KR20060087476A - Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile - Google Patents

Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile Download PDF

Info

Publication number
KR20060087476A
KR20060087476A KR1020060053712A KR20060053712A KR20060087476A KR 20060087476 A KR20060087476 A KR 20060087476A KR 1020060053712 A KR1020060053712 A KR 1020060053712A KR 20060053712 A KR20060053712 A KR 20060053712A KR 20060087476 A KR20060087476 A KR 20060087476A
Authority
KR
South Korea
Prior art keywords
pile
phc
time
water level
permeability
Prior art date
Application number
KR1020060053712A
Other languages
Korean (ko)
Inventor
차재선
Original Assignee
차재선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차재선 filed Critical 차재선
Priority to KR1020060053712A priority Critical patent/KR20060087476A/en
Publication of KR20060087476A publication Critical patent/KR20060087476A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/08Investigation of foundation soil in situ after finishing the foundation structure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Paleontology (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Analytical Chemistry (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Soil Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

본 발명은 콘크리트(PHC) 말뚝의 내부에서 수위변화를 측정하여 콘크리트의 투수계수, 결함의 심도와 결함의 크기를 평가하는 방법이다.The present invention is a method for evaluating the water permeability coefficient of the concrete (PHC) piles, the depth of the defect and the size of the defect.

PHC 말뚝의 건전도는 말뚝 동재하 시험기로 평가할 수 있으나 말뚝이 작게 파손되었을 경우에는 판단하기 어렵고 여러 말뚝에 시험이 어렵다.The health of the PHC piles can be assessed with a pile load tester, but it is difficult to judge when the pile is small and difficult to test on several piles.

본 방법은 공작제작 후나 지반에 시공 후 PHC 말뚝의 품질을 확인할 수 있어 PHC 말뚝의 품질을 향상시킬 수 있다. This method can check the quality of the PHC piles after fabrication or construction on the ground, thereby improving the quality of the PHC piles.

PHC 말뚝, 항타 시공, 투수계수, 지하수위, 말뚝균열, 지지력 감소 PHC pile, driving construction, permeability coefficient, groundwater level, pile crack, bearing capacity reduction

Description

피에치씨말뚝의 내부수위 변화를 측정으로 콘크리트말뚝의 품질 평가방법{Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile}Evaluating method of quality of prestress concrete pile by measuring water level and time inside pile}

도 1은 PHC 말뚝의 내부 수위변화 측정 방법에 대한 단면도이다1 is a cross-sectional view of the internal water level change measurement method of the PHC pile.

도 2는 양수법에 의한 균열이 없는 말뚝의 투수계수의 계산식 개념도이다2 is a conceptual diagram illustrating the coefficient of permeability of piles without cracks by the pumping method.

도 3은 양수법에 대한 PHC 말뚝 균열의 크기 산정을 위한 계산식 개념도이다3 is a conceptual diagram for calculating the size of PHC pile crack for pumping method

도 4는 주수법에 의한 균열이 없는 말뚝의 투수계수 계산식 개념도이다4 is a conceptual diagram for calculating the coefficient of permeability of piles without cracks by water casting method

도 5는 주수법에 대한 PHC 말뚝 균열의 크기 산정을 위한 계산식 개념도이다5 is a conceptual diagram for estimating the size of PHC pile crack for casting method

도 6은 항타 시공 중 말뚝 선단슈와 말뚝 선단의 변형 단면도이다6 is a modified cross-sectional view of the pile tip shoe and the pile tip during driving construction;

도 7은 PHC 말뚝의 말뚝선단 방수 단면도이다7 is a pile tip waterproofing cross-sectional view of the PHC pile.

*도면의 주요 부분에 대한 식별번호의 설명** Description of identification numbers for the main parts of the drawings *

1 지반 2 지하수위 3 PHC말뚝 4 말뚝내부 수위 5 압력센서 6 측정기 7 모래 8 방수재 9 선단슈 10 PHC말뚝의 선단변형 11 선단슈의 중앙변형 12 말뚝의 균열1 Ground level 2 Groundwater level 3 PHC pile 4 Level inside pile 5 Pressure sensor 6 Meter 7 Sand 8 Waterproofing material 9 Tip shoe 10 Tip strain of PHC pile 11 Center strain of tip shoe 12 Crack in pile

콘크리트(PHC) 말뚝은 지반에 시공하여 지지력을 개선하기 위하여 가장 많이 사용되어 왔다. 고강도 원심력 콘크리트 말뚝은 PC강성을 선단슈에 고정하고 prestress를 가한 후 원통형 봉 속에 콘크리트를 넣고 회전하면 말뚝의 중앙은 구멍이 생긴다. 일반적으로 가압, 양생하여 제작하는 이와 같은 말뚝을 PHC 말뚝이라 한다.Concrete (PHC) piles have been most commonly used to improve bearing capacity in the ground. High strength centrifugal concrete piles fix PC rigidity to the tip shoe, apply prestress, and then put concrete in the cylindrical rod and rotate the pile. In general, such a pile produced by pressing and curing is called a PHC pile.

말뚝의 제조과정 중 콘크리트의 건조수축, 충격, 열 수축으로 말뚝 내부에 말뚝 길이 방향으로 작은 균열이 발생할 수 있다. prestress가 부족하거나 운반 취급중 휨 응력으로 말뚝의 둘레방향으로 균열이 발생할 수 있다. 말뚝의 제작 과정상 균열이나 운반중 과대한 휨 응력에 의한 말뚝 균열은 눈으로 결함을 확인하기 어렵다.During the manufacturing process of piles, small cracks may occur in the pile length direction due to dry shrinkage, impact and heat shrinkage of the concrete. Insufficient prestress or bending stress during transport handling can cause cracks in pile circumferential direction. Cracks during pile fabrication and pile cracking caused by excessive bending stress during transport are difficult to visually identify defects.

항타 중 선단 지반의 지지력이 증가하고 말뚝 선단슈 두께가 작으면 중앙의 변형이 최대가 되어 말뚝선단 내부가 최대로 변형되고 선단슈의 두께가 크면 말뚝의 외부가 최대로 변형된다. 도 6과 같이 두께가 작은 선단슈의 중앙변형량에 따라 PHC말뚝 선단 내부가 변형되고 변형량이 증가하면 파손된다. If the bearing capacity of the tip ground increases and the pile tip shoe thickness is small during driving, the center deformation is maximized, and the inside of the pile tip is maximumly deformed. As shown in FIG. 6, the inside of the PHC pile tip is deformed according to the center strain of the tip shoe having a small thickness, and is damaged when the amount of deformation increases.

시공 이후 과다한 항타로 말뚝이 파손된 경우 말뚝 동재하 시험으로 파손 정도를 평가할 수 있으나 말뚝의 균열은 평가할 수 없고 동재하 시험을 여러 말뚝에 시행할 경우 비용이 증가하므로 적용이 어렵다. 시공 후 지중의 말뚝의 균열이나 약간의 파손은 확인하기 어렵다.If piles are damaged due to excessive driving after construction, the degree of damage can be assessed by pile load test, but the crack of pile cannot be evaluated and it is difficult to apply the pile load test because the cost increases. Cracks and slight breakage of underground piles after construction are difficult to identify.

말뚝이 균열이나 손상 되였을 경우 장기 지지력이 저하되어 침하가 발생하고 침하는 상부 구조물에 영향을 줄 수 있다.If the pile is cracked or damaged, long-term bearing capacity may be impaired, causing settlement and affecting the submerged superstructure.

본 발명은 PHC말뚝의 제조 과정의 균열과 시공 후 PHC말뚝의 균열과 결함을 말뚝 내부 수위 변화를 측정하여 평가한다. The present invention evaluates the cracks and defects of the PHC piles after the construction process of the PHC piles by measuring the change in the internal water level.

일반적으로 콘크리트 말뚝 주변 지반의 투수계수가 콘크리트의 투수계수 보다 크다. 말뚝 내부로 유입되는 투수량은 PHC 말뚝의 투수계수에 의해 좌우된다.In general, the permeability coefficient of the ground around the concrete pile is larger than that of the concrete. The amount of permeate introduced into the pile depends on the permeability coefficient of the PHC pile.

지반에 따른 투수계수Permeability coefficient according to the ground 지반Ground 투수계수(cm/sec)Permeability coefficient (cm / sec) 거친모래Coarse sand 0.5~1.00.5-1.0 미세한 모래Fine sand 0.1~0.30.1-0.3 매우 미세한 모래Very fine sand 0.01~0.020.01 ~ 0.02 롬질 흙Loamy soil 0.01~1*10-5 0.01 ~ 1 * 10 -5 점토clay 0.2~20*10-7 0.2 ~ 20 * 10 -7 벤토나이트Bentonite 0.0033(mm/year)0.0033 (mm / year)

콘크리트의 투수계수는 골재율 68%, 압축강도 250-320 kg/cm2 일 때 7*10-6~11*10-6cm/sec이다, PHC 말뚝의 설계강도는 800 kg/cm2 이므로 PHC 말뚝의 투수계수는 더 작다. 압축강도와 투수계수(한국도로공사 도로연구소, 콘크리트의 투수특성,1996)(표 2)Permeability coefficient of concrete is 68% aggregate, compressive strength 250-320 kg / cm 2 Is 7 * 10 -6 ~ 11 * 10 -6 cm / sec, the design strength of PHC pile is 800 kg / cm 2 The permeability coefficient of the PHC pile is smaller. Compressive Strength and Permeability Coefficient (Korea Highway Corporation Road Research Institute, Concrete Permeation Characteristics, 1996) (Table 2)

Figure 112006041794599-PAT00001
Figure 112006041794599-PAT00001

지반의 지하수위가 높은 경우 말뚝 내부의 물을 퍼낸 한 후 말뚝 내부로 들어오는 물의 수위와 시간을 측정하여 투수속도를 측정한다(양수법). 말뚝의 투수계수를 가정하여 투수속도를 계산하고 말뚝의 투수계수를 변화한 계산값과 측정값을 일치시켜 결함이 없는 말뚝의 투수계수를 찾는다. 양수법 계산에 의한 결함이 없는 PHC 말뚝의 투수량과 시간은 수학식 1과 수학식 2와 같다.If the groundwater level in the ground is high, the water inside the pile is pumped out and the water permeation rate is measured by measuring the water level and the time of the water entering the pile (pumping method). Calculate the permeability velocity assuming the permeability coefficient of the pile, and find the permeability coefficient of the pile without defects by matching the measured value and the measured value which changed the permeability coefficient of the pile. Permeability and time of the PHC pile without defects by the pumping method are the same as in Equation 1 and Equation 2.

Figure 112006041794599-PAT00002
균열이 없는 말뚝의 계산된 양수법 투수량()
Figure 112006041794599-PAT00002
Calculated pumping permeability of pile without crack ()

Figure 112006041794599-PAT00003
Figure 112006041794599-PAT00003

Figure 112006041794599-PAT00004
시간의 평균수위
Figure 112006041794599-PAT00005
일 때
Figure 112006041794599-PAT00006
산정
Figure 112006041794599-PAT00004
Average water level
Figure 112006041794599-PAT00005
when
Figure 112006041794599-PAT00006
Calculation

Figure 112006041794599-PAT00007
Figure 112006041794599-PAT00007

Figure 112006041794599-PAT00008
Figure 112006041794599-PAT00008

Figure 112006041794599-PAT00009
Figure 112006041794599-PAT00009

Figure 112006041794599-PAT00010
Figure 112006041794599-PAT00010

Figure 112006041794599-PAT00011
Figure 112006041794599-PAT00011

Figure 112006041794599-PAT00012
Figure 112006041794599-PAT00012

Figure 112006041794599-PAT00013
시간의 평균수위
Figure 112006041794599-PAT00014
일 때
Figure 112006041794599-PAT00015
산정
Figure 112006041794599-PAT00013
Average water level
Figure 112006041794599-PAT00014
when
Figure 112006041794599-PAT00015
Calculation

Figure 112006041794599-PAT00016
Figure 112006041794599-PAT00016

Figure 112006041794599-PAT00017
Figure 112006041794599-PAT00017

Figure 112006041794599-PAT00018
Figure 112006041794599-PAT00018

Figure 112006041794599-PAT00019
Figure 112006041794599-PAT00019

Figure 112006041794599-PAT00020
Figure 112006041794599-PAT00020

Figure 112006041794599-PAT00021
Figure 112006041794599-PAT00021

Figure 112006041794599-PAT00022
시간의 평균수위
Figure 112006041794599-PAT00023
일 때
Figure 112006041794599-PAT00024
산정
Figure 112006041794599-PAT00022
Average water level
Figure 112006041794599-PAT00023
when
Figure 112006041794599-PAT00024
Calculation

Figure 112006041794599-PAT00025
Figure 112006041794599-PAT00025

Figure 112006041794599-PAT00026
Figure 112006041794599-PAT00026

Figure 112006041794599-PAT00027
Figure 112006041794599-PAT00027

Figure 112006041794599-PAT00028
Figure 112006041794599-PAT00028

Figure 112006041794599-PAT00029
Figure 112006041794599-PAT00029

Figure 112006041794599-PAT00030
Figure 112006041794599-PAT00030

Figure 112006041794599-PAT00031
에 대한 시간계산
Figure 112006041794599-PAT00031
Calculate time for

Figure 112006041794599-PAT00032
Figure 112006041794599-PAT00032

Figure 112006041794599-PAT00033
Figure 112006041794599-PAT00033

Figure 112006041794599-PAT00034
Figure 112006041794599-PAT00034

Figure 112006041794599-PAT00035
Figure 112006041794599-PAT00035

전체 투수량 계산

Figure 112006041794599-PAT00036
Calculation of total permeability
Figure 112006041794599-PAT00036

Figure 112006041794599-PAT00037
Figure 112006041794599-PAT00037

Figure 112006041794599-PAT00038
: 말뚝의 내부직경,
Figure 112006041794599-PAT00039
: 수위차에 따른 말뚝의 심도분할,
Figure 112006041794599-PAT00040
: 콘크리트 말뚝의 투수계수,
Figure 112006041794599-PAT00041
: 콘크리트 말뚝의 두께,
Figure 112006041794599-PAT00042
: t시간경과 후 평균수위변화,
Figure 112006041794599-PAT00043
: t시간경과 시 수위변화에 따른 투수량 변화,
Figure 112006041794599-PAT00044
: 지하수위
Figure 112006041794599-PAT00038
: Inside diameter of pile,
Figure 112006041794599-PAT00039
: Depth division of piles according to water level difference,
Figure 112006041794599-PAT00040
: Permeability coefficient of concrete pile,
Figure 112006041794599-PAT00041
: Thickness of concrete piles,
Figure 112006041794599-PAT00042
= change in mean water level after elapse of time,
Figure 112006041794599-PAT00043
: change in permeation rate according to water level change over time
Figure 112006041794599-PAT00044
Groundwater Level

Figure 112006041794599-PAT00045
균열이 없는 말뚝의 측정된 양수법 투수량()
Figure 112006041794599-PAT00045
Measured Pumping Permeability of Pile without Crack ()

Figure 112006041794599-PAT00046
Figure 112006041794599-PAT00046

예 1)

Figure 112006041794599-PAT00047
,
Figure 112006041794599-PAT00048
,
Figure 112006041794599-PAT00049
,
Figure 112006041794599-PAT00050
,
Figure 112006041794599-PAT00051
일 때의 양수법에 의한 시간과 수위변화(표1)와 시간과 투수량(표2) 이다.Example 1
Figure 112006041794599-PAT00047
,
Figure 112006041794599-PAT00048
,
Figure 112006041794599-PAT00049
,
Figure 112006041794599-PAT00050
,
Figure 112006041794599-PAT00051
The time and water level change (Table 1) and the time and permeability (Table 2) by the pumping method at.

Figure 112006041794599-PAT00052
Figure 112006041794599-PAT00052

Figure 112006041794599-PAT00053
Figure 112006041794599-PAT00053

결함이 없는 PHC 말뚝의 투수계수는 실측 수위와 시간, 투수계수를 가정하여 계산된 투수량과 계산된 시간에서 계산값과 측정값을 일치시켜 PHC 말뚝의 투수계수를 표 4(양수법)와 같이 구한다.Permeability coefficient of PHC pile without defect is calculated as the permeability coefficient of PHC pile by matching measured value and measured value based on measured water level, time and permeability coefficient as shown in Table 4 .

PHC말뚝의 균열이나 파손이 있을 경우 균열을 통한 투수량은 정상적인 PHC말뚝을 통한 투수계수보다(

Figure 112006041794599-PAT00054
cm/sec)보다 크므로 균열의 크기와 심도, 수위, 주변지반의 투구계수에 의해 좌우되며 주변지반이 투수계수가 큰 경우 PHC 말뚝의 균열의 크기에 비례하며 수학식 3과 수학식 4과 같다.In case of crack or breakage of PHC pile, the permeation rate through crack is higher than that of normal PHC pile.
Figure 112006041794599-PAT00054
cm / sec), it depends on the size and depth of the crack, the water level, and the pitch coefficient of the surrounding ground. If the surrounding ground has a large permeability coefficient, it is proportional to the crack size of the PHC pile and is the same as Equation 3 and Equation 4. .

말뚝의 균열을 통하여 측정된 양수법 투수량Pumping permeability measured through pile cracks

Figure 112006041794599-PAT00055
시간 일 때 투수량
Figure 112006041794599-PAT00055
Pitch when time is

Figure 112006041794599-PAT00056
Figure 112006041794599-PAT00056

Figure 112006041794599-PAT00057
Figure 112006041794599-PAT00057

Figure 112006041794599-PAT00058
시간 일 때 투수량
Figure 112006041794599-PAT00058
Pitch when time is

Figure 112006041794599-PAT00059
Figure 112006041794599-PAT00059

Figure 112006041794599-PAT00060
Figure 112006041794599-PAT00060

말뚝의 균열을 통하여 계산된 양수법 투수량Pumping permeability calculated through pile crack

Figure 112006041794599-PAT00061
시간 일 때
Figure 112006041794599-PAT00062
의 투수량
Figure 112006041794599-PAT00061
When time
Figure 112006041794599-PAT00062
Permeability

Figure 112006041794599-PAT00063
Figure 112006041794599-PAT00063

Figure 112006041794599-PAT00064
Figure 112006041794599-PAT00064

Figure 112006041794599-PAT00065
시간 일 때
Figure 112006041794599-PAT00066
의 투수량
Figure 112006041794599-PAT00065
When time
Figure 112006041794599-PAT00066
Permeability

Figure 112006041794599-PAT00067
Figure 112006041794599-PAT00067

Figure 112006041794599-PAT00068
Figure 112006041794599-PAT00068

Figure 112006041794599-PAT00069
: 말뚝의 내부직경,
Figure 112006041794599-PAT00070
: 콘크리트 말뚝의 균열을 통한 투수계수,
Figure 112006041794599-PAT00071
: 균열 면적
Figure 112006041794599-PAT00072
: 콘크리트 말뚝의 두께,
Figure 112006041794599-PAT00073
: t시간경과 후 평균수위변화,
Figure 112006041794599-PAT00074
: t+시간경과 시 수위변화에 따른 투수량 변화,
Figure 112006041794599-PAT00075
: 지하수위,
Figure 112006041794599-PAT00076
,
Figure 112006041794599-PAT00077
Figure 112006041794599-PAT00069
: Inside diameter of pile,
Figure 112006041794599-PAT00070
: Coefficient of permeability through cracking of concrete piles,
Figure 112006041794599-PAT00071
: Crack area
Figure 112006041794599-PAT00072
: Thickness of concrete piles,
Figure 112006041794599-PAT00073
= change in mean water level after elapse of time,
Figure 112006041794599-PAT00074
: change in permeation rate according to water level change over time t +,
Figure 112006041794599-PAT00075
: Groundwater level,
Figure 112006041794599-PAT00076
,
Figure 112006041794599-PAT00077

Figure 112006041794599-PAT00078
Figure 112006041794599-PAT00079
Figure 112006041794599-PAT00080
Figure 112006041794599-PAT00081
Figure 112006041794599-PAT00082
Figure 112006041794599-PAT00078
Figure 112006041794599-PAT00079
Figure 112006041794599-PAT00080
Figure 112006041794599-PAT00081
Figure 112006041794599-PAT00082
수위Water level 계산된 투수속도Calculated pitch rate 계산된 투수량Calculated Permeability 측정된 투수속도Measured Penetration Speed 측정된 투수량Measured Permeability
Figure 112006041794599-PAT00083
Figure 112006041794599-PAT00083
Figure 112006041794599-PAT00084
Figure 112006041794599-PAT00084
Figure 112006041794599-PAT00085
Figure 112006041794599-PAT00085
Figure 112006041794599-PAT00086
Figure 112006041794599-PAT00086
Figure 112006041794599-PAT00087
Figure 112006041794599-PAT00087
Figure 112006041794599-PAT00088
Figure 112006041794599-PAT00088
00 00 00 00 00 00 500500 13.46513.465 0.240.24 0.240.24 15.90415.904 0.290.29 650650 9.4269.426 0.170.17 0.410.41 4.7714.771 0.370.37 700700 0.400.40 700700 0.400.40

표 5은 양수법에 의한 계산값과 측정값의 시간과 수위변화(표 6)와 시간과 투수량(표 7) 이다.Table 5 shows the time and level changes (Table 6) and time and permeability (Table 7) of the calculated and measured values by the pumping method.

측정된 수두 시간 그래프에서 변곡점의 시간과 수두를 결정한다. 수위가 결함의 심도이다. 결함의 크기는 결함의 통한 투수계수(Kc)와 결함의 면적(Ac)으로 양수법 계산값과 측정값을 일치시켜 표 7와 같이 구할 수 있다. Determine the time and head of the inflection point on the measured head time graph. The water level is the depth of the defect. The size of a defect can be obtained as shown in Table 7 by matching the calculation method and the measured value with the permeability coefficient (Kc) and the area (Ac) of the defect.

Figure 112006041794599-PAT00089
Figure 112006041794599-PAT00089

Figure 112006041794599-PAT00090
Figure 112006041794599-PAT00090

지하수위가 낮은 경우 물을 말뚝 내부로 넣는다(주수법).If the groundwater level is low, pour water into the pile (water tricks).

주수법 계산에 의한 결함이 없는 PHC 말뚝의 투수량과 시간은 수학식 5와 수학식 6과 같다.The permeability and time of the PHC pile without defects by the casting method are as shown in Equations 5 and 6.

Figure 112006041794599-PAT00091
균열이 없는 말뚝의 측정된 주수법 투수량()
Figure 112006041794599-PAT00091
Measured Pitching Permeability of Pile without Crack ()

Figure 112006041794599-PAT00092
시간 일 때
Figure 112006041794599-PAT00093
의 투수량
Figure 112006041794599-PAT00092
When time
Figure 112006041794599-PAT00093
Permeability

Figure 112006041794599-PAT00094
Figure 112006041794599-PAT00094

Figure 112006041794599-PAT00095
균열이 없는 말뚝의 계산된 주수법 투수량()
Figure 112006041794599-PAT00095
Calculated Pitching Permeability of Pile without Crack ()

Figure 112006041794599-PAT00096
시간의 평균수위
Figure 112006041794599-PAT00097
일 때
Figure 112006041794599-PAT00098
산정
Figure 112006041794599-PAT00096
Average water level
Figure 112006041794599-PAT00097
when
Figure 112006041794599-PAT00098
Calculation

Figure 112006041794599-PAT00099
Figure 112006041794599-PAT00099

Figure 112006041794599-PAT00100
Figure 112006041794599-PAT00100

Figure 112006041794599-PAT00101
Figure 112006041794599-PAT00101

Figure 112006041794599-PAT00102
Figure 112006041794599-PAT00102

Figure 112006041794599-PAT00103
Figure 112006041794599-PAT00103

Figure 112006041794599-PAT00104
시간에, 평균수위
Figure 112006041794599-PAT00105
일 때
Figure 112006041794599-PAT00106
산정
Figure 112006041794599-PAT00104
In time, average water level
Figure 112006041794599-PAT00105
when
Figure 112006041794599-PAT00106
Calculation

Figure 112006041794599-PAT00107
Figure 112006041794599-PAT00107

Figure 112006041794599-PAT00108
Figure 112006041794599-PAT00108

Figure 112006041794599-PAT00109
Figure 112006041794599-PAT00109

Figure 112006041794599-PAT00110
Figure 112006041794599-PAT00110

Figure 112006041794599-PAT00111
Figure 112006041794599-PAT00111

Figure 112006041794599-PAT00112
시간에, 평균수위
Figure 112006041794599-PAT00113
일 때
Figure 112006041794599-PAT00114
산정
Figure 112006041794599-PAT00112
In time, average water level
Figure 112006041794599-PAT00113
when
Figure 112006041794599-PAT00114
Calculation

Figure 112006041794599-PAT00115
Figure 112006041794599-PAT00115

Figure 112006041794599-PAT00116
Figure 112006041794599-PAT00116

Figure 112006041794599-PAT00117
Figure 112006041794599-PAT00117

Figure 112006041794599-PAT00118
Figure 112006041794599-PAT00118

Figure 112006041794599-PAT00119
Figure 112006041794599-PAT00119

전체 투수량 계산

Figure 112006041794599-PAT00120
Calculation of total permeability
Figure 112006041794599-PAT00120

Figure 112006041794599-PAT00121
Figure 112006041794599-PAT00121

Figure 112006041794599-PAT00122
Figure 112006041794599-PAT00122

Figure 112006041794599-PAT00123
: 말뚝의 내부직경,
Figure 112006041794599-PAT00124
: 수위차에 따른 말뚝의 심도분할,
Figure 112006041794599-PAT00125
: 콘크리트 말뚝의 투수계수,
Figure 112006041794599-PAT00126
: 콘크리트 말뚝의 두께,
Figure 112006041794599-PAT00127
: t시간경과 후 평균수두변화,
Figure 112006041794599-PAT00128
: t시간경과 시 수두변화에 따른 투량 변화,
Figure 112006041794599-PAT00129
: 전체유량
Figure 112006041794599-PAT00123
: Inside diameter of pile,
Figure 112006041794599-PAT00124
: Depth division of piles according to water level difference,
Figure 112006041794599-PAT00125
: Permeability coefficient of concrete pile,
Figure 112006041794599-PAT00126
: Thickness of concrete piles,
Figure 112006041794599-PAT00127
= mean head change after time t,
Figure 112006041794599-PAT00128
: Dose change according to change in head over time
Figure 112006041794599-PAT00129
: Total flow

결함이 없는 PHC 말뚝의 투수계수는 실측 수두와 시간, 가정된 투수계수 계산된 투수량과 계산된 시간에서 가정된 투수계수를 변화하여 계산된 값과 측정값을 일치시켜 PHC 말뚝의 투수계수를 표 9(주수법)와 같이 구한다. 주수법에 의한 시간과 수위(표 8)와 시간과 투수량(표 9) 이다.The permeability coefficient of the PHC pile without defect is determined by varying the measured head and time, the assumed permeability coefficient, and the calculated permeability coefficient at the calculated time. It is calculated as (numbering method). Time and water levels (Table 8) and time and permeability (Table 9) by the weekly method.

Figure 112006041794599-PAT00130
Figure 112006041794599-PAT00130

Figure 112006041794599-PAT00131
Figure 112006041794599-PAT00131

Figure 112006041794599-PAT00132
말뚝의 균열을 통하여 측정된 주수법 투수량()
Figure 112006041794599-PAT00132
Puncture Permeability Measured by Pile Crack ()

Figure 112006041794599-PAT00133
시간 일 때
Figure 112006041794599-PAT00134
의 투수량
Figure 112006041794599-PAT00133
When time
Figure 112006041794599-PAT00134
Permeability

Figure 112006041794599-PAT00135
Figure 112006041794599-PAT00135

Figure 112006041794599-PAT00136
말뚝의 균열을 통하여 계산된 주수법 투수량()
Figure 112006041794599-PAT00136
Puncture Permeability Calculated from Pile Cracks ()

Figure 112006041794599-PAT00137
시간 일 때
Figure 112006041794599-PAT00138
의 투수속도
Figure 112006041794599-PAT00137
When time
Figure 112006041794599-PAT00138
Permeation rate

Figure 112006041794599-PAT00139
Figure 112006041794599-PAT00139

Figure 112006041794599-PAT00140
시간 일 때
Figure 112006041794599-PAT00141
의 투수속도
Figure 112006041794599-PAT00140
When time
Figure 112006041794599-PAT00141
Permeation rate

Figure 112006041794599-PAT00142
Figure 112006041794599-PAT00142

Figure 112006041794599-PAT00143
시간 일 때
Figure 112006041794599-PAT00144
의 투수량
Figure 112006041794599-PAT00143
When time
Figure 112006041794599-PAT00144
Permeability

Figure 112006041794599-PAT00145
Figure 112006041794599-PAT00145

Figure 112006041794599-PAT00146
Figure 112006041794599-PAT00147
Figure 112006041794599-PAT00148
Figure 112006041794599-PAT00149
Figure 112006041794599-PAT00146
Figure 112006041794599-PAT00147
Figure 112006041794599-PAT00148
Figure 112006041794599-PAT00149
수위Water level 계산된 투수속도Calculated pitch rate 계산된 투수량Calculated Permeability 측정된 투수속도Measured Penetration Speed 측정된 투수량Measured Permeability
Figure 112006041794599-PAT00150
Figure 112006041794599-PAT00150
Figure 112006041794599-PAT00151
Figure 112006041794599-PAT00151
Figure 112006041794599-PAT00152
Figure 112006041794599-PAT00152
Figure 112006041794599-PAT00153
Figure 112006041794599-PAT00153
Figure 112006041794599-PAT00154
Figure 112006041794599-PAT00154
Figure 112006041794599-PAT00155
Figure 112006041794599-PAT00155
12001200 0.6870.687 10001000 31.23131.231 0.5620.562 0.5620.562 0.5620.562 0.5730.573 600600 13.00013.000 0.2340.234 0.2340.234 0.3280.328 0.3440.344 200200 0.1150.115

표 9는 주수법에 의한 계산값과 측정값의 시간과 수위변화(표 11)와 시간과 투수량(표 12) 이다.Table 9 shows the time and water level changes (Table 11) and the time and permeability (Table 12) of the calculated and measured values by the water jet method.

측정된 수두 시간 그래프에서 변곡점의 시간과 수두를 결정한다. 수두가 결함의 심도이다. 결함의 크기는 결함의 통한 투수계수(Kc)와 결함의 면적(Ac)으로 주수법 계산값과 측정값을 일치시켜 표 12과 같이 구할 수 있다. Determine the time and head of the inflection point on the measured head time graph. Chickenpox is the depth of defect. The size of the defect can be obtained as shown in Table 12 by matching the water flow calculation value and the measured value with the coefficient of permeability (Kc) and the area (Ac) of the defect.

Figure 112006041794599-PAT00156
Figure 112006041794599-PAT00156

Figure 112006041794599-PAT00157
Figure 112006041794599-PAT00157

PHC 말뚝의 내부에 압력센서나 지하 수위계를 넣어 시간경과에 대한 말뚝내부 수위변화를 측정하고 시간과 압력이나 수위를 기록하거나 저장한다. 최종 지하수위는 시간경과와 함께 수위변화가 없는 압력으로 결정한다.A pressure sensor or an underground water gauge is placed inside the PHC pile to measure the level change in the pile over time and record or store the time, pressure or level. The final groundwater level is determined by the pressure without change over time with time.

지상에서 PHC말뚝의 투수계수 시험시 주수법으로 투수시험을 한다. 지상에서 말뚝을 연직으로 세우고 말뚝 내부 하단에 압력센서를 설치하고 심도를 기록한다. 말뚝 내부에 물을 채운 후 초기 압력과 시간을 기록 후 일정 간격으로 측정한다.Permeability test is performed by water casting method for permeability test of PHC piles on the ground. Place the pile vertically on the ground, install a pressure sensor at the bottom of the pile and record the depth. After filling the pile with water, measure the initial pressure and time and measure it at regular intervals.

매입공법의 천공구멍이 있을 경우 지하수위가 낮은 경우 PHC말둑을 천공구멍에 넣고 주수법으로 하고 지하수위가 높은 경우 양수법으로 천공구멍 내에서 시험한다. If there is a perforation hole in the embedding method, if the groundwater level is low, put the PHC end into the perforation hole, and if the groundwater level is high, test it in the perforation hole with the pumping method.

지하수위가 높은 지반에 시공된 PHC말뚝의 경우 말뚝 내부의 물을 펌프로 제거한 후 압력센서를 하단에 함께 설치하고 설치 심도와 초기시간을 기록한다. 지하 수위가 낮은 지반에 시공된 PHC말뚝의 경우 말뚝 내부의 물을 펌프로 제거한 후 말뚝 내부 하단에 압력센서를 설치한 후 심도를 기록한다. 말뚝 내부에 물을 가득 채운 후 초기압력과 시간을 기록 후 일정간격으로 압력과 시간을 측정하며 기록한다.In case of PHC pile installed on the ground with high ground water level, remove the water inside the pile with a pump, install the pressure sensor together at the bottom, and record the installation depth and initial time. In case of PHC pile installed on the ground with low underground water level, remove the water inside the pile with a pump, install a pressure sensor at the bottom of the pile, and record the depth. After filling the pile with water, record the initial pressure and time, and record the pressure and time at regular intervals.

PHC말뚝 내부의 선단에 선단슈와 콘크리트가 밀착되어 방수가 되지만 prestess의 량이 작거나 항타 후 선단이 파손 되였을 경우 물이 빠지므로 필요한 경우 선단을 같이 방수해야 한다. 주수(注水)법 투수시험시 선단에 물을 빼고 벤토나이트 방수제를 깔고 그 위에 모래로 방수제를 보호한다. 양수(揚水)법 투수시험 시 선단에 물을 제거하고 물과 접촉하면 팽창되고 접착력이 좋은 우레탄을 시공하고 그 뒤에 모래를 두껍게 깔아 물의 투수압에 저항하도록 한다.The tip shoe and the concrete are in close contact with the tip inside the PHC pile to be waterproof. However, if the amount of prestes is small or the tip is damaged after being struck, water is drained. During the Permeation Permeability Test, the end of the water is drained and the bentonite sealant is covered with sand to protect the sealant. In the pumping water permeation test, water is removed from the tip and when it comes into contact with water, it is to be expanded and adhesive urethane is applied, followed by thick sand to resist water permeation pressure.

현재까지 시공 전·후 PHC말뚝의 품질평가 방법이 없어 PHC말뚝의 품질을 확인할 수 없었으나 본 발명으로 PHC말뚝의 품질을 확인할 수 있어 PHC말뚝 제작과 시공의 신뢰성을 확보할 수 있으며 품질을 개선할 수 있다.Until now, there was no quality evaluation method of PHC pile before and after construction, but it was not possible to check the quality of PHC pile. Can be.

Claims (3)

PHC 말뚝 내부에서 말뚝의 품질평가를 위해 압력계나 지하수위계로 말뚝 내부의 수위, 시간, 수위변화를 측정하는 방법How to measure the water level, time, and water level change in the pile with a pressure gauge or groundwater level gauge for quality evaluation of the pile inside the PHC pile 양수시험이나 주수시험(注水試驗) 방법에 의한 PHC말뚝의 내부의 수위변화와 시간 측정으로 PHC말뚝 투수계수의 산정방법Calculation method of PHC pile permeability coefficient by measuring water level change and time in PHC pile by pumping or water test 양수법이나 주수법으로 PHC말뚝 내부의 수위변화와 시간을 측정하여 PHC말뚝의 균열 심도와 균열 크기를 평가하는 방법Method of evaluating crack depth and crack size of PHC piles by measuring water level change and time inside PHC pile by pumping method or casting method
KR1020060053712A 2006-06-15 2006-06-15 Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile KR20060087476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060053712A KR20060087476A (en) 2006-06-15 2006-06-15 Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060053712A KR20060087476A (en) 2006-06-15 2006-06-15 Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile

Publications (1)

Publication Number Publication Date
KR20060087476A true KR20060087476A (en) 2006-08-02

Family

ID=37176307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060053712A KR20060087476A (en) 2006-06-15 2006-06-15 Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile

Country Status (1)

Country Link
KR (1) KR20060087476A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610335A (en) * 1992-06-23 1994-01-18 Tokyo Gas Co Ltd Method and device for detecting liquefaction of ground
KR950032912A (en) * 1994-05-13 1995-12-22 이명환 Pile with hydraulic jack for checking construction quality and its construction quality checking method
JPH1060935A (en) * 1996-08-26 1998-03-03 Shimizu Corp Method of investigating health of underground concrete structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610335A (en) * 1992-06-23 1994-01-18 Tokyo Gas Co Ltd Method and device for detecting liquefaction of ground
KR950032912A (en) * 1994-05-13 1995-12-22 이명환 Pile with hydraulic jack for checking construction quality and its construction quality checking method
JPH1060935A (en) * 1996-08-26 1998-03-03 Shimizu Corp Method of investigating health of underground concrete structure

Similar Documents

Publication Publication Date Title
Costa et al. Influence of matric suction on the results of plate load tests performed on a lateritic soil deposit
JP5880981B2 (en) Water absorption test method and apparatus for concrete surface
Fellenius Determining the resistance distribution in piles
Chen et al. Field investigation of pile setup in mixed soil
RU2548631C1 (en) Test method of soil foundation with pile with grill
Poulos et al. Model tests on grouted piles in calcareous sediment
KR20060087476A (en) Evaluation method of quality of prestress concrete pile by measuring water level and time inside pile
Fouda et al. Experimental investigation of RC footings resting on sand strengthened with concrete jacketing
Moghaddam et al. Quantitative assessment of drilled shafts base-cleanliness using the shaft quantitative inspection device (SQUID)
Shi Prediction of permanent deformation in railway track
Moayedi et al. Determination of reliable stress and strain distributions along bored piles
JP4500231B2 (en) Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor
RU2765358C1 (en) Method for determining the value of operational load on a reinforced concrete pile in composition of buildings or structures
Simões et al. Characterization of old masonry walls: flat-jack method
Indraratna et al. Triaxial equipment for measuring the permeability and strength of intact and fractured rocks
CN114813374A (en) Method for testing and calculating settlement of loess subgrade
Bednarski et al. The monitoring of a substrate strengthened with concrete columns
CN114722650A (en) Tunnel structure residual life prediction method based on lining degradation
CN107142822A (en) A kind of empty detection means of roadbed and its detection method
Adesokan et al. Strategies for one dimensional (1d) compression testing of large-particle-sized tire derived aggregate
Ito et al. Laboratory and field verification of a new approach to stress measurements using a dilatometer tool
Igoe et al. The development and testing of an instrumented open-ended model pile
Eaton et al. Spring Thaw Predictor and Development of Real Time Spring Load Restrictions
Simonsen et al. Performance of vibrating wire piezometers in very low permeable clay
Tonni et al. Classification, overconsolidation and stiffness of Venice lagoon soils from CPTU

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application