을 이용하는 것이므로 바이오센서의 실용화에 있어서 가장 중요한 것은 생체반응물질의 고정화 기술과 고정화막의 선택이라 할 수 있다. The difference between the biosensor and the conventional sensor is that it utilizes selective reaction and binding of biomaterials. Therefore, the most important thing in the practical use of the biosensor is the immobilization technology of the bioreactive substance and the selection of the immobilization membrane.

바이오센서의 고체 표면과 인지 물질 고정화 기술은 바이오물질의 구조적 변형 억제와 표면에서 고유한 역할을 수행하기 위한 공간 확보의 두 가지 관점에서 많은 연구가 진행되고 있다. 특히, 효소를 이용한 바이오센서는 고체 표면과 많은 결합을 할 수 있는 작용기로 인한 구조적 변형 및 입체장애에 의한 문제를 가지고 있다. 또한 흡착이나 entrapment 등의 물리, 화학적 방법을 이용한 고정화 기술은 효소가 가지는 활성자리의 배향을 일정한 방향으로 유지시키기 어려운 단점을 가지고 있다.Many studies have been conducted in terms of biosensor solid surface and cognitive substance immobilization technology in terms of suppressing structural deformation of biomaterials and securing a space to play a unique role on the surface. In particular, biosensors using enzymes have problems due to structural deformation and steric hindrance due to functional groups capable of many binding to solid surfaces. In addition, the immobilization technology using physical and chemical methods such as adsorption and entrapment has a disadvantage that it is difficult to maintain the orientation of the active site in the enzyme in a certain direction.

자기조립 단일층(self-assembled monolayer, SAM)은 분자간 강한 상호작용(van der Waals interaction)으로 인해 조밀하고 안정한 단일층을 쉽게 얻을 수 있어 바이오물질 고정화막 이외에도 부식 방지를 위한 보호막이나 반도체 공정의 패터닝을 위한 마스크로도 쓰인다. 최근에는 자기조립 단일층의 전기적 활성 특성을 이용한 전자 전달 메커니즘 연구와 트랜지스터의 게이트 물질로서 이용하기 위한 연구가 활발히 진행되고 있다.Self-assembled monolayers (SAMs) can easily obtain dense and stable monolayers due to van der Waals interactions, so that in addition to biomaterial immobilization films, protection or semiconductor processes can be patterned to prevent corrosion. It is also used as a mask for. Recently, researches on electron transfer mechanisms using the electrically active properties of self-assembled monolayers and researches for using them as gate materials of transistors have been actively conducted.

대표적인 바이오센서로서 일정전압법을 이용한 요소센서가 많이 연구되어 왔으나 낮은 농도에서의 감도 저하에 따른 단점으로 상용화에 이르지 못하고 있다.As a representative biosensor, urea sensors using a constant voltage method have been studied a lot, but they are not commercialized due to disadvantages due to a decrease in sensitivity at low concentrations.

따라서, 본 발명의 목적은 요소센서에 이용하기 위한 고정화막으로서 3-머캅토프로피온산으로된 자기조립 단일층을 제조하고 이의 전기화학적 특성을 조사하고자 한다.Accordingly, an object of the present invention is to prepare a self-assembled monolayer of 3-mercaptopropionic acid as an immobilization film for use in urea sensor and to investigate its electrochemical properties.

본 발명의 상기 목적은 반도체공정을 이용하여 평면 전극과 다공질 실리콘의 표면에 금 박막을 증착한 전극을 제작하고 자기조립 단일층을 금 전극 위에 형성시키고, 우레아제를 고정화시키기 위한 막으로 자기조립 단일층을 이용하고, 작업전극의 전기화학적인 특성을 관찰하고, 순환전압전류법으로 전극에 인가한 전압에 대한 전류 크기 변화를 고찰하고, 우레아제에 의해 분해된 요소의 양을 생성된 물의 전기분해로 발생하는 전류로 측정하는 간접적 방법인 시간대 일정전압법을 이용하 여 요소의 농도에 따른 감도를 측정함으로써 달성하였다. The object of the present invention is to fabricate an electrode in which a thin film of gold is deposited on the surface of a planar electrode and porous silicon using a semiconductor process, to form a self-assembled monolayer on the gold electrode, and to self-assemble a monolayer as a film for immobilizing urease. Observe the electrochemical characteristics of the working electrode, consider the change in current magnitude with respect to the voltage applied to the electrode by cyclic voltammetry, and generate the amount of urea decomposed by urease by electrolysis of the generated water. This was achieved by measuring sensitivity according to the concentration of urea using the time-domain constant voltage method, which is an indirect method of measuring current.

본 발명은 평면 전극과 다공질 실리콘의 표면에 금 박막을 증착한 전극을 제작하는 단계; 자기조립 단일층을 금 박막 상에 형성하여 전기화학적인 특성을 관찰하는 단계; 순환전압전류법을 통해 전극에 인가한 전압에 대한 전류 크기 변화를 고찰하는 단계; 시간대 일정전압법을 이용하여 요소의 농도에 따른 감도 측정단계로 구성된다.The present invention comprises the steps of fabricating an electrode deposited with a thin film of gold on the surface of the planar electrode and porous silicon; Forming a self-assembled monolayer on the gold thin film to observe electrochemical properties; Considering a current magnitude change with respect to the voltage applied to the electrode through the cyclic voltammetry; It is composed of sensitivity measurement step according to concentration of urea by using time constant voltage method.

이하 본 발명의 내용을 실시예를 통해 보다 상세히 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 설명하기 위한 것일 뿐 본 발명의 권리범위를 제한하는 것은 아니다.Hereinafter, the contents of the present invention will be described in more detail with reference to Examples. However, these examples are only for explaining the contents of the present invention and do not limit the scope of the present invention.

[실시예]EXAMPLE

실시예 1: 자기조립 단일층의 제조 및 고정Example 1 Preparation and Fixation of Self-Assembly Monolayers

요소센서의 우레아제 고정화막으로 이용하기 위한 자기조립 단일층은 다음의 반도체 공정에 따라 제조하였다.A self-assembled monolayer for use as the urease immobilization film of the urea sensor was manufactured according to the following semiconductor process.

제 1단계: 다공질 실리콘의 형성First step: formation of porous silicon

불순물로서 붕소가 도우핑된 비저항 14~17Ω·cm, (100), p-type 실리콘 웨이퍼를 RCA 표준공정으로 세척한 후 작업전극(산화전극)으로 하여 전기화학적 방법으로 다공질 실리콘 층을 형성시켰다. 이를 구체적으로 설명하자면,The boron-doped resistivity 14-17 Pa.cm, 100, p-type silicon wafer as an impurity was washed by RCA standard process, and then a porous silicon layer was formed by an electrochemical method using a working electrode (anode electrode). To explain this concretely,

RCA 세척공정은 RCA1 습식 세척공정과 RCA2 습식 세척공정 순으로 이루어진 다. RCA1 세척공정은 유기 오물을 제거하기 위한 것으로, NH3(25% 수용액)와 DI H2O를 1:5의 비율로 혼합한 다음 가열하여 H2O2를 첨가하고(NH3:H2O:H2O2=1:5:1), 10분 동안 웨이퍼를 침수시킨다. RCA2 세척공정은 금속이온을 제거하기 위한 것으로, HCl과 DI H2O를 1:6의 비율로 혼합하여 가열한 다음 H2O2를 첨가하고(HCl:DI H2O:H2O2=1:6:1), 10분 동안 웨이퍼를 침수시킨다. RCA2 세척공정은 특히 금속 오염이 없는 산화 및 확산로에 필요하다. RCA cleaning process consists of RCA1 wet cleaning process and RCA2 wet cleaning process. RCA1 washing process is to remove organic dirt. NH 3 (25% aqueous solution) and DI H 2 O are mixed at a ratio of 1: 5 and heated to add H 2 O 2 (NH 3 : H 2 O : H 2 O 2 = 1: 5: 1), the wafer is submerged for 10 minutes. RCA2 washing process is to remove metal ions, HCl and DI H 2 O is mixed in a 1: 6 ratio and heated, then H 2 O 2 is added (HCl: DI H 2 O: H 2 O 2 = 1: 6: 1), the wafer is submerged for 10 minutes. RCA2 cleaning processes are especially needed for oxidation and diffusion furnaces free of metal contamination.

상기 두 세척공정들은 웨이퍼상에 얇은 산화물을 남겨둔다. Si 식각 전에 웨이퍼를 1% HF 수용액에 잠깐 담궈 산화물을 벗겨낸다. 산화물(친수성) 표면에 물을 분사하고, 베어 Si(소수성) 표면에 방울지게 한다. 이렇게 함으로써 잔여 산화물의 여부를 확인할 수 있다.Both cleaning processes leave a thin oxide on the wafer. The wafer is briefly immersed in a 1% HF aqueous solution to remove the oxide prior to Si etching. Water is sprayed onto the oxide (hydrophilic) surface and drops onto the bare Si (hydrophobic) surface. In this way, it is possible to confirm the presence of residual oxides.

대부분의 IC 실험실에서는 웨이퍼를 미리 KOH에 노출시키는 공정을 금하고 있다. 왜냐하면 칼륨이 IC 제작 공정을 망칠 우려가 있기 때문이다. 비교적 덜 엄격한 환경에서는 RCA1과 RCA2를 이용한 웨이퍼 세척이 조심스럽게 허용되고 있다(After Madou, M.J., Fundamentals of microfabrication, CRC press, Florida, USA(2002)).Most IC laboratories forbid the exposure of wafers to KOH in advance. Potassium may ruin the IC fabrication process. In relatively less stringent environments, wafer cleaning with RCA1 and RCA2 is carefully allowed (After Madou, M.J., Fundamentals of microfabrication, CRC press, Florida, USA (2002)).

RCA 표준 세척공정 후, 다공질 실리콘 층을 형성하기 위해, 붕소가 도우핑되고 한쪽면이 연마된 비저항 14~17Ω·cm과 (100) orientation의 p-type 실리콘 웨이퍼를 시작물질로 사용하였다. 전기화학적 에칭을 통해 PSi 층을 실리콘 웨이퍼 상에 부착시켰다. 산화처리 시스템은 특별히 제작된 테프론 셀(Teflon cell), Pt(99.99%) 와이어 캐소드(wire cathode), 양극으로서 웨이퍼 그 자체와 전해질 용액으로 구성되어 있다. 전해질 용액의 조성은 부피비로 HF(49%, CMOS grade, J.T.Baker): C2H5OH(95%, Ep, Daejung): 2차 증류수=1:2:1이었으며, 고순도(99.99%)의 백금전극을 상대전극(환원전극)으로 사용하였다. 전류밀도는 -7mA/cm2로 유지하였다. 산화처리 시간은 5분 이내가 바람직하며, 300초 동안 실시하였다. PSi 기질을 400℃에서 고체 산소(dry oxygen)로 1시간 동안 산화시킨 다음, 15분 동안 같은 온도에서 질소로 어닐링 시켰다. 다음으로, AZ1512 광저항기(photoresister)는 400rpm에서 스핀 코터(spin coater)로 코팅시켰다.After the RCA standard cleaning process, to form a porous silicon layer, a p-type silicon wafer with a resistivity of 14-17 Ωcm and a (100) orientation boron-doped and polished on one side was used as a starting material. The PSi layer was deposited on the silicon wafer via electrochemical etching. The oxidation treatment system consists of a specially manufactured Teflon cell, Pt (99.99%) wire cathode, and the wafer itself as an anode and an electrolyte solution. The composition of the electrolyte solution was HF (49%, CMOS grade, JTBaker): C 2 H 5 OH (95%, Ep, Daejung): Secondary distilled water = 1: 2: 1 by volume and high purity (99.99%) of platinum. The electrode was used as a counter electrode (reduction electrode). The current density was maintained at -7 mA / cm 2 . The oxidation treatment time is preferably within 5 minutes, it was carried out for 300 seconds. The PSi substrate was oxidized with dry oxygen at 400 ° C. for 1 hour and then annealed with nitrogen at the same temperature for 15 minutes. Next, the AZ1512 photoresister was coated with a spin coater at 400 rpm.

상기와 같이, 전류밀도 일정 전류를 흘려주는 조건에서 다공질 실리콘 층을 형성시킨 결과 지름 2㎛, 깊이는 약 10㎛의 매우 균일한 다공질 실리콘 층이 형성되었다(도 1).As described above, as a result of forming the porous silicon layer under a condition of flowing a current density constant current, a very uniform porous silicon layer having a diameter of 2 μm and a depth of about 10 μm was formed (FIG. 1).

제 2단계: Au 및 Ag 박막 증착Second Step: Depositing Au and Ag Thin Films

상대전극(counter electrode)으로서 Ti와 Pt 박막을 RF-스퍼터링 방법으로 증착시켰다. 작업전극으로 사용하기 위한 Au 전극은 다공질 실리콘 층에 형성된 산화막과 Au 사이의 접착력 향상을 위하여 underlayer 로서 Ti를 약 200Å sputtering 하고 2,500Å의 Au를 evaporation하였다. 이때 진공 챔버의 베이스 압력은 2×105 mbar였으며, photoresist를 이용한 패터닝 공정을 고려하여 기판의 온도는 100℃ 이하로 유지하였다. Ti and Pt thin films were deposited by a RF-sputtering method as a counter electrode. In order to improve the adhesion between the oxide and Au formed on the porous silicon layer, the Au electrode was sputtered about 200Å of Ti and evaporated 2,500Å of Au. At this time, the base pressure of the vacuum chamber was 2 × 10 5 mbar, the temperature of the substrate was maintained at 100 ℃ or less in consideration of the patterning process using a photoresist.

작업전극의 패터닝은 AZ-1512 positive photoresist를 이용하였으며, 식각은 포타슘 아이오다이드 용액(potassium iodide solution)을 이용하였다. The working electrode was patterned using AZ-1512 positive photoresist, and the etching was performed using potassium iodide solution.

Pt 타겟(99.98% 순도, Heesung Metal Ltd.)은 진공 코터 시스템(vacuum coater system, Leybold, LS560, Korea basic science institute, Seoul branch)에 로딩하기에 적당한 9cm ×1.5mm이다. Pt target (99.98% purity, Heesung Metal Ltd.) is 9 cm x 1.5 mm suitable for loading into a vacuum coater system (Lecuold, LS560, Korea basic science institute, Seoul branch).

기준전극의 제작을 위한 Ag 박막의 증착은 underlayer로서 Ti를 약 200Å sputtering하고 2,000Å의 두께로 evaporation하였다. 금속 증착에 이어 약 400℃에서 2시간 동안 열처리 공정을 수행하였다. The deposition of Ag thin film for the fabrication of the reference electrode was sputtered with Ti at about 200 로서 and evaporated to 2,000Å. The metal deposition was followed by a heat treatment process at about 400 ° C. for 2 hours.

Ag 전극을 Ag/AgCl 기준전극으로 전환시키기 위해 전기화학적 방법을 사용하였다. 일명 "chloridation"이라 하는데, Ag 전극의 chloridation은 전위 범위를 0.6~1.2V로 하여 1 mmol/L NaCl 용액에서 전기화학적으로 수행하였다.An electrochemical method was used to convert the Ag electrode into an Ag / AgCl reference electrode. Also known as "chloridation", the chloridation of Ag electrode was performed electrochemically in 1 mmol / L NaCl solution with a potential range of 0.6 to 1.2V.

상기의 스퍼터링 조건은 아래 표 1에 요약하였다.The sputtering conditions are summarized in Table 1 below.

Ti, Pt 금속 증착을 위한 스퍼터링 조건Sputtering Conditions for Ti, Pt Metal Deposition 두께thickness Ti: 200Å, Pt: 2,000ÅTi: 200 Hz, Pt: 2,000 Hz 기질 온도Substrate temperature 100℃100 베이스 압력Bass pressure 2×10-5 mbar2 × 10 -5 mbar 기질-타겟 거리Temperament-Target Distance 40 mm40 mm 스퍼터링 압력Sputtering pressure 5×10-3 mbar5 × 10 -3 mbar 스퍼터링 전력Sputtering power 150 W150 W 스퍼터링 율Sputtering rate 5Å/sec5 ms / sec

제 3단계: 자기조립 단일층의 형성과 우레아제 고정화Step 3: Form Self-Assembly Monolayer and Immobilize Urease

실리콘 웨이퍼 상에 증착된 금 박막 전극은 piranha solution(30% H2O:H2SO4=1:3)을 이용하여 80℃에서 약 5분간 세척하였다. 3-머캅토프로피온산(2 mmol/L, ACROS) 용액에 약 12시간 담가 자기조립 단일층을 형성하였다. 에탄올을 이용하여 충분히 세척한 후 NHS(3 mmol/L, N-hydroxysulfosuccinimide, Sigma Chemical Co.)와 EDC(100 mmol/L, 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide, Sigma Chemical Co.)을 포함하는 0.1 mol/L 소듐 포스페이트 완충액(pH7.4)에 약 3시간 동안 반응시켰다. 인산염 완충액으로 세척한 후 0.1 mol/L 소듐 포스페이트 완충액(pH7.0) 용액에 희석시킨 5 mg/cm3 우레아제(EC 3.5.1.5, type III, from Jack Bean, Sigma Chemical Co.)용액에 24시간 정도 담가 실온에서 자기조립 단일층과 효소의 공유결합을 유도하였다. 그 후, 전극을 다음의 용액 순으로 완전히 세척하였다: 인산염 완충액(pH6.3), 1 mol/L NaCl, Milli Q Plus water 및 소듐 포스페이트 완충액(pH7.0).The gold thin film electrode deposited on the silicon wafer was washed for about 5 minutes at 80 ° C using piranha solution (30% H 2 O: H 2 SO 4 = 1: 3). Soak for about 12 hours in 3-mercaptopropionic acid (2 mmol / L, ACROS) solution to form a self-assembled monolayer. After washing sufficiently with ethanol, NHS (3 mmol / L, N-hydroxysulfosuccinimide, Sigma Chemical Co.) and EDC (100 mmol / L, 1-ethyl-3- [3- (dimethylamino) -propyl] carbodiimide, Sigma The reaction was performed in 0.1 mol / L sodium phosphate buffer (pH 7.4) containing Chemical Co.) for about 3 hours. 24 hours in 5 mg / cm 3 urease (EC 3.5.1.5, type III, from Jack Bean, Sigma Chemical Co.) solution, washed with phosphate buffer and diluted in 0.1 mol / L sodium phosphate buffer (pH 7.0) solution The degree of soaking induced covalent bonding of the self-assembled monolayer and the enzyme at room temperature. The electrodes were then washed thoroughly in the following solution order: phosphate buffer (pH6.3), 1 mol / L NaCl, Milli Q Plus water and sodium phosphate buffer (pH 7.0).

도 2에는 자기조립 단일층과 우레아제의 공유결합을 통한 고정화를 간략하게 도시하였다. 도 3은 상기의 반도체 공정에 대한 전체 공정도를 도시하였다. 2 briefly illustrates the immobilization through covalent bonding of a self-assembled monolayer and urease. 3 shows an overall process diagram for the above semiconductor process.

실험예 1: 전극 형태에 따른 체액에서의 전도도 비교Experimental Example 1: Comparison of Conductivity in Body Fluids According to Electrode Types

각 전극의 형태에 따른 체액에서의 전도도를 비교하기 위한 전극 구성을 도 4(a)와 같이 제작하여 특성을 비교하였다. The electrode configuration for comparing the conductivity in the body fluid according to the shape of each electrode was produced as shown in Figure 4 (a) to compare the characteristics.

도 4(b)는 각 전극의 형태에 따른 전류량을 시간대 전류법으로 측정한 결과로써, 전극의 계면의 길이에 관계없이 전극의 면적에 비례하는 것으로 나타났으며, 작업전극을 중심으로 하여 양쪽에 기준전극과 상대전극이 위치하는, 도 4(a)에서 제시한, 4개의 전극 패턴 중 type 1이 가장 우수한 감도 특성을 보였다. Figure 4 (b) is a result of measuring the amount of current according to the shape of each electrode by the time zone current method, it was found to be proportional to the area of the electrode irrespective of the length of the interface of the electrode, the working electrode on both sides Among the four electrode patterns shown in FIG. 4 (a) where the reference electrode and the counter electrode are located, type 1 showed the best sensitivity characteristic.

실험예 2: 작업전극의 전기화학적 특징 고찰Experimental Example 2: Investigation of Electrochemical Characteristics of Working Electrodes

Au 평면 전극과 다공질 실리콘을 기질로 하는 전극의 전류량을 순환전압전류법으로 고찰하였다. The amount of current of the Au flat electrode and the electrode made of porous silicon as a substrate was considered by cyclic voltammetry.

도 5에 나타난 바와 같이, 기질의 구조적 차이로 인한 표면적 증가와 전류량 증가가 비례함을 볼 수 있다. 평면 전극일 때 보다 약 10배 정도의 전류량의 증가가 관찰되었다.As shown in Figure 5, it can be seen that the increase in surface area and the amount of current due to the structural difference of the substrate is proportional. An increase of about 10 times the amount of current was observed when the flat electrode.

도 6은 금 박막 전극에 자기조립 단일층을 형성하여 얻은 순환전압전류 곡선으로써, 단일층을 형성한 후 전류량이 떨어지는 것으로 보아 절연체로서의 특성을 관찰할 수 있었다.FIG. 6 is a cyclic voltammogram obtained by forming a self-assembled monolayer on a gold thin film electrode, and since the amount of current is decreased after forming a single layer, the characteristics as an insulator can be observed.

실험예 3: 효소 고정화 막의 표면 분석Experimental Example 3: Surface Analysis of Enzyme Immobilized Membrane

효소가 고정화된 작업 전극의 표면을 X-ray photoelectron spectroscopy로 표면 분석하였다. 도7의 (a)는 C 1s 영역의 스펙트럼이며, 각각 탄소와 산소의 이중결합, 탄소-산소 단일결합, 탄소-탄소 단일결합을 나타내는 피크를 관찰할 수 있다. (b)는 O 1s 영역의 스펙트럼으로 각각 탄소-산소 이중결합, 탄소-산소 단일결합에 의한 피크이다. (c)는 N 1s 영역의 스펙트럼으로 폴리펩티드 체인의 아미드 결합에 대한 질소의 결합세기를 나타낸다. XPS 스펙트럼으로 우레아제와 자기조립 단일층이 공유결합을 이루고 있음을 알 수 있다. The surface of the enzyme-immobilized working electrode was surface analyzed by X-ray photoelectron spectroscopy. Fig. 7A is a spectrum of the C 1s region, where peaks representing carbon-oxygen double bonds, carbon-oxygen single bonds, and carbon-carbon single bonds can be observed. (b) is a peak of a carbon-oxygen double bond and a carbon-oxygen single bond in the spectrum of the O 1s region. (c) shows the binding strength of nitrogen to the amide bond of the polypeptide chain in the spectrum of the N 1s region. XPS spectra indicate that urease and self-assembled monolayers are covalent.

실험예 4: 감도 측정Experimental Example 4: Sensitivity Measurement

일정 전압(600mV) 하에서 시간에 따른 세로토닌의 농도에 따른 전류의 변화를 조사함으로써 시간대 전류법에 의한 요소 농도에 따른 센서 전극의 감도를 조사하였다. The sensitivity of the sensor electrode according to urea concentration by time-phase ammeter was investigated by investigating the change of current with the concentration of serotonin over time under constant voltage (600mV).

도 8에 나타난 바와 같이, 요소 농도의 증가에 따라 확산한계전류 또한 증가함을 알 수 있다. 특히 감도의 90%가 되는 지점의 시간이 약 20초 이내로써 빠른 반응 시간을 보여주었다. 이때, 전해질 용액의 조성은 KCl 0.1mol/L, PBS 1mmol/L이며, 수소이온 농도 7.4, 인가 전압은 600mV로 하였다.As shown in Figure 8, it can be seen that the diffusion limit current also increases with increasing urea concentration. In particular, the time of 90% of the sensitivity was about 20 seconds, showing a fast response time. At this time, the composition of the electrolyte solution was KCl 0.1mol / L, PBS 1mmol / L, hydrogen ion concentration 7.4, the applied voltage was 600mV.

도 9는 시간대 전류법에 의한 감도를 보정곡선으로 나타낸 것이다. 요소의 농도에 따라 확산한계전류가 선형적으로 증가함을 알 수 있다. 요소는 0μmol/L~100mmol/L의 범위에서 각각 농도별로 측정되었으며, Urease/SAM/Au/Porous Si(device 1)에서의 감도는 11.21 μA/mMcm2로 측정되었고, Urease/SAM/Au/Planar Si(device 2)에서의 감도는 4.39μA/mMcm2로 측정되었다. device 1의 경우 device 2 보다 약 3배에 가까운 감도의 증가를 가져오는 것을 볼 수 있었다.9 shows the sensitivity by the time zone current method as a correction curve. It can be seen that the diffusion limit current increases linearly with the concentration of urea. Urea was measured by concentration in the range of 0μmol / L ~ 100mmol / L, and the sensitivity in Urease / SAM / Au / Porous Si (device 1) was 11.21 μA / mMcm 2 , and Urease / SAM / Au / Planar The sensitivity at Si (device 2) was measured to 4.39 μA / mMcm 2 . In case of device 1, the sensitivity is increased by about 3 times than device 2.

상기 결과를 종합하여 보면, 반도체 공정을 이용하여 금 박막 전극을 제작하고 자기조립 단일층을 금 전극 위에 형성시키고, 자기조립 단일층은 우레아제를 고정화시키기 위한 막으로 이용한 결과, 전자 터널링 효과에 의해 20초 이내의 빠른 반응시간을 보였다. 각각의 기질을 다공질 실리콘과 평면 전극으로 달리하였을 때 표면적의 증가 효과에 의한 감도가 약 3배 증가하는 것을 보였다. 바이오센서에 이용되는 자기조립 단일층은 취급의 용이성과 단백질과 고체사이의 안정한 결합을 이루며 균일한 분자 박막을 이룰 수 있는 장점을 가지고 있다. 그러나, 결합할 수 있는 작용기가 많은 단백질의 경우 구조적 변형으로 단백질의 기능 상실 및 조밀한 쌓임으로 인한 입체장애효과 등의 단점을 보완하는 연구가 수행되어야 할 것이다.In summary, as a result of fabricating a gold thin film electrode using a semiconductor process and forming a self-assembled monolayer on the gold electrode, the self-assembled monolayer was used as a film for immobilizing urease. Fast response time was shown within seconds. When the substrates were made of porous silicon and planar electrodes, the sensitivity was increased by about three times due to the effect of increasing the surface area. Self-assembled monolayers used in biosensors have the advantage of achieving uniform molecular thin films with ease of handling and stable bonding between proteins and solids. However, in the case of a protein having many functional groups that can be bound, a study should be conducted to compensate for the disadvantages such as steric hindrance effect due to loss of function and dense accumulation of proteins due to structural modification.

상기 실시예와 실험예를 통해 살펴본 바와 같이, 본 발명은 바이오센서의 고정화막용 자기조립 단일층에 관한 것으로, 3-머캅토프로피온산을 이용한 자기조립 단일층은 직접적인 전자전달로 인하여 낮은 요소 농도에서 뛰어난 감도와 빠른 반응 시간을 나타내며, 특히, 다공질 실리콘을 기질로 사용한 경우 평면 전극보다 약 3배 정도 감도가 증가하는 효과가 있다. 따라서, 본 발명은 의약산업상 매우 유용한 발명인 것이다.As described through the above examples and experimental examples, the present invention relates to a self-assembled monolayer for an immobilized membrane of a biosensor, and a self-assembled monolayer using 3-mercaptopropionic acid is excellent at low urea concentration due to direct electron transfer. Sensitivity and fast reaction time are exhibited. In particular, when porous silicon is used as a substrate, the sensitivity is increased by about three times than that of the planar electrode. Therefore, the present invention is a very useful invention in the pharmaceutical industry.

Claims (2)

바이오센서의 고정화막으로 사용되며, 3-머캅토프로피온산(3-mercaptopropionic acid)으로 제조됨을 특징으로 하는 자기조립 단일층.Self-assembled monolayer, which is used as an immobilization film of a biosensor and is made of 3-mercaptopropionic acid. 제1항 기재의 자기조립 단일층을 고정화막으로 포함함을 특징으로 하는 요소센서.An element sensor comprising a self-assembled monolayer according to claim 1 as an immobilization film.
KR1020050051645A 2005-06-15 2005-06-15 A method for preparing a urease immobilization layer for biosensor KR100726963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050051645A KR100726963B1 (en) 2005-06-15 2005-06-15 A method for preparing a urease immobilization layer for biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050051645A KR100726963B1 (en) 2005-06-15 2005-06-15 A method for preparing a urease immobilization layer for biosensor

Publications (2)

Publication Number Publication Date
KR20060131311A true KR20060131311A (en) 2006-12-20
KR100726963B1 KR100726963B1 (en) 2007-06-14

Family

ID=37811395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050051645A KR100726963B1 (en) 2005-06-15 2005-06-15 A method for preparing a urease immobilization layer for biosensor

Country Status (1)

Country Link
KR (1) KR100726963B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534058A (en) * 2019-04-05 2021-03-19 仪器实验室公司 Urea biosensor and stabilization of urea biosensor at room temperature

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964202B1 (en) 2008-02-19 2010-06-17 재단법인대구경북과학기술원 FET-type Biosensor using titanum thin layer and method thereof
KR101140356B1 (en) * 2009-03-27 2012-05-03 고려대학교 산학협력단 Electrochemical hydrogen peroxide biosensor based on Ag nanowires modified electrode and the preparation method for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL124903A0 (en) 1998-06-15 1999-01-26 Bauer Alan Josef An enzyme biosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534058A (en) * 2019-04-05 2021-03-19 仪器实验室公司 Urea biosensor and stabilization of urea biosensor at room temperature

Also Published As

Publication number Publication date
KR100726963B1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US5766934A (en) Chemical and biological sensors having electroactive polymer thin films attached to microfabricated devices and possessing immobilized indicator moieties
KR101188172B1 (en) Electrochemical biosensor and method of fabricating the same
Dey et al. Mediator free highly sensitive polyaniline–gold hybrid nanocomposite based immunosensor for prostate-specific antigen (PSA) detection
Mozaffari et al. Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer
Song et al. Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution
Ikariyama et al. Electrochemical fabrication of amperometric microenzyme sensor
Nam et al. Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions
KR101203898B1 (en) Glucose biosensor based on porous conducting polymer nanorods on an electrode and method for preparing the same
Ali et al. Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose
Rahman Fabrication of mediator-free glutamate sensors based on glutamate oxidase using smart micro-devices
Veloso et al. Electrochemical biosensors for medical applications
Arkusz et al. The effect of phosphates and fluorides, included in TiO2 nanotube layers on the performance of hydrogen peroxide detection
Zhang et al. Gold Nanoparticle‐Based Mediatorless Biosensor Prepared on Microporous Electrode
KR100726963B1 (en) A method for preparing a urease immobilization layer for biosensor
Rahman Fabrication of L-lactate biosensor based on redox species mediated lactate oxidase using micro-device
Dhull et al. Development of nanostructured nickel oxide thin film matrix by rf sputtering technique for the realization of efficient bioelectrode
Gezahagne et al. Suppression of impedimetric baseline drift for stable biosensing
KR102261178B1 (en) Flexible biosensor for wearable device and Preparation method therof
Arora et al. Reagentless uric acid biosensor based on Ni microdiscs-loaded NiO thin film matrix
Rahman et al. Selective choline biosensors based on choline oxidase co-immobilized into self-assembled monolayers on micro-chips at low potential
Tanaka et al. Fabrication of Biosensing Interface with Monolayers
Yun et al. Highly sensitive and renewable amperometric urea sensor based on self-assembled monolayer using porous silicon substrate
Lee et al. Ascorbic acid sensor using a PVA/laccase-Au-NPs/Pt electrode
KR100729147B1 (en) High sensitive bio-sensor and complex bio-sensor therewith
CN113820378A (en) GNFs/CC (GNFs/CC) and glucose sensor and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20100531

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee