KR20060120390A - Osacr gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis - Google Patents

Osacr gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis Download PDF

Info

Publication number
KR20060120390A
KR20060120390A KR1020050042212A KR20050042212A KR20060120390A KR 20060120390 A KR20060120390 A KR 20060120390A KR 1020050042212 A KR1020050042212 A KR 1020050042212A KR 20050042212 A KR20050042212 A KR 20050042212A KR 20060120390 A KR20060120390 A KR 20060120390A
Authority
KR
South Korea
Prior art keywords
oscar
risk
bmd
bone
dna
Prior art date
Application number
KR1020050042212A
Other languages
Korean (ko)
Inventor
신형두
김신윤
박의균
김기수
고정민
Original Assignee
주식회사 에스엔피 제네틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엔피 제네틱스 filed Critical 주식회사 에스엔피 제네틱스
Priority to KR1020050042212A priority Critical patent/KR20060120390A/en
Publication of KR20060120390A publication Critical patent/KR20060120390A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

OSCAR(osteoclast-associated receptor) gene polymorphisms are provided to predict and diagnose a risk of pathogenesis of osteoporosis by measuring polymorphisms in OSCAR associated with a risk of bone mineral density and spine fracture. The OSCAR gene polymorphisms for predicting and diagnosing the risk of pathogenesis of osteoporosis are provided, wherein the OSCAR gene polymorphisms include OSCAR-2322A>G polymorphism; and the OSCAR-2322A>G polymorphism is associated with the risk of bone mineral density and spine fracture.

Description

골다공증 발생 위험의 예측 및 진단을 위한 OSCAR 유전자 다형성 {OSACR gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis}OSACR gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis}

도 1a는 염색체 19q13.4 상의 OSCAR에서 확인된 다형성 (참조 게놈 서열 NT_011109.15, 공개일: 2004년 2월)을 도시한 것이다. 코딩 엑손을 흑색 블록으로, 5' 및 3' UTR을 백색 블록으로 표시하였다. 번역 개시 부위의 제 1 염기를 뉴클레오티드 +1로 표기하였다. *는 거대 군집에서 유전자형분석된 다형성들을 가르킨다 (n = 560). 대규모 유전자형 분석되지 않은 다형성들의 빈도는 서열 데이터에 기초하였다 (n = 24).1A depicts polymorphisms identified in OSCAR on chromosome 19q13.4 (reference genomic sequence NT_011109.15, published February 2004). Coding exons are shown as black blocks and 5 'and 3' UTRs as white blocks. The first base of the translation initiation site was designated as nucleotide +1. * Indicates polymorphisms that were genotyped in large populations (n = 560). The frequency of large non-genotype polymorphisms was based on sequence data (n = 24).

도 1b는 OSCAR의 해플로타입을 나타낸 것이다. 0.04를 초과하는 빈도를 가진 해플로타입만을 제시하였고 나머지 (1)는 희귀 해플로타입을 포함한다: GCAGC, ACTGA, AAAGC, ACAGC, GCATC, ACTTA, GAAGA 및 ACTTC.Figure 1b shows the haplotype of OSCAR. Only haplotypes with frequencies above 0.04 were presented and the remaining (1) included rare haplotypes: GCAGC, ACTGA, AAAGC, ACAGC, GCATC, ACTTA, GAAGA and ACTTC.

도 1c는 OSCAR 다형성들 사이의 연관 불평형 계수 (|D'| 및 r 2 )를 나타낸 것이다.1C shows the correlational unbalance coefficients (| D '| and r 2 ) between OSCAR polymorphisms.

도 2는 OSCAR-2322 다형성의 각 유전자형에 대한 요추 (L2-L4), 대퇴 경부, 전체 대퇴부, 대퇴 샤프트, 대퇴돌기 및 워드 삼각에서의 골밀도 (BMD)를 도시한 것이다. BMD를 2가지 기기 (Lunar Expert XL 및 Hologic QDR 4500-A)를 사용하여 측정하였다. 대퇴 샤프트에서의 BMD 데이터는 호로직 (Hologic) 기기가 상기 부위에서 BMD를 측정하지 못했기 때문에 129명 여성에서는 입수할 수 없었다. 다중 회귀 분석에 대한 공동우성 모델에서의 P-값을 나타내었다. 피검자의 수는 상기 막대에 기재하였다.FIG. 2 shows bone density (BMD) at the lumbar spine (L2-L4), femoral neck, total femoral, femoral shaft, femur, and word triangle for each genotype of OSCAR-2322 polymorphism. BMD was measured using two instruments (Lunar Expert XL and Hologic QDR 4500-A). BMD data on the femoral shaft was not available in 129 women because the Hologic instrument could not measure BMD at this site. P-values in the co-dominance model for multiple regression analysis are shown. The number of subjects is described in the bar.

도 3a 내지 도 3h는 OSCAR 내의 다형성들의 서열 크로마토그램을 도시한 것이다. 적색 박스는 다형성 부위를 나타낸다.3A-3H show sequence chromatograms of polymorphisms in OSCAR. Red boxes indicate polymorphic sites.

1. Arden, N. K. and T. D. Spector (1997). "Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study." J Bone Miner Res 12(12): 2076-81.Arden, N. K. and T. D. Spector (1997). "Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study." J Bone Miner Res 12 (12): 2076-81.

2. Arko, B., J. Prezelj, et al. (2002). "Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis." J Clin Endocrinol Metab 87(9): 4080-4.2. Arko, B., J. Prezelj, et al. (2002). "Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis." J Clin Endocrinol Metab 87 (9): 4080-4.

3. Arron, J. R. and Y. Choi (2000). "Bone versus immune system." Nature 408(6812): 535-6.3. Arron, J. R. and Y. Choi (2000). "Bone versus immune system." Nature 408 (6812): 535-6.

4. Baron, R. (2004). "Arming the osteoclast." Nat Med 10(5): 458-60.4. Baron, R. (2004). "Arming the osteoclast." Nat Med 10 (5): 458-60.

5. Biswas, R. N., D. N. Baker, et al. (2004). "Polyphosphoinositides- dependent regulation of the osteoclast actin cytoskeleton and bone resorption." BMC Cell Biol 5(1): 19.5. Biswas, R. N., D. N. Baker, et al. (2004). "Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption." BMC Cell Biol 5 (1): 19.

6. Boyle, W. J., W. S. Simonet, et al. (2003). "Osteoclast differentiation and activation." Nature 423(6937): 337-42.6. Boyle, W. J., W. S. Simonet, et al. (2003). "Osteoclast differentiation and activation." Nature 423 (6937): 337-42.

7. Deng, H. W., W. M. Chen, et al. (2000). "Genetic determination of Colles' fracture and differential bone mass in women with and without Colles' fracture." J Bone Miner Res 15(7): 1243-52.7. Deng, H. W., W. M. Chen, et al. (2000). "Genetic determination of Colles 'fracture and differential bone mass in women with and without Colles' fracture." J Bone Miner Res 15 (7): 1243-52.

8. Eisman, J. A. (1999). "Genetics of osteoporosis." Endocr Rev 20(6): 788-804.8. Eisman, J. A. (1999). "Genetics of osteoporosis." Endocr Rev 20 (6): 788-804.

9. Garcia-Giralt, N., X. Nogues, et al. (2002). "Two new single-nucleotide polymorphisms in the COL1A1 upstream regulatory region and their relationship to bone mineral density." J Bone Miner Res 17(3): 384-93.9. Garcia-Giralt, N., X. Nogues, et al. (2002). "Two new single-nucleotide polymorphisms in the COL1A1 upstream regulatory region and their relationship to bone mineral density." J Bone Miner Res 17 (3): 384-93.

10. Hedrick, P. and S. Kumar (2001). "Mutation and linkage disequilibrium in human mtDNA." Eur J Hum Genet 9(12): 969-72.10. Hedrick, P. and S. Kumar (2001). "Mutation and linkage disequilibrium in human mtDNA." Eur J Hum Genet 9 (12): 969-72.

11. Hedrick, P. W. (1987). "Gametic disequilibrium measures: proceed with caution." Genetics 117(2): 331-41.Hedrick, P. W. (1987). "Gametic disequilibrium measures: proceed with caution." Genetics 117 (2): 331-41.

12. Kanis, J. A., L. J. Melton, 3rd, et al. (1994). "The diagnosis of osteoporosis." J Bone Miner Res 9(8): 1137-41.12. Kanis, J. A., L. J. Melton, 3rd, et al. (1994). "The diagnosis of osteoporosis." J Bone Miner Res 9 (8): 1137-41.

13. Karst, M., G. Gorny, et al. (2004). "Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation." J Cell Physiol 200(1): 99-106.13. Karst, M., G. Gorny, et al. (2004). "Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation." J Cell Physiol 200 (1): 99-106.

14. Keen, R. W., K. L. Woodford-Richens, et al. (1998). "Allelic variation at the interleukin-1 receptor antagonist gene is associated with early postmenopausal bone loss at the spine." Bone 23(4): 367-71.14. Keen, R. W., K. L. Woodford-Richens, et al. (1998). "Allelic variation at the interleukin-1 receptor antagonist gene is associated with early postmenopausal bone loss at the spine." Bone 23 (4): 367-71.

15. Kim, N., M. Takami, et al. (2002). "A novel member of the leukocyte receptor complex regulates osteoclast differentiation." J Exp Med 195(2): 201-9.15. Kim, N., M. Takami, et al. (2002). "A novel member of the leukocyte receptor complex regulates osteoclast differentiation." J Exp Med 195 (2): 201-9.

16. Kobayashi, S., S. Inoue, et al. (1996). "Association of bone mineral density with polymorphism of the estrogen receptor gene." J Bone Miner Res 11(3): 306-11.16. Kobayashi, S., S. Inoue, et al. (1996). "Association of bone mineral density with polymorphism of the estrogen receptor gene." J Bone Miner Res 11 (3): 306-11.

17. Lander, E. S. and N. J. Schork (1994). "Genetic dissection of complex traits." Science 265(5181): 2037-48.17. Lander, E. S. and N. J. Schork (1994). "Genetic dissection of complex traits." Science 265 (5181): 2037-48.

18. Livak, K. J. (1999). "Allelic discrimination using fluorogenic probes and the 5' nuclease assay." Genet Anal 14(5-6): 143-9.18. Livak, K. J. (1999). "Allelic discrimination using fluorogenic probes and the 5 'nuclease assay." Genet Anal 14 (5-6): 143-9.

19. Lorenzo, J. (2000). "Interactions between immune and bone cells: new insights with many remaining questions." J Clin Invest 106(6): 749-52.19. Lorenzo, J. (2000). "Interactions between immune and bone cells: new insights with many remaining questions." J Clin Invest 106 (6): 749-52.

20. MacGregor, A., H. Snieder, et al. (2000). "Genetic factors and osteoporotic fractures in elderly people. Twin data support genetic contribution to risk of fracture." Bmj 320(7250): 1669-70; author reply 1670-1.20. MacGregor, A., H. Snieder, et al. (2000). "Genetic factors and osteoporotic fractures in elderly people.Twin data support genetic contribution to risk of fracture." Bmj 320 (7250): 1669-70; author reply 1670-1.

21. Martin, A. M., J. K. Kulski, et al. (2002). "Leukocyte Ig-like receptor complex (LRC) in mice and men." Trends Immunol 23(2): 81-8.21. Martin, A. M., J. K. Kulski, et al. (2002). "Leukocyte Ig-like receptor complex (LRC) in mice and men." Trends Immunol 23 (2): 81-8.

22. Merck, E., C. Gaillard, et al. (2004). "OSCAR is an FcR{gamma}-associated receptor expressed by myeloid cells, involved in antigen presentation and activation of human dendritic cells." Blood: Epub ahead of print.22. Merck, E., C. Gaillard, et al. (2004). "OSCAR is an FcR {gamma} -associated receptor expressed by myeloid cells, involved in antigen presentation and activation of human dendritic cells." Blood: Epub ahead of print.

23. Merrell, K., J. C. Gonzales, et al. (1995). "Genetic analyses of tattered, an X-linked dominant, developmental mouse mutation." Mamm Genome 6(4): 291-4.23. Merrell, K., J. C. Gonzales, et al. (1995). "Genetic analyses of tattered, an X-linked dominant, developmental mouse mutation." Mamm Genome 6 (4): 291-4.

24. Morrison, N. A., J. C. Qi, et al. (1994). "Prediction of bone density from vitamin D receptor alleles." Nature 367(6460): 284-7.24. Morrison, N. A., J. C. Qi, et al. (1994). "Prediction of bone density from vitamin D receptor alleles." Nature 367 (6460): 284-7.

25. Morrison, N. A., R. Yeoman, et al. (1992). "Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin." Proc Natl Acad Sci U S A 89(15): 6665-9.25. Morrison, N. A., R. Yeoman, et al. (1992). "Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin." Proc Natl Acad Sci U S A 89 (15): 6665-9.

26. Motyckova, G., K. N. Weilbaecher, et al. (2001). "Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family." Proc Natl Acad Sci U S A 98(10): 5798-803.26. Motyckova, G., K. N. Weilbaecher, et al. (2001). "Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family." Proc Natl Acad Sci U S A 98 (10): 5798-803.

27. Muller, B. (2002). "Cytokine imbalance in non-immunological chronic disease." Cytokine 18(6): 334-9.27. Muller, B. (2002). "Cytokine imbalance in non-immunological chronic disease." Cytokine 18 (6): 334-9.

28. Munro Peacock, C. H. T., Michael J. Econs and Tatiana Foroud (2002). "Genetics of Osteoporosis." Endocrine Reviews 23(3): 303-326.28. Munro Peacock, C. H. T., Michael J. Econs and Tatiana Foroud (2002). "Genetics of Osteoporosis." Endocrine Reviews 23 (3): 303-326.

29. Murray, R. E., F. McGuigan, et al. (1997). "Polymorphisms of the interleukin-6 gene are associated with bone mineral density." Bone 21(1): 89-92.29. Murray, R. E., F. McGuigan, et al. (1997). "Polymorphisms of the interleukin-6 gene are associated with bone mineral density." Bone 21 (1): 89-92.

30. Slemenda, C. W., J. C. Christian, et al. (1991). "Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates." J Bone Miner Res 6(6): 561-7.30. Slemenda, C. W., J. C. Christian, et al. (1991). "Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates." J Bone Miner Res 6 (6): 561-7.

31. So, H., J. Rho, et al. (2003). "Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression." J Biol Chem 278(26): 24209-16.31. So, H., J. Rho, et al. (2003). "Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression." J Biol Chem 278 (26): 24209-16.

32. Stephens, M., N. J. Smith, et al. (2001). "A new statistical method for haplotype reconstruction from population data." Am J Hum Genet 68(4): 978-89.32. Stephens, M., N. J. Smith, et al. (2001). "A new statistical method for haplotype reconstruction from population data." Am J Hum Genet 68 (4): 978-89.

33. Stewart, T. L. and S. H. Ralston (2000). "Role of genetic factors in the pathogenesis of osteoporosis." J Endocrinol 166(2): 235-45.33. Stewart, T. L. and S. H. Ralston (2000). "Role of genetic factors in the pathogenesis of osteoporosis." J Endocrinol 166 (2): 235-45.

34. Teitelbaum, S. L. (2000). "Bone resorption by osteoclasts." Science 289(5484): 1504-8.34. Teitelbaum, S. L. (2000). "Bone resorption by osteoclasts." Science 289 (5484): 1504-8.

35. Teitelbaum, S. L. and F. P. Ross (2003). "Genetic regulation of osteoclast development and function." Nat Rev Genet 4(8): 638-49.35. Teitelbaum, S. L. and F. P. Ross (2003). "Genetic regulation of osteoclast development and function." Nat Rev Genet 4 (8): 638-49.

36. Walsh, M. C. and Y. Choi (2003). "Biology of the TRANCE axis." Cytokine Growth Factor Rev 14(3-4): 251-63.36. Walsh, M. C. and Y. Choi (2003). "Biology of the TRANCE axis." Cytokine Growth Factor Rev 14 (3-4): 251-63.

37. Weeks, D. E. and G. M. Lathrop (1995). "Polygenic disease: methods for mapping complex disease traits." Trends Genet 11(12): 513-9.37. Weeks, D. E. and G. M. Lathrop (1995). "Polygenic disease: methods for mapping complex disease traits." Trends Genet 11 (12): 513-9.

38. Yamada, Y., A. Miyauchi, et al. (2001). "Association of the C-509-->T polymorphism, alone of in combination with the T869-->C polymorphism, of the transforming growth factor-beta1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women." J Mol Med 79(2-3): 149-56.38. Yamada, Y., A. Miyauchi, et al. (2001). "Association of the C-509-> T polymorphism, alone of in combination with the T869-> C polymorphism, of the transforming growth factor-beta1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women." J Mol Med 79 (2-3): 149-56.

기술분야Technical Field

본 발명은 질환과 관련된 유전자의 다형성에 관한 것이다. 상세하게는, 본 발명은 골다공증의 발생 위험을 예측, 진단 또는 예측 및 진단하기 위한 유전자의 다형성에 관한 것으로서, 골밀도 (BMD) 및 척추 골절의 위험성에 관여하는 유전자인 OSCAR 내의 다형성을 측정함으로써 골밀도 및 척추 골절의 위험성을 예측, 진단 또는 예측 및 진단하는 방법에 관한 것이다.The present invention relates to polymorphism of genes associated with disease. Specifically, the present invention relates to polymorphism of genes for predicting, diagnosing or predicting and diagnosing the risk of osteoporosis, and to measuring bone density and polymorphism in OSCAR, a gene involved in the risk of bone mineral density (BMD) and spinal fractures. A method of predicting, diagnosing or predicting and diagnosing a risk of vertebral fractures.

종래기술Prior art

골다공증은 낮은 골밀도 (BMD) 및 증가된 골절 위험성을 특징으로 하는 보편 적인 대사성 골질환이다 [상기 문헌: 28]. 복합적인 환경적 위험 인자가 발병과 관련있지만, 유전 인자가 또한 관련되어 있으며 쌍둥이 및 가족 연구에 기초한 BMD에서의 변이의 약 50 내지 80%가 이에 해당하는 것으로 밝혀졌다 [상기 문헌: 1, 8, 12, 17, 30, 33 및 37]. 따라서, BMD의 조절인자로서 작용하는 유전자를 확인 (동정)하는 것이 중요하며, 이는 골다공증에 대한 위험성에 있는 피검자를 확인하고 보호 치료하기 위해 이용될 수 있을 것이다. 지금까지, 비타민 D 수용체 (VDR), 에스트로겐 수용체 (ER), 전환 성장 인자 베타1 (TGFB1), 인터루킨-1 수용체 길항제 (IL1RA), 인터루킨 6 (IL6), 콜라겐 1A1 (COL1A1), 및 오스테오프로테게린 (OPG)와 같은 몇몇 유전자 내 다형성들이 골량 (bone mass)과 연관성을 갖는 유전자로서 보고되었다 [상기 문헌: 2, 9, 14, 16, 24, 25, 29 및 38].Osteoporosis is a common metabolic bone disease characterized by low bone mineral density (BMD) and increased fracture risk [28]. Although complex environmental risk factors are associated with the onset, genetic factors are also involved and have been found to correspond to about 50-80% of the variations in BMD based on twin and family studies [1, 8, 12, 17, 30, 33 and 37]. Therefore, it is important to identify (identify) a gene that acts as a regulator of BMD, which could be used to identify and protect the subject at risk for osteoporosis. To date, vitamin D receptor (VDR), estrogen receptor (ER), transforming growth factor beta 1 (TGFB1), interleukin-1 receptor antagonist (IL1RA), interleukin 6 (IL6), collagen 1A1 (COL1A1), and osteoprote Polymorphisms in several genes, such as gerin (OPG), have been reported as genes associated with bone mass (2, 9, 14, 16, 24, 25, 29 and 38, supra).

뼈를 재흡수할 수 있는 유일한 세포인 파골세포는 뼈 항상성을 위해 필수적이다. 이들은 대식세포 및 수상세포를 야기시키는 단핵세포-대식세포 계통의 조혈 세포로부터 유래된다 [상기 문헌: 4, 5, 13 및 34]. 조골세포/스트로마 세포 (stromal cells)에 의해 생성된 NF-κB 리간드의 수용체 활성인자 및 대식세포-콜로니 (colony) 자극 인자는 파골세포 분화를 유지하는 필수 인자이다 [상기 문헌: 6 및 35]. 최근에, 백혈구 수용체 복합체의 신규한 일원인 파골세포-관련 수용체 (OSCAR)는 파골세포형성의 조절인자로서 확인되었다. 사람 OSCAR (MIM 606862)은 염색체 19q13.4 상의 백혈구 수용체 복합체 (LRC)에 대해 매핑되었다 [상기 문헌: 21]. 이것은 골수양 계통의 세포에서 폭넓게 발현되고, CD14+ 단핵세포의 수상 세포로의 분화 동안 계속 발현되어 성숙 이후 유지된다 [상기 문헌: 22]. 골수 전구 세포로부터 파골세포의 형성은 골-재흡수 인자의 존재하에 조골세포와의 공배양에서 가용성 형태의 OSCAR의 첨가에 의해 실질적으로 저해되며 [상기 문헌: 15 및 31], 이는 파골세포 분화에서 OSCAR의 결정적인 역할을 시사한다. 따라서, OSCAR 유전자는 BMD의 조절 및 골다공증의 위험성에 대한 잠재적인 후보로 생각될 수 있다.Osteoclasts, the only cells that can reabsorb bone, are essential for bone homeostasis. They are derived from hematopoietic cells of the monocyte-macrophage lineage that give rise to macrophages and dendritic cells (supra: 4, 5, 13 and 34, supra). Receptor activators and macrophage-colony stimulating factors of NF-κB ligands produced by osteoblasts / stromal cells are essential factors for maintaining osteoclast differentiation [6 and 35]. Recently, osteoclast-associated receptor (OSCAR), a novel member of the leukocyte receptor complex, has been identified as a regulator of osteoclastogenesis. Human OSCAR (MIM 606862) was mapped to leukocyte receptor complex (LRC) on chromosome 19q13.4 [supra: 21]. It is widely expressed in cells of myeloid lineage and continues to be expressed during differentiation of CD14 + monocytes into dendritic cells and maintained after maturation [22]. The formation of osteoclasts from bone marrow progenitor cells is substantially inhibited by the addition of soluble forms of OSCAR in coculture with osteoblasts in the presence of bone-resorption factors [15 and 31], which is responsible for osteoclast differentiation. It suggests the crucial role of OSCAR. Thus, the OSCAR gene can be thought of as a potential candidate for the regulation of BMD and the risk of osteoporosis.

골 대사에서 OSCAR의 중요한 역할에도 불구하고, 골량의 결정에 대한 이의 유전적 효과는 지금까지 조사된 바가 없었다. 본 발명에서, 본 발명자들은 한국인 폐경후 여성에서 다형성을 검출하기 위해 직접적인 서열분석에 의한 유전자의 연장 스크리닝을 수행하고, BMD 및 방사선적 척추 골절의 위험성과의 연관성을 분석하였고, 이를 이용한 골다공증의 발생 위험을 예측, 진단 또는 예측 및 진단하는 방법을 발명함으로써 본 발명을 완성하였다.Despite the important role of OSCAR in bone metabolism, its genetic effect on the determination of bone mass has not been investigated so far. In the present invention, the present inventors performed extension screening of genes by direct sequencing to detect polymorphism in Korean postmenopausal women, analyzed the association with the risk of BMD and radioactive spinal fractures, and developed osteoporosis using the same. The present invention has been completed by inventing a method of predicting, diagnosing or predicting and diagnosing risk.

본 발명은 골다공증에 관여하는 유전자 내의 다형성을 확인하는 것을 목적으로 한다.An object of the present invention is to identify polymorphisms in genes involved in osteoporosis.

또한, 본 발명의 목적은 골다공증의 발생 위험을 예측, 진단 또는 예측 및 진단하는 방법을 제공하는 것이다. It is also an object of the present invention to provide a method for predicting, diagnosing or predicting and diagnosing the risk of developing osteoporosis.

상기 목적을 달성하기 위하여, 본 발명자들은 골다공증과 관련된 잠재적인 후보 유전자에서 유전적 다형성을 확인하였다. 파골세포-관련 수용체 (OSCAR)는 파골세포 분화에서 결정적인 역할을 하며, 따라서 BMD의 조절을 위해 중요한 후보 유전자이며, BMD는 골 강도 및 골다공증 골절 위험성을 결정하는 중요한 인자이고, 양적인 다유전자성 형질을 갖는다.To achieve this goal, the inventors have identified genetic polymorphisms in potential candidate genes associated with osteoporosis. Osteoclast-associated receptors (OSCARs) play a decisive role in osteoclast differentiation and are therefore important candidate genes for the regulation of BMD, which is an important factor in determining bone strength and osteoporosis fracture risk, and has quantitative multigenic traits. Have

OSCAR는 초기에 파골세포 전구체 및 성숙한 파골세포에서 특이적으로 발현되는 것으로 알려졌다. 조골세포와의 공배양에서, 파골세포 형성은 뮤린 모델에서 OSCAR-Fc에 의해 저해되었으며, 이는 OSCAR가 파골세포형성의 중요한 조절인자임을 시사한다 [상기 문헌: 15]. 그 다음에, 사람 OSCAR 유전자는 파골세포 뿐만 아니라 수상 세포의 분화 및 성숙의 모든 단계를 포함하여 골수양 계통의 세포에서 폭넓게 발현되는 것으로 알려졌다 [상기 문헌: 22]. 수상 세포는 사람 OSCAR-특이적인 항체의 업테이크 (uptake) 및 처리 후에 마우스 IgG1의 에피토프 (epitope)에 특이적인 T 세포 클론을 자극할 수 있으며, 이는 항원 제시를 매개하는 상기 수용체의 능력을 보여주었다 [상기 문헌: 22]. 이것은 사람 OSCAR 유전자가 파골세포형성에서의 이의 역할에 추가적으로 면역 시스템의 조절에 있어 결정적인 역할을 할 수 있음을 시사한다.OSCAR was initially known to be specifically expressed in osteoclast precursors and mature osteoclasts. In coculture with osteoblasts, osteoclast formation was inhibited by OSCAR-Fc in the murine model, suggesting that OSCAR is an important regulator of osteoclast formation [15: 15]. The human OSCAR gene was then found to be widely expressed in cells of myeloid lineage, including all stages of differentiation and maturation of osteoclasts as well as dendritic cells [22]. Dendritic cells can stimulate T cell clones specific for epitopes of mouse IgG1 after uptake and treatment of human OSCAR-specific antibodies, demonstrating their ability to mediate antigen presentation. [Supra: 22]. This suggests that the human OSCAR gene may play a crucial role in the regulation of the immune system in addition to its role in osteoclast formation.

골량은 파골세포에 의한 골 재흡수와 조골세포에 의한 형성 사이의 차이에 의해 결정된다. 재흡수가 형성을 능가하는 리모델링 과정에서의 불균형은 가속화된 골 손실을 초래한다 [상기 문헌: 20 및 28]. 선행 연구는 면역 시스템이 골 리모델링에서 중요한 역할을 함을 밝혔다 [상기 문헌: 3 및 19]. 예를 들어, 면역 반응에 의해 자극되는 전염증성 사이토카인은 심지어 면역학적 질환이 없는 개체에서도 골 대사를 조절한다 [상기 문헌: 27]. 또한, 파골세포 분화를 위한 필수 인자인 RANKL의 활성화는 면역 시스템에 의해 조절된다 [상기 문헌: 36]. 따라서, 이는 OSCAR가 면역 시스템을 통해 직접적으로 또 간접적으로 파골세포형성을 조절함을 시사한다.Bone mass is determined by the difference between bone resorption by osteoclasts and formation by osteoblasts. Imbalance in the remodeling process beyond resorption leads to accelerated bone loss (see above and 20 and 28). Previous studies have shown that the immune system plays an important role in bone remodeling [supra: 3 and 19]. For example, proinflammatory cytokines stimulated by an immune response regulate bone metabolism even in individuals without immunological disease [27]. In addition, the activation of RANKL, an essential factor for osteoclast differentiation, is regulated by the immune system [36]. Thus, this suggests that OSCAR regulates osteoclastogenesis directly and indirectly through the immune system.

소안구증 전사 인자 (MITF) 유전자는 MITF-반응성 유전자의 5'-플랭킹 영역에서 E-box-타입 인핸서 (enhancers)와 결합함으로써 [상기 문헌: 26] 파골세포의 분화를 위해 중요한 염기성 헬릭스-루프-헬릭스 지퍼 (helix-loop-helix zipper) 단백질을 엔코딩한다 [상기 문헌: 23]. 최근에, 소 (So) 등 [상기 문헌: 31]은 MITF가OSCAR 프로모터에서 이의 인지 부위에 결합하는 것이 OSCAR 발현을 위해 결정적이고, 이는 OSCAR의 프로모터 영역의 기능적 중요성을 시사한다.Microocular disease transcription factor (MITF) gene is a basic helix-loop important for differentiation of osteoclasts by binding to E-box-type enhancers in the 5'- flanking region of the MITF-reactive gene. -Encodes a helix-loop-helix zipper protein [23]. Recently, So et al., Supra: 31, show that binding of MITF to its recognition site in the OSCAR promoter is crucial for OSCAR expression, suggesting the functional importance of the promoter region of OSCAR .

유전적 변이와 BMD 사이의 연관성에 대한 보고서들의 분량과는 대조적으로, 골절 위험성에 대한 유전적 연구는 상대적으로 드물었다. 골절 자체의 유전성 (heritability)은 25 내지 35%인 것으로 추정되었으며 [상기 문헌: 7 및 20], 이는 BMD 값의 유전성 보다 훨씬 더 낮다. 이것은 BMD 이외의 많은 감소-관련 인자들이 골절 위험성을 결정하는데 중요한 역할을 하고 있음을 시사한다.In contrast to the volume of reports on the association between genetic variation and BMD, genetic studies on fracture risk are relatively rare. The heritability of the fracture itself was estimated to be 25 to 35% [7 and 20, supra], which is much lower than the heritability of BMD values. This suggests that many reduction-related factors other than BMD play an important role in determining fracture risk.

골다공증을 위한 잠재적인 후보 유전자들에서 유전적 다형성들을 확인하려는 노력의 일환으로, 직접적인 DNA 서열분석법을 사용하여 OSCAR에서 10개 변이를 확인하였다. 24명 한국인 개체에서 직접적인 서열분석을 통해, 10개의 서열 변이를 확인하였다: 5' 플랭킹 영역에서 2개, 엑손에서 7개 (6개의 비-동종이명 SNPs 포함) 및 인트론에서 1개. 그런 다음, 이들 다성형 중 5개를 대규모 유전자형분석을 위해 선택하였다(n = 560). TaqMan 방법에 의해 유전자형을 분석하였다. 5' 플랭킹 영역에서의 하나의 SNP (OSCAR-2322A>G)는 폐경후 여성 (n = 560)에서 여러 뼈 부위에서의 BMD 및 방사선적 척추 골절의 위험성에 대한 현저하고 민감한 효과를 보였다.In an effort to identify genetic polymorphisms in potential candidate genes for osteoporosis, 10 variants in OSCAR were identified using direct DNA sequencing. Ten sequence variations were identified by direct sequencing in 24 Korean individuals: two in the 5 'flanking region, seven in the exon (including six non-homologous SNPs) and one in the intron. Five of these polymorphisms were then selected for large genotyping (n = 560). Genotypes were analyzed by TaqMan method. One SNP in the 5 'flanking region (OSCAR-2322A> G) showed a significant and sensitive effect on the risk of BMD and radioactive vertebral fractures at various bone sites in postmenopausal women (n = 560).

공변수로서 연령, 폐경기 이후 연수, 신장, 체중 및 평가 기기를 제어하는 다중 회귀 분석을 수행한 결과, 5' 플랭킹 영역 내 하나의 SNP (OSCAR-2322A>G)가 폐경후 여성에서 여러 뼈 부위에서 BMD 및 방사선적 척추 골절의 위험성에 대한 현저하고 민감한 효과를 보였다.Multiple regression analyzes controlling age, postmenopausal years, height, weight, and evaluation instrument as covariates showed that one SNP in the 5 'flanking region (OSCAR-2322A> G) was associated with multiple bone sites in postmenopausal women. Showed significant and sensitive effects on the risk of BMD and radioactive vertebral fractures.

이러한 결과는 OSCAR 유전자가 폐경후 여성에서 BMD 및 골절 위험성의 유전적 결정인자를 위한 후보임을 시사한다.These results suggest that the OSCAR gene is a candidate for genetic determinants of BMD and fracture risk in postmenopausal women.

이하 실시예에 기초하여 본 발명을 기술한다. 하기 실시예들은 본 발명을 예시하고자 하는 것으로, 본 발명을 제한하고자 하는 것은 아니다. 본 발명에 개시된 모든 문헌은 참조로서 통합된다.The present invention is described based on the following examples. The following examples are intended to illustrate the invention, not to limit the invention. All documents disclosed in the present invention are incorporated by reference.

실시예Example

실시예 1: 피검자의 선정Example 1 Selection of Subjects

연구 군집은 아산 의료 센터 (AMC, 대한민국 서울)를 방문한 560명의 한국인 폐경후 여성으로 구성하였다. 폐경기는 적어도 6개월 동안 월경이 없는 것으로 정의하였고 혈청 여포-자극 호르몬 (FSH)의 측정에 의해 확인하였다. 미숙한 폐경기를 가진 여성 (40세 미만)은 제외시켰다. 또한 6개월 이상 또는 이전 12개월 이내에 골 대사에 영향을 줄 수 있는 약물을 섭취한 여성도 제외시켰다. 피검자가 골 대사에 영향을 줄 수 있는 어떤 질환에 걸린 경우도 제외시켰다. 뇌졸중 또는 치매에 걸린 여성도 이들의 제한된 육체 활동과 관련된 우려로 인해 제외시켰다. 또 한 전통적인 척추 방사선사진에 의해 검출된 척추-퇴행성 질환을 가진 여성도 제외시켰다. 본 연구는 AMC 윤리 심사 위원회에 의해 승인받았고 모든 피검자는 내용설명동의서를 제출하였다.The study population consisted of 560 Korean postmenopausal women who visited Asan Medical Center (AMC, Seoul, Korea). Menopause was defined as no menstruation for at least 6 months and confirmed by measurement of serum follicle-stimulating hormone (FSH). Immature menopausal women (under 40) were excluded. We also excluded women who took drugs that could affect bone metabolism for more than 6 months or within the previous 12 months. Subjects were excluded from any disease that could affect bone metabolism. Women with stroke or dementia were also excluded due to concerns related to their limited physical activity. Also excluded were women with spinal-degenerative diseases detected by traditional spinal radiographs. This study was approved by the AMC Ethics Review Committee and all subjects submitted a Consent Statement.

전방-후방 요추 (L2-L4) 및 비-우성 근위 대퇴부 (대퇴 경부, 대퇴 샤프트, 전체 대퇴부, 대퇴돌기 및 워드 삼각 (Ward's triangle))의 BMD 면적 (g/cm2)을 이중 에너지 X-레이 흡수계측기 루나 엑스퍼트 XL (Lunar Expert XL) (with software version 1.90, Madison, WI, USA)를 사용하여 431명 여성에서 측정하였다. 129명 여성에서, 대퇴 샤프트를 제외한 동일 지역에서의 BMD를 호로직(Hologic) QDR 4500-A (with software version 4.84, Waltham, MA, USA)를 사용하여 측정하였다. 대퇴 샤프트 및 다른 근위 대퇴 부위에서의 BMD 값은 각각 229명 및 101명 피검자에서 불가능했다. 루나 (Lunar) 및 호로직 (Hologic) 기기의 생체내 정밀도는 요추에 대해 각각 0.82% 및 0.85%, 및 대퇴 경부에 대해 각각 1.12% 및 1.20%였다. T-스코어를 사용하여 세계보건기구 (WHO) 정의 (각각, -2.5 < T-스코어 = -1.0 SD 및 T-스코어 = -2.5 SD)에 따라 각 부위에서 골감소증 및 골다공증을 진단하였고, -1.0을 초과하는 T-스코어를 갖는 피검자를 정상 대조군으로 분류하였다. 측면 흉요추 (T4-L4) 방사선사진을 모든 피검자에 대해 입수하였다. 척추 골절을 교통 사고와 같은 주요 외상의 병력이 없는 피검자에서 하나 이상의 척추 부위의 전방, 후방 또는 중간 높이에서 15% 이상의 손실로서 정량적으로 정의하였다.Dual energy X-rays of the BMD area (g / cm 2 ) of the anterior-rear lumbar spine (L2-L4) and non-dominant proximal femoral (femoral neck, femoral shaft, total femoral, femur and Word's triangle) Measurements were taken in 431 women using an absorbometer Lunaar Expert XL (with software version 1.90, Madison, Wis., USA). In 129 women, BMD at the same site except the femoral shaft was measured using Hologic QDR 4500-A (with software version 4.84, Waltham, Mass., USA). BMD values at the femoral shaft and other proximal femoral sites were not possible in 229 and 101 subjects, respectively. In vivo precision of Lunar and Hologic instruments was 0.82% and 0.85% for lumbar spine and 1.12% and 1.20% for femoral neck, respectively. T-score was used to diagnose osteopenia and osteoporosis at each site according to the World Health Organization (WHO) definition (-2.5 <T-score = -1.0 SD and T-score = -2.5 SD, respectively). Subjects with excess T-scores were classified as normal controls. Lateral thoracolumbar (T4-L4) radiographs were obtained for all subjects. Spinal fractures were quantitatively defined as more than 15% loss in the anterior, posterior or median height of one or more vertebral areas in subjects without a history of major trauma such as traffic accidents.

한국인 군집에서 확인된 OSCAR SNPs의 대립유전자 빈도와 다른 주요 민족 군 과의 비교를 위해, 본 발명자들은 HGCR (Human Genetic Cell Repository, http://locus.umdnj.edu/nigms/)로부터 입수한 50 백인 및 50 아프리카계 미국인 DNAs의 유전자형을 분석하였다.For comparison of allelic frequencies of OSCAR SNPs identified in Korean populations with other major ethnic groups, we present 50 whites obtained from the Human Genetic Cell Repository (http://locus.umdnj.edu/nigms/). And genotypes of 50 African American DNAs.

실시예 2: OSCAR 유전자의 서열 분석Example 2: Sequence Analysis of OSCAR Genes

게놈 DNA을 상용 키트 (Wizard Genomic DNA purification kit, Promega, Madison, WI, USA)를 사용하여 말초혈 백혈구로부터 추출하였다. 본 발명자들은 DNA 분석기(ABI PRISM 3700, Applied Biosystems, Foster City, CA)를 사용하여 24명의 한국인 DNA 샘플에서 유전 변이를 발견하기 위해 프로모터 영역 (약 1.5 kb)을 포함하는 OSCAR 유전자의 엑손 및 이들의 경계를 서열분석하였다. 증폭 및 서열분석을 위한 OSCAR 유전자의 8개 프라이머 세트를 GenBank 서열 (OSCAR에 대한 참조 게놈 서열 NT_011109.15, 공개일: 2004년 2월)에 기초하여 디자인하였다. Genomic DNA was extracted from peripheral blood leukocytes using a commercially available kit (Wizard Genomic DNA purification kit, Promega, Madison, Wis., USA). We used a DNA analyzer (ABI PRISM 3700, Applied Biosystems, Foster City, Calif.) To find the exon of OSCAR genes, including the promoter region (about 1.5 kb), to detect genetic variations in 24 Korean DNA samples. Boundaries were sequenced. A set of eight primers of the OSCAR gene for amplification and sequencing were designed based on the GenBank sequence (reference genome sequence NT_011109.15 for OSCAR, published February 2004).

표 1. OSCAR 다형성의 발견을 위한 프라이머 서열Table 1. Primer Sequences for Discovery of OSCAR Polymorphism

Figure 112005026351859-PAT00001
Figure 112005026351859-PAT00001

서열 변이를 크로마토그램에 의해 확증하였다 (도 3a 내지 도 3h 참조).Sequence variation was confirmed by chromatogram (see FIGS. 3A-3H).

실시예 3: 편광 검출법을 사용한 유전자형 분석Example 3: Genotyping Using Polarization Detection

다형성 부위의 유전자형을 분석하기 위해, 증폭 프라이머 및 프로브를 TaqMan에 대해 디자인하였다 [상기 문헌: 18]. 프라이머 익스프레스 (Primer Express) (Applied Biosystems)를 사용하여 PCR 프라이머 및 MGB TaqMan 프로브 모두를 디자인하였다. To analyze the genotype of the polymorphic site, amplification primers and probes were designed for TaqMan (supra: 18). Primer Express (Applied Biosystems) was used to design both PCR primers and MGB TaqMan probes.

표 2. OSCAR SNP 유전자형 분석을 위한 증폭 및 Taqman 프로브의 서열Table 2. Sequences of Amplification and Taqman Probes for OSCAR SNP Genotyping

Figure 112005026351859-PAT00002
Figure 112005026351859-PAT00002

하나의 대립유전자 프로브를 FAM 염료로 표지시키고 다른 하나를 형광성 VIC 염료로 표지시켰다. 900 nM의 PCR 프라이머 농도 및 200 nM의 TaqMan MGB-프로브 농도로 UNG (Uracil-N-Glycosylase) (Applied Biosystems)를 포함하지 않는 TaqMan 유니버셜 마스터 믹스 (Universal Master mix)에서 PCRs을 수행하였다. 반응을 20 ng의 게놈 DNA를 사용하여 5 ul의 전체 반응 부피로 384-웰 포맷으로 수행하였다. 그런 다음 플레이트를 써멀 싸이클러(PE 9700, Applied Biosystems)에 위치시키고 50℃ 에서 2분 및 95℃ 에서 10분 동안 가열시키고 나서 95℃ 에서 15초 및 60℃ 에서 1분의 40 싸이클을 수행하였다. TaqMan 검정 플레이트를 Prism 7900HT 기기 (Applied Biosystems)로 옮겨 플레이트의 각 웰 내 형광 강도를 판독하였다. 각 플레이트에서 수집된 형광 데이터를 자동화된 소프트웨어 (SDS 2.1)를 사용하여 분석하였다.One allele probe was labeled with FAM dye and the other was labeled with fluorescent VIC dye. PCRs were performed on a TaqMan Universal Master mix without U-cil-Applyed Biosystems (UNG) with a PCR primer concentration of 900 nM and TaqMan MGB-probe concentration of 200 nM. The reaction was performed in 384-well format using 20 ng genomic DNA with a total reaction volume of 5 ul. The plate was then placed in a thermal cycler (PE 9700, Applied Biosystems) and heated at 50 ° C. for 2 minutes and at 95 ° C. for 10 minutes, followed by 40 cycles of 15 seconds at 95 ° C. and 1 minute at 60 ° C. TaqMan assay plates were transferred to Prism 7900HT instrument (Applied Biosystems) to read the fluorescence intensity in each well of the plate. Fluorescence data collected from each plate was analyzed using automated software (SDS 2.1).

실시예 4: 통계학적 분석Example 4: Statistical Analysis

본 발명자들은 이대립유전자 좌위 (biallelic loci)의 모든 쌍 사이에 르원틴 D (Lewontin's D') (|D'|) 및 연관 불평형 계수 r 2 를 검사하였다 [상기 문헌: 10 및 11]. 각 개체의 해플로타입을 스티븐스 (Stephens) 등 [상기 문헌: 32]에 의해 개발된 알고리즘 (PHASE) (이것은 집단유전학 및 유합 이론 (coalescent theory)에 기초한 해플로타입 구조의 선험 (a priori) 예측을 포함하는 베이지안 (Bayesian) 접근법을 사용한다)을 사용하여 추론하였다. 추론된 해플로타입의 유전적 효과를 다형성과 동일한 방법으로 분석하였다. 공변수로서 연령 (연속 변수), 폐경 이후 년수 (YSM; 연속 변수), 체중, 신장 및 평가 기기의 타입을 제어하는 다중 회귀 분석법을 BMD에 대해 수행하였다. 또한 골감소증 피검자 및 골다공증 피검자를 포함하는 환자 군과 정상 피검자 사이에 OSCAR 다형성 및 해플로타입의 유전자형 분포를 공변수로서 연령, YSM, 체중, 신장 및 평가 기기의 타입을 제어하는 로지스틱 회귀 모델을 사용하여 분석하였다.We examined Lewontin's D '(| D' |) and the associated unbalance coefficient r 2 between all pairs of biallelic loci [supra: 10 and 11]. The algorithm (PHASE) developed by Stephens et al. [32] was used to predict the a priori of the haplotype structure based on population genetics and coalescent theory. Reasoning using Bayesian (including Bayesian) approach. The genetic effect of the deduced haplotype was analyzed in the same way as polymorphism. Multiple regression assays were performed on BMDs to control age (continuous variable), postmenopausal years (YSM; continuous variable), weight, height, and type of evaluation instrument as covariates. In addition, a genotype distribution of OSCAR polymorphism and haplotype between cohort of osteopenia and osteoporosis patients and normal subjects was used as a covariate using a logistic regression model that controls the type of age, YSM, weight, height, and evaluation device. Analyzed.

결과result

참가자들의 평균 연령은 59.4±7.2세 (46세 내지 83세)였고, 폐경 이후 평균 년수 (YSM)는 10.4±8.2년 (1년 내지 35년)이었다 (표 3 참조). 2가지 기기, 즉 루나 엑스퍼트 XL (Lunar Expert XL) 및 호로직 (Hologic) QDR 4500-A를 사용하여 각각 431명 (77.0%) 및 129명 (23.0%) 피검자에서 BMD를 측정하였다. 예상된 바와 같이, 연령 (P = 0.01 및 P = 0.005), 체중 (P < 0.0001 및 P < 0.0001), 신장 (P = 0.01 및 P = 0.09), YSM (P = 0.02 및 P < 0.0001) 및 평가 기기 (P < 0.0001 및 P < 0.0001)는 요추 및 대퇴 경부에서 BMD와 포지티브하게 상관되어 있었다 (표 3 참조). 호로직 (Hologic) 기기에 의해 측정된 BMD 값 (각각, 0.764±0.116 mg/cm2 및 0.606±0.098 mg/cm2)은 루나 (Lunar) 기기에 의해 측정된 값 (각각, 0.870±0.182 mg/cm2 및 0.723±0.128 mg/cm2) 보다 더 낮았다. 따라서, 연령, 폐경 이후 년수, 체중, 신장 및 평가 기기를 BMD와의 연관성에 대한 다중 회귀 분석에서 공변수로서 사용하였다.The average age of the participants was 59.4 ± 7.2 years (46 to 83 years), and the mean years after menopause (YSM) was 10.4 ± 8.2 years (1 to 35 years) (see Table 3). BMD was measured in 431 subjects (77.0%) and 129 subjects (23.0%) using two instruments, Lunaar Expert XL and Hologic QDR 4500-A, respectively. As expected, age (P = 0.01 and P = 0.005), body weight (P <0.0001 and P <0.0001), height (P = 0.01 and P = 0.09), YSM (P = 0.02 and P <0.0001) and assessment The instrument (P <0.0001 and P <0.0001) was positively correlated with BMD in the lumbar spine and femoral neck (see Table 3). The BMD values measured by the Hologic instrument (0.764 ± 0.116 mg / cm 2 and 0.606 ± 0.098 mg / cm 2 , respectively) were measured by the Lunar instrument (0.870 ± 0.182 mg / cm 2 and 0.723 ± 0.128 mg / cm 2 ). Therefore, age, number of years after menopause, weight, height and assessment instrument were used as covariates in multiple regression analysis of association with BMD.

표 3. 한국인 폐경후 여성 (n = 560)에서 임상학적 프로파일 및 골밀도 (BMD) (g/cm2)에 대한 다중 회귀 분석Table 3. Multiple regression analysis of clinical profile and BMD (g / cm 2 ) in Korean postmenopausal women (n = 560)

Figure 112005026351859-PAT00003
Figure 112005026351859-PAT00003

* 값은 달리 표시하지 않는 한 평균 (±SD)이다.* Values are mean (± SD) unless otherwise indicated.

5' 플랭킹 영역의-1,500bp를 포함하여 OSCAR 유전자의 모든 엑손 및 이들의 경계의 직접적인 서열분석을 통해, 10개의 단일-뉴클레오티드 다형성 (SNPs)을 확인하였다: 5' 플랭킹 영역에서 2개, 엑손에서 7개 (6개의 비-동종이명 SNPs 포함) 및 인트론에서 1개 (도 1a 참조). 한국인 군집에서의 빈도를 도 1a에 나타내었다. 또한, 사람 OSCAR 유전자 다형성의 빈도를 표 4에 나타내었다.Direct sequencing of all exons of the OSCAR genes and their boundaries, including -1,500 bp of the 5 'flanking region, identified 10 single-nucleotide polymorphisms (SNPs): two in the 5' flanking region, 7 in exons (including 6 non-homologous SNPs) and 1 in introns (see FIG. 1A). The frequency in the Korean population is shown in Figure 1a. In addition, the frequency of human OSCAR gene polymorphism is shown in Table 4.

표 4. 사람 OSCAR 유전자 다형성의 빈도Table 4. Frequency of Human OSCAR Gene Polymorphism

Figure 112005026351859-PAT00004
Figure 112005026351859-PAT00004

* 하디-바인베르크 평형으로부터의 편차에 대한 P 값* P value for deviation from Hardy-Weinberg equilibrium

굵은 서체는 대규모 군집에서 유전자형 분석된 다형성을 나타낸다. Bold typefaces show genotyping polymorphisms in large populations.

SNPs 사이의 쌍별 (pair-wise) 비교를 통해 1개 세트의 절대 LD (|D'| = 1 및 r 2 = 1) (-2322A>G: -111C>G) 및 2개 세트의 완전 LD (|D'| = 1 및 r 2 ≠ 1)가 밝혀졌다 (도 1a 및 도 1c 참조). 5개의 SNPs를 LDs, 빈도 및 해플로타입 태깅 상태에 기초하여 대규모 유전자형분석을 위해 선택하였다. OSCAR 유전자에서 해플로타입을 PHASE 소프트웨어를 사용하여 작제하였다 [상기 문헌: 32] (도 1b 참조). 3가지 민족 군 사이에는 대립유전자 및 해플로타입에서 현저한 차이가 있었다 (도 1b 및 표 5 참조).One set of absolute LDs (| D '| = 1 and r 2 = 1) (-2322A> G: -111C> G) and two sets of complete LDs (pair-wise comparison between SNPs) | D '| = 1 and r 2 ≠ 1) were found (see FIGS. 1A and 1C). Five SNPs were selected for large scale genotyping based on LDs, frequency and haplotype tagging status. Haplotypes in the OSCAR gene were constructed using PHASE software (see above, 32) (see FIG. 1B). There were significant differences in alleles and haplotypes among the three ethnic groups (see FIG. 1B and Table 5).

표 5. 한국인 (n = 560), 아프리카계-미국인 (n = 50) 및 백인 (n = 50) 피검자에서 OSCAR의 단일-뉴클레오티드 다형성 및 대립유전자 빈도Table 5. Single-nucleotide polymorphism and allele frequencies of OSCAR in Korean (n = 560), African-American (n = 50), and Caucasian (n = 50) subjects

Figure 112005026351859-PAT00005
Figure 112005026351859-PAT00005

*한국인 군집에서 하디-바인베르크 평형으로부터의 편차의 P값.* P value of deviation from Hardy-Weinberg equilibrium in Korean population.

**한국인 군집에서 계산된 이형접합성** Heterozygosity Calculated in Korean Community

***3가지 주요 민족 군 사이의 다형성의 분포의 차이에 대한 P 값*** P values for differences in the distribution of polymorphisms among the three major ethnic groups

요추 및 대퇴 경부의 BMD와의 연관성에 대한, 공변수로서 연령, YSM, 신장, 체중 및 평가 기기를 제어하는 다중 회귀 분석을 사용한 경우, 5' 플랭킹 영역에서 하나의 SNP 즉, OSCAR-2322A>G는 요추 및 대퇴 경부 모두에서 BMD와 연관되어 있었다 (각각, P = 0.007 및 P = 0.005; 표 7 참조). 요추에서 BMD에 대한 OSCAR-2322A>G의 유전적 효과는 유전자-용량 의존적이었고 가장 높은 BMD는 메이져 대립 유전자 (major allele)에 대한 동형접합자에서 발견되었으며 (0.86±0.19 mg/cm2), 중간 BMD는 이형접합자에서 발견되었고 (0.84±0.17 mg/cm2), 가장 낮은 BMD는 마이너 대립유전자 (minor allele)에 대한 동형접합자에서 발견되었다 (0.82±0.17 mg/cm2). 그러나, 대퇴 경부에서 OSCAR-2322A>G는 BMD 값에 대한 우세한 양상의 효과를 보였고 GG 유전자형을 가진 개체에서 나머지 (AA 및 AG 유전자형) 보다 더 높은 BMD가 발견되었다. 또한 BMD에 대한 OSCAR-2322A>G의 유전적 효과는 뼈의 다른 부위 (대퇴 샤프트, 워드 삼각, 전체 대퇴부 및 대퇴돌기)에서 검출되었다 (도 2 참조). When using multiple regression analysis to control age, YSM, height, weight, and evaluation instrument as covariates for association with BMD of the lumbar spine and femoral neck, one SNP in the 5 'flanking region, OSCAR-2322A> G Was associated with BMD in both the lumbar and femoral necks (P = 0.005 and P = 0.005, respectively; see Table 7). The genetic effect of OSCAR-2322A> G on BMD in the lumbar spine was gene-dose dependent and the highest BMD was found in homozygotes for major alleles (0.86 ± 0.19 mg / cm 2 ), intermediate BMD Was found in the heterozygotes (0.84 ± 0.17 mg / cm 2 ) and the lowest BMD was found in the homozygous for the minor allele (0.82 ± 0.17 mg / cm 2 ). However, OSCAR-2322A> G in the femoral neck showed a predominant effect on BMD values and higher BMD was found in individuals with the GG genotype than the rest (AA and AG genotypes). In addition, the genetic effect of OSCAR-2322A> G on BMD was detected in other areas of the bone (femoral shaft, word triangle, entire femoral and femur) (see FIG. 2).

표 6. 한국인 폐경후 여성에서 연령, 폐경후 년수, 체중, 신장 및 평가 기기-조정된 대퇴 샤프트, 요추 (L2-L4), 전체 대퇴부, 대퇴경부, 대퇴돌기 및 워드 삼각의 BMD와 OSCAR-2322A>G 다형성과의 회귀 분석Table 6. BMD and OSCAR-2322A of age, postmenopausal years, body weight, height and evaluation instrument-adjusted femoral shaft, lumbar spine (L2-L4), total thigh, femoral neck, thigh and word triangle in Korean postmenopausal women Regression Analysis with G Polymorphism

Figure 112005026351859-PAT00006
Figure 112005026351859-PAT00006

* 피검자 수, 및 BMD의 평균 및 표준 편차* Number of subjects, and mean and standard deviation of BMD

** 다중 회귀 분석을 위한 공동우성 모델의 P 값** P value of co-dominance model for multiple regression analysis

추가의 해플로타입 분석에서, OSCAR-ht1은 양 부위 모두에서 BMD와 현저하게 연관되어 있었다 (요추에서P = 0.01, 및 대퇴 경부에서 P = 0.04; 표 7 참조). 그러나, 이러한 유전적 효과는 OSCAR-ht1OSCAR-2322A>G에 의해 가장 많이 (> 90%) 태깅되기 때문에 OSCAR-2322A>G로부터 기인하는 것 같다 (도 1b 참조).In further haplotype analysis, OSCAR-ht1 was significantly associated with BMD at both sites (P = 0.01 in the lumbar spine and P = 0.04 in the femoral neck; see Table 7). However, this genetic effect seems to be caused from the OSCAR-2322A> G because OSCAR-ht1 is OSCAR-2322A> being most (> 90%) tagged by G (see Fig. 1b).

표 7. 한국인 폐경후 여성에서 연령, 폐경 이후 년수, 체중, 신장 및 평가 기기-조정된 요추 (L2-L4) 및 대퇴 경부의 BMD와 OSCAR 다형성과의 회귀 분석Table 7. Regression analysis of age, postmenopausal age, body weight, height, and evaluation instrument-adjusted lumbar spine (L2-L4) and BMD and OSCAR polymorphism of the femoral neck in Korean postmenopausal women

Figure 112005026351859-PAT00007
Figure 112005026351859-PAT00007

*C/C, C/R 및 R/R은 각각 보편적 대립유전자에 대한 동형접합자, 및 희귀 대립유전자에 대한 이형접합자 및 동형접합자를 나타낸다.* C / C, C / R and R / R represent homozygotes for universal alleles, and heterozygotes and homozygotes for rare alleles, respectively.

**피검자의 수, 및 BMD의 평균 및 표준 편차** Number of subjects and mean and standard deviation of BMD

***다중 회귀 분석을 위한 공동우성 모델의 P 값*** P value of co-dominance model for multiple regression analysis

또한 방사선적 척추 골절의 위험성에 대한 OSCAR 다형성의 유전적 효과를 분석하였다. 본 발명에서 골절은 98명 (16.9%) 피검자에서 검출되었다. OSCAR-2322G*의 대립유전자 빈도는 척추골절이 없는 피검자 (빈도 = 0.441)에서 보다는 척추 골절이 있는 피검자 (빈도 = 0.515)에서 더 높았다 (P = 0.05; 표 8 참조). 이렇게 증가된 척추 골절의 위험성은 OSCAR-2322G*를 가진 개체에서 감소된 요추 BMD에 의해 설명될 수 있을 것이다. 요약하면, BMD에 대한 OSCAR-2322G*의 민감한 효과는 여러 뼈 위치에서의 감소된 BMD 및 척추 골절의 증가된 위험성에 의해 입증될 수 있다.We also analyzed the genetic effect of OSCAR polymorphism on the risk of radioactive vertebral fractures. In the present invention, fractures were detected in 98 (16.9%) subjects. The allele frequency of OSCAR-2322G * was higher in subjects with vertebral fractures (frequency = 0.515) than in subjects without vertebral fractures (frequency = 0.441) (P = 0.05; see Table 8). This increased risk of vertebral fractures could be explained by reduced lumbar BMD in individuals with OSCAR-2322G * . In summary, the sensitive effect of OSCAR-2322G * on BMD can be evidenced by the reduced risk of reduced BMD and vertebral fractures at various bone locations.

표 8. 한국인 폐경후 군집에서 Oscar 유전자 다형성 및 해플로타입과 골감소증/골다공증 및 방사선적 척추 골절의 위험성과의 연관성 분석Table 8. Association between Oscar gene polymorphism, haplotype, and risk of osteopenia / osteoporosis and radioactive spinal fractures in Korean postmenopausal populations.

Figure 112005026351859-PAT00008
Figure 112005026351859-PAT00008

*마이너 대립유전자 빈도Minor allele frequency

**환자피검자는 요추에서 -1 미만의 t-스코어를 가진 피검자를 포함한다** Patient subjects include subjects with t-scores less than -1 in the lumbar spine.

***공변수로서 연령, 체중, 신장, YSM 및 평가 기기를 제어하는 로지스틱 분석에 대한 P 값*** P value for logistic analysis controlling age, weight, height, YSM and evaluation device as covariates

본 발명에서, 본 발명자들은 한국인 군집에서 OSCAR의 10개 다형성을 확인하였고, 중첩 변수를 제어한 후에 하나의 SNP (OSCAR-2322A>G) 및 하나의 해플로타입 (OSCAR-ht1)이 BMD 값 및 방사선적 척추 골절과 현저하게 연관되어 있음을 밝혔다. 본 발명자들이 아는 바로는, 이것은 골 대사에서 OSCAR의 역할을 시사하는 최초의 결정적인 보고이며, 본 발명의 결과는 OSCAR 유전자가 폐경후 여성에서 BMD 및 골절 위험성의 유전적 결정인자를 위한 후보일 수 있음을 시사한다.In the present invention, the inventors have identified 10 polymorphisms of OSCAR in the Korean population, and after controlling the overlapping variables, one SNP ( OSCAR-2322A> G ) and one haplotype ( OSCAR-ht1 ) were identified as BMD values and Significantly associated with radiological vertebral fractures. Just know that the present inventors, this is the first definitive report suggests a role for the OSCAR in bone metabolism, and that the results of the present invention may be a candidate for genetic determinants of BMD and fracture risk in women after the OSCAR gene menopause Suggests.

본 발명에서, 본 발명자들은 엑손 및 이들의 경계 뿐만 아니라 프로모터 영역 (약 1.5 kb) 내의 다형성의 존재를 세밀히 조사하였고, 프로모터 내의 OSCAR-2322A>G 다형성 만이 시험된 모든 영역에서 BMD와 현저하게 연관되어 있음을 밝혔다. 요약하면, 이것은 OSCAR 프로모터 다형성이 OSCAR의 전사 및/또는 발현 수준에 영향을 줌으로써 BMD를 조절할 수 있음을 시사한다.In the present invention, the inventors have carefully examined the presence of exons and their boundaries as well as the polymorphism in the promoter region (about 1.5 kb), and only OSCAR-2322A> G polymorphism in the promoter is significantly associated with BMD in all regions tested. Said that. In summary, this suggests that OSCAR promoter polymorphism can modulate BMD by affecting the level of transcription and / or expression of OSCAR.

골절의 비교적 낮은 유전성에도 불구하고, 본 발명자들은 OSCAR-2322A/G가 방사선적 척추 골절의 위험성과 현저하게 연관되어 있음을 밝혔다. 이는 추가로 상기 다형성 부위가 골 대사에서 작용할 수 있다는 가능성을 시사한다.Despite the relatively low heredity of fractures, we found that OSCAR-2322A / G was significantly associated with the risk of radioactive vertebral fractures. This further suggests the possibility that these polymorphic sites can function in bone metabolism.

요약하면, 골다공증에서 OSCAR의 유전적 다형성의 가능한 관련성을 검사하려는 노력의 일환으로, OSCAR에서 10개의 다형성을 새롭게 확인 (동정)하였으며 5개 의 보편적인 부위를 한국인 폐경기후 여성 (n = 560)에서 유전자형분석하였다. 통계학적 분석법을 사용하여, OSCAR-2322A>G 다형성과 BMD 및 방사선적 척추 골절의 위험성과의 유전적 연관을 밝혔다. 이들 결과는 골 대사의 유전적 배경을 이해하는데 중요한 부분을 제공한다In summary, as part of an effort to examine the possible relevance of OSCAR 's genetic polymorphism in osteoporosis, 10 polymorphisms have been newly identified (identified) in OSCAR and five universal sites have been identified in postmenopausal women in Korea (n = 560). Genotyping was performed. Statistical analysis was used to determine the genetic association between OSCAR-2322A> G polymorphism and the risk of BMD and radioactive vertebral fractures. These results provide an important part of understanding the genetic background of bone metabolism.

상기에서 살펴본 바와 같이, 파골세포-관련 수용체 (OSCAR) 내의 다형성과 골밀도 및 척추 골절 위험성과의 현저한 연관성이 확인되었다. 따라서, 본 발명의 발명에 따라 OSCAR 내의 다형성을 측정함으로써 골다공증의 발생 위험을 예측할 수 있으며, 또한 본 발명은 대사성 골질환을 위한 치료분야에 유용하게 이용될 수 있다.As discussed above, a significant association between polymorphism in osteoclast-associated receptor (OSCAR) and bone mineral density and spinal fracture risk was identified. Therefore, the risk of developing osteoporosis can be predicted by measuring the polymorphism in OSCAR according to the present invention, and the present invention can also be usefully used in the field of treatment for metabolic bone disease.

이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 본 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be appreciated.

<110> SNP GENETICS, INC. <120> OSCAR <130> IPM-28816 <160> 36 <170> KopatentIn 1.71 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-1, Forward primer for sequence variants screening <400> 1 tacattttaa caatcccccg c 21 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-1, Reverse primer for sequence variants screening <400> 2 cgggtcccct ctagtgtgtc t 21 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-2, Forward primer for sequence variants screening <400> 3 gcataagcag ggttgagaac g 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-2, Reverse primer for sequence variants screening <400> 4 cgggtagttc tgggaacctc t 21 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-3, Forward primer for sequence variants screening <400> 5 cccggtgacc tctaaccct 19 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-3, Reverse primer for sequence variants screening <400> 6 cgggctcagt ttcttcgtct 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-4, Forward primer for sequence variants screening <400> 7 gctcttgaac tcttgggctc a 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-4, Reverse primer for sequence variants screening <400> 8 cctagaatcc caaacctgct g 21 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-5, Forward primer for sequence variants screening <400> 9 gtggcgggca cttgtagtc 19 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-5, Reverse primer for sequence variants screening <400> 10 ggtcctagct taggcctctg c 21 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-6, Forward primer for sequence variants screening <400> 11 agtaattgtc caaggtgatt ttcctcc 27 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-6, Reverse primer for sequence variants screening <400> 12 gtttgcccgc ctcgctct 18 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-7, Forward primer for sequence variants screening <400> 13 cgagcgagcg agcggaaga 19 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-7, Reverse primer for sequence variants screening <400> 14 gtcctggggc ctgcattcct 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-8, Forward primer for sequence variants screening <400> 15 aaacctggag ttcagggcc 19 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-8, Reverse primer for sequence variants screening <400> 16 gctgggattc gaaccctct 19 <210> 17 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 17 ggcgccgact cctgaag 17 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 18 gtggcacgag agggttagag 20 <210> 19 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 19 tgacgcttct tgcc 14 <210> 20 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 20 tgacgctcct tgcc 14 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 21 gcccagaggt tcccagaa 18 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 22 agacaaagat ggctgcgagt aag 23 <210> 23 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 23 accggcacct gca 13 <210> 24 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 24 caccggaacc tgca 14 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 25 gccgtggagg taaaggaagt g 21 <210> 26 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 26 cgcaggtccg caaagtc 17 <210> 27 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 27 ttgcgcttgc tcct 14 <210> 28 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 28 tgcgcatgct cct 13 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 29 tccgagctgg cagaattctt tc 22 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 30 gtctggcctt cggtagca 18 <210> 31 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 31 agcggtaact tccccct 17 <210> 32 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 32 cagcggtaaa ttccccct 18 <210> 33 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 33 ccgcccgcag actct 15 <210> 34 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 34 ccccaggcgg actaggt 17 <210> 35 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 35 cctccgacta cacccg 16 <210> 36 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 36 cctccgactc cacccg 16 <110> SNP GENETICS, INC. <120> OSCAR <130> IPM-28816 <160> 36 <170> KopatentIn 1.71 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-1, Forward primer for sequence variants screening <400> 1 tacattttaa caatcccccg c 21 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-1, Reverse primer for sequence variants screening <400> 2 cgggtcccct ctagtgtgtc t 21 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-2, Forward primer for sequence variants screening <400> 3 gcataagcag ggttgagaac g 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-2, Reverse primer for sequence variants screening <400> 4 cgggtagttc tgggaacctc t 21 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-3, Forward primer for sequence variants screening <400> 5 cccggtgacc tctaaccct 19 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-3, Reverse primer for sequence variants screening <400> 6 cgggctcagt ttcttcgtct 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-4, Forward primer for sequence variants screening <400> 7 gctcttgaac tcttgggctc a 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-4, Reverse primer for sequence variants screening <400> 8 cctagaatcc caaacctgct g 21 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-5, Forward primer for sequence variants screening <400> 9 gtggcgggca cttgtagtc 19 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-5, Reverse primer for sequence variants screening <400> 10 ggtcctagct taggcctctg c 21 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-6, Forward primer for sequence variants screening <400> 11 agtaattgtc caaggtgatt ttcctcc 27 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-6, Reverse primer for sequence variants screening <400> 12 gtttgcccgc ctcgctct 18 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-7, Forward primer for sequence variants screening <400> 13 cgagcgagcg agcggaaga 19 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-7, Reverse primer for sequence variants screening <400> 14 gtcctggggc ctgcattcct 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-8, Forward primer for sequence variants screening <400> 15 aaacctggag ttcagggcc 19 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> OSCAR-8, Reverse primer for sequence variants screening <400> 16 gctgggattc gaaccctct 19 <210> 17 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 17 ggcgccgact cctgaag 17 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 18 gtggcacgag agggttagag 20 <210> 19 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 19 tgacgcttct tgcc 14 <210> 20 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 20 tgacgctcct tgcc 14 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 21 gcccagaggt tcccagaa 18 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 22 agacaaagat ggctgcgagt aag 23 <210> 23 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 23 accggcacct gca 13 <210> 24 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 24 caccggaacc tgca 14 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 25 gccgtggagg taaaggaagt g 21 <210> 26 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 26 cgcaggtccg caaagtc 17 <210> 27 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 27 ttgcgcttgc tcct 14 <210> 28 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 28 tgcgcatgct cct 13 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 29 tccgagctgg cagaattctt tc 22 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 30 gtctggcctt cggtagca 18 <210> 31 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 31 agcggtaact tccccct 17 <210> 32 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 32 cagcggtaaa ttccccct 18 <210> 33 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genotyping <400> 33 ccgcccgcag actct 15 <210> 34 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genotyping <400> 34 ccccaggcgg actaggt 17 <210> 35 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Probe-1 (VIC) for genotyping <400> 35 cctccgacta cacccg 16 <210> 36 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Probe-2 (FAM) for genotyping <400> 36 cctccgactc cacccg 16  

Claims (3)

골다공증 발생 위험을 예측, 진단 또는 예측 및 진단하기 위한 OSCAR 유전자 다형성.OSCAR gene polymorphism to predict, diagnose or predict and diagnose the risk of developing osteoporosis. 제 1항에 있어서, OSCAR-2322A>G 다형성을 포함함을 특징으로 하는 OSCAR 유전자 다형성.The OSCAR gene polymorphism of claim 1, comprising OSCAR-2322A> G polymorphism. 제 2항에 있어서, OSCAR-2322A>G 다형성이 골밀도 및 척추 골절과 현저하게 연관되어 있음을 특징으로 하는 OSCAR 유전자 다형성.3. The OSCAR gene polymorphism of claim 2, wherein the OSCAR-2322A> G polymorphism is significantly associated with bone mineral density and spinal fractures.
KR1020050042212A 2005-05-19 2005-05-19 Osacr gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis KR20060120390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050042212A KR20060120390A (en) 2005-05-19 2005-05-19 Osacr gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050042212A KR20060120390A (en) 2005-05-19 2005-05-19 Osacr gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis

Publications (1)

Publication Number Publication Date
KR20060120390A true KR20060120390A (en) 2006-11-27

Family

ID=37706649

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050042212A KR20060120390A (en) 2005-05-19 2005-05-19 Osacr gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis

Country Status (1)

Country Link
KR (1) KR20060120390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896710B1 (en) * 2007-11-13 2009-05-11 재단법인서울대학교산학협력재단 Genetic markers for bone density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896710B1 (en) * 2007-11-13 2009-05-11 재단법인서울대학교산학협력재단 Genetic markers for bone density

Similar Documents

Publication Publication Date Title
Zebrick et al. ACTN3 R577X genotypes associate with Class II and deepbite malocclusions
Knight et al. Spinocerebellar ataxia type 15 (sca15) maps to 3p24. 2-3pter:: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant
Chu et al. TOMM40 poly-T repeat lengths, age of onset and psychosis risk in Alzheimer disease
Shirts et al. Association study of IL10, IL1β, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: Suggestive association with rs16944 at IL1β
Bustamante et al. Polymorphisms in the interleukin-6 receptor gene are associated with bone mineral density and body mass index in Spanish postmenopausal women
MX2014004309A (en) Single nucleotide polymorphisms useful to predict clinical response for glatiramer acetate.
Kantarci et al. A population-based study of IL4 polymorphisms in multiple sclerosis
Eftekhari et al. Association of interleukin-6 (rs1800796) but not transforming growth factor beta 1 (rs1800469) with serum calcium levels in osteoporotic patients
Brüggemann et al. Frequency of heterozygous Parkin mutations in healthy subjects: need for careful prospective follow-up examination of mutation carriers
Choi et al. Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women
KR20150088175A (en) Composition for predicting risk of thiopurine induced leukopenia comprising single nucleotide polymorphism marker in NUDT15 gene
Lee et al. Association of a RUNX2 promoter polymorphism with bone mineral density in postmenopausal Korean women
Rey et al. Polymorphisms in genes encoding leptin, ghrelin and their receptors in German multiple sclerosis patients
Lee et al. Fracture, bone mineral density, and the effects of calcitonin receptor gene in postmenopausal Koreans
Liu et al. Molecular analysis of the SMN gene mutations in spinal muscular atrophy patients in China
Krajcovicova et al. The effect of A163G polymorphism in the osteoprotegerin gene on osteoporosis related traits in Slovak postmeno-pausal women.
Yesilada et al. Prevalence of known mutations and a novel missense mutation (M694K) in the MEFV gene in a population from the Eastern Anatolia Region of Turkey
Wu et al. HLA-DRB1 allele heterogeneity influences multiple sclerosis severity as well as risk in Western Australia
Wang et al. Genetic effects of B3GNT2 on ankylosing spondylitis susceptibility and clinical manifestations in Taiwanese
KR20060120390A (en) Osacr gene polymorphisms for predicting and diagnosing a risk of pathogenesis of osteoporosis
US6803197B1 (en) Method for determining susceptibility to bone damage by screening polymorphisms in the vitamin D receptor gene
Karaca et al. Severe brachydactyly and short stature resulting from a novel pathogenic TRPS1 variant within the GATA DNA-binding domain
Matsumoto et al. Mutation analysis of the ALD gene in seven Japanese families with X-linked adrenoleukodystrophy
JP2003061677A (en) Sensitive gene of systemic lupus erythematosus and its employment
Pourakbari et al. Association between interleukin 2 receptor A gene polymorphisms (rs2104286 and rs12722489) with susceptibility to multiple sclerosis in Iranian population

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application