KR20060112336A - A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays - Google Patents

A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays Download PDF

Info

Publication number
KR20060112336A
KR20060112336A KR1020050034634A KR20050034634A KR20060112336A KR 20060112336 A KR20060112336 A KR 20060112336A KR 1020050034634 A KR1020050034634 A KR 1020050034634A KR 20050034634 A KR20050034634 A KR 20050034634A KR 20060112336 A KR20060112336 A KR 20060112336A
Authority
KR
South Korea
Prior art keywords
scintillator
manufacturing
deposition layer
detector module
structured
Prior art date
Application number
KR1020050034634A
Other languages
Korean (ko)
Other versions
KR100693105B1 (en
Inventor
김광현
Original Assignee
라드텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 라드텍주식회사 filed Critical 라드텍주식회사
Priority to KR1020050034634A priority Critical patent/KR100693105B1/en
Publication of KR20060112336A publication Critical patent/KR20060112336A/en
Application granted granted Critical
Publication of KR100693105B1 publication Critical patent/KR100693105B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/043Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/085X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N2021/5957Densitometers using an image detector type detector, e.g. CCD

Abstract

A method of manufacturing a structured pixel type scintillator for manufacturing a detector module for obtaining a radioactive ray permeating image is provided to accurately form the independent pixel type scintillator on a glass plate or a carbon plate with a sufficiently small pixel size and a required height. A method of manufacturing a structured pixel type scintillator for manufacturing a detector module for obtaining a radioactive ray permeating image includes the steps of: forming a first deposition layer(12a) by depositing a scintillator material on a glass plate or a carbon plate; forming a lattice-shaped recess on the first deposition layer by using a micro-laser beam; and forming a second deposition layer so as to form the independent pixel type scintillator by depositing the scintillator material on the first deposition layer.

Description

방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법{A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays} A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays}

도 1a는 본 발명에 따른 제조방법에 의해 유리기판 또는 카본기판상에 형성된 일차원 신티레이터를 도시한 평면도.Figure 1a is a plan view showing a one-dimensional scintillator formed on a glass substrate or a carbon substrate by the manufacturing method according to the present invention.

도 1b는 본 발명에 따른 제조방법에 의해 유리기판 또는 카본기판상에 형성된 이차원 신티레이터를 도시한 평면도.Figure 1b is a plan view showing a two-dimensional scintillator formed on a glass substrate or a carbon substrate by the manufacturing method according to the present invention.

도 2는 본 발명에 따른 제조방법에 의해 유리기판 또는 카본기판상에 형성된 신티레이터를 도시한 측면도.Figure 2 is a side view showing a scintillator formed on a glass substrate or a carbon substrate by the manufacturing method according to the present invention.

도 3a는 본 발명에 따른 제조방법에 의해 유리기판 또는 카본기판상에 형성된 일차원 신티레이터를 도시한 사시도.Figure 3a is a perspective view showing a one-dimensional scintillator formed on a glass substrate or a carbon substrate by the manufacturing method according to the present invention.

도 3b는 본 발명에 따른 제조방법에 의해 유리기판 또는 카본기판상에 형성된 이차원 신티레이터를 도시한 사시도.Figure 3b is a perspective view showing a two-dimensional scintillator formed on a glass substrate or a carbon substrate by the manufacturing method according to the present invention.

도 4는 본 발명에 따른 제조방법에 의해 형성된 신티레이터를 픽셀형 포토센서상에 접착시킨 상태를 도시한 측면도.4 is a side view showing a state in which a scintillator formed by a manufacturing method according to the present invention is adhered onto a pixel type photo sensor.

도 5는 본 발명에 따른 신티레이터 제조방법을 예시한 블록도.5 is a block diagram illustrating a method of manufacturing a scintillator in accordance with the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

11: 유리판 또는 카본판 12: 신티레이터11: glass plate or carbon plate 12: scintillator

12a: 제 1증착층 12b: 제 2증착층12a: first deposition layer 12b: second deposition layer

13: 홈 14: 포토센서13: home 14: photosensor

본 발명은 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법에 관한 것으로, 더욱 상세하게는 유리기판 또는 카본기판상에 독립된 픽셀형 신티레이터를 충분히 작은 픽셀크기 및 요구되는 높이로 정확하게 형성시킬 수 있도록 함으로써 고분해능 및 고민감도 방사선투과영상획득을 위한 검출기 모듈을 제작할 수 있는 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a structured pixel scintillator for manufacturing a detector module for radiographic image acquisition, and more particularly, to a pixel size and small enough to require an independent pixel scintillator on a glass substrate or a carbon substrate. The present invention relates to a method of manufacturing a structured pixel-type scintillator for manufacturing a radiographic image acquisition detector module capable of manufacturing a detector module for high resolution and high sensitivity radiographic image acquisition by being able to be formed precisely at a height.

일반적으로, 방사선투과영상획득용 검출기에 사용되는 신티레이터를 제조하는 첫번째 종래의 방법은 평면형 신티레이터를 최대한 얇게 독립된 공정에서 제작하여 포토센서를 광학접착제나 물리적인 압력으로 일체화 시키는 방법이 인데 이러한 방법은 관학접착제를 이용하거나 물리적인 압력을 이용할 경우 신티레이터에서 발생한 빛이 광학접착제나 물리적 공간을 통과하면서 빛의 손실 및 빛의 퍼짐이 발생하여 방산선투과영상의 분해능이 떨어지며, 또한 신티레이터를 두껍게 만들어 빛의 양을 증가 시키고자 할때에도 두꺼운 신티레이터 내에서의 빛의 퍼짐현상이 심 화되어 일정 두께 이상은 어려운 문제점이 있다.In general, the first conventional method of manufacturing a scintillator used in the radiographic image acquisition detector is to manufacture a planar scintillator in an independent process as thin as possible to integrate the photosensor with an optical adhesive or physical pressure. When using silver adhesive or physical pressure, the light generated from the scintillator passes through the optical adhesive or physical space, resulting in the loss of light and the spread of light, which reduces the resolution of the transmission line transmission image. Even when trying to increase the amount of light, the spread of light in the thick scintillator is deepened, there is a problem that is more than a certain thickness.

두번째 종래의 방법으로는 SU-8과 같은 폴리머계통의 화학물질을 유리기판상에 코팅하고 격자 모양의 마스크상에 자외선(UV)을 조사하여 반응시킨 후 화학처리로 음각 양각을 이용한 식각을 하는 리쏘그라피(lithography)기법을 이용하여 유리기판상에서 폴리머계통의 화학 물질을 픽셀화시키고 이 위에 피시컬 베이퍼 디퍼지션(Physical Vapor Deposition) 장치 내에서 신티레이터 물질을 증착하여 구조화된 신티레이터를 얻는다. 이 방법은 독립된 픽셀형 신티레이터의 크기를 줄이는데 한계가 있으며, 구조화된 신티레이터 픽셀과 픽셀간의 간격이 커져 포토센서의 픽셀의 면적보다 적게 되어 결국 신티레이터에 입사하는 방사선의 양이 줄게 되고 따라서 신티레이터에서 발생하는 빛의 양이 감소되어 방사선투과영상획득용 검출기의 민감도가 떨어지는 단점이 있다.The second conventional method is lithography, in which polymer chemicals such as SU-8 are coated on a glass substrate, reacted by irradiating ultraviolet (UV) light on a lattice-shaped mask, and then etching using intaglio relief by chemical treatment. A lithography technique is used to pixelate polymer based chemicals on a glass substrate and deposit a scintillator material in a Physical Vapor Deposition apparatus to obtain a structured scintillator. This method has a limitation in reducing the size of an independent pixel-type scintillator, and the distance between the structured scintillator pixel and the pixel becomes larger than the area of the photosensor pixel, thereby reducing the amount of radiation incident on the scintillator. The amount of light generated in the radar is reduced, which lowers the sensitivity of the radiographic image acquisition detector.

따라서, 본 발명은 상기와 같은 종래의 문제점을 고려하여 안출한 것으로써, 그 목적은 유리기판 또는 카본기판상에 독립된 픽셀형 신티레이터를 충분히 작은 픽셀크기 및 요구되는 높이로 정확하게 형성시킬 수 있도록 함으로써 고분해능 및 고민감도 방사선투과영상획득을 위한 검출기 모듈을 제작할 수 있는 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법을 제공하는 것이다.Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to accurately form an independent pixel type scintillator on a glass substrate or a carbon substrate with a sufficiently small pixel size and a required height. The present invention provides a method of manufacturing a structured pixel type scintillator for manufacturing a radiographic image acquisition detector module capable of manufacturing a detector module for high resolution and high sensitivity radiographic image acquisition.

상기 본 발명의 목적은 방사선투과영상획득용 검출기 모듈의 제작을 위한 신티레이터를 유리판 또는 카본판상에 형성시키는 신티레이터의 제조방법에 있어서, 상기 방법은 유리판 또는 카본판상에 신티레이터 물질을 소정두께로 증착하여 제 1증착층을 형성하는 1차 증착단계와; 마이크로레이저빔을 사용하여 상기 1차증착층상에 상기 포토센서 픽셀의 크기에 맞게 격자 모양의 홈을 형성하는 격자홈 형성단계와; 상기 제 1증착층상에 신티레이터 물질을 요구되는 두께로 증착시켜 독립된 픽셀형 신티레이터 구조를 형성하도록 제 2증착층을 증착형성하는 2차 증착단계로 구성되는 것을 특징으로 하는 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법에 의해 달성될 수 있는 것이다.An object of the present invention is a method of manufacturing a scintillator to form a scintillator for the manufacture of a detector module for radiographic image acquisition on a glass plate or a carbon plate, wherein the method is to a predetermined thickness on the glass plate or carbon plate A first deposition step of depositing to form a first deposition layer; A lattice groove forming step of forming a lattice-shaped groove in accordance with the size of the photosensor pixel on the first deposition layer using a micro laser beam; And a second deposition step of depositing and forming a second deposition layer so as to form an independent pixel type scintillator structure by depositing a scintillator material on the first deposition layer to a desired thickness. It can be achieved by a method of manufacturing a structured pixelated scintillator for manufacturing a module.

이하, 첨부된 도면을 참조하여 본 발명에 따른 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법에 대하여 구체적으로 설명한다.Hereinafter, a method of manufacturing a structured pixel type scintillator for manufacturing a radiographic image acquisition detector module according to the present invention will be described in detail with reference to the accompanying drawings.

도 1a 및 도 1b는 본 발명에 따른 제조방법에 의해 유리판 또는 카본판상에 형성된 신티레이터를 도시한 평면도이고, 도 2는 본 발명에 따른 제조방법에 의해 유리기판 또는 카본기판상에 형성된 신티레이터를 도시한 측면도이고, 도 3a 및 도 3b는 본 발명에 따른 제조방법에 의해 유리판 또는 카본판상에 형성된 신티레이터를 도시한 사시도이고, 도 4는 본 발명에 따른 제조방법에 의해 형성된 신티레이터를 픽셀형 포토센서상에 접착시킨 상태를 도시한 측면도이며, 도 5는 본 발명에 따른 신티레이터의 제조방법을 예시한 블록도이다. 1A and 1B are plan views illustrating a scintillator formed on a glass plate or a carbon plate by a manufacturing method according to the present invention, and FIG. 2 shows a scintillator formed on a glass substrate or a carbon substrate by a manufacturing method according to the present invention. 3A and 3B are perspective views showing a scintillator formed on a glass plate or a carbon plate by the manufacturing method according to the present invention, and FIG. 4 is a pixel type scintillator formed by the manufacturing method according to the present invention. It is a side view which shows the state stuck on the photosensor, and FIG. 5 is a block diagram which shows the manufacturing method of the scintillator which concerns on this invention.

도 1 내지 도 5를 참조하면, 본 발명에 따른 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법은 1차 증착단계 (S100)와, 격자홈 형상단계(S110)와, 2차 증착단계(S120)로 구성된다.1 to 5, the method of manufacturing a structured pixel scintillator for manufacturing a radiographic image acquisition detector module according to the present invention is the first deposition step (S100) and the grating groove shape step (S110) And, it is composed of a second deposition step (S120).

상기 1차 증착단계(S100)는 유리판 또는 카본판(11)상에 신티레이터 물질을 소정두께로 증착하여 제 1증착층(12a)을 형성한다.In the first deposition step S100, a scintillator material is deposited on a glass plate or a carbon plate 11 to a predetermined thickness to form a first deposition layer 12a.

상기 1차 증착층(12a)은 언급된 피지컬 베이퍼 디포지션(Physical Vapor Deposition) 장치 또는 피지컬 E-빔 이베퍼레이션(Physical E-beam Evaporation) 장치를 이용하여 요구되는 두께만큼 상기 포토센서(11)상에 증착형성된다.The first deposition layer 12a may be formed using the physical vapor deposition device or the physical E-beam evaporation device as described above. Deposited on the substrate.

상기 신티레이터(12)(또는 제 1증착층(12a))를 형성하는 신티레이터 물질로는 방사선을 흡수하여 빛으로 전환시키는 물질로서 일차원 또는 이차원 평면구조의 방사선투과영상획득 검출기 모듈에 널리 사용되는 세슘아이오다인(탈륨)(CsI(Tl)) 또는 징크셀렌(텔루늄)(ZnSe(Te)) 등이 사용될 수 있으며, 상기 포토센서(11)로는 반도체 기반의 광센서로서 일차원 또는 이차원 평면구조를 갖는 챠지 커플드 디바이스(Charge Coupled Device(CCD))센서, 컴플러멘탈리 메탈 옥사이드 세미콘덕터(Complementary Metal Oxide Semiconductor(CMOS)센서, 포토다이오드(Photodiode)센서 그리고 아모포스-실리콘(a-Si) 센서 등이 사용될 수 있다.The scintillator material forming the scintillator 12 (or the first deposition layer 12a) is a material that absorbs radiation and converts it into light, and is widely used in a radiographic image acquisition detector module having a one-dimensional or two-dimensional planar structure. Cesium iodide (thallium) (CsI (Tl)) or zinc selenium (teluanium) (ZnSe (Te)) may be used, and as the photosensor 11, a one-dimensional or two-dimensional planar structure as a semiconductor-based optical sensor Charge Coupled Device (CCD) Sensors, Complementary Metal Oxide Semiconductor (CMOS) Sensors, Photodiode Sensors and Amorphous-Si (a-Si) Sensors Sensors and the like can be used.

상기 격자홈 형성단계(S110)는 마이크로레이저빔을 사용하여 상기 1차 증착층(12a)상에 포토센서(14)의 픽셀 크기에 맞게 격자 모양의 홈(13)을 형성한다.The lattice groove forming step (S110) forms a lattice-shaped groove 13 on the primary deposition layer 12a by using a micro laser beam to match the pixel size of the photosensor 14.

상기 마이크로레이저를 이용한 각 격자구조의 독립된 픽셀형의 신티레이터(12)를 만들기 위해 신티레이터 물질의 코팅 최대 두께(1차 증착층(12a))는 2 마이크로미터 (㎛) 미만으로 한다. 신티레이터 물질의 코팅 최대 두께를 2 마이크로미터 (㎛) 미만으로 하는 이유는 마이크로레이저빔의 특성상 레이저빔이 신티레이터 물질에 홈(13)을 형성시킬 경우 V 자형의 노치(Notch) 형태로 홈이 발생함으로 신티레이터 물질의 코팅 두께가 두꺼워지면 코팅 표면은 넓고 깊이 방향으로는 좁은 형태가 발행하여 실제적으로 신티레이터의 사각 기둥 모양의 픽셀화가 어려워진다.In order to make the independent pixelated scintillator 12 of each lattice structure using the microlaser, the coating maximum thickness (primary deposition layer 12a) of the scintillator material is less than 2 micrometers (µm). The maximum coating thickness of the scintillator material is less than 2 micrometers (µm) because of the characteristics of the microlaser beam, when the laser beam forms the grooves 13 in the scintillator material, the grooves are formed in a V-shaped notch. As the thickness of the scintillator material increases, the coating surface becomes wide and narrow in the depth direction, which makes it difficult to pixelate the scintillator's square pillar.

따라서 격자 홈(13)을 파고자하는 물질의 깊이 방향이 2 마이크로미터 (㎛) 이상 증가하면 상대적으로 신티레이터의 격자 홈 간격이 1 마이크로미터 (㎛) 이상 넓어지게 되어 궁극적으로 포토센서(14)의 픽셀 면적보다 더 적은 픽셀 면적을 갖는 신티레이터(12)가 형성되어 신티레이터(12)에서 발생한 빛이 포토센서(14)에 입사되는 양이 적게 되어 일차원 또는 이차원 평면구조의 방사선투과영상획득 검출기의 민감도를 줄이는 원인이 되기 때문이다.Therefore, when the depth direction of the material to dig the grating groove 13 increases by 2 micrometers (μm) or more, the grating groove spacing of the scintillator becomes wider by 1 micrometer (μm), and ultimately the photosensor 14 The scintillator 12 having a pixel area smaller than the pixel area of the formed is formed so that the amount of light generated from the scintillator 12 is incident on the photosensor 14 so that the radiographic image acquisition detector having a one-dimensional or two-dimensional planar structure This is because it causes a decrease in sensitivity.

상기 2차 증착단계(S120)는 상기 제 1증착층(12a)상에 신티레이터 물질을 요구되는 두께로 증착시켜 독립된 픽셀형 신티레이터 구조를 형성하도록 제 2증착층(12b)을 증착형성함으로써, 요구되는 높이의 신티레이터(12)를 얻을 수 있는 것이다.In the second deposition step (S120) by depositing a second deposition layer 12b to form an independent pixel type scintillator structure by depositing a scintillator material on the first deposition layer 12a to a desired thickness. The scintillator 12 of the required height can be obtained.

언급된 피지컬 베이퍼 디포지션(Physical Vapor Deposition) 장치 또는 피지컬 E-빔 이베퍼레이션(Physical E-beam Evaporation) 장치를 이용하여 상기 제 1증착층(12a)의 증착공정과 동일한 방법으로 제 2증착층(12b)을 요구되는 높이만큼 증착형성시켜 신티레이터(12)를 요구되는 두께로 제작한다. 이때 요구되는 두께란 방사선투과영상 획득 시 사용되는 방사선의 에너지를 최대 흡수할 수 있는 두께를 말하며 사용되는 방사선의 에너지에 따라 결정된다.The second deposition layer in the same manner as the deposition process of the first deposition layer 12a using the mentioned physical vapor deposition device or physical E-beam evaporation device. The scintillator 12 is fabricated to the required thickness by depositing (12b) to the required height. In this case, the required thickness refers to a thickness capable of absorbing the maximum energy of the radiation used to obtain the radiographic image, and is determined according to the energy of the radiation used.

상기와 같은 구성을 갖는 본 발명에 따른 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법은 유리판 또는 카본판상에 독립된 픽셀형 신티레이터를 충분히 작은 픽셀크기 및 요구되는 높이로 정확하게 형성시킬 수 있도록 함으로써 고분해능 및 고민감도 방사선투과영상획득을 위한 검출기 모듈을 제작할 수 있는 효과를 갖는다.A method for manufacturing a structured pixel scintillator for manufacturing a radiographic image acquisition detector module according to the present invention having the above configuration has a pixel size and required height of a small enough pixel type scintillator on a glass plate or carbon plate. By making it possible to form precisely, it has the effect of producing a detector module for obtaining a high resolution and high sensitivity radiographic image.

Claims (1)

방사선투과영상획득용 검출기 모듈의 제작을 위한 신티레이터를 유리판 또는 카본판상에 형성시키는 신티레이터의 제조방법에 있어서, 상기 방법은 유리판 또는 카본판(14)상에 신티레이터 물질을 소정두께로 증착하여 1차 증착층(12a)을 형성하는 1차 증착단계(S100)와; 마이크로레이저빔을 사용하여 상기 1차증착층(12a)상에 상기 포토센서 픽셀의 크기에 맞게 격자 모양의 홈(13)을 형성하는 격자홈 형성단계(S110)와; 상기 1차 증착층(12a)상에 신티레이터 물질을 요구되는 두께로 증착시켜 독립된 픽셀형 신티레이터 구조를 형성하도록 2차 증착층(12b)을 증착형성하는 2차증착단계(S120)로 구성되는 것을 특징으로 하는 방사선투과영상획득용 검출기 모듈을 제작하기 위한 구조화된 픽셀형 신티레이터의 제조방법. In the method of manufacturing a scintillator to form a scintillator for manufacturing a radiographic image acquisition detector module on a glass plate or a carbon plate, the method comprises depositing a scintillator material on a glass plate or a carbon plate 14 to a predetermined thickness A first deposition step S100 of forming a first deposition layer 12a; A lattice groove forming step (S110) of forming a lattice groove 13 on the primary deposition layer 12a by using a micro laser beam to match the size of the photosensor pixel; The secondary deposition step (S120) of depositing and forming a secondary deposition layer (12b) to deposit a scintillator material on the primary deposition layer (12a) to a desired thickness to form an independent pixel type scintillator structure Method of manufacturing a structured pixel-type scintillator for manufacturing a radiographic image acquisition detector module, characterized in that.
KR1020050034634A 2005-04-26 2005-04-26 A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays KR100693105B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050034634A KR100693105B1 (en) 2005-04-26 2005-04-26 A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050034634A KR100693105B1 (en) 2005-04-26 2005-04-26 A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays

Publications (2)

Publication Number Publication Date
KR20060112336A true KR20060112336A (en) 2006-11-01
KR100693105B1 KR100693105B1 (en) 2007-03-12

Family

ID=37620629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050034634A KR100693105B1 (en) 2005-04-26 2005-04-26 A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays

Country Status (1)

Country Link
KR (1) KR100693105B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829450B2 (en) 2008-12-19 2014-09-09 Samsung Electronics Co., Ltd. Method and apparatus for acquiring images created by penetration of radioactive ray

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122988A (en) * 1982-12-29 1984-07-16 Shimadzu Corp Radiation measuring element
FR2634562B1 (en) 1988-07-22 1990-09-07 Thomson Csf METHOD FOR MANUFACTURING A SCINTILLATOR AND SCINTILLATOR THUS OBTAINED
JPH05188148A (en) * 1992-01-13 1993-07-30 Hamamatsu Photonics Kk Radiation detecting element
US6921909B2 (en) 2002-08-27 2005-07-26 Radiation Monitoring Devices, Inc. Pixellated micro-columnar films scintillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829450B2 (en) 2008-12-19 2014-09-09 Samsung Electronics Co., Ltd. Method and apparatus for acquiring images created by penetration of radioactive ray
US8866091B2 (en) 2008-12-19 2014-10-21 Samsung Electronics Co., Ltd. Method and apparatus for acquiring images created by penetration of radioactive ray

Also Published As

Publication number Publication date
KR100693105B1 (en) 2007-03-12

Similar Documents

Publication Publication Date Title
CN112437891B (en) Optical system and manufacturing process thereof
US6414315B1 (en) Radiation imaging with continuous polymer layer for scintillator
US6744052B1 (en) X-ray pixel detector device and fabrication method
US9748012B2 (en) Method for manufacturing metal grating structure, metal grating structure manufactured by the method, and X-ray imaging device using the metal grating structure
US4940901A (en) X-ray imaging device
KR100747800B1 (en) Radiation image sensor and scintillator panel
US7358506B2 (en) Structured X-ray conversion screen fabricated with molded layers
US6177236B1 (en) Method of making a pixelized scintillation layer and structures incorporating same
US8138011B2 (en) Radiation-detecting device and method of manufacturing same
DE19859669A1 (en) Integrated optoelectronic sensor and method for its production
FR2577073A1 (en) MATRIX DEVICE FOR DETECTING LUMINOUS RADIATION WITH INDIVIDUAL COLD SCREENS INTEGRATED IN A SUBSTRATE AND METHOD OF MANUFACTURING THE SAME
CN101283453A (en) Solid imaging device and production method thereof
US5981959A (en) Pixelized scintillation layer and structures incorporating same
WO2004079397A1 (en) Scintillator panel, scintillator panel laminate, radiation image sensor using the same, and radiation energy discriminator
KR20160021843A (en) Solar light management
US4959533A (en) Photosensitive semiconductor contact image sensor
KR100998400B1 (en) Radiation detector containing photonic crystal crystal and method thereof
KR100693105B1 (en) A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays
WO1999067658A1 (en) Scintillator panel, radiation image sensor, and process for producing the same
EP1175600B1 (en) Integrated optoelectronic thin-film sensor
JPH02152143A (en) X-ray image tube and its manufacture
KR20060112342A (en) A manufacturing method of detector module for obtain permeation image of radioactive rays
CN104412330A (en) Scintillator plate
KR20090047141A (en) Manufacturing method for scintillator of x-ray dectector
US8416283B2 (en) 3D imaging device and method for manufacturing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20110304

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120210

Year of fee payment: 6