KR20060119532A - Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids - Google Patents

Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids Download PDF

Info

Publication number
KR20060119532A
KR20060119532A KR1020050042635A KR20050042635A KR20060119532A KR 20060119532 A KR20060119532 A KR 20060119532A KR 1020050042635 A KR1020050042635 A KR 1020050042635A KR 20050042635 A KR20050042635 A KR 20050042635A KR 20060119532 A KR20060119532 A KR 20060119532A
Authority
KR
South Korea
Prior art keywords
nitrogen
ionic liquid
compounds
oil
sulfur
Prior art date
Application number
KR1020050042635A
Other languages
Korean (ko)
Other versions
KR101221160B1 (en
Inventor
신동현
김덕한
김은경
주창우
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1020050042635A priority Critical patent/KR101221160B1/en
Publication of KR20060119532A publication Critical patent/KR20060119532A/en
Application granted granted Critical
Publication of KR101221160B1 publication Critical patent/KR101221160B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/08Azeotropic or extractive distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Abstract

A method of extracting nitrogen and sulfur compounds from petroleum distillates using ionic liquids is provided to remove the nitrogen compounds and sulfur compounds more effectively by using ionic liquid which is eco-friendly solvent. The method of extracting nitrogen and sulfur compounds from petroleum distillates using ionic liquids comprises the steps of mixing (i) the C5-C50 petroleum hydrocarbon distillates containing sulfur compounds, nitrogen compounds or mixture thereof and (ii) ionic liquids and then extracting and removing the sulfur and nitrogen compounds or the mixture thereof from the petroleum hydrocarbon distillate layer as ionic liquid layer through phase separation. The ratio of the ionic liquid and the petroleum hydrocarbon(solvent to oil;SOR) is 0.01-5. The extraction through phase separation is repeated more than two times.

Description

이온성 액체를 이용하여 석유계 탄화수소 유분 중의 질소화합물 및 황화합물을 제거하는 방법 {Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids}Removal of nitrogen and sulfur compounds from petroleum hydrocarbon fraction using ionic liquids {Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids}

도 1은 본 발명의 적용예로써, 이온성 액체를 이용하여 경질가스오일 중의 질소화합물 및 황화합물을 추출 또는 제거하는 공정을 개략적으로 나타낸 공정흐름도이다. FIG. 1 is a flowchart illustrating a process of extracting or removing nitrogen and sulfur compounds in light gas oil using an ionic liquid as an application example of the present invention.

본 발명은 이온성 액체를 이용한 석유계 탄화수소 유분 중의 질소화합물 및 황화합물의 제거방법에 관한 것으로, 좀 더 상세하게는 탄화수소 혼합물에 미량 존재하는 질소화합물, 황화합물에 대해 선택적으로 용해도가 높은 이온성 액체를 이용하여, 간단하고 경제적인 추출공정을 통해서 석유 정제공정에서 생산되는 각종 석유계 탄화수소 유분에 있어 제거가 필요한 질소화합물 및 황화합물을 효율적으로 제거할 수 있는 방법에 관한 것이다.The present invention relates to a method for removing nitrogen compounds and sulfur compounds in petroleum hydrocarbon fraction using an ionic liquid, and more particularly, an ionic liquid having high solubility selectively for nitrogen compounds and sulfur compounds present in trace amounts in a hydrocarbon mixture. The present invention relates to a method for efficiently removing nitrogen compounds and sulfur compounds that need to be removed in various petroleum hydrocarbon fractions produced in a petroleum refining process through a simple and economical extraction process.

석유 제품에 포함된 질소화합물 및 황화합물은 그 함량이 높을수록, 자동차 엔진 등의 각종 연소기기로부터 SOx, NOx 등의 유해한 배기가스의 배출을 증가시키고, 자동차 배기가스 저감장치의 촉매독으로 작용하기도 하며, 석유 정제공정 중간 단계의 탄화수소 유분에 포함된 질소화합물 및 황화합물은 공정 중에 사용되는 촉매에 촉매독으로 작용하여 반응효율을 저하시키고, 촉매 수명을 단축시키기 때문에, 석유류 탄화수소 유분 중의 황화합물, 질소화합물을 제거하는 다양한 방법들이 수십년 동안 연구되고, 상업적으로 적용되어 왔다. The higher the nitrogen and sulfur compounds in petroleum products, the higher the emission of harmful emissions such as SO x and NO x from various combustion devices such as automobile engines, and acts as a catalyst poison for automobile exhaust gas reduction devices. Nitrogen compounds and sulfur compounds in the hydrocarbon fraction in the middle of the petroleum refining process act as catalyst poisons to the catalyst used in the process to reduce the reaction efficiency and shorten the catalyst life, so sulfur compounds and nitrogen in the petroleum hydrocarbon fraction Various methods of removing compounds have been studied for decades and have been applied commercially.

석유계 탄화수소 유분에 함유된 황화합물, 질소화합물 및 기타 불순물을 제거하기 위한 방법으로는, 가성소다, 아민 화합물과 같은 염기성 용액를 이용하여 유분에 포함된 머켑탄 성분을 산화시켜 제거하거나, 이황화 화합물로 전환시키는 스위트닝 공정(Sweetening Process), 탄화수소 유분을 수소와 혼합하여, 고온 고압 하에서 코발트, 몰리브덴, 알루미늄계의 촉매를 이용하여 황, 질소, 산소화합물을 제거하는 수소화정제 공정(Hydrotreating Process), 실리카겔, 알루미나겔 등의 다양한 흡착제를 이용하여 황, 질소, 산소화합물들을 제거하는 흡착 공정(Adsorption Process) 등이 널리 사용되고 있다. As a method for removing sulfur compounds, nitrogen compounds and other impurities contained in petroleum hydrocarbon fractions, basic components such as caustic soda and amine compounds are used to oxidize and remove the methane component contained in the oil, or to convert to disulfide compounds. Sweetening process, a hydrotreating process to remove sulfur, nitrogen and oxygen compounds using a catalyst of cobalt, molybdenum and aluminum under high temperature and high pressure by mixing hydrocarbon oil with hydrogen, silica gel, Adsorption processes for removing sulfur, nitrogen, and oxygen compounds using various adsorbents such as alumina gel are widely used.

예를 들어, 한국 등록특허 제313,265호에는 탄화수소 공급원료를 추출 및 수소첨가 처리를 통해서 탄화수소 공급 원료로부터 압축 점화식 내연 기관용 연료 조성물의 기재로서 사용될 수 있도록 세탄가와 황 함량이 개선된 석유 제품을 제조하는 방법이 개시되어 있다. For example, Korean Patent No. 313,265 discloses a process for producing a petroleum product having improved cetane number and sulfur content so as to be used as a substrate for a fuel ignition engine for compression ignition from a hydrocarbon feedstock through extraction and hydrogenation of a hydrocarbon feedstock. A method is disclosed.

또한, 한국 등록특허 제213,524호에는 탄화수소를 크래킹함으로써 획득한 탄소수 5~6의 3차 올레핀을 함유하는 탄화수소 혼합물에서 불순물 함량, 즉 프로피오니트릴을 알칸올로 증류하고, 고 비등점의 불순물을 제거함으로써 석유 생산물로부터 불순물을 제거하는 방법이 개시되어 있다.In addition, Korean Patent No. 213,524 discloses an impurity content, ie, propionitrile, by distilling alkanol from a hydrocarbon mixture containing tertiary olefins having 5 to 6 carbon atoms obtained by cracking hydrocarbons, and removing impurities having high boiling points. A method for removing impurities from petroleum products is disclosed.

그러나, 종래기술에 따른 제거방법은 전체 공정이 복잡하고, 처리시간이 장시간 요구되어 경제적으로 불리할 뿐만 아니라, 효율면에서 미흡한 단점이 있다. 특히, 90년대 이후에 환경 규제가 급격히 강화되고 있고, 최근에는 해외 선진국을 중심으로 휘발유, 경유의 황함량이 10ppm 이하인 초저유황 연료가 생산되고 있으며, 향후 5~10년 이내에 연료의 황함량을 10ppm 이하로 규제할 전망이며, 한국의 석유 제품 및 정부규제도 이를 뒤따르고 있어, 연료에 포함된 대기오염 물질의 주요 원인 성분인 질소화합물 및 황화합물을 최대한 많이 제거하기 위해서 기존의 공정조건을 더욱 심화시키거나, 또는 보다 효율성이 높은 방법으로 대체할 수 있는 기술이 시급히 요구되고 있는 실정이다.However, the removal method according to the prior art has a disadvantage in that the overall process is complicated, the processing time is required for a long time, not only economically disadvantageous, but also in efficiency. In particular, since the 1990s, environmental regulations have been sharply strengthened, and recently, ultra-low sulfur fuels containing less than 10 ppm of gasoline and diesel are produced, especially in advanced countries overseas, and 10 ppm of sulfur content in the next 5 to 10 years. Korea's petroleum products and government regulations are followed, and the existing process conditions will be further deepened to remove as much nitrogen and sulfur compounds as the main causes of air pollutants in fuel. Or, there is an urgent need for technology that can be replaced by a more efficient method.

한편, 이온성 액체 화합물은 종류에 따라 차이는 있으나, 상당히 넓은 온도범위 (-100~300℃ 또는 그 이상)에서 액체로 존재하며, 폭 넓은 용해력, 비가연성, 비증발성 및 고전도성 등의 특징이 있으며, 양이온과 음이온의 구조 변화에 따라 물리화학적 성질이 달라져 사용자의 이용 목적에 맞게 화학구조를 최적화 할 수 있는 장점이 있다. 특히, 이온성 액체는 일반 유기화합물보다 비중, 끓는점이 높아, 상분리 및 증류를 통한 유기화합물과 이온성 액체의 분리가 용이하여 기존 유기용매를 대체할 수 있다. 그리고, 다양한 물질에 대한 용해력이 있기 때문에, 촉매반 응에 사용되어 촉매의 회수, 재사용이 용이하게 할 뿐만 아니라, 일부 촉매 반응에서는 촉매의 반응성, 선택성, 안전성을 증가시킨다. 이와 같은 특징에 따라, 새로운 이온성 액체의 개발과, 촉매반응을 포함한 다양한 유기합성, 전기화학분야 등에서 이온성 액체의 응용연구가 세계적으로 활발히 진행되고 있다[J.D. Holbresy, K.R. Seddon, Ionic liquids, Clean Products and Process 1, 223~236, 1999; Tom Welton, Ionic Liquids in Catalysis, Coordination Chemistry Reviews, 2004, 248, 2459~2477; Bernadette M. Quinn, Zhifeng Ding, etc., Novel Electrochemical Studies of Ionic Liquids, Langmuir , 2002, 18, 1734~1742].On the other hand, ionic liquid compounds are different depending on the type, but exist as a liquid in a fairly wide temperature range (-100 ~ 300 ℃ or more), characterized by a wide range of dissolving power, non-flammable, non-evaporable and high conductivity In addition, the physical and chemical properties are changed according to the change in the structure of the cation and anion, which has the advantage of optimizing the chemical structure according to the user's use purpose. In particular, the ionic liquid has a higher specific gravity and boiling point than the general organic compound, so that the organic compound and the ionic liquid can be easily separated through phase separation and distillation, thereby replacing the existing organic solvent. And because of its ability to dissolve in a variety of materials, it can be used in catalyst reactions to facilitate recovery and reuse of catalysts, as well as to increase the reactivity, selectivity and safety of catalysts in some catalytic reactions. As a result, the development of new ionic liquids and the application of ionic liquids in various organic synthesis and electrochemical fields including catalysis have been actively conducted worldwide. [JD Holbresy, KR Seddon, Ionic liquids, Clean Products and Process 1 , 223-236, 1999; Tom Welton, Ionic Liquids in Catalysis, Coordination Chemistry Reviews , 2004, 248, 2459-2477; Bernadette M. Quinn, Zhifeng Ding, etc., Novel Electrochemical Studies of Ionic Liquids, Langmuir , 2002, 18, 1734-1174.

석유제품 또는 정제공정에의 응용 실험 또한 진행 중에 있으나, 아직은 연구초기 단계로서 상업적으로 적용될 수 있는 기술 수준에는 이르지 않고 있다.Application experiments in petroleum products or refining processes are also underway, but as of early stages of research, they have not reached the level of commercially applicable technology.

이에 본 발명에서는 전술한 바와 같은 기존의 석유 정제공정의 문제점을 해결하기 위하여 다양한 연구를 거듭한 결과, 환경친화적 용매로 각광받는 이온성 액체를 이용하여 석유계 탄화수소 유분 중의 미량의 질소화합물 및 황화합물을 간단한 추출공정을 통해서 효율적으로 제거할 수 있음을 발견하였고, 본 발명은 이에 기초하여 완성되었다.Therefore, in the present invention, as a result of various studies to solve the problems of the conventional petroleum refining process as described above, a trace amount of nitrogen compounds and sulfur compounds in the petroleum hydrocarbon fraction by using an ionic liquid spotlighted as an environmentally friendly solvent It has been found that the removal can be performed efficiently through a simple extraction process, and the present invention has been completed based on this.

따라서, 본 발명의 목적은 이온성 액체를 이용하여 석유계 탄화수소 유분 중의 질소화합물 및 황화합물을, 기존의 질소 및 황화합물 제거공정에 비해 운전조건 및 제거 효율성이 향상된 더욱 경제적인 공정을 통해서, 효율적으로 제거하는 방법 을 제공하는데 있다.Accordingly, an object of the present invention is to efficiently remove nitrogen compounds and sulfur compounds in petroleum hydrocarbon fractions using ionic liquids through a more economic process with improved operating conditions and removal efficiency compared to conventional nitrogen and sulfur compounds removal processes. To provide a way.

상기 목적을 달성하기 위한 본 발명에 따른 이온성 액체를 이용한 석유계 탄화수소 유분 중의 질소화합물 및 황화합물을 제거하는 방법은:Method for removing nitrogen compounds and sulfur compounds in the petroleum hydrocarbon fraction using the ionic liquid according to the present invention for achieving the above object:

(i) 석유 정제공정 중에 생산되고, 황화합물, 질소화합물 또는 이들의 혼합물이 함유된 C5~C50의 석유계 탄화수소 유분과, (ii) 이온성 액체를 혼합한 후, 상분리를 통해서 황화합물, 질소화합물 또는 이들의 혼합물을 석유계 탄화수소 유분층으로부터 이온성 액체 층으로 추출시켜 제거하는 것을 특징으로 한다. (i) C5 to C50 petroleum hydrocarbon fractions produced during the petroleum refining process and containing sulfur compounds, nitrogen compounds or mixtures thereof; and (ii) sulfur compounds, nitrogen compounds or These mixtures are characterized in that they are removed by extraction from the petroleum hydrocarbon fraction layer into the ionic liquid layer.

바람직하게는, 상기 석유계 탄화수소 유분은 상압증류탑에서 생산되는 납사(naphtha), 조등유(Raw-kerosene), 경질가스오일(light gas oil; LGO), 중질가스오일(heavy gas oil, HCN), 상압잔사유, 및 중질유 분해공정에서 생산되는 라이트사이클오일(light cycle oil; LCO), 중질분해납사(heavy catalytic naphtha; HCN), 경질분해납사(light catalytic naphtha; LCN) 및 감압증류 잔사유, 및 휘발유, 등유, 보일러등유, 경유, 중유, 및 원유로부터 분리 정제되는 탄화수소 유분으로 이루어진 군으로부터 선택된다. Preferably, the petroleum hydrocarbon fraction is naphtha, raw kerosene, light gas oil (LGO), heavy gas oil (HCN), produced in an atmospheric distillation column, Atmospheric residue oil, light cycle oil (LCO), heavy catalytic naphtha (HCN), light catalytic naphtha (LCN) and vacuum distillation residue oil produced in heavy oil cracking processes, and It is selected from the group consisting of gasoline, kerosene, boiler kerosene, light oil, heavy oil, and hydrocarbon fraction separated from crude oil.

바람직하게는, 상기 이온성 액체는 화학식 1로 표시되는 이미다졸리움(imidazolium), 피리디늄(pyridinium), 피라졸륨(pyrazolium), 피롤리디늄(pyrrolidinium) 유도체 중에 선택된 하나의 양이온과 SbF6 - (hexafluoroantimonate), PF6 -(hexafluorophosphate), BF4 -(tetrafluoroborate), Cl-(chloride anion), NTF2 -(bistrifluoromethylsulfonylamide), CF3SO3 -(trifluoromathanesulfonate), CH3OSO3 -(methylsulfate), HOSO3 -(hydrogensulfate), CF3CO2 -(trifluoroacetate), CF3(CF2)3CO2 -(heptafluorobutanoate)로 이루어진 군으로부터 선택된 하나의 음이온이 결합된 이온결합성 화합물 또는 이들의 혼합물이다. Preferably, the ionic liquid is one cation selected from imidazolium, pyridinium, pyrazolium, pyrrolidinium derivative represented by Formula 1 and SbF 6 ( hexafluoroantimonate), PF 6 - (hexafluorophosphate ), BF 4 - (tetrafluoroborate), Cl - (chloride anion), NTF 2 - (bistrifluoromethylsulfonylamide), CF 3 SO 3 - (trifluoromathanesulfonate), CH 3 OSO 3 - (methylsulfate), HOSO 3 - (hydrogensulfate), CF 3 CO 2 - (trifluoroacetate), CF 3 (CF 2) 3 CO 2 - (heptafluorobutanoate) is an ion-binding compound, or a mixture thereof, one of the anions selected from the group consisting of a bond.

Figure 112005026629778-PAT00001
Figure 112005026629778-PAT00001

상기 식에서, R, R1 및 R2는 서로 같거나 다르게 CnH2n+1이며, n은 1~12의 정수이다.Wherein R, R 1 and R 2 are the same as or different from each other and C n H 2n + 1 and n is an integer from 1 to 12.

바람직하게는, 상기 이온성 액체와 석유계 탄화수소 유분의 부피비율(solvent to oil ratio; SOR)은 0.01~5이다.Preferably, the solvent to oil ratio (SOR) of the ionic liquid and the petroleum hydrocarbon fraction is from 0.01 to 5.

바람직하게는, 상기 상분리를 통한 추출공정은 2회 이상 반복된다.Preferably, the extraction process through the phase separation is repeated two or more times.

바람직하게는, 상기 추출공정은 0~300℃의 온도에서 수행된다.Preferably, the extraction process is carried out at a temperature of 0 ~ 300 ℃.

바람직하게는, 상기 혼합물에 상기 이온성 액체에 대해서 0~20 부피%의 황산, 염산, 질산 및 C1~C15의 카르복실산으로 이루어진 군으로부터 선택된 산을 더 욱 첨가한다.Preferably, further to the mixture is added an acid selected from the group consisting of 0-20% by volume sulfuric acid, hydrochloric acid, nitric acid and C1-C15 carboxylic acid relative to the ionic liquid.

바람직하게는, 상기 추출공정에서 사용된 이온성 액체는 유기 용매, 물 또는 이들의 조합을 이용하여 상기 질소화합물, 황화합물 또는 이들의 혼합물과 분리된 후, 추출공정에 재사용된다.Preferably, the ionic liquid used in the extraction process is separated from the nitrogen compound, sulfur compound or a mixture thereof using an organic solvent, water or a combination thereof and then reused in the extraction process.

바람직하게는, 상기 추출공정에서 사용된 이온성 액체는 증류를 통하여 상기 질소화합물, 황화합물 또는 이들의 혼합물과 분리된 후, 추출공정에 재사용된다.Preferably, the ionic liquid used in the extraction process is separated from the nitrogen compound, sulfur compound or a mixture thereof through distillation and then reused in the extraction process.

이하 본 발명을 첨부된 도면을 참조하여 좀 더 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

전술한 바와 같이, 본 발명에서는 석유정제공정을 통해 생산되는 석유계 탄화수소 유분에 포함되어 있는 질소화합물 및 황화합물을 이온성 액체를 이용한 간단한 추출공정을 통해서 효율적으로 제거하는 방법이 제공된다.As described above, the present invention provides a method for efficiently removing nitrogen compounds and sulfur compounds contained in the petroleum hydrocarbon fraction produced by the petroleum refining process through a simple extraction process using an ionic liquid.

본 발명에서 사용되는 석유계 탄화수소 유분은 C5~C50의 탄소수를 갖는 석유 정제공정 반제품 및 제품을 포함한다. Petroleum hydrocarbon fraction used in the present invention includes petroleum refining semi-finished products and products having a carbon number of C5 ~ C50.

상기 석유 정제공정 반제품으로는 석유 정제공정에서 생산되는 각종 석유제품 중간 유분으로서, 그 일례로는 상압증류탑에서 생산되는 납사, 조등유, 경질가스오일(LGO), 중질가스오일(HCN), 상압잔사유, 및 중질유 분해공정에서 생산되는 라이트사이클오일(LCO), 중질분해납사(HCN), 경질분해납사(LCN) 및 감압증류 잔사유가 포함된다.The semi-finished petroleum refining process is an intermediate oil of various petroleum products produced in the petroleum refining process, and examples thereof include naphtha, light oil, light gas oil (LGO), heavy gas oil (HCN), and high pressure glass. Light cycle oil (LCO), heavy cracked naphtha (HCN), light cracked naphtha (LCN), and vacuum distillation residues are produced.

또한, 상기 석유 제품으로는 휘발유, 등유, 보일러등유, 경유, 중유, 및 기타 원유로부터 분리 정제되어 생산되는 탄화수소 제품 등이 포함될 수 있으나, 특 별히 이에 제한되는 것은 아니다.In addition, the petroleum product may include, but is not limited to, a hydrocarbon product produced by separating and refining from gasoline, kerosene, boiler kerosene, diesel, heavy oil, and other crude oil.

본 발명에서 추출용제로 사용되는 이온성 액체는 하기 화학식 1로 표시되는 이미다졸리움, 피리디늄, 피라졸륨, 피롤리디늄 유도체 중에 선택된 하나의 양이온과 SbF6 -, PF6 -, BF4 -, Cl-, NTF2 -, CF3SO3 -, CH3OSO3 -, HOSO3 -, CF3CO2 -, CF3(CF2)3CO2 -로 이루어진 군으로부터 선택된 하나의 음이온이 결합된 이온결합성 화합물 또는 이들의 혼합물이 포함된다. , PF 6 - -, BF 4 - imidazolium, pyridinium, pyrazolium, pyrrolidinium pyridinium one cationic and SbF 6 chosen in the derivative represented by the general formula (1) ionic liquid to be used as the extraction solvent in the present invention, Cl -, NTF 2 -, CF 3 SO 3 -, CH 3 OSO 3 -, HOSO 3 -, CF 3 CO 2 - that combines the one anion selected from the group consisting of -, CF 3 (CF 2) 3 CO 2 Ionic binding compounds or mixtures thereof are included.

화학식 1Formula 1

Figure 112005026629778-PAT00002
Figure 112005026629778-PAT00002

상기 식에서, R, R1 및 R2는 서로 같거나 다르게 CnH2n+1이며, n은 1~12의 정수이다.Wherein R, R 1 and R 2 are the same as or different from each other and C n H 2n + 1 and n is an integer from 1 to 12.

알킬기의 탄화수소 길이에 따라 추출효율 또는 추출 처리 후의 회수율 손실이 다소 차이가 있으며 탄화수소 유분에 따라 최적의 이온성 액체를 선택할 수 있다.Depending on the hydrocarbon length of the alkyl group, the extraction efficiency or recovery loss after the extraction process is somewhat different, and the optimum ionic liquid can be selected according to the hydrocarbon fraction.

한편, 상기 이온성 액체와, 석유계 탄화수소 유분의 부피비율, 즉 처리비율 (solvent to oil ratio; SOR)은 낮을 수록 경제성이 좋으므로, 바람직하게는 0.01~5, 좀 더 바람직하게는 0.01~1인 것이 좋다. 이때, 상기 처리비율이 너무 낮으면 처리효율이 나쁘고, 너무 높으면 층분리 속도가 느리고 비용도 증가하는 단점 이 있다. On the other hand, the lower the volume ratio of the ionic liquid and the petroleum hydrocarbon fraction, that is, the solvent to oil ratio (SOR), the better the economical efficiency, preferably 0.01-5, more preferably 0.01-1. It is good to be. At this time, if the treatment ratio is too low, the treatment efficiency is bad, if too high, there is a disadvantage that the layer separation rate is slow and the cost increases.

또한, 상기 추출공정의 혼합시간은 10초 또는 그 이상으로 실시될 수 있고, 바람직하게는 수 분(minute)동안 충분히 혼합한 후 층분리 공정을 수행하는 것이 좋다. 한편, 층분리는 석유 유분의 비중이 낮을수록 더욱 신속하게 일어나는 경향이 있으며, 예를 들어, 경질가스오일(LGO)의 경우 약 10~50분 정도 방치하여 완전한 층분리를 유도하는 것이 바람직하다.In addition, the mixing time of the extraction process may be carried out in 10 seconds or more, preferably, after sufficient mixing for a few minutes (minute) it is good to perform a layer separation process. On the other hand, the delamination tends to occur more quickly as the specific gravity of the petroleum fraction is lower, for example, light gas oil (LGO) is preferably left for about 10 to 50 minutes to induce complete delamination.

상기 상분리를 통한 추출공정은 1회 이상 반복되는 것이 질소화합물 및 황화합물의 제거효율 증가면에서 바람직하다. The extraction process through the phase separation is preferably repeated one or more times in view of increasing the removal efficiency of nitrogen compounds and sulfur compounds.

한편, 상기 추출공정은 0~300℃ 사이의 온도에서 수행될 수 있으며, 바람직하게는 20~150℃에서 수행되는 것이 좋다. 상기 추출공정의 온도가 너무 낮으면 층분리가 느리고 깨끗하지 않으며, 너무 높으면 석유 반제품이 증발하기 쉽다.On the other hand, the extraction process may be carried out at a temperature between 0 ~ 300 ℃, preferably it is carried out at 20 ~ 150 ℃. If the temperature of the extraction process is too low, the delamination is slow and not clean, if too high, the petroleum semi-finished product is likely to evaporate.

또한, 질소화합물 및 황화합물의 추출 및 제거효율을 증가시키기 위해서는 상기 이온성 액체에 대해서 0.01 부피% 이상의 황산, 염산, 질산과 같은 무기산 및 Formic Acid, Acetic Acid, Propionic Acid 등 C1~C15로 구성된 카르복실산으로 이루어진 군으로부터 선택된 산을 첨가하여 추출용매로 사용할 수 있으며, 그 사용량은 바람직하게는 0~20 부피%, 좀 더 바람직하게는 0.01~5 부피%인 것이 경제성 대비 효율면에서 좋다. 여기서, 상술한 산의 첨가량이 증가할수록 탄화수소 유분과 산의 반응성이 증가하여 탄화수소 유분의 회수율이 감소할 수 있다.In addition, in order to increase the extraction and removal efficiency of nitrogen compounds and sulfur compounds, a carboxyl composed of inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and C1 to C15 such as Formic Acid, Acetic Acid, Propionic Acid, etc. An acid selected from the group consisting of acids can be added and used as an extraction solvent, and the amount of the acid is preferably 0 to 20% by volume, more preferably 0.01 to 5% by volume, in terms of economic efficiency and efficiency. Here, as the amount of the above-mentioned acid is increased, the reactivity of the hydrocarbon fraction and the acid may increase, thereby reducing the recovery rate of the hydrocarbon fraction.

따라서, 전술한 바와 같이 상기 이온성 액체의 처리비율, 추출온도, 추출시간 및 산의 첨가량에 따라 질소화합물 및 황화합물의 추출/제거 효율이 달라질 수 있으므로, 처리하고자 하는 유분의 특성에 따라서 적절한 조건을 선택하여 효율을 최대화할 수 있다.Therefore, as described above, the extraction / removal efficiency of the nitrogen compound and the sulfur compound may vary depending on the treatment ratio, extraction temperature, extraction time, and acid addition amount of the ionic liquid. Therefore, appropriate conditions may be determined according to the characteristics of the oil to be treated. Can be selected to maximize efficiency.

한편, 상기 석유계 탄화수소 유분 중의 질소화합물 및 황화합물의 추출에 사용된 이온성 액체는 헥산, 벤젠, 에테르 등의 유기용매, 물 또는 이들의 조합을 이용한 역추출공정 또는 증류공정을 통해서 이온성 액체에서 질소화합물 및 황화합물을 분리한 후, 추출공정에 재사용될 수 있다.On the other hand, the ionic liquid used for the extraction of nitrogen compounds and sulfur compounds in the petroleum hydrocarbon fraction is a reverse extraction process using an organic solvent, such as hexane, benzene, ether, water or a combination thereof Alternatively, the nitrogen compound and the sulfur compound may be separated from the ionic liquid through a distillation process and then reused in the extraction process.

상술한 본 발명의 질소화합물 및 황화합물의 추출공정을 경질가스오일을 일례로 들어 설명하면 다음과 같다.The extraction process of the nitrogen compound and the sulfur compound of the present invention described above will be described with light gas oil as an example.

도 1은 본 발명의 적용예로서 경질가스오일 중의 질소화합물 및 황화합물을 추출 및 제거하는 공정을 개략적으로 나타낸 공정흐름도이다. 1 is a process flow diagram schematically showing a process of extracting and removing nitrogen compounds and sulfur compounds in light gas oil as an application example of the present invention.

우선, 상압증류공정에서 분리된 경질가스오일(LGO)과 이온성 액체를 충분히 접촉되도록 혼합기(mixing unit; 1)에서 일정비율로 혼합한 후, 분리기(separation unit; 2)에서 상기 이온성 액체와 LGO가 비중차이로 층분리가 일어나도록 정치시킨다. First, the mixed light gas oil (LGO) separated from the atmospheric distillation process is mixed at a predetermined ratio in a mixing unit 1 so that the ionic liquid is sufficiently in contact, and then the ionic liquid and the ionic liquid are separated in a separation unit 2. LGO will let the separation occur due to the specific gravity difference.

그 다음, 이로부터 분리된 상층의 LGO는 추가 탈황공정이 필요한 경우에 한하여 수소화정제 처리기(hydrotreating unit; 3)를 거쳐 후단의 수첨탈황공정을 거쳐 최종 처리된 LGO가 생산되고, 하층의 이온성 액체는 재생기(regeneration unit; 4)로 이송된 후, 재생용매를 이용하여 LGO에서 추출된 질소 및 황화합물 (a)을 분리시켜 재생된 이온성 액체 (b)는 다시 추출공정에 투입된다.Then, the LGO in the upper layer separated therefrom is produced through the hydrotreating unit (3) after the hydrotreating unit (3) and the final hydrodesulfurization process in the final stage, and the lower ionic liquid is produced. After the transfer to the regeneration unit (4), the nitrogen and sulfur compounds (a) extracted from the LGO by using a regeneration solvent is separated and the regenerated ionic liquid (b) is put into the extraction process again.

이하, 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

실시예 1Example 1

경질가스오일 (LGO)의 질소/황화합물의 제거Removal of Nitrogen / Sulfur Compounds from Light Gas Oil (LGO)

먼저 상압증류공정에서 나온 원료-LGO(raw-LGO)를 분석장비를 사용하여 총 질소 및 황 함량을 측정하였다. 그 다음, 100㎖ 메스실린더에 이온성 액체로서 1-부틸-3-메틸이미다졸리움 헥사플루오로안티모네이트 10㎖를 넣고, 여기에 황산 0.4㎖ 및 원료-LGO 40㎖를 각각 넣었다. 이들 혼합물을 10분간 상하로 흔들어 혼합한 후, 층분리가 완전히 일어나도록 10분 이상 정치하였다. 그 다음, 상층의 원료-LGO를 분리하고 이에 잔류된 질소 및 황화합물의 잔류량을 측정하였다. 시험결과 상기 원료-LGO를 이온성 액체를 처리하기 전에는 126ppm의 질소를 함유하고 있었으나, 이온성 액체로 추출한 후에는 질소 함량이 3.6ppm으로, 약 97% 감소하였고, 황 함량은 13,860ppm에서 12,810ppm으로, 약 7.6 % 감소하였다.First, the total nitrogen and sulfur content of the raw-LGO (raw-LGO) from the atmospheric distillation process was measured using an analytical equipment. Then, 10 ml of 1-butyl-3-methylimidazolium hexafluoroantimonate was added as a ionic liquid to a 100 ml measuring cylinder, and 0.4 ml of sulfuric acid and 40 ml of raw material-LGO were added thereto. These mixtures were shaken up and down for 10 minutes to mix, and then allowed to stand for at least 10 minutes to completely separate the layers. Then, the upper raw material-LGO was separated and the residual amounts of nitrogen and sulfur compounds remaining therein were measured. As a result of the test, the raw material-LGO contained 126 ppm of nitrogen before the ionic liquid was treated, but after extraction with the ionic liquid, the nitrogen content was reduced to 3.6 ppm, about 97%, and the sulfur content was 12,810 ppm from 13,860 ppm. , About 7.6%.

실시예 2Example 2

중질분해납사 (HCN)의 질소/황화합물의 제거 1Removal of Nitrogen / Sulfur Compounds from Heavily Degraded Naphtha (HCN) 1

상압증유잔사유의 분해성분 중의 하나인 중질분해납사 20㎖와 이온성 액체로서 3-부틸-1-메틸이미다졸리움 헥사플루오로안티모네이트 20㎖를 넣고 충분히 섞이도록 교반한 후, 정치시켜 층분리 후 얻은 상층의 이온성 액체의 추출 이전 및 이후의 HCN의 질소 함량을 분석한 결과, 질소 함량이 375ppm에서 60ppm으로, 약 84% 감소하였고, 황 함량은 2,093ppm에서 1,528ppm으로, 약 27 % 감소하였다.20 ml of deuterated naphtha, one of the decomposition components of atmospheric pressure residue, and 20 ml of 3-butyl-1-methylimidazolium hexafluoroantimonate as an ionic liquid were added to the mixture, and the mixture was stirred until it was sufficiently mixed. As a result of analyzing the nitrogen content of HCN before and after extraction of the upper ionic liquid obtained after separation, the nitrogen content decreased from 375ppm to 60ppm, about 84%, and the sulfur content from 2,093ppm to 1,528ppm, about 27% Decreased.

실시예 3Example 3

중질분해납사 (HCN)의 질소/황화합물의 제거 2Removal of Nitrogen / Sulfur Compounds from Heavily Degraded Naphtha (HCN) 2

이온성 액체로서 3-헥실-1-메틸이미다졸리움 헥사플루오로안티모네이트를 사용하여 상기 실시예 2와 동일하게 실시하여 추출공정을 통해 분리된 상층의 HCN에 함유된 질소 함량을 측정한 결과 375ppm에서 34ppm(91% 감소)으로 낮아졌으며, 황 함량은 2,093ppm에서 1,174ppm (44% 감소)으로 질소 및 황 성분이 제거되었다. As the ionic liquid, 3-hexyl-1-methylimidazolium hexafluoroantimonate was carried out in the same manner as in Example 2, and the nitrogen content contained in the HCN of the upper layer separated through the extraction process was measured. It was lowered from 375ppm to 34ppm (91% reduction), and the sulfur content was removed from 2,093ppm to 1,174ppm (44% reduction) to remove nitrogen and sulfur components.

실시예 4Example 4

중질분해납사 (HCN)의 질소/황화합물의 제거 3Removal of Nitrogen / Sulfur Compounds from Heavily Degraded Naphtha (HCN) 3

이온성 액체로서 3-옥틸-1-메틸이미다졸리움 헥사플루오로안티모네이트를 사용하여 상기 실시예 2와 동일하게 실시하여 추출공정을 통해 분리된 상층의 HCN에 함유된 질소 함량을 측정한 결과 375ppm에서 52ppm(86% 감소)으로 낮아졌으며, 황 함량은 2,093ppm에서 1,359ppm(35% 감소)으로 질소 및 황 성분이 제거되었다.As the ionic liquid, 3-octyl-1-methylimidazolium hexafluoroantimonate was used in the same manner as in Example 2 to measure the nitrogen content in the HCN of the upper layer separated through the extraction process. It was lowered from 375ppm to 52ppm (86% reduction), and the sulfur content was removed from 2,093ppm to 1,359ppm (35% reduction) to remove nitrogen and sulfur components.

실시예 5Example 5

라이트사이클오일 (LCO)의 질소/황화합물의 제거 1Removal of nitrogen / sulfur compounds in light cycle oil (LCO) 1

상압증유잔사유의 분해성분인 라이트사이클오일 20㎖와 이온성 액체인 3-부틸-1-메틸이미다졸리움 헥사플루오로안티모네이트 20㎖를 충분히 섞이도록 교반한 후, 정치시켜 층분리시키고, 이로부터 얻은 상층의 HCN의 질소 및 황의 함량을 분 석한 결과, 질소 함량은 1,565ppm에서 219ppm으로, 약 86% 감소하였으며, 황 함량은 6,855ppm에서 5,347ppm으로, 약 22 % 감소하였다.20 ml of light cycle oil, which is a decomposition component of atmospheric pressure residue, and 20 ml of 3-butyl-1-methylimidazolium hexafluoroantimonate, which is an ionic liquid, are stirred to a sufficient mixture, and then allowed to stand to separate layers. As a result of analyzing the nitrogen and sulfur content of the upper HCN obtained from this, the nitrogen content was reduced from 1,565ppm to 219ppm, about 86%, and the sulfur content was reduced from 6,855ppm to 5,347ppm, about 22%.

실시예 6Example 6

라이트사이클오일 (LCO)의 질소/황화합물의 제거 2Removal of Nitrogen / Sulfur Compounds in Light Cycle Oil (LCO) 2

이온성 액체로서 3-헥실-1-메틸이미다졸리움 헥사플루오로안티모네이트를 사용하여 상기 실시예 5와 동일하게 실시하여 추출공정을 통해 분리된 상층의 LCO에 함유된 질소 함량을 측정한 결과, 1,565ppm에서 152ppm (90% 감소)으로, 황 함량은 6,855ppm에서 3,750ppm (45% 감소)으로 질소 및 황 성분이 제거되었다.As the ionic liquid, 3-hexyl-1-methylimidazolium hexafluoroantimonate was carried out in the same manner as in Example 5 to measure the nitrogen content contained in the LCO of the upper layer separated through the extraction process. The nitrogen and sulfur components were removed from 1,565 ppm to 152 ppm (90% reduction) and from 6,855 ppm to 3,750 ppm (45% reduction).

실시예 7Example 7

라이트사이클오일 (LCO)의 질소/황화합물의 제거 3Removal of Nitrogen / Sulfur Compounds in Light Cycle Oil (LCO) 3

이온성 액체로서 3-옥틸-1-메틸이미다졸리움 헥사플루오로안티모네이트를 사용하여 상기 실시예 5와 동일하게 실시하여 추출공정을 통해 분리된 상층의 LCO에 함유된 질소 함량을 측정한 결과, 1,565ppm에서 103ppm (93% 감소)으로, 황 함량은 6,855ppm에서 4,190ppm (39% 감소)으로 질소 및 황 성분이 제거되었다.As the ionic liquid, 3-octyl-1-methylimidazolium hexafluoroantimonate was carried out in the same manner as in Example 5 to measure the nitrogen content contained in the LCO of the upper layer separated through the extraction process. The nitrogen and sulfur components were removed from 1,565 ppm to 103 ppm (93% reduction) and from 6,855 ppm to 4,190 ppm (39% reduction).

실시예 8Example 8

처리비율 및 황산 첨가량에 따른 질소/황화합물의 제거효율 변화Changes in Removal Efficiency of Nitrogen / Sulfur Compounds According to Treatment Ratio and Sulfuric Acid Addition

황산 주입량과 이온성 액체의 처리비율(solvent to oil ratio; SOR)을 하기 표 1에 나타낸 바와 같이 변화시킨 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 LGO에 함유된 질소 및 황의 함량 변화를 각각 측정한 후 그 결과를 하기 표 1에 나타내었다. 표 1에서 알 수 있는 바와 같이, 액체 처리비율 및 황산 첨가량이 높을수록 질소 및 황 화합물의 제거율이 증가하는 것을 알 수 있다. The content of nitrogen and sulfur contained in LGO was changed in the same manner as in Example 1 except that sulfuric acid injection amount and solvent to oil ratio (SOR) were changed as shown in Table 1 below. After each measurement, the results are shown in Table 1 below. As can be seen from Table 1, it can be seen that the removal rate of nitrogen and sulfur compounds increases as the liquid treatment ratio and sulfuric acid addition amount are higher.

SORA SOR A 황산 첨가량B (%)Sulfuric acid addition amount B (%) 질소 제거율 (%)Nitrogen removal rate (%) 황 제거율 (%)Sulfur removal rate (%) 0.250.25 0.00.0 31.031.0 5.45.4 0.250.25 2.02.0 93.093.0 5.35.3 0.250.25 4.04.0 97.297.2 7.67.6 0.500.50 0.00.0 59.759.7 5.65.6 0.500.50 2.72.7 99.799.7 9.09.0 0.500.50 5.35.3 100.0100.0 17.617.6 1.01.0 0.00.0 73.573.5 5.75.7 1.01.0 2.02.0 100.0100.0 11.811.8 1.01.0 4.04.0 98.898.8 20.520.5 2.02.0 0.00.0 82.782.7 14.714.7

A. SOR: 이온성 액체(solvent)와 석유반제품(oil)의 부피비율A. SOR: Volume ratio of ionic solvent and oil

B. 황산 첨가량: 이온성 액체에 대한 부피%B. Sulfuric acid addition amount:% by volume based on ionic liquid

실시예 9Example 9

반복 추출에 따른 질소/황화합물의 제거효율 변화Changes in Removal Efficiency of Nitrogen / Sulfur Compounds by Repeated Extraction

원료-LGO를 1-부틸-3-메틸이미다졸리움 헥사플루오로안티모네이트와 1:1 비율로 혼합하여 추출하는 공정을 반복 수행하여, 추출 횟수 별 원료-LGO의 질소 및 황의 함량 변화를 관찰한 결과가 아래 표 2와 같다. 이 실험에서는 황산을 첨가하지 않았다. 표 2에서와 같이 이온성 액체를 반복 처리하면, 탄화수소 유분으로부터 질소화합물, 황화합물의 제거효율을 높일 수 있다.Repeat the extraction process by mixing the raw material-LGO with 1-butyl-3-methylimidazolium hexafluoroantimonate in a 1: 1 ratio, and observed the nitrogen and sulfur contents of the raw material-LGO according to the number of extraction. One result is shown in Table 2 below. No sulfuric acid was added in this experiment. By repeatedly treating the ionic liquid as shown in Table 2, it is possible to increase the removal efficiency of nitrogen compounds and sulfur compounds from the hydrocarbon fraction.

처리횟수Processing count 원료-LGO의 질소함량, ppmNitrogen content of raw material-LGO, ppm 질소 제거율 (%)Nitrogen removal rate (%) 원료-LGO의 황함량, ppmRaw material-sulfur content of LGO, ppm 황 제거율 (%)Sulfur removal rate (%) 00 300300 13,85313,853 1One 5757 72.972.9 12,55112,551 9.49.4 22 2929 86.186.1 -- -- 33 1717 91.991.9 11,15311,153 19.519.5 44 1010 95.195.1 10,02210,022 27.627.6 55 77 96.696.6 9,2819,281 33.033.0

전술한 바와 같이, 본 발명에 따르면, 석유계 탄화수소 유분에 함유된 미량의 질소화합물과 황화합물을 이온성 액체를 이용한 추출공정을 통해서 효율적으로 제거함으로써 기존 공정에 비해 매우 간단한 방법으로 질소화합물과 황화합물을 효과적으로 제거할 수 있다. 또한, 본 발명에 따른 방법은 간단한 추출공정을 통한 경제적인 분리정제 공정으로 상업적으로도 매우 유용하게 활용될 수 있을 것으로 기대된다.As described above, according to the present invention, nitrogen and sulfur compounds are removed in a very simple manner compared to the conventional process by efficiently removing the trace nitrogen compounds and sulfur compounds contained in the petroleum hydrocarbon fraction through an extraction process using an ionic liquid. Can be removed effectively. In addition, the method according to the present invention is expected to be very useful commercially as an economical separation and purification process through a simple extraction process.

Claims (9)

(i) 석유 정제공정 중에 생산되고, 황화합물, 질소화합물 또는 이들의 혼합물이 함유된 C5~C50의 석유계 탄화수소 유분과, (ii) 이온성 액체를 혼합한 후, 상분리를 통해서 황화합물, 질소화합물 또는 이들의 혼합물을 석유계 탄화수소 유분층으로부터 이온성 액체 층으로 추출시켜 제거하는 것을 특징으로 하는 이온성 액체를 이용한 석유계 탄화수소 유분 중의 질소화합물 및 황화합물의 제거방법. (i) C5 to C50 petroleum hydrocarbon fractions produced during the petroleum refining process and containing sulfur compounds, nitrogen compounds or mixtures thereof; and (ii) sulfur compounds, nitrogen compounds or A method for removing nitrogen compounds and sulfur compounds in petroleum hydrocarbon fraction using an ionic liquid, characterized in that the mixture is extracted from the petroleum hydrocarbon fraction layer into an ionic liquid layer. 제1항에 있어서, 상기 석유계 탄화수소 유분은 상압증류탑에서 생산되는 납사(naphtha), 조등유(Raw-kerosene), 경질가스오일(light gas oil; LGO), 중질가스오일(heavy gas oil; HCN), 상압잔사유, 및 중질유 분해공정에서 생산되는 라이트사이클오일(light cycle oil; LCO), 중질분해납사(heavy catalytic naphtha; HCN), 경질분해납사(light catalytic naphtha; LCN) 및 감압증류 잔사유, 및 휘발유, 등유, 보일러등유, 경유, 중유, 및 원유로부터 분리 정제되는 탄화수소 유분으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 방법.According to claim 1, The petroleum hydrocarbon fraction is naphtha (Raw-kerosene), light gas oil (LGA), heavy gas oil (HCN) produced in an atmospheric distillation column ), Atmospheric residue oil, and light cycle oil (LCO), heavy catalytic naphtha (HCN), light catalytic naphtha (LCN) and vacuum distillation residues produced in heavy oil cracking processes. And a hydrocarbon fraction which is separated and purified from gasoline, kerosene, boiler kerosene, diesel, heavy oil, and crude oil. 제1항에 있어서, 상기 이온성 액체는 하기 화학식 1로 표시되는 이미다졸리움(imidazolium), 피리디늄(pyridinium), 피라졸륨(pyrazolium), 피롤리디늄(pyrrolidinium) 유도체 중에 선택된 하나의 양이온과 SbF6 - (hexafluoroantimonate), PF6 -(hexafluorophosphate), BF4 -(tetrafluoroborate), Cl-(chloride anion), NTF2 -(bistrifluoromethylsulfonylamide), CF3SO3 -(trifluoromathanesulfonate), CH3OSO3 -(methylsulfate), HOSO3 -(hydrogensulfate), CF3CO2 -(trifluoroacetate), CF3(CF2)3CO2 -(heptafluorobutanoate)로 이루어진 군으로부터 선택된 하나의 음이온이 결합된 이온결합성 화합물 또는 이들의 혼합물인 것을 특징으로 하는 방법:The ionic liquid of claim 1, wherein the ionic liquid is one cation selected from imidazolium, pyridinium, pyrazolium, and pyrrolidinium derivatives represented by Chemical Formula 1 below. 6 - (hexafluoroantimonate), PF 6 - (hexafluorophosphate), BF 4 - (tetrafluoroborate), Cl - (chloride anion), NTF 2 - (bistrifluoromethylsulfonylamide), CF 3 SO 3 - (trifluoromathanesulfonate), CH 3 OSO 3 - (methylsulfate ), HOSO 3 - (hydrogensulfate) , CF 3 CO 2 - (trifluoroacetate), CF 3 (CF 2) 3 CO 2 - (heptafluorobutanoate) the ionic bonds are bonded one anion selected from the group consisting of compounds or mixtures thereof Method characterized in that: 화학식 1Formula 1
Figure 112005026629778-PAT00003
Figure 112005026629778-PAT00003
상기 식에서, R, R1 및 R2는 서로 같거나 다르게 CnH2n+1이며, n은 1~12의 정수임.Wherein R, R 1 and R 2 are the same as or different from each other and C n H 2n + 1 and n is an integer from 1 to 12.
제1항에 있어서, 상기 이온성 액체와 석유계 탄화수소 유분의 부피비율(solvent to oil; SOR)은 0.01~5인 것을 특징으로 하는 방법.The method of claim 1, wherein the solvent to oil (SOR) ratio of the ionic liquid and the petroleum hydrocarbon fraction is 0.01 to 5. 제1항에 있어서, 상기 상분리를 통한 추출공정은 2회 이상 반복되는 것을 특 징으로 하는 방법.The method of claim 1, wherein the extraction through phase separation is repeated two or more times. 제1항에 있어서, 상기 추출공정은 0~300℃의 온도에서 수행되는 것을 특징으로 하는 방법.The method of claim 1, wherein the extraction process is carried out at a temperature of 0 ~ 300 ℃. 제1항에 있어서, 상기 혼합물에 상기 이온성 액체에 대해서 0~20 부피%의 황산, 염산, 질산 및 C1~C15의 카르복실산으로 이루어진 군으로부터 선택된 산을 더욱 첨가하는 것을 특징으로 하는 방법.The method of claim 1, further comprising adding an acid selected from the group consisting of 0-20% by volume sulfuric acid, hydrochloric acid, nitric acid, and C1-C15 carboxylic acid to the ionic liquid. 제1항에 있어서, 상기 추출공정에서 사용된 이온성 액체는 유기 용매, 물 또는 이들의 조합을 이용하여 상기 질소화합물, 황화합물 또는 이들의 혼합물과 분리된 후, 추출공정에 재사용되는 것을 특징으로 하는 방법.The method of claim 1, wherein the ionic liquid used in the extraction process is separated from the nitrogen compound, sulfur compound or a mixture thereof using an organic solvent, water or a combination thereof, and then reused in the extraction process. Way. 제1항에 있어서, 상기 추출공정에서 사용된 이온성 액체는 증류(Distillation)를 통하여 상기 질소화합물, 황화합물 또는 이들의 혼합물과 분리된 후, 추출공정에 재사용되는 것을 특징으로 하는 방법.The method of claim 1, wherein the ionic liquid used in the extraction process is separated from the nitrogen compound, sulfur compound or a mixture thereof through distillation, and then reused in the extraction process.
KR1020050042635A 2005-05-20 2005-05-20 Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids KR101221160B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050042635A KR101221160B1 (en) 2005-05-20 2005-05-20 Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050042635A KR101221160B1 (en) 2005-05-20 2005-05-20 Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids

Publications (2)

Publication Number Publication Date
KR20060119532A true KR20060119532A (en) 2006-11-24
KR101221160B1 KR101221160B1 (en) 2013-01-10

Family

ID=37706386

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050042635A KR101221160B1 (en) 2005-05-20 2005-05-20 Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids

Country Status (1)

Country Link
KR (1) KR101221160B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831093B1 (en) * 2007-04-09 2008-05-22 한국과학기술연구원 Method for the separation and recycle of pure sulfur dioxide from gaseous mixture in the is cycle with ionic liquids
KR100979686B1 (en) * 2008-03-14 2010-09-02 경희대학교 산학협력단 Process for eliminating sulfur-containing compounds from hydrocarbons using iron-containing imidazolium type ionic liquids
KR101022818B1 (en) * 2009-01-14 2011-03-17 경희대학교 산학협력단 Process for eliminating nitrogen-containing compounds from hydrocarbons using zinc-containing imidazolium type ionic liquids
EP2519610A2 (en) * 2009-12-30 2012-11-07 Uop Llc Process for removing nitrogen from vacuum gas oil
WO2015077050A1 (en) * 2013-11-19 2015-05-28 Uop Llc Process for treatment of pitch from coal tar
KR20150123591A (en) * 2014-04-25 2015-11-04 롯데케미칼 주식회사 The method for seperating aromatic compound from naphtha

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274026B1 (en) 1999-06-11 2001-08-14 Exxonmobil Research And Engineering Company Electrochemical oxidation of sulfur compounds in naphtha using ionic liquids
DE10155281A1 (en) * 2001-11-08 2003-06-05 Solvent Innovation Gmbh Process for removing polarizable impurities from hydrocarbons and hydrocarbon mixtures by extraction with ionic liquids
WO2003040264A1 (en) * 2001-11-06 2003-05-15 Extractica, Llc Method for extraction of organosulfur compounds from hydrocarbons using ionic liquids
KR20050072921A (en) * 2004-01-08 2005-07-13 한국과학기술연구원 Facilitated transport membranes for an alkene hydrocarbon separation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831093B1 (en) * 2007-04-09 2008-05-22 한국과학기술연구원 Method for the separation and recycle of pure sulfur dioxide from gaseous mixture in the is cycle with ionic liquids
WO2008123651A1 (en) * 2007-04-09 2008-10-16 Korea Institute Of Science And Technology Method for separation and recycle of pure sulfur dioxide from a gaseous mixture in is cycle with ionic liquids
US7749475B2 (en) 2007-04-09 2010-07-06 Korea Institute Of Science And Technology Method for separation and recycle of pure sulfur dioxide from a gaseous mixture in is cycle with ionic liquids
KR100979686B1 (en) * 2008-03-14 2010-09-02 경희대학교 산학협력단 Process for eliminating sulfur-containing compounds from hydrocarbons using iron-containing imidazolium type ionic liquids
KR101022818B1 (en) * 2009-01-14 2011-03-17 경희대학교 산학협력단 Process for eliminating nitrogen-containing compounds from hydrocarbons using zinc-containing imidazolium type ionic liquids
EP2519610A2 (en) * 2009-12-30 2012-11-07 Uop Llc Process for removing nitrogen from vacuum gas oil
EP2519610A4 (en) * 2009-12-30 2014-12-10 Uop Llc Process for removing nitrogen from vacuum gas oil
WO2015077050A1 (en) * 2013-11-19 2015-05-28 Uop Llc Process for treatment of pitch from coal tar
KR20150123591A (en) * 2014-04-25 2015-11-04 롯데케미칼 주식회사 The method for seperating aromatic compound from naphtha

Also Published As

Publication number Publication date
KR101221160B1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
US20230287282A1 (en) Purification of waste plastic based oil with a high temperature hydroprocessing
KR101221160B1 (en) Extraction of nitrogen and sulfur compounds from petroleum distillates using ionic liquids
US7799211B2 (en) Process for upgrading whole crude oil to remove nitrogen and sulfur compounds
JP4570685B2 (en) Enhanced solvent deasphalting process for heavy hydrocarbon feedstock using solid adsorbent
JP6818737B2 (en) Integrated and improved solvent de-depletion and caulking process for producing petroleum raw coke
JP6155049B2 (en) Method for removing mercury in hydrocarbon feedstock with hydrogen recycling
KR20070091297A (en) Oxidative desulfurization process
EP2241609A1 (en) Method for removing Impurities from Hydrocarbon Oils
US8951410B2 (en) Process for demetallization of whole crude oil
US6565741B2 (en) Process for desulfurization of petroleum distillates
KR20100021085A (en) Method and apparatus for recovering hydrogen from petroleum desulfurization
JP2003520889A5 (en)
KR100979686B1 (en) Process for eliminating sulfur-containing compounds from hydrocarbons using iron-containing imidazolium type ionic liquids
CN112442390A (en) Method for preparing low-sulfur petroleum coke from residual oil
WO2013035200A1 (en) Method for producing ultra-low sulfur fuel oil
KR100651356B1 (en) Method for removing impurities from heavy hydrocarbon and deasphalt oil
KR100992606B1 (en) Separation method of sulfone compounds from light cycle oil by solvent extraction
KR101222719B1 (en) Process for the removal of sulfur and nitrogen from petrolic streams
US11389790B2 (en) Method to recover spent hydroprocessing catalyst activity
KR101022818B1 (en) Process for eliminating nitrogen-containing compounds from hydrocarbons using zinc-containing imidazolium type ionic liquids
TASHEVA ADSORPTION PROCESS OF SULPHUR REMOVAL FROM MIDDLE DISTILLATE FRACTIONS USING SORBENT MATERIAL.
CN108018079A (en) A kind of method for reducing content of sulfur in gasoline
JP2007111685A (en) Hydrogenation catalyst for hydrocarbon oil and hydrogenation method using this hydrogenation catalyst
CN108003932A (en) A kind of method for producing gasoline products

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8