KR20060097143A - Vector dna expressing scfv for producing scfv antibody library - Google Patents

Vector dna expressing scfv for producing scfv antibody library Download PDF

Info

Publication number
KR20060097143A
KR20060097143A KR1020050018162A KR20050018162A KR20060097143A KR 20060097143 A KR20060097143 A KR 20060097143A KR 1020050018162 A KR1020050018162 A KR 1020050018162A KR 20050018162 A KR20050018162 A KR 20050018162A KR 20060097143 A KR20060097143 A KR 20060097143A
Authority
KR
South Korea
Prior art keywords
expression vector
antibody
scfv
antibody scfv
scfv expression
Prior art date
Application number
KR1020050018162A
Other languages
Korean (ko)
Other versions
KR100635370B1 (en
Inventor
김세호
장기환
신용원
홍광원
Original Assignee
주식회사 녹십자홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 녹십자홀딩스 filed Critical 주식회사 녹십자홀딩스
Priority to KR1020050018162A priority Critical patent/KR100635370B1/en
Publication of KR20060097143A publication Critical patent/KR20060097143A/en
Application granted granted Critical
Publication of KR100635370B1 publication Critical patent/KR100635370B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2209/00Details of machines or methods for cleaning hollow articles
    • B08B2209/02Details of apparatuses or methods for cleaning pipes or tubes
    • B08B2209/027Details of apparatuses or methods for cleaning pipes or tubes for cleaning the internal surfaces
    • B08B2209/04Details of apparatuses or methods for cleaning pipes or tubes for cleaning the internal surfaces using cleaning devices introduced into and moved along the pipes

Abstract

본 발명은 ScFv 형태의 합성 항체 라이브러리를 발현시키기 위한 ScFv 발현 벡터에 관한 것으로, 항체 ScFv 발현 벡터의 링커유전자(linker gene)에 제한효소 자리를 형성시킴으로써, 다양한 중쇄 가변영역 또는 경쇄 가변영역을 각각 개별적으로 발현 벡터에 삽입하여 항체 라이브러리를 보다 쉽게 구축하기 위한 항체 ScFv 발현 벡터를 제공하여 종래 항체 ScFv 자체를 발현벡터에 삽입하는 방법에 비하여 정량적인 항체 ScFv 를 제공하며, 보다 효율적으로 항체 라이브러리를 제조하는 우수한 효과를 지닌다.The present invention relates to a ScFv expression vector for expressing a ScFv-type synthetic antibody library, by forming restriction enzyme sites in the linker gene of the antibody ScFv expression vector, each of the various heavy or light chain variable regions is individually By providing an antibody ScFv expression vector for easier construction of the antibody library by inserting it into an expression vector, it provides a quantitative antibody ScFv compared to the method of inserting the antibody ScFv itself into the expression vector, and more efficiently preparing the antibody library. Has an excellent effect.

ScFv, 항체, 항체 라이브러리, pCANTAB5E, site-directed mutagenesis, silent mutation, His-tag ScFv, antibody, antibody library, pCANTAB5E, site-directed mutagenesis, silent mutation, His-tag

Description

ScFv 형태의 항체 라이브러리를 제작하기 위한 항체 ScFv 발현 벡터{Vector DNA expressing ScFv for producing ScFv antibody library}Vector DNA expressing ScFv for producing ScFv antibody library

도 1은 본 발명의 ScFv 형태의 항체 라이브러리를 제작하기 위한 항체 ScFv 발현 벡터 제조과정을 도시한 진행도이고,1 is a flowchart illustrating a process of preparing an antibody ScFv expression vector for preparing an ScFv-type antibody library of the present invention.

도 2는 항체 ScFv(VH-linker-VL)가 삽입된 pCANTAB5E(Amersham Pharmacia Biotech 사, 스웨덴)의 유전자 지도이고,FIG. 2 is a genetic map of pCANTAB5E (Amersham Pharmacia Biotech, Sweden) into which the antibody ScFv (V H -linker-V L ) is inserted,

도 3은 GeneEditorTM in vitro Site-Directed Mutagenesis System(Promega 사, 미국)을 이용한 특정부위 돌연변이화(Site-directed mutagenesis)의 진행과정을 도시한 진행도이고,3 is a flowchart showing the progression of site-directed mutagenesis using the GeneEditor in vitro Site-Directed Mutagenesis System (Promega, USA),

도 4는 본 발명의 ScFv의 링커유전자에 BspEI 제한 효소 자리가 형성된 pKS4H의 유전자 지도이고,4 is a genetic map of pKS4H in which a BspEI restriction enzyme site is formed in a linker gene of ScFv of the present invention,

도 5는 ScFv의 링커유전자에 BspEI 제한효소자리를 특정부위 돌연변이화(Site-directed mutagenesis)를 통해 생성시킨 것을 BspEI 제한효소로 절단하여 선별한 것으로 1, 4, 6, 7, 10, 12, 14, 15가 올바르게 생성된 것이고,FIG. 5 shows that BspEI restriction enzyme sites generated by site-directed mutagenesis in the linker gene of ScFv were selected by cleavage with BspEI restriction enzymes 1, 4, 6, 7, 10, 12, 14 , 15 is generated correctly,

도 6은 ScFv의 링커유전자에 BspEI 제한효소자리가 형성된 벡터가 정확한지 확인하게 위해 관련된 제한효소를 처리하여 절단된 밴드의 크기를 추정하여 벡터의 완전성을 확인한 것이고,Figure 6 is to confirm the integrity of the vector by estimating the size of the cleaved band by treating the restriction enzyme in order to confirm that the vector formed on the linker gene of the ScFv BspEI restriction enzyme site is correct,

도 7은 확인된 벡터시스템(pKS4E)의 E-tag을 His-tag으로 치환시켜주기 위해 pKS3C 벡터(도 10: 본 발명자 자체 제작) 에서 이에 해당하는 부분을 절단하여 본 발명의 벡터(pKS4H)를 완성하기 위한 벡터유전자, 삽입유전자를 준비한 것이고,7 is a vector of the present invention (pKS4H) by cutting the corresponding part in the pKS3C vector (FIG. 10: the inventors made by the inventors) in order to replace the E-tag of the identified vector system (pKS4E) with His-tag. To prepare a vector gene, insertion gene to complete,

도 8은 ScFv의 링커유전자에 BspEI 제한효소자리를 생성시키고 E-tag을 His-tag으로 치환시킨 최종 pKS4H를 관련된 제한효소를 사용하여 절단된 밴드를 통해 확인한 것이고,FIG. 8 shows the final pKS4H in which the BspEI restriction site was generated in the linker gene of ScFv and the E-tag was replaced with His-tag, and was identified through the cleaved band using the related restriction enzyme.

도 9는 구축된 pKS4H 벡터 시스템이 제대로 작동하는 것을 확인하기 위해 파상풍 항체 유전자를 도입하여 항체가 올바르게 발현되는 지를 효소면역 측정법으로 그 발현정도를 기존의 pCANTAB5E 벡터와 비교 확인한 것이고,9 is a comparison of the expression level with the existing pCANTAB5E vector by enzymatic immunoassay to introduce the tetanus antibody gene to confirm that the constructed pKS4H vector system works properly.

도 10은 E-tag을 His-tag으로 치환시켜주기 위해 사용된 pKS3C 벡터의 유전자 지도이다10 is a genetic map of the pKS3C vector used to replace E-tag with His-tag.

본 발명은 ScFv 형태의 합성 항체 라이브러리를 발현시키기 위한 ScFv 발현 벡터에 관한 것으로, 보다 상세하게는 항체 ScFv 발현 벡터의 링커유전자(linker gene)에 제한효소 자리를 형성시킴으로써, 다양한 중쇄 가변영역 또는 경쇄 가변영역을 각각 개별적으로 발현 벡터에 삽입하여 항체 라이브러리를 보다 쉽게 구축하 기 위한 항체 ScFv 발현 벡터에 관한 것이다.The present invention relates to a ScFv expression vector for expressing a ScFv type synthetic antibody library, and more particularly, by forming restriction enzyme sites in a linker gene of an antibody ScFv expression vector, various heavy chain variable region or light chain variable It relates to an antibody ScFv expression vector for easier construction of antibody libraries by inserting regions into expression vectors, respectively.

1975년 Kohler와 Milstein에 의해 종양세포와 생쥐의 B 세포간의 세포 융합기술이 도입된 이후로 단일클론항체 생산이 가능하게 되었다(Stone MJ (2001): Monoclonal antibodies in the prehybridoma era: a brief historical perspective and personal reminiscence. Clin lymphoma, 2: 148-154). 이러한 hybridoma 기술의 발달로 특정한 항원에 반응하는 단일클론항체를 만들 수 있게 되어 종양 표적화를 위해 종양세포의 표면에 발현되는 특이 항원에 친화성을 가지는 단일클론항체의 제조가 가능하게 되었다. 생쥐 단일클론항체(murine monoclonal antibody)는 다양한 표적항원(target antigen)의 적용과 대량 생산이 가능한 장점을 가지며, 선택적 약제의 개념은 마법의 탄환이라는 표현으로 Ehrlich에 의해 제시되어 진단시약이나 기초연구에 매우 유용하게 사용되고 있다(Reilly RM, Sandhu J, Alvarez-Diez TM, Gallinger S, Kirsh J and Stern H (1995): Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet, 28: 126-142).Since the introduction of cell fusion technology between tumor cells and mouse B cells by Kohler and Milstein in 1975, monoclonal antibodies have been produced (Stone MJ (2001): Monoclonal antibodies in the prehybridoma era: a brief historical perspective and personal reminiscence.Clin lymphoma, 2: 148-154). The development of such hybridoma technology has made it possible to produce monoclonal antibodies that respond to specific antigens, thereby enabling the production of monoclonal antibodies having affinity for specific antigens expressed on the surface of tumor cells for tumor targeting. The mouse monoclonal antibody has the advantage of being able to apply various target antigens and mass production, and the concept of selective drug is magic bullet. It is suggested by Ehrlich for the diagnosis reagent or basic research. Very usefully used (Reilly RM, Sandhu J, Alvarez-Diez ™, Gallinger S, Kirsh J and Stern H (1995): Problems of delivery of monoclonal antibodies.Pharmaceutical and pharmacokinetic solutions.Clin Pharmacokinet , 28: 126-142) .

항체 표적 치료는 암세포의 표면에 발현된 종양관련항원에 특이 결합하는 항체의 능력에 의해 치료효과가 나타난다. 생쥐에서 유래하는 항체는 인체에 반복 투여될 경우 치명적인 체내 면역반응(HAMA, human anti-mouse antibody response)을 유발할 수 있기 때문에 인간 질환의 예방과 치료를 위한 치료제로 부적합한 단점을 가진다. Phage display 방법은 비용해성 filamentous bacteriophage M13 표면에 특이 결합 peptides 또는 항체를 전시 발현시키는 것이다. Biopanning이라고 불리는 선택적 반응 과정을 수 회 반복하여 특이 결합 물질이 다양하게 발현된 phage 중에서 특정 항원에 반응하는 phage만을 선별하게 된다. 이렇게 선택된 phage는 증식을 통해 다량 생산할 수 있다. 이러한 phage display의 원리는 M13 bacteriophage의 geneIII가 인코드하는 minor coat protein인 pIII는 phage의 표면단백질로서 보통 3~5개가 발현되고, bacterial pilus에 흡착하는 역할을 하는데, phage vectors를 사용하여 다양한 peptides 또는 항체를 pIII와 연결되게 발현시키면, biopanning을 통해 특이 결합 물질과 반응하는 phage를 찾아내는 것이다. 이러한 phage display 방법을 종양 특이 항원에 대한 재조합 항체를 만드는데 이용된 연구도 있다. 이 기술의 장점은 단 몇 개월 만에 특정 항원에 대한 단일클론항체를 분리할 수 있다는 것이다. Antibody-targeted therapy results in a therapeutic effect by the ability of the antibody to specifically bind to tumor associated antigens expressed on the surface of cancer cells. Antibodies derived from mice have an inadequate disadvantage as a therapeutic agent for the prevention and treatment of human diseases because they can cause a fatal human anti-mouse antibody response (HAMA) when administered repeatedly to the human body. The phage display method displays and expresses specific binding peptides or antibodies on the surface of insoluble filamentous bacteriophage M13. The selective reaction process, called biopanning, is repeated several times to select only phages that respond to specific antigens among phages with various specific binding substances. The phage thus selected can be produced in large quantities through proliferation. The principle of phage display is that pIII, a minor coat protein encoded by gene III of M13 bacteriophage, is expressed as a surface protein of phage, and is usually expressed in 3 to 5 molecules, and is adsorbed to bacterial pilus. When the antibody is expressed in conjunction with pIII, biopanning is used to identify phages that react with specific binding substances. This phage display method has also been used to make recombinant antibodies to tumor-specific antigens. The advantage of this technique is that it can isolate monoclonal antibodies against specific antigens in just a few months.

그러나, 이 기술은 항체 라이브러리가 대단히 크지 않으면 친화도가 높은 항체를 개발하기 어려운 단점이 있다. 현실적으로 유용한 재조합 항체를 만드는 것은 위와 같은 phage display 방법을 이용하여 단일클론항체를 생산하는 hybridoma로부터 유전자 재조합 방법을 이용, 특이 결합부위인 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 일정 길이의 peptide linker로 연결하여 variable 부분으로 연결된 단일사슬항체 (single chain variable fragment, ScFv)를 만드는 것이다. 이렇게 만들어진 단일사슬항체는 유래된 단일클론항체의 결합부위와 유사한 구조를 가지게 된다(Thirion S, Motmans K, Heyligen H, Janssens J, Raus J and Vandevyver C (1996): Mono- and bispecific single-chain antibody fragments ofr cancer therapy. Eur J Cancer Prev, 5: 507-511).However, this technique has a disadvantage that it is difficult to develop high affinity antibodies unless the antibody library is very large. In order to make a practically useful recombinant antibody, using a genetic recombination method from a monoclonal antibody-producing hybridoma using the phage display method as described above, the specific binding sites of the heavy chain variable region (V H ) and the light chain variable region (V L ) are constant. Linking with a peptide linker of length produces a single chain variable fragment (ScFv) linked to a variable portion. The single-chain antibody thus produced has a structure similar to that of the derived monoclonal antibody (Thirion S, Motmans K, Heyligen H, Janssens J, Raus J and Vandevyver C (1996): Mono- and bispecific single-chain antibodies fragments ofr cancer therapy.Eur J Cancer Prev, 5: 507-511).

이렇듯 종래에는 합성 항체 라이브러리는 중쇄 가변영역(VH)와 경쇄 가변영역(VL)을 일일이 peptide linker 로 연결하여 항체 ScFv를 제작하여 이를 발현 벡터에 삽입하여 완성되어 왔다.As described above, the synthetic antibody library has been completed by connecting the heavy chain variable region (V H ) and the light chain variable region (V L ) with a peptide linker to prepare an antibody ScFv and inserting it into an expression vector.

본 발명자는 이러한 종래 방법으로는 정량적으로 항체 유전자를 충분히 구축하기 어렵고, 여러단계를 거쳐야 하는 번거로움 등을 연구과정을 통해 알 수 있었다. The present inventors have found out that the conventional method is difficult to quantitatively construct an antibody gene sufficiently, and hassles that have to go through several steps through research.

이에 본 발명은 상기와 같은 종래 기술의 문제점을 해결 하기 위한 것으로, 종래 링커 펩티드를 코딩하는 유전자로 연결된 중쇄 가변영역(VH) 및 경쇄 가변영역(VL)을 포함하는 항체 ScFv 발현 벡터에 있어서, 상기 링커 펩티드를 코딩하는 유전자 염기서열에 제한효소 자리를 형성시킴으로써 다양한 중쇄 가변영역(VH) 및 경쇄 가변영역(VL)을 각기 개별적으로 벡터 시스템에 도입하여 발현함으로써 항체 ScFv 라이브러리의 제작에 보다 편리한 항체 ScFv 발현 벡터를 제공하는 데 그 목적이 있다.Accordingly, the present invention is to solve the problems of the prior art, in the antibody ScFv expression vector comprising a heavy chain variable region (V H ) and a light chain variable region (V L ) linked by a gene encoding a conventional linker peptide By forming restriction enzyme sites in the gene sequence encoding the linker peptide, various heavy chain variable regions (V H ) and light chain variable regions (V L ) are introduced into the vector system and expressed in the vector system to produce antibody ScFv libraries. The aim is to provide more convenient antibody ScFv expression vectors.

본 발명의 항체 ScFv 발현 벡터는 ScFv의 링커 유전자에 제한효소로 절단되는 자리를 가지고 있어서, 다양한 VH 및 VL 을 개별적으로 벡터 시스템에 도입함으 로써 종래 항체 ScFv 자체를 발현벡터에 삽입하는 방법에 비하여 정량적인 항체 ScFv 를 제공하며, 보다 효율적으로 항체 라이브러리를 제조하는 우수한 효과를 제공한다.The antibody ScFv expression vector of the present invention has a site that is cleaved with a restriction enzyme in the linker gene of ScFv, thereby inserting a variety of V H and V L into the vector system individually to insert the conventional antibody ScFv itself into the expression vector. In comparison, it provides a quantitative antibody ScFv and provides an excellent effect of preparing antibody libraries more efficiently.

상기 목적을 달성하기 위하여, 본 발명은 링커(linker) 펩티드를 코딩하는 유전자로 연결된 중쇄 가변영역(VH) 및 경쇄 가변영역(VL)을 포함하는 항체 ScFv 발현 벡터에 있어서, 상기 링커 펩티드를 코딩하는 유전자는 제한효소로 절단되는 자리를 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터를 제공한다.In order to achieve the above object, the present invention provides an antibody ScFv expression vector comprising a heavy chain variable region (V H ) and a light chain variable region (V L ) linked by a gene encoding a linker peptide, wherein the linker peptide The gene encoding the antibody provides an antibody ScFv expression vector comprising a site cleaved with a restriction enzyme.

또한, 본 발명은 상기 링커 펩티드를 코딩하는 유전자는 서열번호1의 염기서열(BspEI 제한효소 자리)을 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터를 제공한다.In addition, the present invention provides an antibody ScFv expression vector, characterized in that the gene encoding the linker peptide comprises the nucleotide sequence of SEQ ID NO: 1 (BspEI restriction enzyme site).

또한, 본 발명은 상기 링커 펩티드가 서열번호2의 아미노산서열을 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터를 제공한다.The present invention also provides an antibody ScFv expression vector, wherein the linker peptide comprises the amino acid sequence of SEQ ID NO: 2.

또한, 본 발명은 상기 항체 ScFv 발현 벡터로 플라스미드 pKS4E 를 제공한다.The present invention also provides plasmid pKS4E with the antibody ScFv expression vector.

또한, 본 발명은 상기 항체 ScFv 발현 벡터는 his-tag을 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터를 제공한다.In addition, the present invention provides an antibody ScFv expression vector, characterized in that the antibody ScFv expression vector comprises his-tag.

또한, 본 발명은 상기 ScFv 발현 벡터로 플라스미드 pKS4H 를 제공한다.The present invention also provides plasmid pKS4H with the ScFv expression vector.

또한, 본 발명은 링커(linker) 펩티드를 코딩하는 유전자로 연결된 중쇄 가변영역(VH) 및 경쇄 가변영역(VL)을 포함하는 항체 ScFv 발현 벡터의 링커 펩티드 코딩 유전자에 silent mutation을 시켜 제한효소 자리를 형성하는 것을 특징으로 하는 항체 ScFv 발현 벡터 제조방법을 제공한다. 상기 silent mutation은 특정부위 돌연변이법(site-directed mutagenesis)을 사용하는 것이 바람직하고, 상기 제한효소 자리는 서열번호1의 염기서열(BspEI 제한효소 자리)을 포함하는 것이 바람직하다.In addition, the present invention provides a restriction enzyme by silent mutation to a linker peptide coding gene of an antibody ScFv expression vector comprising a heavy chain variable region (V H ) and a light chain variable region (V L ) linked by a gene encoding a linker peptide. It provides a method for producing an antibody ScFv expression vector, characterized in that to form a site. The silent mutation is preferably using a site-directed mutagenesis, the restriction site preferably comprises a nucleotide sequence of SEQ ID NO: 1 (BspEI restriction site).

이하, 본 발명에 대해 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

종래 합성 항체 라이브러리는 중쇄 가변영역(VH)와 경쇄 가변영역(VL)을 일일이 peptide linker 로 연결하여 항체 ScFv를 제작하여 이를 발현 벡터에 삽입하여 완성되어 왔다.Conventional synthetic antibody libraries have been completed by connecting the heavy chain variable region (V H ) and the light chain variable region (V L ) by peptide linker to prepare antibody ScFv and insert them into expression vectors.

본 발명자는 이러한 종래 방법으로는 정량적으로 항체 유전자를 충분히 구축하기 어렵고, 여러단계를 거쳐야 하는 번거로움 등을 연구과정을 통해 알 수 있었다. The present inventors have found out that the conventional method is difficult to quantitatively construct an antibody gene sufficiently, and hassles that have to go through several steps through research.

이에, 본 발명자는 항체 라이브러리를 좀더 효율적으로 제작하기 위하여 새로운 시도를 하였다. 즉, 링커(linker) 펩티드를 코딩하는 유전자로 연결된 중쇄 가변영역(VH) 및 경쇄 가변영역(VL)을 포함하는 항체 ScFv 발현 벡터의 링커 펩티드 코딩 유전자에 silent mutation을 시켜 제한효소 자리를 형성하게 되면 각각의 중 쇄 가변영역(VH)와 경쇄 가변영역(VL)을 제한효소 영역에 삽입하게 됨으로써 보다 정량적이고 다양하며, 손쉽게 항체 라이브러리를 제작할 수 있었다.Thus, the present inventors have made new attempts to produce antibody libraries more efficiently. That is, a restriction enzyme site is formed by silent mutation of a linker peptide coding gene of an antibody ScFv expression vector comprising a heavy chain variable region (V H ) and a light chain variable region (V L ) linked by a gene encoding a linker peptide. By inserting the heavy chain variable region (V H ) and the light chain variable region (V L ) into the restriction enzyme region, more quantitative, diverse and easy antibody libraries could be prepared.

특히, 본 발명에서 제한효소 영역으로는 BspEI 제한효소 자리를 형성하는 것이 바람직하며, 항체 라이브러리의 original 벡터로 pCANTAB5E를 사용하는 경우 E-tag의 BspEI 제한효소 자리를 제거하는 것이 바람직하다.(E-tag을 His-tag으로 전환시켜 E-tag에 존재하는 BspEI제한효소 자리를 제거함)In particular, in the present invention, it is preferable to form a BspEI restriction enzyme site as a restriction enzyme region, and when using pCANTAB5E as the original vector of the antibody library, it is preferable to remove the BspEI restriction enzyme site of the E-tag. tag to His-tag to remove BspEI restriction enzyme present in E-tag)

이하, 본 발명의 구성을 하기 실시예를 들어 더욱 상세히 설명하나, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 결코 아니다.Hereinafter, the configuration of the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited only to the following examples.

실험 재료(Materials)Experimental Materials

Original vector DNA는 pCANTAB5E를 사용하였다. 본 실험에서는 plasmid DNA를 얻기 위해 XLI-Blue competent cell을 사용하였다. Plasmid DNA를 분리하기 위해서 QIAGEN plasmid mini prep kit 와 midi prep kit를 사용하였다. Original vector DNA는 pCANTAB5E를 사용하였다. Site-directed mutagenesis를 실시하기 위해 GeneEditorTM in vitro Site-Directed Mutagenesis System을 미국 Promega 사에서 구입하였다. 제한효소들은 New England Biolabs 사에서 구입하였다. 항체 발현을 유도하기 위해 Isopropyl β-D-1'-thiogalactopyranoside (IPTG)를 SIGMA 사에서 구입하였고, 항체 발현을 측정하기 위해 HRP/anti-His tag conjugate를 QIAGEN 사에서 구입하였고, TMB peroxidase substrate를 KPL 사에서 구입하였다.Original vector DNA was used pCANTAB5E. In this experiment, XLI-Blue competent cells were used to obtain plasmid DNA. QIAGEN plasmid mini prep kit and midi prep kit were used to isolate plasmid DNA. Original vector DNA was used pCANTAB5E. GeneEditor in vitro Site-Directed Mutagenesis System was purchased from Promega, USA for site-directed mutagenesis. Restriction enzymes were purchased from New England Biolabs. Isopropyl β-D-1'-thiogalactopyranoside (IPTG) was purchased from SIGMA to induce antibody expression, HRP / anti-His tag conjugate was purchased from QIAGEN to measure antibody expression, and TPL peroxidase substrate was KPL. It was purchased from the company.

실시예 1 : 파상풍 항체 ScFv가 삽입된 pCANTAB5E 의 Site-directed mutagenesis(SDM) Example 1: Site-directed mutagenesis (SDM) of pCANTAB5E with tetanus antibody ScFv

1) 파상풍 항체 ScFv가 삽입된 pCANTAB5E1) pCANTAB5E with tetanus antibody ScFv

본 실험실에서 확립한 파상풍 단일클론항체를 Mouse ScFVv Module/Recombinant Phage Antibody System(Amersham Pharmacia Biotech)을 사용하여 유전자를 ScFv 형태로 pCANTAB5E 벡터에 클로닝하였다.The tetanus monoclonal antibody established in this laboratory was cloned into the pCANTAB5E vector in ScFv form using the Mouse ScFVv Module / Recombinant Phage Antibody System (Amersham Pharmacia Biotech).

도 1은 본 발명의 ScFv 형태의 항체 라이브러리를 제작하기 위한 항체 ScFv 발현 벡터 제조과정을 도시한 진행도이고,1 is a flowchart illustrating a process of preparing an antibody ScFv expression vector for preparing an ScFv-type antibody library of the present invention.

도 2는 ScFv(VH-linker-VL)가 삽입된 pCANTAB5E의 유전자 지도이다.2 is a genetic map of pCANTAB5E with ScFv (V H -linker-V L ) inserted.

2) 열변성(Heat denaturation) 및 올리고뉴클레오디드의 어닐링(Annealing Oligonucleotides)2) Heat denaturation and annealing of oligonucleotides

도 3은 GeneEditorTM in vitro Site-Directed Mutagenesis System(Promega 사)을 이용한 특정부위 돌연변이화(Site-directed mutagenesis)의 진행과정을 도시한 진행도이다.Figure 3 is a flow chart showing the progress of the site-directed mutagenesis using GeneEditor TM in vitro Site-Directed Mutagenesis System (Promega).

상기 파상풍 항체 ScFv 가 도입된 플라스미드 벡터 pCANTAB5E(double strand DNA, dsDNA) 165ng(10㎕, 0.05p㏖/㎕)를 DNA mutagenesis template로 하여 94℃로 가열하여 single strand DNA(ssDNA)로 분리시킨 다음(Heat denaturation), 하기 표1에 도시된 selection oligonucleotide (phosphorylated Top or Bottom primer) 1㎕ (0.25p㏖/㎕), mutagenic oligonucleotide (phosphorlylated) 1㎕ (1.25p㏖/㎕), Annealing 10X Buffer 2㎕ 및 sterile deionized water 6㎕를 첨가하여 반응 총액을 20㎕가 되게 한 후, 75℃로 5분 동안 가열하고, ice에서 5분간 quenching 한 다음, 상온에서 30분간 반응시켰다.(Oligonucleotide Annealing Step)The plasmid vector pCANTAB5E (double strand DNA, dsDNA) 165 ng (10 μl, 0.05 mmol / μl) into which the tetanus antibody ScFv was introduced was heated to 94 ° C. using a DNA mutagenesis template and separated into single strand DNA (ssDNA) ( Heat denaturation), 1 μl (0.25 mmol / μl) of a selection oligonucleotide (phosphorylated top or bottom primer) shown in Table 1, 1 μl (1.25 mmol / μl) of mutagenic oligonucleotide (phosphorlylated), 2 μl of Annealing 10X Buffer, and 6 μl of sterile deionized water was added to make 20 μl of the reaction solution, which was then heated to 75 ° C. for 5 minutes, quenched for 5 minutes on ice, and then reacted at room temperature for 30 minutes. (Oligonucleotide Annealing Step)

Oligonucleotide TypeOligonucleotide Type SizeSize Primer sequence (5'→3')Primer sequence (5 '→ 3') Selection Oligonucleotide, Phosphorylated (Top Strand)Selection Oligonucleotide, Phosphorylated (Top Strand) 35mer 35mer 5'd(pGATAAATCTGGAGCCTCCAAGGGTGGGTCTCGCGG)-3' 5'd (pGATAAATCTGGAGCCTCCAAGGGTGGGTCTCGCGG) -3 ' Selection Oligonucleotide, Phosphorylated (Bottom Strand)Selection Oligonucleotide, Phosphorylated (Bottom Strand) 35mer 35mer 5'd(pCCGCGAGACCCACCCTTGGAGGCTCCAGATTTATC)-3' 5'd (pCCGCGAGACCCACCCTTGGAGGCTCCAGATTTATC) -3 ' mutagenic oligonucleotide, phosphorlylatedmutagenic oligonucleotide, phosphorlylated 60mer60mer 5'd(pGTCACCGTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGCTCCGGAGGTGGCGGATCG)-3'5'd (pGTCACCGTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGCTCCGGAGGTGGCGGATCG) -3 '

도 3에 보이는 바와 같이, Selection Oligonucleotide 는 Ampr 부위에 어닐링되어 결합되고, Mutagenic oligonucleotide 는 항체 ScFv 의 링커(linker) 유전자 부위에 어닐링되어 결합된다. As shown in FIG. 3, the Selection Oligonucleotide is annealed to the Amp r site and bound, and the Mutagenic oligonucleotide is annealed to the linker gene site of the antibody ScFv.

3) Mutant strand synthesis 및 ligation3) Mutant strand synthesis and ligation

상기 어닐링된 항체 ScFv 도입 플라스미드 벡터 pCANTAB5E mixture 에 Sterile deionized water 5㎕, synthesis 10X buffer 3㎕, T4 DNA ligase 1㎕, T4 DNA polymerase 1㎕를 첨가하여 총액이 30㎕로 되게 한후, 37℃에서 90분간 반응시켰다.5 μl of Sterile deionized water, 3 μl of synthesis 10X buffer, 1 μl of T4 DNA ligase, and 1 μl of T4 DNA polymerase were added to the annealed antibody ScFv introduction plasmid vector pCANTAB5E mixture to a total solution of 30 μl, followed by 90 minutes at 37 ° C. Reacted.

4) BMH71-18 4) BMH71-18 mutmut S competent cells로 형질전환Transform into S competent cells

상기 변이도입(mutegenesis) 효율을 증가시키기 위하여 E. coli BMH 71-18 mutS 를 competent cells로 하여 형질전환을 실시하였다.In order to increase mutegenesis efficiency, transformation was performed using E. coli BMH 71-18 mutS as competent cells.

E. coli BMH71-18 mutS는 mutS(repair minus)cell로 DNA missmatch의 수복능력이 저하되어 있어서, site-directed mutagenesis를 실시할 때에, 상기 BMH71-18 mutS를 host cells 로 사용하면, 변이도입 부분의 수복(repair)을 억제하기 때문에, 도입하고자 하는 변이를 고정하기 쉬워 변이도입 효율이 상승된다.E. coli BMH71-18 mutS is reduced in the repair capacity of DNA missmatch in mutS (repair minus) cells. When site-directed mutagenesis is used, the BMH71-18 mutS is used as a host cell. Since the repair is suppressed, it is easy to fix the mutation to be introduced and the mutation introduction efficiency is increased.

상기 변이도입된 플라스미드 혼합물(SDM mixture) 5㎕과 E. coli BMH71-18 mutS Competent cell 100㎕를 1.5ml tube에 첨가한 후 ice에서 10분간 incubation한 후 42℃에서 45초 동안 반응시킨 후(Heat-shock), ice에서 2분간 quenching하여 SB 1ml에 첨가한 후 37℃에서 250rpm으로 1시간 동안 incubation 한 후 SB 4ml, GeneEditor Antibiotic Selection mix. 100㎕를 첨가하여 37℃, 250rpm으로 16~18시간 동안 배양하였다.5 μl of the mutated plasmid mixture (SDM mixture) and 100 μl of E. coli BMH71-18 mutS Competent cell were added to a 1.5 ml tube, followed by incubation for 10 minutes on ice, followed by reaction at 42 ° C. for 45 seconds (Heat -shock), quenched in ice for 2 minutes and added to 1 ml of SB, and then incubated at 250 rpm for 1 hour at 37 ° C. SB 4 ml, GeneEditor Antibiotic Selection mix. 100 μl was added and incubated at 37 ° C. and 250 rpm for 16-18 hours.

도 3에 보이는 바와 같이, Selection Oligonucleotide 가 도입되지 않은 E. coli BMH71-18 mutS competent cell은 GeneEditor Antibiotic Selection mix 에 의해 고사하고, Selection Oligonucleotide 가 도입된 E. coli BMH71-18 mutS competent cell 만이 콜로니를 형성하는 한편, Mutagenic oligonucleotide 가 repair 되지 않고 변이가 고정된다.As shown in FIG. 3, E. coli BMH71-18 mutS competent cells without selection oligonucleotide were killed by GeneEditor Antibiotic Selection mix, and only E. coli BMH71-18 mutS competent cells with selection Oligonucleotide were introduced to form colonies. Mutagenic oligonucleotides are not repaired and mutations are fixed.

5) JM109 competent cells 로 형질전환5) Transformation with JM109 competent cells

상기 변이도입(mutegenesis)된 재조합 플라스미드를 선발하기 위하여 E. coli JM109 를 competent cells로 하여 형질전환을 실시하였다.E. coli JM109 was used as competent cells to select the mutagenesis of the recombinant plasmid.

E. coli JM109는 pUC계 plasmid vector의 형질전환이나 M13 phage vector DNA의 형질도입 등을 실시하는 경우, vector DNA로부터 발현하는 lacZα peptide(αfragment)와 JM109 F′가 코드하는 lacZ△M15(omega fragment)에 의한 β-galactosidase의 활성회복(α-상보성)을 이용하므로써 재조합체의 선발이 간편한 균주이다. F′plasmid를 갖고 있기 때문에 유전자 library의 제작이나 subcloning 이외에 M13 vector DNA의 숙주로써 ssDNA의 제조에도 사용할 수 있다.E. coli JM109 transforms pUC-based plasmid vectors and transduces M13 phage vector DNA, and lacZα peptide (αfragment) expressed from vector DNA and lacZΔM15 (omega fragment) coded by JM109 F ′. By using the activity recovery of β-galactosidase (α-complementarity) is a strain that is easy to select the recombinant. Because of its F'plasmid, it can be used for the production of ssDNA as a host of M13 vector DNA in addition to the construction of gene libraries or subcloning.

상기 E. coli BMH 71-18 mutS competent cells로 형질전환하여 배양한 cell에서 plasmid mini prep을 한 후 5~10ng정도의 DNA, JM109 competent cells 100㎕를 첨가하여 ice에서 30분간 incubation한 후 42℃에서 45초 동안 반응시킨 후 ice에서 2분간 quenching하여 SB 1ml에 첨가한 후 37℃에서 250rpm으로 1시간 동안 incubation 한 후 SB/carbencillin, GeneEditor Antibiotic Selection mix. plate에 100㎕씩 도말하였다.After plasmid mini prep was transformed into cells transformed with the E. coli BMH 71-18 mutS competent cells, 100 μl of DNA and JM109 competent cells were added in about 5-10 ng, incubated for 30 minutes on ice, and then at 42 ° C. After reacting for 45 seconds, the mixture was quenched in ice for 2 minutes and added to SB 1ml, and then incubated at 250 rpm for 1 hour at 37 ° C. SB / carbencillin, GeneEditor Antibiotic Selection mix. 100 μl plate was plated.

도 3에 보이는 바와 같이, 변이도입(mutegenesis)된 재조합 플라스미드만이 콜로니를 형성하게 된다.As shown in FIG. 3, only mutegenized recombinant plasmids form colonies.

도 4는 본 발명의 ScFv의 링커유전자에 BspEI 제한 효소 자리가 형성된 pKS4H의 유전자 지도이다.4 is a genetic map of pKS4H in which a BspEI restriction enzyme site was formed in a linker gene of ScFv of the present invention.

실시예 2 : 콜로니 선택 및 제한효소 매핑(Colony selection and enzyme mapping)Example 2 Colony Selection and Enzyme Mapping

도 5는 ScFv의 링커유전자에 BspEI 제한효소자리를 특정부위 돌연변이화(Site-directed mutagenesis)를 통해 생성시킨 것을 BspEI 제한효소로 절단하여 선별한 것으로 1, 4, 6, 7, 10, 12, 14, 15가 올바르게 생성된 것이다.FIG. 5 shows that BspEI restriction enzyme sites generated by site-directed mutagenesis in the linker gene of ScFv were selected by cleavage with BspEI restriction enzymes 1, 4, 6, 7, 10, 12, 14 , 15 is generated correctly.

Plate에서 colony를 따서 2ml culture를 하여 plasmid mini prep을 한 후 ScFv 도입 플라스미드 벡터 pCANTAB5E의 E-tag의 BspEI 제한효소 자리를 제거하고, 특정부위 돌연변이화(site-directed mutagenesis, SDM)를 이용하여 링커(linker)부위에 생성시킨 BspEI 제한효소 자리가 제대로 형성된 것을 BspEI을 처리하여 확인하였다.(도 5)Plasmid mini prep was carried out by colonization of the plate in 2 ml culture, and then the BspEI restriction site of the E-tag of the scFv-introduced plasmid vector pCANTAB5E was removed, and the linker (site-directed mutagenesis (SDM)) was used. linker) was confirmed that the BspEI restriction enzyme site was properly formed by treatment with BspEI (Fig. 5).

그리고, 도 6은 ScFv의 링커유전자에 BspEI 제한효소자리가 형성된 벡터가 정확한지 확인하게 위해 관련된 제한효소를 처리하여 절단된 밴드의 크기를 추정하여 벡터의 완전성을 확인한 것이다.And, Figure 6 is to confirm the integrity of the vector by estimating the size of the cleaved band by treating the restriction enzyme to confirm that the vector is formed in the linker gene of ScFv BspEI restriction enzyme site is correct.

실시예 3 : His-tag 의 도입Example 3 Introduction of His-tag

상기 파상풍 항체 ScFv의 링커(linker)에 BspEI 제한효소를 도입시킨 플라스미드 벡터(pKS4E)의 E-tag은 ScFv 의 링커(linker)에 형성된 BspEI 제한효소와 동일한 제한효소를 가지므로 상기 pKS4E의 NotI, EcoRI 위치의 E-tag을 잘라낸 다음, pKS3C(도 10)의 His-tag 절편을 NotI, EcoRI 제한효소로 잘라 insert로 준비하여 pKS4E에 삽입함으로써 BspEI 제한효소 자리를 제거하였다.(pKS4H)The E-tag of the plasmid vector (pKS4E) into which the BspEI restriction enzyme was introduced into the linker of the tetanus antibody ScFv has the same restriction enzyme as that of the BspEI restriction enzyme formed on the linker of ScFv. After cutting the E-tag at the position, the His-tag fragment of pKS3C (FIG. 10) was cut with NotI, EcoRI restriction enzyme, prepared by insert, and inserted into pKS4E to remove the BspEI restriction site. (PKS4H)

도 7은 확인된 벡터시스템(pKS4E)의 E-tag을 His-tag으로 치환시켜주기 위해 pKS3C 벡터(도 10: 본 발명자 자체 제작) 에서 이에 해당하는 부분을 절단하여 본 발명의 벡터(pKS4H)를 완성하기 위한 벡터유전자, 삽입유전자를 준비한 것으로 pKS4E 및 pKS3C를 NotI 및 EcoRI 제한효소로 자른 후 전기영동한 결과이다.7 is a vector of the present invention (pKS4H) by cutting the corresponding part in the pKS3C vector (FIG. 10: the inventors made by the inventors) in order to replace the E-tag of the identified vector system (pKS4E) with His-tag. A vector gene and insertion gene were prepared for completion. The result was electrophoresis after pKS4E and pKS3C were cut with NotI and EcoRI restriction enzymes.

그리고, 도 8은 ScFv의 링커유전자에 BspEI 제한효소자리를 생성시키고 E-tag을 His-tag으로 치환시킨 최종 pKS4H를 관련된 제한효소를 사용하여 절단된 밴드를 통해 확인한 것이다.8 shows the final pKS4H in which the BspEI restriction site was generated in the linker gene of ScFv and the E-tag was replaced with His-tag, and was identified through the cleaved band using the related restriction enzyme.

실시예 4 : IPTG induction 및 ELISA screeningExample 4 IPTG induction and ELISA screening

pKS4H DNA를 XLI-Blue competent cell에 electroporation 한 후 SB/carbencillin plate에 spreading 하여 37℃ overnight incubation 한 후 colonies을 따서 2ml culture하여 OD600 에서 0.8~1.0 정도까지 37℃ 250rpm 에서 shaking incubation 한 후 IPTG를 1 mM로 처리하고, 30℃ 250rpm으로 overnight induction시켰다. 이 반응물을 3000rpm, 5분간 원심 분리한 후 각각의 상층액 만을 Tetanus 항원이 깔려있는 ELISA plate에 첨가한 후 2시간 동안 상온에서 반응한 후 PBST (1XPBS, 0.05% tween 20)로 5회 washing 후 HRP/anti-his tag conjugate를 1% BSA/PBS로 1/500로 희석한 것을 첨가한 후 1시간 30분 동안 상온에서 반응한 후 다시 PBST로 5회 washing 한 후 TMB peroxidase substrate solution A&B를 1:1로 섞은 반응물을 첨가한 후 5~10분간 incubation 한 후에 TECAN sunrise를 이용하여 405nm 측정 파장에서 그 값을 읽었다.pKS4H DNA was electroporated in XLI-Blue competent cell, spread on SB / carbencillin plate, incubation at 37 ℃ overnight, 2ml culture after colonies, shaking incubation at 250 ℃ at OD 600 to 0.8 ~ 1.0, IPTG 1 The solution was treated with mM, and overnight induction was performed at 30 ° C. and 250 rpm. After centrifugation of this reaction at 3000 rpm for 5 minutes, each supernatant was added to an ELISA plate coated with Tetanus antigen, and then reacted at room temperature for 2 hours. After washing 5 times with PBST (1XPBS, 0.05% tween 20), HRP After diluting / anti-his tag conjugate to 1/500 with 1% BSA / PBS, reacted at room temperature for 1 hour 30 minutes, washed 5 times with PBST again, and then TMB peroxidase substrate solution A & B 1: 1. After incubation for 5-10 minutes after the reaction mixture was added, the value was read at 405nm wavelength using TECAN sunrise.

도 9는 구축된 pKS4H 벡터 시스템이 제대로 작동하는 것을 확인하기 위해 파상풍 항체 유전자를 도입하여 항체가 올바르게 발현되는 지를 효소면역 측정법으로 그 발현정도를 기존의 pCANTAB5E 벡터와 비교 확인한 것이다.9 is a comparison of the expression level with the existing pCANTAB5E vector by enzymatic immunoassay to introduce the tetanus antibody gene to confirm that the constructed pKS4H vector system works properly.

샘플은 ScFv 파상풍 항체 유전자를 포함하고 있는 pKS4H 와 pCANTAB5E에서 항체를 발현하여 각각 His-tag & E-tag에 대한 항체로 측정하였고 PBS와 하이브리도마 배양액을 대조군으로 사용하였다.Samples were expressed in pKS4H and pCANTAB5E containing the ScFv tetanus antibody gene and measured as antibodies against His-tag & E-tag, respectively, and PBS and hybridoma cultures were used as controls.

상기 도 9에 보이는 바와 같이, origianl 벡터 pCANTAB5E 에서 발현된 항체를 검출한 것과 동일한 정도의 OD 값을 획득하였음을 알 수 있다.As shown in Figure 9, it can be seen that the same degree of OD value obtained by detecting the antibody expressed in the origianl vector pCANTAB5E.

본 발명의 항체 ScFv 발현 벡터는 ScFv의 링커 유전자에 제한효소로 절단되는 자리를 가지고 있어서, 다양한 VH 및 VL 을 개별적으로 벡터 시스템에 도입함으로써 종래 항체 ScFv 자체를 발현벡터에 삽입하는 방법에 비하여 정량적인 항체 ScFv 를 제공하며, 보다 효율적으로 항체 라이브러리를 제조하는 우수한 효과를 제공한다.The antibody ScFv expression vector of the present invention has a site that is cut by restriction enzymes in the linker gene of ScFv, so that various V Hs and V Ls are introduced into the vector system individually, compared to the method of inserting the antibody ScFv itself into the expression vector. It provides a quantitative antibody ScFv and provides an excellent effect of making antibody libraries more efficiently.

<110> GREEN CROSS HOLDINGS <120> Vector DNA expressing ScFv for producing ScFc antibody library <130> sp-240107 <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> BspEI <400> 1 tccgga 6 <210> 2 <211> 2 <212> PRT <213> Artificial Sequence <220> <223> protein <400> 2 Ser Gly 1 <110> GREEN CROSS HOLDINGS <120> Vector DNA expressing ScFv for producing ScFc antibody library <130> sp-240107 <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> BspEI <400> 1 tccgga 6 <210> 2 <211> 2 <212> PRT <213> Artificial Sequence <220> <223> protein <400> 2 Ser gly   One

Claims (10)

링커(linker) 펩티드를 코딩하는 유전자로 연결된 중쇄 가변영역(VH) 및 경쇄 가변영역(VL)을 포함하는 항체 ScFv 발현 벡터에 있어서,In an antibody ScFv expression vector comprising a heavy chain variable region (V H ) and a light chain variable region (V L ) linked by a gene encoding a linker peptide, 상기 링커 펩티드를 코딩하는 유전자는 제한효소로 절단되는 자리를 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터.The gene encoding the linker peptide is an antibody ScFv expression vector, characterized in that it comprises a site cleaved by a restriction enzyme. 제1항에 있어서, 상기 링커 펩티드를 코딩하는 유전자는 서열번호1의 염기서열(BspEI 제한효소 자리)을 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터.The antibody ScFv expression vector of claim 1, wherein the gene encoding the linker peptide comprises the nucleotide sequence of SEQ ID NO: 1 (BspEI restriction site). 제1항 또는 제2항에 있어서, 상기 링커 펩티드는 서열번호2의 아미노산서열을 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터.The antibody ScFv expression vector of claim 1 or 2, wherein the linker peptide comprises the amino acid sequence of SEQ ID NO: 2. 제2항에 있어서, 상기 항체 ScFv 발현 벡터는 pKS4E 인 것을 특징으로 하는 ScFv 발현 벡터.The ScFv expression vector of claim 2, wherein the antibody ScFv expression vector is pKS4E. 제1항 또는 제2항에 있어서, 상기 항체 ScFv 발현 벡터의 tag 유전자는 는 서열번호1의 염기서열(BspEI 제한효소 자리)이 없는 것을 특징으로 하는 항체 ScFv 발현 벡터.The antibody ScFv expression vector of claim 1 or 2, wherein the tag gene of the antibody ScFv expression vector has no nucleotide sequence of SEQ ID NO: 1 (BspEI restriction site). 제5항에 있어서, 상기 항체 ScFv 발현 벡터의 tag 유전자는 his-tag 유전자인 것을 특징으로 하는 항체 ScFv 발현 벡터.The antibody ScFv expression vector of claim 5, wherein the tag gene of the antibody ScFv expression vector is a his-tag gene. 제6항에 있어서, 상기 항체 ScFv 발현 벡터는 pKS4H 인 것을 특징으로 하는 항체 ScFv 발현 벡터.The antibody ScFv expression vector of claim 6, wherein the antibody ScFv expression vector is pKS4H. 링커(linker) 펩티드를 코딩하는 유전자로 연결된 중쇄 가변영역(VH) 및 경쇄 가변영역(VL)을 포함하는 항체 ScFv 발현 벡터의 링커 펩티드 코딩 유전자에 silent mutation을 시켜 제한효소 자리를 형성하는 것을 특징으로 하는 항체 ScFv 발현 벡터 제조방법.Forming a restriction enzyme site by silent mutation of a linker peptide coding gene of an antibody ScFv expression vector comprising a heavy chain variable region (V H ) and a light chain variable region (V L ) linked by a gene encoding a linker peptide. Method for producing an antibody ScFv expression vector characterized in. 제8항에 있어서, 상기 silent mutation은 특정부위 돌연변이법(site-directed mutagenesis)을 사용하는 것을 특징으로 하는 항체 ScFv 발현 벡터 제조방법.The method of claim 8, wherein the silent mutation is a method for producing an antibody ScFv expression vector, characterized in that using a site-directed mutagenesis. 제8항 또는 제9항에 있어서, 상기 제한효소 자리는 서열번호1의 염기서열(BspEI 제한효소 자리)을 포함하는 것을 특징으로 하는 항체 ScFv 발현 벡터 제조방법.The method of claim 8 or 9, wherein the restriction enzyme site comprises a base sequence of SEQ ID NO: 1 (BspEI restriction enzyme site), characterized in that the antibody ScFv expression vector production method.
KR1020050018162A 2005-03-04 2005-03-04 Vector DNA expressing ScFv for producing ScFv antibody library KR100635370B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050018162A KR100635370B1 (en) 2005-03-04 2005-03-04 Vector DNA expressing ScFv for producing ScFv antibody library

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050018162A KR100635370B1 (en) 2005-03-04 2005-03-04 Vector DNA expressing ScFv for producing ScFv antibody library

Publications (2)

Publication Number Publication Date
KR20060097143A true KR20060097143A (en) 2006-09-14
KR100635370B1 KR100635370B1 (en) 2006-10-17

Family

ID=37628978

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050018162A KR100635370B1 (en) 2005-03-04 2005-03-04 Vector DNA expressing ScFv for producing ScFv antibody library

Country Status (1)

Country Link
KR (1) KR100635370B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116051A1 (en) * 2013-01-24 2014-07-31 스크립스코리아 항체연구원 Protein combination-based fv library, and preparation method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108642B1 (en) 2009-09-29 2012-02-09 주식회사 녹십자 Antibodies specifically binding to the epidermal growth factor receptor
WO2015133882A1 (en) 2014-03-07 2015-09-11 사회복지법인 삼성생명공익재단 Scfv antibody library, method for preparing same, and scfv antibody screening method using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333396B1 (en) 1998-10-20 2001-12-25 Enzon, Inc. Method for targeted delivery of nucleic acids
EP1479694B1 (en) 1999-12-28 2016-10-26 ESBATech, an Alcon Biomedical Research Unit LLC Intrabodies ScFv with defined framework that is stable in a reducing environment
US20030165988A1 (en) 2002-02-08 2003-09-04 Shaobing Hua High throughput generation of human monoclonal antibody against peptide fragments derived from membrane proteins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116051A1 (en) * 2013-01-24 2014-07-31 스크립스코리아 항체연구원 Protein combination-based fv library, and preparation method therefor
AU2014210475B2 (en) * 2013-01-24 2017-03-02 Abtlas Co., Ltd. Protein combination-based Fv library, and preparation method therefor
US10309969B2 (en) 2013-01-24 2019-06-04 Abtlas Co., Ltd. Protein combination-based FV library, and preparation method therefor

Also Published As

Publication number Publication date
KR100635370B1 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
EP3288973B1 (en) Method for mass humanization of rabbit antibodies
JP7109605B2 (en) Methods for Improving Protein Characteristics
Pini et al. Phage display of antibody fragments
US20200239594A1 (en) Muc1* antibodies
Proba et al. Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB)
KR102290949B1 (en) Novel method for generating a antibody library and the generated library therefrom
ES2751006T3 (en) Production of antibody formats and immunological applications of these formats
EP1664343B1 (en) Methods and compositions for generation of germline human antibody genes
EP1737962B1 (en) Gas1 universal leader
KR101262058B1 (en) Method for improving antibody
ES2627826T3 (en) Bacterial host strain expressing recombinant DsbC and having reduced Tsp activity
KR20100113481A (en) Protein scaffolds
Jordan et al. Production of recombinant antibody fragments in Bacillus megaterium
US10415033B2 (en) Phage-displayed single-chain variable fragment libraries and uses thereof
Rojas et al. Phage antibody fragments library combining a single human light chain variable region with immune mouse heavy chain variable regions
KR100635370B1 (en) Vector DNA expressing ScFv for producing ScFv antibody library
HRP20010149A2 (en) High-affinity antibodies
Leonard et al. Co-expression of antibody fab heavy and light chain genes from separate evolved compatible replicons in E. coli
KR20220026869A (en) A novel method for generating an antibody library and the generated library therefrom
KR20180104675A (en) Methods for the production of synthetic antibody libraries, the library and its application (s)
Tapryal et al. Single chain Fv fragment specific for human GM‐CSF: Selection and expression using a bacterial expression library
Chang The 2018 Nobel Prize in Chemistry: Engineering proteins (enzymes/peptide/antibodies) towards desired properties via the construction of random libraries
JPWO2006001179A1 (en) Method for producing a protein composed of two or more polypeptides
KR100963507B1 (en) A vector for expressing antibody fragments and a method for producing recombinant phage that displays antibody fragments by using the vector
Koohapitagtam et al. Construction of single-chain variable fragment (scFv) specific to cucumber mosaic virus by phage display technology

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130911

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140911

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161010

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 13