KR20060083729A - Purification methods for succinic acid - Google Patents

Purification methods for succinic acid Download PDF

Info

Publication number
KR20060083729A
KR20060083729A KR1020050004652A KR20050004652A KR20060083729A KR 20060083729 A KR20060083729 A KR 20060083729A KR 1020050004652 A KR1020050004652 A KR 1020050004652A KR 20050004652 A KR20050004652 A KR 20050004652A KR 20060083729 A KR20060083729 A KR 20060083729A
Authority
KR
South Korea
Prior art keywords
succinic acid
extraction
acid
crystallization
present
Prior art date
Application number
KR1020050004652A
Other languages
Korean (ko)
Other versions
KR100672813B1 (en
Inventor
홍원희
이상엽
홍연기
허윤석
이완희
송효학
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020050004652A priority Critical patent/KR100672813B1/en
Publication of KR20060083729A publication Critical patent/KR20060083729A/en
Application granted granted Critical
Publication of KR100672813B1 publication Critical patent/KR100672813B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/14Other constructional features; Accessories
    • B65F1/16Lids or covers
    • B65F1/1623Lids or covers with means for assisting the opening or closing thereof, e.g. springs
    • B65F1/163Pedal-operated lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/04Refuse receptacles; Accessories therefor with removable inserts
    • B65F1/06Refuse receptacles; Accessories therefor with removable inserts with flexible inserts, e.g. bags or sacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/04Refuse receptacles; Accessories therefor with removable inserts
    • B65F1/08Refuse receptacles; Accessories therefor with removable inserts with rigid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/14Other constructional features; Accessories
    • B65F1/141Supports, racks, stands, posts or the like for holding refuse receptacles
    • B65F1/1415Supports, racks, stands, posts or the like for holding refuse receptacles for flexible receptables, e.g. bags, sacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/14Other constructional features; Accessories
    • B65F1/16Lids or covers
    • B65F1/1646Lids or covers provided with means for mounting on receptacles, e.g. hinges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00824Means for facilitating removing of the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/14Non-removable lids or covers
    • B65D43/16Non-removable lids or covers hinged for upward or downward movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/26Mechanisms for opening or closing, e.g. pedal-operated
    • B65D43/262Mechanisms for opening or closing, e.g. pedal-operated pedal-operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/14Other constructional features; Accessories
    • B65F2001/1653Constructional features of lids or covers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 균주를 이용하여 숙신산(succinic acid)이 다량으로 발현된 발효액으로부터 고 순도의 숙신산을 효율적으로 정제하는 방법에 관한 것으로써, 보다 구체적으로는 추출공정, 감압증발공정, 결정화공정을 선택적으로 또는 순차적으로 수행함으로써 고 순도의 숙신산을 얻는 방법에 관한 것이다. 본 발명에 의할 경우, 기존의 화학합성법에 의한 숙신산 생산 및 기존의 유기산 정제 방법이 지니고 있던 문제점을 해소할 수 있게 되며, 고효율, 저비용으로 숙신산의 생산이 가능하게 된다. 본 발명에 의하여 생산된 숙신산은 생분해성 고분자, 식품, 제약, 화장품 산업 등에 유용하게 사용될 수 있을 것이다. The present invention relates to a method for efficiently purifying high purity succinic acid from a fermentation broth in which a large amount of succinic acid is expressed using a strain, and more specifically, an extraction process, a reduced pressure evaporation process, and a crystallization process may be selectively performed. Or it relates to a method of obtaining succinic acid of high purity by performing sequentially. According to the present invention, it is possible to solve the problems of the conventional succinic acid production by the chemical synthesis method and the conventional organic acid purification method, it is possible to produce succinic acid with high efficiency and low cost. Succinic acid produced by the present invention may be usefully used in biodegradable polymers, food, pharmaceuticals, cosmetics industry, and the like.

숙신산(succinic acid), 추출(extraction), 감압증발(vacuum evaporation), 결정화(Crystallization), 숙신산 발효균주(Mannheimia succiniciproducens) Succinic acid, extraction, vacuum evaporation, crystallization, succinic acid fermentation strain (Mannheimia succiniciproducens)

Description

숙신산 정제 방법{Purification methods for succinic acid} Purification methods for succinic acid             

도 1은 발효액으로부터 숙신산을 분리하는 방법의 흐름도이다. 1 is a flow chart of a method for separating succinic acid from fermentation broth.

도 2는 감압증발공정-결정화공정(pH 2.0) 수행 후의 HPLC 분석 결과이다. Figure 2 shows the results of HPLC analysis after the vacuum evaporation-crystallization step (pH 2.0).

도 3은 추출공정(1회)-감압증발공정-결정화공정(pH 2.0)을 순차적으로 수행한 후의 HPLC 분석 결과이다. 3 is an HPLC analysis result after sequentially performing an extraction step (once) -pressurization evaporation step-crystallization step (pH 2.0).

본 발명은 균주를 이용하여 숙신산(succinic acid)이 다량으로 발현된 발효액으로부터 고 순도의 숙신산을 효율적으로 정제하는 방법에 관한 것으로써, 보다 구체적으로는 추출공정, 감압증발공정, 결정화공정을 선택적으로 또는 순차적으로 수행함으로써 고 순도의 숙신산을 얻는 방법에 관한 것이다. The present invention relates to a method for efficiently purifying high purity succinic acid from a fermentation broth in which a large amount of succinic acid is expressed using a strain, and more specifically, an extraction process, a reduced pressure evaporation process, and a crystallization process may be selectively performed. Or it relates to a method of obtaining succinic acid of high purity by performing sequentially.

숙신산을 비롯한 유기산은 플라스틱, 식품, 의약품 및 화장품산업 등에서 광범위하게 이용되고 있다. 특히, 숙신산은 석유화학공업의 발달과 함께 활발한 생산이 이루어진 합성고분자의 취약점인 난분해성을 극복할 수 있는 생분해성 고분자의 모노머(monomer)로서의 이용가치가 증가하고 있다(참조 : Kirk O., Encyclopedia of Chemical Technology, 3rd ed., 21 John Wiley & Sons, 1979; Gottschalk G., Bacterial Metabolism, 2nd ed., Springer-Verlag, NY USA, 1986). 즉, 현재 사용되고 있는 합성고분자의 1/3 정도가 일회 포장 용기 등 비교적 단기간에 사용되는 제품으로 활용되고 있고, 이에 따라 이들의 폐기물에 의한 환경오염 문제가 심각하게 대두되고 있는 실정이다. 최근에는 상기의 합성고분자를 생분해성으로 대체하고자 하는 연구가 활발히 진행되고 있으며, 차세대 생분해성 고분자로 생분해성 지방족 폴리에스터 polybutylene succinate가 주목받고 있으며, 이의 주원료인 숙신산에 대한 경제적인 정제공정 개발 또한 절실히 요구되고 있다(참조 : Takiyama E. and Fujimaki T., Biodegradable plastics and polymers, 150-176, 1994; Maeda Y., Nakayama A., Kawasaki N., Hayashi K., Aiba S., Yamamoto N., J. Environ. Polym. Degr., 4:225-223, 1996). Organic acids, including succinic acid, are widely used in the plastics, food, medicine and cosmetic industries. In particular, succinic acid has been increasingly used as a monomer of biodegradable polymers that can overcome the difficulty of biodegradation, which is a weak point of synthetic polymers, which has been actively produced with the development of petrochemical industry (Kirk O., Encyclopedia). of Chemical Technology, 3rd ed., 21 John Wiley & Sons, 1979; Gottschalk G., B acterial Metabolism, 2nd ed., Springer-Verlag, NY USA, 1986). That is, about one third of the synthetic polymers currently used are used as products used in relatively short periods of time, such as once-packed containers, and thus, environmental pollution caused by these wastes is seriously raised. Recently, researches to replace the synthetic polymers with biodegradation have been actively conducted, and biodegradable aliphatic polyester polybutylene succinate is attracting attention as a next-generation biodegradable polymer, and economical purification process for succinic acid as its main raw material is also urgently needed. (See: Takiyama E. and Fujimaki T., Biodegradable plastics and polymers, 150-176, 1994; Maeda Y., Nakayama A., Kawasaki N., Hayashi K., Aiba S., Yamamoto N., J Environ.Polym.Degr., 4: 225-223, 1996).

그러나 생물학적 공정을 통한 숙신산의 생산은 그 제조 단가가 기존의 화학 합성 공정에 비해 월등히 높으며, 이의 가장 큰 원인은 발효액으로부터 숙신산을 정제하는 공정이 비효율적이기 때문이다. 이러한 요인으로 인하여 현재 대부분의 숙신산은 maleic anhydride를 원료물질로 한 수소첨가 반응과 수화반응을 이용한 화학공정에 의해 생산되고 있다(참조 : Glassner D.A., Elankovan P., Beacom D.R., Berglund K.A., Appl. Biochem. Biotech., 51(2):73-82, 1995). However, the production cost of succinic acid through biological process is much higher than the conventional chemical synthesis process, the biggest reason is that the process of purifying succinic acid from fermentation broth is inefficient. Due to these factors, most succinic acids are produced by chemical processes using hydrogenation and hydration reactions based on maleic anhydride (see, eg, Glassner DA, Elankovan P., Beacom DR, Berglund KA, Appl. Biochem). Biotech., 51 (2): 73-82, 1995).

발효액에는 발효에 따른 여러 가지 불순물이 다수 포함되어 있으며, 이들 불순물을 제거하는 것이 발효에 의해 생산된 생산물의 경제성 및 실용화에 지대한 영향을 미치게 된다. 현재 발효공정을 이용하여 숙신산을 생성함에 있어서 분리 및 정제 공정이 차지하는 비용은 약 40% 내지 70%에 이른다고 알려져 있다(King C.J., Chemtech, 22(5):285-291, 1992). The fermentation broth contains many impurities resulting from fermentation, and the removal of these impurities has a great effect on the economics and practical use of the products produced by fermentation. It is known that the cost of the separation and purification process in the production of succinic acid using fermentation process is about 40% to 70% (King C.J., Chemtech, 22 (5): 285-291, 1992).

현재까지 발효액으로부터 숙신산을 포함하는 유기산을 정제하는 방법으로써 알려진 것은 여과-침전법, 결정화법, 액-액 추출법, 막 분리법, 에스테르화를 이용한 반응증류법 등이 있으며, 이하에서는 이들 방법에 대하여 간략히 살펴보도록 한다. To date, known methods for purifying organic acids containing succinic acid from fermentation broth include filtration-precipitation, crystallization, liquid-liquid extraction, membrane separation, and reaction distillation using esterification. Let's see.

여과-침전법은 수용상의 발효조에 Ca(OH)2를 넣어 칼슘염을 침전시키는 것을 근간으로 하고 있다. 그리고 고형물질들이 걸러지고 남은 액상의 유기산들은 정제 되고 결정화되어 분리 된다. 그렇지만 결정화의 효율이 매우 낮고 결정화가 어렵다는 단점을 가지고 있다(참조 : Vick Roy T.B., In comprehensive Biotechnology, Murray Moo-Young eds., Vol. 3, Pergamon Press, 761, 1985; Bessling B., Loening J.M., Ohligschlaeger A., Schembecker G. and Sundmacher L., Chem. Eng. Technol., 21:393-400, 1998). The filtration-precipitation method is based on precipitating calcium salt by adding Ca (OH) 2 to the fermentation tank in the aqueous phase. The solids are filtered and the remaining liquid organic acids are purified, crystallized and separated. However, it has the disadvantage that crystallization efficiency is very low and crystallization is difficult (see Vick Roy TB, Integral Biotechnology, Murray Moo-Young eds., Vol. 3, Pergamon Press, 761, 1985; Bessling B., Loening JM, Ohligschlaeger A., Schembecker G. and Sundmacher L., Chem. Eng. Technol., 21: 393-400, 1998).

액-액 추출공정은 우선 유기산을 이소프로필 에테르, 디에틸 에테르, 이소아밀알콜 등과 같은 용매에 의해 추출하고. 추출된 유기산은 역추출이나 증류 등의 방법을 통해 용매로부터 회수된다(한국공개특허 제0006664, 일본특허 제1037851 등). 일반적으로 유기산 분자의 물에 대한 낮은 활성도 즉, 유기산 분자들이 유기용매보다 물에 더 높은 용해도를 가지므로 상기의 방법은 그리 효과적이지 못하다는 단점을 지니고 있다(참조 : Han D.H. and Hong W.H., Sep. Sci. & Techn., 31:1123-1135, 1996). The liquid-liquid extraction process first extracts the organic acid with a solvent such as isopropyl ether, diethyl ether, isoamyl alcohol and the like. The extracted organic acid is recovered from the solvent through a method such as back extraction or distillation (Korea Patent Publication No. 0006664, Japanese Patent No. 1037851, etc.). In general, the organic acid molecules have a low activity against water, that is, the organic acid molecules have higher solubility in water than organic solvents, and thus the method is not very effective (Han DH and Hong WH, Sep. Sci. & Techn., 31: 1123-1135, 1996).

막 분리법의 대표적인 공정은 전기투석법이 있다. 전기투석법은 가장 활발히 연구가 이루어지고 있는 방법인데, 이는 양이온 또는 음이온의 통과를 허락하는 교환 막을 이용한 이온의 전기적 이동에 기초한다. 빠른 처리, 비 이온 분자의 제거, 부산물의 비생성 등의 장점을 가지며, 최근에는 정밀, 한외, 나노 여과와 역삼투법 등과 같은 다양한 막 공정이 전기투석법과 연결되어 사용되고 있다(한국등록특허 제 0067316호, 유럽공개특허 제 0393818호 등). 그러나 전기투석 장치에 있는 이온 교환막은 고가의 장비 일뿐만 아니라, 장기간 이용할 경우 이온 교환막이 오염되고 물때를 형성할 수 있어 실효성이 부족하고, 실제 상업생산 규모에 적용하 였을 경우 운전상의 효율이 크게 떨어지는 문제로 실용화 단계로까지 이용되지 못하고 있는 실정이다(참조 : Lee E.K., "Recovery of lactic acid from fermentation broth using electrodialysis", KAIST Ph.D. Thesis, 1998, Zeikus J.G., Elankovan P. and Grethlein A., Chem. Proc., 58(7):71-73, 1995). A typical process of membrane separation is electrodialysis. Electrodialysis is the most actively studied method, which is based on the electrical movement of ions using exchange membranes that allow the passage of cations or anions. It has advantages such as rapid treatment, removal of non-ionic molecules, and non-product formation, and recently, various membrane processes such as precision, ultrafiltration, nanofiltration and reverse osmosis have been used in connection with electrodialysis (Korea Patent No. 0067316, European Patent Publication No. 0393818, etc.). However, the ion exchange membrane in the electrodialysis device is not only expensive equipment, but also can be contaminated and form scale when used for a long time. Due to the problem, it has not been used until the practical stage (see Lee EK, "Recovery of lactic acid from fermentation broth using electrodialysis", KAIST Ph.D. Thesis, 1998, Zeikus JG, Elankovan P. and Grethlein A., Chem. Proc., 58 (7): 71-73, 1995).

에스테르화를 이용한 반응증류법은 고 순도의 유기산을 얻는 방법으로서 저분자의 알코올과 유기산을 선택적으로 반응시킨 후 형성된 에스터를 증류를 통해 분리하고 다시 역반응인 가수분해를 통해 유기산을 회수하고 생성된 알코올은 재사용하는 방법이다. 이 방법으로 얻어진 유기산은 불순물이 거의 없고, 열적 안정성이 우수하다는 장점이 있다. 그러나 이 방법은 단계가 복잡해서 이에 따른 장치비가 많이 소요된다는 단점이 있다(참조 : Choi J. and Hong W.H., Int. J. of Chemical Kinetics, 28:37-41, 1996; Choi J. and Hong W.H., J. of Chemical Eng. of Jpn., 32(2):184-189, 1999). Reaction distillation using esterification is a method of obtaining a high purity organic acid, selectively reacting a low-molecular alcohol with an organic acid, separating the ester formed through distillation, recovering the organic acid through hydrolysis, which is a reverse reaction, and reusing the produced alcohol. That's how. The organic acid obtained by this method has almost no impurities and has an advantage of excellent thermal stability. However, this method has the disadvantage that the steps are complicated and the equipment cost is high accordingly (see Choi J. and Hong WH, Int. J. of Chemical Kinetics, 28: 37-41, 1996; Choi J. and Hong WH). , J. of Chemical Eng. Of Jpn., 32 (2): 184-189, 1999).

또한 상술한 유기산 정제 방법에 대한 지금까지의 연구는 비교적 정제가 쉬운 젖산과 아세트산 등의 1가 카르복실산을 대상으로 하고 있다는 문제점이 있다. In addition, the above studies on the organic acid purification method described above have a problem in that monovalent carboxylic acids such as lactic acid and acetic acid are relatively easy to be purified.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 기존의 화학합성법에 의한 숙신산의 생산 및 기존의 유기산 정제 방법이 갖는 문제점을 개선할 수 있는 숙신산 정제 방법을 구현하고자 하는 것이다.
The present invention is to solve the above problems, to implement a succinic acid purification method that can improve the problems of the production of succinic acid by the conventional chemical synthesis method and the existing organic acid purification method.

상기한 목적을 달성하기 위하여 본 발명은 균주를 이용하여 숙신산이 다량으로 발현된 발효액을 원심분리하여 상등액을 취한 후, 추출공정, 감압증발공정, 결정화공정을 선택적으로 또는 순차적으로 수행함으로써 이루어진다. In order to achieve the above object, the present invention is made by centrifuging the fermentation broth with a large amount of succinic acid using a strain to take a supernatant, and then selectively or sequentially performing an extraction process, a reduced pressure evaporation process and a crystallization process.

이하에서는 첨부된 도면을 참조로 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명에 의한 정제 방법을 나타내는 흐름도이다. 1 is a flowchart showing a purification method according to the present invention.

본 발명에서 숙신산 발효를 위한 균주는 최근 생리학적 숙신산 생산 대사 회로의 분석 및 최적 발효조건이 확립된 만헤이미아 숙시니시푸로듀센스(Mannheimia succiniciproducens)가 사용되었다. 그러나 본 발명이 상기의 균주에 의한 발효액에만 한정되는 것은 아니며, 상기의 균주 이외에 숙신산을 발현하는 모든 균주에 의한 발효액에도 적용된다. In the present invention, the strain for succinic acid fermentation was used in Mannheimia succiniciproducens, which recently analyzed the physiological succinic acid production metabolic circuit and established optimal fermentation conditions. However, the present invention is not limited to the fermentation broth by the above strains, but is also applied to the fermentation broth by all strains expressing succinic acid in addition to the above strains.

숙신산이 다량 발현되도록 유도된 발효액에는 숙신산 뿐이 아니라 여러 불순 유기산 및 염들이 함께 존재한다. Mannheimia succiniciproducens 균주에 의해 발현된 발효액에는 숙신산 뿐 만이 아니라 여러 불순 유기산인 피부르산, 아세트산, 말산, 푸마르산 등이 함께 발현된다. The fermentation broth induced to express a large amount of succinic acid is present with not only succinic acid but also several impure organic acids and salts. The fermentation broth expressed by the strain Mannheimia succiniciproducens expresses not only succinic acid but also several impurity organic acids, such as dermal acid, acetic acid, malic acid and fumaric acid.

상기의 추출공정은 아민계 추출제를 이용하여 이루어진다. 본 발명에서의 추출공정은 사슬이 긴 3차 아민을 이용한 것으로써, 이는 아민과 유기산의 복합체를 형성시켜 유기 상으로 분리해내는 것이다. 이러한 아민을 이용한 추출은 아민의 염기성을 이용한 것으로, 유기산과 반응하여 염을 형성함으로서 이루어진다. 본 발명에서의 추출공정은 다른 정제 방법과 비교하여 볼때, 추출 후에 역추출을 통해 유기용매를 재활용함으로서 화학물질의 소모량을 최소화 할 수 있으며, 높은 선택도와 추출효율을 보인다. 또한 상온?상압 하에서 수행되어 지므로 기존의 정제 방법보다 에너지를 절감할 수 있다는 장점을 가진다. The extraction process is performed using an amine extractant. The extraction process in the present invention uses a long chain tertiary amine, which forms a complex of an amine and an organic acid and separates it into an organic phase. Extraction using such an amine utilizes the basicity of the amine, and is achieved by reacting with an organic acid to form a salt. Compared with other purification methods, the extraction process of the present invention can minimize the consumption of chemicals by recycling the organic solvent through back extraction after extraction, and shows high selectivity and extraction efficiency. In addition, since it is carried out at room temperature and atmospheric pressure, it has the advantage of saving energy than conventional purification methods.

상기의 감압증발공정은 상대적으로 끓는점이 낮은 불순 유기산을 제거하기 위하여 소정의 온도범위에서 이루어진다.The reduced pressure evaporation process is performed in a predetermined temperature range to remove the relatively low boiling organic acid.

상기의 결정화공정은 소정의 pH 및 온도조건에서 이루어진다. The crystallization process is performed at predetermined pH and temperature conditions.

이하에서는 본 발명에 의한 바람직한 실시예 및 시험예에 의하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail by preferred examples and test examples according to the present invention.

실시예 1 : 추출공정에 의한 숙신산의 정제Example 1 Purification of Succinic Acid by Extraction Process

Mannheimia succiniciproducens 균주에 의한 발효액을 원심분리 후, 상등액 100ml(건조중량 : 6.92g)를 취하였다. 상기의 상등액에 긴 사슬 3차 아민을 혼합하였다. 상등액과 3차 아민은 1 : 1이 되게끔 혼합하였다. pH 5.0이 되도록 조절 후, 상온에서 30분간 추출을 수행하였다. 추출 후 원심분리기를 이용하여 4,000rpm에서 5분간 상 분리를 실시하였다. 상기의 과정을 1 cycle로 하여, 연속적으로 3 cycle을 수행하여 숙신신을 정제하였다. After centrifugation of the fermentation broth by Mannheimia succiniciproducens strain, 100 ml (dry weight: 6.92 g) of the supernatant was taken. Long chain tertiary amine was mixed with the supernatant. The supernatant and tertiary amine were mixed to 1: 1. After adjusting to pH 5.0, extraction was performed at room temperature for 30 minutes. After extraction, phase separation was performed at 4,000 rpm for 5 minutes using a centrifuge. With the above process as 1 cycle, 3 cycles were performed continuously to purify succinate.

시험예 1 : 추출공정 수행후의 조성 및 효율 분석Test Example 1 Analysis of Composition and Efficiency after Performing Extraction Process

상기의 실시예 1에 의한 추출공정 수행 후에 유기산 컬럼을 이용한 HPLC(Supelcogel C-610H, 300 mm 7.8 mm, Supelco, USA)를 통해 UV/Visible 검출기(Waters 2487)로 분석하였고, 그 결과를 아래의 표 1에 나타내었다. 표준물질로 는 숙신산(99.9%, Sigma), 피루브산(99.9%, Sigma), 아세트산(99%, Juncei), 말산(Aldrich), 푸마르산(99.5%, Fluka) 등을 이용하였다. 포도당의 농도는 Glucose anaylzer(YSI 2700, USA)를 이용하여 분석하였고, 각 샘플의 건조중량은 동결건조기(Freeze dryer, IlShin Lab Co., Korea)를 이용하여 정량하였다. After performing the extraction process according to Example 1 was analyzed with a UV / Visible detector (Waters 2487) through HPLC (Supelcogel C-610H, 300 mm 7.8 mm, Supelco, USA) using an organic acid column, the results are shown below Table 1 shows. As standards, succinic acid (99.9%, Sigma), pyruvic acid (99.9%, Sigma), acetic acid (99%, Juncei), malic acid (Aldrich), fumaric acid (99.5%, Fluka) were used. The concentration of glucose was analyzed by using the Glucose anaylzer (YSI 2700, USA) , the dry weight of each sample was determined by using a freeze-drier (Freeze dryer, I lShin Lab Co. , Korea).

[표 1]추출공정 수행후의 조성 [Table 1] Composition after extraction process

Figure 112005002799680-PAT00001
Figure 112005002799680-PAT00001

상기의 표 1에서 보여지는 바와 같이 추출공정을 통하여 불순 유기산들이 효과적으로 제거됨을 확인할 수 있었다. 숙신산의 경우 추출공정 전과 후에 있어서 별다른 차이를 보이지 않았다(상등액 2.23g, 3 cycle 추출공정 수행 후 : 2.22g). 그러나 여러 불순 유기산들(피루브산, 아세트산, 말산, 푸마르산, 미지시료)은 추 출공정을 통하여 효과적으로 제거됨을 확인 할 수 있었다(상등액 : 1.27g, 1 cycle 추출공정 수행 후 : 0.745g, 2 cycle 추출공정 수행 후 : 0.654g, 3 cycle 추출공정 수행 후 : 0.594g). As shown in Table 1 above, it was confirmed that the impurity organic acids were effectively removed through the extraction process. In case of succinic acid, there was no difference between before and after extraction process (supernatant 2.23g, after 3 cycle extraction process: 2.22g). However, various impurity organic acids (pyruvic acid, acetic acid, malic acid, fumaric acid, unknown sample) can be effectively removed through the extraction process (supernatant: 1.27g, after 1 cycle extraction process: 0.745g, 2 cycle extraction process) After execution: 0.654g, after 3 cycle extraction process: 0.594g).

하기의 표 2는 추출회수가 증가할수록(cycle의 횟수가 증가할수록) 불순 유기산들이 보다 효과적으로 제거됨을 보여 주고 있다. 그러나 전체적인 불순 유기산들의 추출효율의 증가율은 추출회수가 증가할수록 줄어들고 있음을 확인 할 수 있는데, 추출효율은 전 단계와 비교하여 41.34%, 7.16%, 4.75 %의 증가율을 보였다. 따라서 경제적인 측면에서 추출의 최적 회수(cycle)는 1회라 할 수 있다.  Table 2 below shows that as the number of extractions is increased (as the number of cycles is increased), impure organic acids are more effectively removed. However, the overall increase in the extraction efficiency of impurity organic acids decreased as the number of extraction times increased. The extraction efficiency increased by 41.34%, 7.16%, and 4.75% compared with the previous step. Therefore, in terms of economics, the optimal cycle of extraction is one time.

[표 2]추출공정 횟수에 따른 불순 유기산의 제거효율[Table 2] Removal Efficiency of Impurity Organic Acids According to the Number of Extraction Processes

Figure 112005002799680-PAT00002
Figure 112005002799680-PAT00002

실시예 2 : 감압증발공정에 의한 숙신산의 정제Example 2 Purification of Succinic Acid by Depressurization

Mannheimia succiniciproducens 균주에 의한 발효액을 원심분리 후 상등액 100ml(건조중량 : 6.92g)를 취하였다. 상기의 상등액을 90℃의 온도 조건하에서 감압증발 하여 숙신산을 정제하였다. The fermentation broth by Mannheimia succiniciproducens strain was centrifuged and 100 ml (dry weight: 6.92 g) of the supernatant was taken. The supernatant was evaporated under reduced pressure under a temperature of 90 ° C. to purify succinic acid.

시험예 2 : 감압증발Test Example 2: Decompression evaporation 공정 수행후의 조성 및 제거효율 분석Analysis of composition and removal efficiency after process

상기의 실시예 2에 의한 감압증발공정 수행 후에 상기의 시험예 1에서와 동일한 장치 및 조건하에서 분석을 실시하였고, 그 결과를 아래의 표 3에 나타내었다. After performing the reduced pressure evaporation process according to Example 2, the analysis was carried out under the same apparatus and conditions as in Test Example 1, and the results are shown in Table 3 below.

[표 3]감압증발공정 수행 후의 조성 및 제거효율 [Table 3] Composition and Removal Efficiency after Pressure Reducing Evaporation Process

Figure 112005002799680-PAT00003
Figure 112005002799680-PAT00003

상기의 표 3에서 보여지듯이 감압증발공정 수행 후에는 아세트산 55.6%, 말산 37.5%, 피루브산 14.3%의 제거효율을 얻을 수 있었다. As shown in Table 3, the removal efficiency of acetic acid 55.6%, malic acid 37.5%, pyruvic acid 14.3% was obtained.

실시예 3 : 감압증발공정-결정화공정에 의한 숙신산의 정제Example 3 Purification of Succinic Acid by Vacuum Evaporation-crystallization

실시예 2의 감압증발공정을 거친 후, 결정화 공정을 추가로 실시하였다. 감압증발공정을 거친 수득물을 다양한 pH조건(1.0~3.0), 약 4℃의 온도에서 12시간 방치하여, 결정화공정을 수행하여 숙신산을 정제하였다. After the reduced pressure evaporation step of Example 2, a crystallization step was further performed. The obtained product, which was subjected to a reduced pressure evaporation process, was left at various pH conditions (1.0 to 3.0) at a temperature of about 4 ° C. for 12 hours to carry out a crystallization process to purify succinic acid.

시험예 3 : 감압증발공정-결정화공정 수행 후의 조성 분석Test Example 3 Composition Analysis after Decompression Evaporation Process

상기의 실시예 3에 의한 공정의 수행 후에 상기의 시험예 1에서와 동일한 장치 및 조건하에서 분석을 실시하였고, 그 결과를 아래의 표 4 및 표 5에 나타내었다. After performing the process according to Example 3, the analysis was performed under the same apparatus and conditions as in Test Example 1, and the results are shown in Tables 4 and 5 below.

[표 4]감압증발공정-결정화공정 수행 후의 조성 [Table 4] Composition after decompression evaporation process

Figure 112005002799680-PAT00004
Figure 112005002799680-PAT00004

[표 5]pH 변화에 따른 숙신산의 수율 및 순도 [Table 5] Yield and purity of succinic acid according to pH change

Figure 112005002799680-PAT00005
Figure 112005002799680-PAT00005

상기의 표 4 및 표 5에서 보여지듯이 감압증발공정-결정화공정을 복합하여 수행하였을 경우, 모든 pH 조건에서 불순유기산을 95% 이상 제거할 수 있었고, 포도당은 99.8% 이상 제거할 수 있었다. 표에서 알 수 있듯이 낮은 pH 조건에서는 숙신산의 수율은 높아지는 반면, 정제효과는 떨어짐을 알 수 있었고, 높은 pH 조건에서는 그 반대의 현상이 나타남을 알 수 있다. 이는 일반적으로 pH가 낮아질수록 유기산의 용해도가 낮아지며, 비해리산 형태로 존재하려는 특성과 더불어 단량체 유기산들이 수소결합에 의하여 서로 결합하며 결정이 커가려는 성질에 기인하는 것이다. 수율과 순도의 양 측면을 고려하여 상기의 표를 종합적으로 분석하여 볼때, pH 2의 조건이 가장 바람직한 것으로 판단된다. 도 2는 pH 2의 조건에서의 본 실시예에 의한 조성물의 HPLC 분석 결과이다. 도면에서 나타나듯이 대부분의 불순 유기산의 피크(peak)들이 상당 부분 제거되었으며, 고 순도의 유기산이 정제되고 있음을 알 수 있다. As shown in Table 4 and Table 5, when combined with a reduced pressure evaporation process-crystallization process, it was possible to remove more than 95% of the impure organic acid at all pH conditions, and to remove more than 99.8% of glucose. As can be seen from the table, the yield of succinic acid was increased while the pH was lower, but the purification effect was decreased, and the opposite phenomenon was observed at high pH. This is generally due to the lower pH solubility of the organic acid, the non-acidic acid properties as well as the properties of the monomer organic acids are bonded to each other by hydrogen bonds and crystals are large. In view of comprehensive analysis of the above table in consideration of both aspects of yield and purity, it is determined that the condition of pH 2 is most preferable. 2 is a result of HPLC analysis of the composition according to the present example under conditions of pH 2. As shown in the figure, the peaks of most of the impure organic acids have been largely removed, and it can be seen that high purity organic acids are purified.

실시예 4 : 추출공정-감압증발공정-결정화공정에 의한 숙신산의 정제Example 4 Purification of Succinic Acid by Extraction Process, Depressurization Evaporation Process, and Crystallization Process

실시예 1에 의한 1 cycle의 추출공정 실시 후, 감압증발공정을 실시하였으며, 그 후 pH 2.0의 조건하에서 결정화공정을 수행하여 숙신산을 정제하였다. After performing the extraction cycle of 1 cycle according to Example 1, the vacuum evaporation process was carried out, and then succinic acid was purified by performing a crystallization process under the condition of pH 2.0.

시험예 4 : 추출공정-감압증발공정-결정화공정 수행후의 조성 분석Test Example 4 Composition Analysis after Extraction Process, Pressure Evaporation Process, and Crystallization Process

상기의 실시예 3에 의한 공정의 수행 후에 상기의 시험예 1에서와 동일한 장치 및 조건하에서 분석을 실시하였고, 그 결과를 아래의 표 6에 나타내었다.After performing the process according to Example 3, the analysis was carried out under the same apparatus and conditions as in Test Example 1, and the results are shown in Table 6 below.

[표 6]추출공정-감압증발공정-결정화공정 수행 후의 조성 및 수율 [Table 6] Composition and yield after extraction process-pressure evaporation process-crystallization process

Figure 112005002799680-PAT00006
Figure 112005002799680-PAT00006

상기의 표에서 나타나듯이 추출공정-감압증발공정-결정화공정을 연속적으로 수행하였을 경우, 고 순도(99.76%)와 높은 수율(73.09%)의 숙신산을 얻을 수 있음을 알 수 있다. 상기의 결과를 추출공정이 배제된 실시예 3의 결과와 비교하여 보 면, 추출공정이 선행되었을 경우, 보다 높은 수율과 고 순도의 숙신산을 얻게 됨을 알 수 있다. 도 3은 본 실시예에 의한 조성물의 HPLC 분석 결과이다. 도면에서 나타나듯이 대부분의 불순 유기산의 피크(peak)들이 거의 제거되었으며, 고 순도의 유기산이 정제되고 있음을 알 수 있다.As shown in the above table, it can be seen that succinic acid having high purity (99.76%) and high yield (73.09%) can be obtained when the extraction process, the pressure reduction evaporation process, and the crystallization process are performed continuously. Comparing the above results with those of Example 3, which excludes the extraction process, it can be seen that when the extraction process is preceded, higher yield and higher purity succinic acid are obtained. 3 is a result of HPLC analysis of the composition according to the present example. As shown in the figure, the peaks of most of the impure organic acids are almost removed, and it can be seen that the organic acids having high purity are purified.

상기한 바와 같이 본 발명에 의하면, 기존의 화학합성법에 의한 숙신산 생산 및 기존의 유기산 정제 방법이 지니고 있던 문제점을 해소할 수 있게 되며, 본 발명에 의할 경우 고효율, 저비용으로 숙신산의 생산이 가능하게 된다. 본 발명에 의하여 생산된 숙신산은 생분해성 고분자, 식품, 제약, 화장품 산업 등에 유용하게 사용될 수 있을 것이다.



As described above, according to the present invention, it is possible to solve the problems of the conventional succinic acid production by the chemical synthesis method and the conventional organic acid purification method, and according to the present invention enables the production of succinic acid at high efficiency and low cost. do. Succinic acid produced by the present invention may be usefully used in biodegradable polymers, food, pharmaceuticals, cosmetics industry, and the like.



Claims (5)

균주를 이용하여 발현된 발효액으로부터 숙신산을 정제하는 방법에 있어서,In the method of purifying succinic acid from the fermentation broth expressed using the strain, 추출공정, 감압증발공정, 결정화공정을 선택적으로 또는 순차적으로 수행함을 특징으로 하는 숙신산 정제 방법 Succinic acid purification method characterized in that the extraction process, reduced pressure evaporation process, crystallization process selectively or sequentially 제1항에 있어서,The method of claim 1, 상기의 추출공정은 아민계 추출제를 이용하여 수행함을 특징으로 하는 숙신산 정제 방법The extraction step is a succinic acid purification method characterized in that carried out using an amine extractant 제1항에 있어서,The method of claim 1, 상기의 결정화공정은 pH 1.0 내지 3.0의 범위에서 수행함을 특징으로 하는 숙신산 정제 방법 The crystallization process is succinic acid purification method characterized in that carried out in the range of pH 1.0 to 3.0 제3항에 있어서,The method of claim 3, 상기의 pH는 2.0임을 특징으로 하는 숙신산 정제 방법Succinic acid purification method characterized in that the pH is 2.0 제1항, 제3항, 제4항의 어느 한 항에 있어서,The method according to any one of claims 1, 3, and 4, 상기의 결정화공정은 0~10℃의 온도범위에서 이루어짐을 특징으로 하는 숙신산 정제 방법The succinic acid purification method characterized in that the crystallization process is made in a temperature range of 0 ~ 10 ℃
KR1020050004652A 2005-01-18 2005-01-18 Purification methods for succinic acid KR100672813B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050004652A KR100672813B1 (en) 2005-01-18 2005-01-18 Purification methods for succinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050004652A KR100672813B1 (en) 2005-01-18 2005-01-18 Purification methods for succinic acid

Publications (2)

Publication Number Publication Date
KR20060083729A true KR20060083729A (en) 2006-07-21
KR100672813B1 KR100672813B1 (en) 2007-01-22

Family

ID=37174032

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050004652A KR100672813B1 (en) 2005-01-18 2005-01-18 Purification methods for succinic acid

Country Status (1)

Country Link
KR (1) KR100672813B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925069A1 (en) * 2007-12-13 2009-06-19 Roquette Freres PROCESSES FOR THE PRODUCTION OF SUCCINIC ACID
WO2009082050A1 (en) * 2007-12-20 2009-07-02 Korea Advanced Institute Of Science And Technology Method for purifying succinic acid by crystallization of culture broth
CN102942472A (en) * 2012-11-22 2013-02-27 天津工业生物技术研究所 Method of extracting succinic acid from microorganism fermentation liquor
KR101540520B1 (en) * 2012-11-29 2015-07-30 롯데케미칼 주식회사 Method for succinic acid purification using reverse osmosis membrane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958744A (en) * 1997-08-18 1999-09-28 Applied Carbochemicals Succinic acid production and purification

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925069A1 (en) * 2007-12-13 2009-06-19 Roquette Freres PROCESSES FOR THE PRODUCTION OF SUCCINIC ACID
WO2009081012A3 (en) * 2007-12-13 2010-06-17 Roquette Freres Method for producing succinic acid
EP2423318A1 (en) * 2007-12-13 2012-02-29 Roquette Frères Methods for producing succinic acid
WO2009082050A1 (en) * 2007-12-20 2009-07-02 Korea Advanced Institute Of Science And Technology Method for purifying succinic acid by crystallization of culture broth
CN102942472A (en) * 2012-11-22 2013-02-27 天津工业生物技术研究所 Method of extracting succinic acid from microorganism fermentation liquor
CN102942472B (en) * 2012-11-22 2015-03-11 中国科学院天津工业生物技术研究所 Method of extracting succinic acid from microorganism fermentation liquor
KR101540520B1 (en) * 2012-11-29 2015-07-30 롯데케미칼 주식회사 Method for succinic acid purification using reverse osmosis membrane

Also Published As

Publication number Publication date
KR100672813B1 (en) 2007-01-22

Similar Documents

Publication Publication Date Title
EP0804607B1 (en) Lactic acid production, separation and/or recovery process
US7026145B2 (en) Process for producing a purified lactic acid solution
KR101543199B1 (en) Method for Production of L-Methionine and Related Products
US8399716B2 (en) Method of purifying alcohol from a fermentation broth
US9422220B2 (en) Method for purifying carboxylic acids from fermentation broths
JP6223681B2 (en) Method for producing lactic acid
WO1995003268A1 (en) Process for recovering organic acids
EP2017347B1 (en) Method for separation of lactic acid component from lactic acid fermentation liquor, and separation apparatus
JP2007522136A (en) Organic acid recovery
KR20060134005A (en) Process for recovering polyhydroxialkanoates ("phas") from cellular biomass
WO2012054400A1 (en) Recovery of organic acid using a complex extraction solvent
JP2011177159A (en) Method for isolation and purification of lactic acid from lactic fermentation liquid
WO2001027064A1 (en) Continuous process for preparing lactic acid
KR100672813B1 (en) Purification methods for succinic acid
US20180105846A1 (en) Method for extracting alpha-ketoglutarate and pyruvate simultaneously from microbial fermentation broth or enzymatic conversion solution
US9416222B2 (en) Quality test for polymerizable lactic acid and method for producing same
US6509179B1 (en) Continuous process for preparing lactic acid
CA2969273C (en) Process for manufacturing succinic acid from a fermentation broth using nano filtration to purify recycled mother liquor
Lee et al. Effect of operating variables on back-extraction characteristics of succinic acid from organic phase
CN1789236A (en) Purification method of 15N-L-arginine
CN114591164B (en) Purification method of lactic acid
KR20120008746A (en) 1,3-propanediol refining method using a reactive extraction
TWI522343B (en) Method of separating and purifying lactic acid of fibrous lactic acid enzymatic solution
CA2184928C (en) Lactic acid production, separation and/or recovery process
JPH04141204A (en) Recovery of high purity organic acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130108

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee