KR20060077247A - Method for producing polyethyleneterephthalate having improved heat resistance - Google Patents

Method for producing polyethyleneterephthalate having improved heat resistance Download PDF

Info

Publication number
KR20060077247A
KR20060077247A KR1020040116055A KR20040116055A KR20060077247A KR 20060077247 A KR20060077247 A KR 20060077247A KR 1020040116055 A KR1020040116055 A KR 1020040116055A KR 20040116055 A KR20040116055 A KR 20040116055A KR 20060077247 A KR20060077247 A KR 20060077247A
Authority
KR
South Korea
Prior art keywords
polycondensation reaction
polyethylene terephthalate
polycarbodiimide
heat resistance
phosphorus
Prior art date
Application number
KR1020040116055A
Other languages
Korean (ko)
Other versions
KR100855694B1 (en
Inventor
최형진
권익현
이귤섭
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020040116055A priority Critical patent/KR100855694B1/en
Publication of KR20060077247A publication Critical patent/KR20060077247A/en
Application granted granted Critical
Publication of KR100855694B1 publication Critical patent/KR100855694B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

내열성이 우수하며, 산업용 합성섬유의 원료로서 특히 유용한 폴리에틸렌테레프탈레이트의 제조 방법이 개시된다. 상기 폴리에틸렌테레프탈레이트의 제조 방법은 에틸렌글리콜과 테레프탈산을 에스테르화 반응시켜 올리고머를 제조하는 단계; 및 생성된 올리고머를 중축합하되, 상기 중축합 반응의 말기에 인계 내열 안정제를 첨가하거나, 중축합 반응 종료 직전에 폴리카보디이미드를 첨가하는 단계를 포함한다. 여기서, 상기 인계 내열 안정제는 인산, 아인산, 폴리인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리메틸포스핀, 트리페닐포스핀 및 이들의 혼합물로 이루어진 군으로부터 선택되며, 상기 중축합 반응의 말기 및 중축합 반응 종료 직전에 인계 내열 안정제 및 폴리카보디이미드가 각각 첨가되는 것이 바람직하다.
Disclosed is a method for producing polyethylene terephthalate which is excellent in heat resistance and particularly useful as a raw material for industrial synthetic fibers. The polyethylene terephthalate production method comprises the steps of esterifying ethylene glycol and terephthalic acid to prepare an oligomer; And polycondensing the resulting oligomer, adding a phosphorus-based heat stabilizer at the end of the polycondensation reaction, or adding polycarbodiimide immediately before the end of the polycondensation reaction. Here, the phosphorus heat stabilizer is selected from the group consisting of phosphoric acid, phosphorous acid, polyphosphoric acid, trimethyl phosphate, triethyl phosphate, trimethyl phosphine, triphenyl phosphine and mixtures thereof, and the end and polycondensation reaction of the polycondensation reaction It is preferable that phosphorus heat-resistant stabilizer and polycarbodiimide are respectively added just before completion | finish.

내열성, 폴리에틸렌테레프탈레이트, 중합, 인계 내열 안정제, 폴리카보디이미드Heat resistance, polyethylene terephthalate, polymerization, phosphorus heat stabilizer, polycarbodiimide

Description

내열성이 우수한 폴리에틸렌테레프탈레이트의 제조 방법{Method for producing polyethyleneterephthalate having improved heat resistance}Method for producing polyethylene terephthalate having improved heat resistance

본 발명은 폴리에틸렌테레프탈레이트의 제조 방법에 관한 것으로서, 더욱 상세하게는 내열성이 우수하며, 산업용 합성섬유의 원료로서 특히 유용한 폴리에틸렌테레프탈레이트의 제조 방법에 관한 것이다.
The present invention relates to a method for producing polyethylene terephthalate, and more particularly, to a method for producing polyethylene terephthalate, which is excellent in heat resistance and particularly useful as a raw material for industrial synthetic fibers.

폴리에틸렌테레프탈레이트(polyethyleneterephthalate: PET)의 제조방법으로는 디메틸테레프탈레이트(dimethyl terephthalate: DMT)와 에틸렌글리콜(ethylene glycol: EG)의 에스테르 교환(ester interchange) 반응을 이용하는 DMT법과 테레프탈산(terephthalic acid: TPA)과 에틸렌글리콜의 에스테르화 반응을 이용하는 TPA법이 알려져 있다. DMT법에 사용되는 디메틸테레프탈레이트는 테레프탈산과 비교하여 에틸렌글리콜에 대한 용해도가 우수하므로, 취급이 용이할 뿐 만 아니라, 에스테르 교환반응의 초기 반응속도가 빠르고, 고분자량의 중합체를 고순도로 얻을 수 있는 장점이 있으므로, 통상적으로는 DMT법이 폴리에틸렌테레프탈레이트의 제조 에 주로 사용되었다. 그러나 최근 고순도 테레프탈산의 제조가 가능해짐에 따라, 생산원가가 저렴하고, 제조 공정이 간단하며, 취급이 용이할 뿐 만 아니라, 중합체의 물성을 향상시킬 수 있는 TPA법이 폴리에틸렌테레프탈레이트의 제조에 보다 범용적으로 사용되고 있다.
As a manufacturing method of polyethylene terephthalate (PET), DMT and terephthalic acid (TPA) using a ester interchange reaction of dimethyl terephthalate (DMT) and ethylene glycol (EG) The TPA method which uses the esterification reaction of with ethylene glycol is known. Dimethyl terephthalate used in the DMT method has better solubility in ethylene glycol than terephthalic acid, so that it is easy to handle, and the initial reaction rate of the transesterification reaction is high, and high molecular weight polymer can be obtained with high purity. Because of its advantages, conventionally, the DMT method has been mainly used for the production of polyethylene terephthalate. However, with the recent production of high purity terephthalic acid, the production cost is low, the manufacturing process is simple, the handling is easy, and the TPA method which can improve the physical properties of the polymer is more suitable for the production of polyethylene terephthalate. It is used universally.

이와 같은 폴리에틸렌테레프탈레이트를 이용하여 제조한 PET 섬유는 가격이 저렴하고, 내구성 등 물리적 특성이 우수하므로, 의류용 섬유 뿐 만 아니라, 의료용 및 산업용 섬유로서도 유용하다. 따라서, 폴리에틸렌테레프탈레이트를 이용하여 내열성이 우수한 산업용 PET 섬유를 제조하기 위한 다양한 시도가 이루어지고 있다. PET 섬유의 내열성을 향상시키는 방법으로는 섬유의 원료인 PET 중합체를 개질하는 방법과 PET 중합체를 방사하여 제조한 섬유를 후처리하는 방법이 있으며, 이 중 PET 중합체를 개질하는 방법을 구체적으로 살펴보면 다음과 같다. 첫째, PET 중합시 사용되는 금속 촉매를 중합 반응 완료 후 비활성화시켜, PET 중합체의 내열성을 개선하는 방법이 있다. PET 중합시 사용되는 금속 촉매는 중합시에는 중합 촉매로 작용하나, 중합 후에는 열을 가할시 PET를 분해하는 역작용을 일으킨다. 예를 들면, 미국특허 제5,898,058호에서는 트리메틸포스페이트(trimethyl phosphate), 트리메틸포스핀(trimethyl phosphine), 인산, 아인산, 트리에틸렌포스페이트(triethylene phosphate) 등의 인계 열안정제를 PET 중합체에 첨가하여, 상기 역작용을 방지하는 방법이 개시되어 있다. 둘째, PET 중합시, 아세트알데하이드(acetaldehyde), 디에틸렌글리콜(DEG), 올리고머(Oligomer) 등의 불순물을 생성 하는 부반응(side reaction)을 억제하여, PET 중합체의 내열성을 개선하는 방법이 있다. PET 중합시 부반응에 의하여 생성되는 DEG 등은 PET 주사슬에 끼워져, 에스테르 결합을 분해하므로, 이와 같은 불순물의 생성을 억제하면 PET의 내열성을 향상시킬 수 있다. 이와 같은 부반응을 억제하기 위해서는, 대표적으로 Ciba사의 Irgamod-195 등의 첨가제를 중합 반응에 첨가하는 방법이 사용된다. 셋째, PBO(1,4-Phenylene Bisoxazoline), BO(2,2-Bis-2-Oxazoline), Bruggolen M1251 등의 사슬연장제(chain extender)를 사용하여, PET 중합체의 내열성을 개선하는 방법이 있다. 상기 사슬연장제는 PET 고분자 분자들을 서로 연결시켜 고분자 사슬간의 가교결합(crosslinking)을 유도함으로서, PET 중합체의 내열성을 향상시킨다. 넷째, 폴리카보디이미드(polycarbodiimide), 소듐 벤조네이트(sodium benzonate) 등의 카르복실기 보호기(capping agent)를 사용하여, PET 중합체의 내열성을 개선하는 방법이 있다. 상기 카르복실기 보호기는 PET 사슬의 카르복실기와 결합하여, 카르복실기의 활성을 저하시킨다. PET 중합체의 카르복실기는 고분자의 주쇄와 반응하여 주쇄를 분해시킴으로서, PET의 내열성을 저하시키는데, 이러한 카르복실기를 비활성화(capping) 하면, PET 중합체의 내열성을 향상시킬 수 있다. 그러나, 이와 같은 방법에 의하여 제조된 폴리에틸렌테레프탈레이트도 충분히 만족스러운 내열성을 가지지는 못하고 있다.
PET fiber manufactured using such polyethylene terephthalate is low in price and excellent in physical properties such as durability, and thus is useful not only for clothing fibers but also for medical and industrial fibers. Accordingly, various attempts have been made to produce industrial PET fibers having excellent heat resistance using polyethylene terephthalate. Methods of improving the heat resistance of PET fibers include a method of modifying the PET polymer which is a raw material of the fiber and a method of post-treatment of the fiber produced by spinning the PET polymer. Same as First, there is a method of improving the heat resistance of a PET polymer by deactivating the metal catalyst used in PET polymerization after completion of the polymerization reaction. The metal catalyst used in the PET polymerization acts as a polymerization catalyst during the polymerization, but after polymerization, a metal catalyst decomposes when heat is applied. For example, U.S. Patent No. 5,898,058 adds a phosphorus thermal stabilizer such as trimethyl phosphate, trimethyl phosphine, phosphoric acid, phosphorous acid, triethylene phosphate, and the like to the PET polymer. A method of preventing is disclosed. Second, there is a method of improving the heat resistance of the PET polymer by inhibiting side reactions that generate impurities such as acetaldehyde, diethylene glycol (DEG), oligomers (Oligomer) during PET polymerization. DEG produced by the side reaction during PET polymerization is inserted into the PET main chain and decomposes the ester bond, so that suppressing the generation of such impurities can improve the heat resistance of PET. In order to suppress such side reactions, the method of adding additives, such as Irgamod-195 by Ciba company typically, to a polymerization reaction is used. Third, there is a method of improving the heat resistance of PET polymer by using a chain extender such as PBO (1,4-Phenylene Bisoxazoline), BO (2,2-Bis-2-Oxazoline), Bruggolen M1251, etc. . The chain extender connects PET polymer molecules to each other to induce crosslinking between polymer chains, thereby improving heat resistance of the PET polymer. Fourth, there is a method of improving the heat resistance of a PET polymer by using a carboxyl capping agent such as polycarbodiimide and sodium benzonate. The carboxyl group protecting group is bonded to the carboxyl group of the PET chain, thereby reducing the activity of the carboxyl group. The carboxyl group of the PET polymer decomposes the main chain by reacting with the main chain of the polymer, thereby lowering the heat resistance of the PET. When the carboxyl group is inactivated, the heat resistance of the PET polymer can be improved. However, polyethylene terephthalate produced by such a method also does not have sufficient satisfactory heat resistance.

따라서, 본 발명의 목적은 내열성이 우수한 폴리에틸렌테레프탈레이트의 제 조 방법을 제공하는 것이다. 본 발명의 다른 목적은 산업용 합성섬유의 원료로서 특히 유용한 폴리에틸렌테레프탈레이트의 제조 방법을 제공하는 것이다.
Accordingly, an object of the present invention is to provide a method for producing polyethylene terephthalate having excellent heat resistance. Another object of the present invention is to provide a method for producing polyethylene terephthalate which is particularly useful as a raw material for industrial synthetic fibers.

상기 목적을 달성하기 위하여, 본 발명은 에틸렌글리콜과 테레프탈산을 에스테르화 반응시켜 올리고머를 제조하는 단계; 및 생성된 올리고머를 중축합하되, 상기 중축합 반응의 말기에 인계 내열 안정제를 첨가하거나, 중축합 반응 종료 직전에 폴리카보디이미드를 첨가하는 단계를 포함하는 폴리에틸렌테레프탈레이트의 제조방법을 제공한다. 여기서, 상기 인계 내열 안정제는 인산, 아인산, 폴리인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리메틸포스핀, 트리페닐포스핀 및 이들의 혼합물로 이루어진 군으로부터 선택되며, 상기 중축합 반응의 말기 및 중축합 반응 종료 직전에 인계 내열 안정제 및 폴리카보디이미드가 각각 첨가되는 것이 바람직하다.
In order to achieve the above object, the present invention comprises the steps of esterifying the ethylene glycol and terephthalic acid to prepare an oligomer; And polycondensation of the resulting oligomer, and at the end of the polycondensation reaction to add a phosphorus-based heat stabilizer, or a polycarbodiimide immediately before the end of the polycondensation reaction provides a method for producing a polyethylene terephthalate. Here, the phosphorus heat stabilizer is selected from the group consisting of phosphoric acid, phosphorous acid, polyphosphoric acid, trimethyl phosphate, triethyl phosphate, trimethyl phosphine, triphenyl phosphine and mixtures thereof, and the end and polycondensation reaction of the polycondensation reaction It is preferable that phosphorus heat-resistant stabilizer and polycarbodiimide are respectively added just before completion | finish.

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명에 따라 폴리에틸렌테레프탈레이트(polyethyleneterephthalate: PET)를 제조하기 위해서는, 먼저, 에스테르화 반응기에서 에틸렌글리콜(EG)과 테레프탈산(TPA) 슬러리를 에스테르화 반응시켜 올리고머를 제조한 다음, 생성된 올리고머를 중축합(poly condensation: PC) 반응기로 이송하여 중축합 반응을 실시하되, 상기 중축합 반응의 말기에 인계 내열 안정제를 첨가하거나, 중축합 반응 종료 직전 에 카르복실 말단기(Carboxylic Ending Group: CEG) 보호기(capping agent)로서 폴리카보디이미드(polycarbo diimid)를 첨가한다. 이때, 상기 에스테르화 반응은 통상의 폴리에틸렌테레프탈레이트 제조 공정의 에스테르화 반응과 동일한 조건에서 실시될 수 있으며, 예를 들면, 상압 및 260℃의 온도에서 수행될 수 있고, 상기 중축합 반응 역시 통상의 중축합 반응과 동일한 조건에서 실시될 수 있으며, 예를 들면, 진공 및 270℃의 온도에서 수행될 수 있고, 바람직하게는 중합촉매로서 Sb2O3의 존재 하에서 수행될 수 있다.
In order to prepare polyethylene terephthalate (PET) according to the present invention, first, an esterification reaction of an ethylene glycol (EG) and a terephthalic acid (TPA) slurry in an esterification reactor prepares an oligomer, and then polycondenses the resulting oligomer. Carry out polycondensation reaction by transferring to poly condensation (PC) reactor, and add a phosphorus heat stabilizer at the end of the polycondensation reaction, or at the end of the polycondensation reaction, a Carboxylic Ending Group (CEG) protecting group Polycarbo diimid is added as a capping agent. In this case, the esterification reaction may be carried out under the same conditions as the esterification reaction of a conventional polyethylene terephthalate manufacturing process, for example, may be carried out at atmospheric pressure and temperature of 260 ℃, the polycondensation reaction is also conventional It may be carried out under the same conditions as the polycondensation reaction, for example, may be carried out in a vacuum and at a temperature of 270 ℃, preferably in the presence of Sb 2 O 3 as a polymerization catalyst.

상기 중축합 반응의 말기, 구체적으로는 반응종료 30분전 이후에 첨가되는 인계 내열 안정제는 PET 중합체에 대하여 사슬분해 작용을 유발하는 중축합 금속 촉매를 불활성화시켜, 중합체의 내열성을 향상시키는 역할을 하므로, 중축합 반응이 거의 완료되는 시점에 투입하는 것이 바람직하다. 이와 같은 인계 내열 안정제로는 인산(phosphoric acid), 아인산(phosphorous acid), 폴리인산(polyphosphric acid), 트리메틸포스페이트(trimethyl phosphate: TMP), 트리에틸포스페이트(triethyl phosphate), 트리메틸포스핀(trimethyl phosphine), 트리페닐포스핀(triphenyl phosphine) 등을 단독 또는 혼합하여 사용할 수 있다. 상기 인계 내열 안정제의 사용량은 PET 중합체에 대하여 바람직하게는 25 내지 500ppm, 더욱 바람직하게는 50 내지 150ppm이며, 만일 상기 인계 내열 안정제의 사용량이 25ppm 미만이면, 인계 내열 안정제의 기능이 충분히 발휘되지 않아 PET 중합체의 내열성을 실 질적으로 상승시키기 어렵고, 500ppm을 초과하면 안정제 작용의 포화점을 초과하므로 추가적인 효과를 얻기 어려울 뿐 만 아니라, 인계 화합물이 불순물로 작용하여, PET 중합체의 물성을 저하시킬 우려가 있다. 상기 인계 내열 안정제는 에틸렌글리콜에 용해 또는 분산시켜, 용액 상태로 중축합 반응기에 첨가할 수 있으며, 이때, 에틸렌글리콜의 사용량은 인계 내열 안정제를 충분히 용해시킬 수 있는 양으로 적절히 사용될 수 있고, 예를 들면 인계 내열 안정제의 농도가 10중량%가 되도록 제조하여 사용할 수 있다.
At the end of the polycondensation reaction, specifically, the phosphorus heat stabilizer added 30 minutes before the end of the reaction deactivates the polycondensation metal catalyst which causes the chain decomposition action on the PET polymer, thereby improving the heat resistance of the polymer. It is preferable to add when the polycondensation reaction is almost completed. Such phosphorus heat stabilizers include phosphoric acid, phosphorous acid, polyphosphic acid, trimethyl phosphate (TMP), triethyl phosphate, trimethyl phosphine , Triphenyl phosphine (triphenyl phosphine) and the like can be used alone or in combination. The amount of the phosphorus heat stabilizer is preferably 25 to 500 ppm, more preferably 50 to 150 ppm relative to the PET polymer. If the amount of the phosphorus heat stabilizer is less than 25 ppm, the function of the phosphorus heat stabilizer is not sufficiently exhibited. It is difficult to substantially increase the heat resistance of the polymer, and if it exceeds 500 ppm, it exceeds the saturation point of the stabilizer action, which makes it difficult to obtain additional effects, and the phosphorus-based compound acts as an impurity, which may lower the physical properties of the PET polymer. . The phosphorus heat stabilizer may be dissolved or dispersed in ethylene glycol, and added to the polycondensation reactor in a solution state, wherein the amount of ethylene glycol may be appropriately used in an amount capable of sufficiently dissolving the phosphorus heat stabilizer. For example, it can manufacture and use so that the density | concentration of a phosphorus heat resistant stabilizer may be 10 weight%.

상기 중축합 반응 종료 직전, 바람직하게는 상기 인계 내열 안정제 투입후, 약 10분 이후에 첨가되는 폴리카보디이미드(polycarbodiimide)는 PET 중합체의 내열성 및 내피로성을 저하시키는 카르복실 말단기(Carboxylic Ending Group: CEG)에 결합하여, 카르복실 말단기를 비활성화시킴으로서, PET 중합체의 내열성을 향상시킨다. 상기 폴리카보디이미드는 중합체의 카르복실 말단기를 비활성화시켜 중축합 반응을 억제하는 기능을 하므로, 중축합 반응이 거의 완료되는 시점에 첨가되는 것이 바람직하고, 상기 인계 내열 안정제가 안정화된 후에, 첨가되면 더욱 바람직하다. 이와 같은 폴리카보디이미드로의 시판되는 예로는 미국 Sigma Aldrich사의 시약명 Polycarbodiimide를 예시할 수 있다. 상기 폴리카보디이미드는 카르복실 말단기를 불활성화시키기 위한 것이므로, PET 중합체에 존재하는 카르복실 말단기의 양 이상으로 첨가되는 것이 바람직하다. 구체적으로, 상기 폴리카보디이미드의 사용량은 PET 중합체에 대하여, 바람직하게는 200 내지 1000ppm이고, 더욱 바람직하 게는 250 내지 500ppm이며, 가장 바람직하게는 350 내지 500ppm이다. 만일, 상기 폴리카보디이미드의 사용량이 200ppm 미만이면 카르복실 말단기가 충분히 불활성화되지 않고, 1000ppm을 초과하면 폴리카보디이미드가 오히려 불순물로 작용하여 PET 중합체의 물성에 바람직하지 못한 영향을 줄 수 있다. 상기 폴리카보디이미드 역시 에틸렌글리콜에 용해 또는 분산시켜, 용액 상태로 중축합 반응기에 첨가할 수 있으며, 이때, 에틸렌글리콜의 사용량은 폴리카보디이미드를 충분히 용해시킬 수 있는 양으로 적절히 사용될 수 있고, 예를 들면 폴리카보디이미드의 농도가 10중량%가 되도록 제조하여 사용할 수 있다. 이와 같이, 인계 내열 안정제와 폴리카보디이미드를 중축합 반응의 말기 및 중축합 반응 종료 직전에 각각 투입함으로서, PET 중합체의 내열성을 상승적으로 향상시킬 수 있다.
Immediately before the end of the polycondensation reaction, preferably, about 10 minutes after the addition of the phosphorus heat stabilizer, polycarbodiimide is added to the carboxyl end group that lowers the heat resistance and fatigue resistance of the PET polymer. : CEG) to inactivate the carboxyl end groups, thereby improving the heat resistance of the PET polymer. Since the polycarbodiimide functions to inhibit the polycondensation reaction by inactivating the carboxyl end groups of the polymer, it is preferably added at the time when the polycondensation reaction is almost completed, and after the phosphorus heat stabilizer is stabilized, More preferably. Commercially available examples of such polycarbodiimide may include the reagent name Polycarbodiimide of Sigma Aldrich, USA. Since the polycarbodiimide is intended to inactivate the carboxyl end groups, it is preferable to add at least the amount of carboxyl end groups present in the PET polymer. Specifically, the amount of the polycarbodiimide used is preferably 200 to 1000 ppm, more preferably 250 to 500 ppm, and most preferably 350 to 500 ppm relative to the PET polymer. If the amount of the polycarbodiimide is less than 200 ppm, the carboxyl end groups may not be sufficiently inactivated. If the amount of the polycarbodiimide exceeds 1000 ppm, the polycarbodiimide may act as an impurity, which may adversely affect the physical properties of the PET polymer. . The polycarbodiimide may also be dissolved or dispersed in ethylene glycol and added to the polycondensation reactor in a solution state, wherein the amount of ethylene glycol may be appropriately used in an amount capable of sufficiently dissolving polycarbodiimide. For example, it can manufacture and use so that the density | concentration of polycarbodiimide may be 10 weight%. In this way, by adding the phosphorus heat stabilizer and the polycarbodiimide at the end of the polycondensation reaction and immediately before the end of the polycondensation reaction, the heat resistance of the PET polymer can be improved synergistically.

이하, 실시예 및 비교예를 통하여 본 발명을 더욱 구체적으로 설명하나, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다. 이하의 실시예 및 비교예에 있어서, 중합체의 내열성은 (1) 가압된 물속에서 가열(130℃, 20시간) 전후의 PET 중합체의 I.V. (Intrinsic Viscosity, 고유점도) 및 CEG (carboxylic end group)의 변화 비교(가수 분해 실험)와 (2) 공기분위기에서 용융(290℃, 30분) 전후의 PET 중합체의 I.V. 및 CEG의 변화 비교(용융 실험)를 통하여 평가하였으며, 각각의 반응 후 I.V. 및 CEG의 변화가 적을수록 내열 안정성이 우수함을 의미한다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following Examples and Comparative Examples, the heat resistance of the polymer (1) of IV (Intrinsic Viscosity, Intrinsic Viscosity) and CEG (carboxylic end group) of PET polymer before and after heating (130 ° C., 20 hours) in pressurized water The change was evaluated by comparing the change (hydrolysis experiment) and (2) comparing the change of IV and CEG of the PET polymer before and after melting (290 ° C., 30 minutes) in the air atmosphere (melting experiment). The smaller the change, the better the heat resistance stability.

[실시예 1] Example 1                     

에틸렌글리콜과 테레프탈산을 반응원료로 사용하고, ㈜효성의 10kg용 배치 파일롯(batch Pilot) 중합기를 이용하여, 2시간 동안 에스테르화 반응을 수행하였으며, 이어서 4시간 동안 중축합 반응을 실시하여 PET 중합체를 제조하였다. 이때, 상기 중축합 반응의 말기, 구체적으로 반응 종료 30분전에 PET 중합체에 대하여 100ppm의 트리메틸포스페이트(Aldrich사 제품)를 10wt% 에틸렌글리콜 용액으로 제조하여 첨가하였다.
Ethylene glycol and terephthalic acid were used as the reaction raw materials, and esterification was performed for 2 hours using a 10 kg batch pilot polymerizer for Hyosung Co., Ltd., followed by polycondensation for 4 hours to carry out PET polymer. Prepared. At this time, at the end of the polycondensation reaction, specifically 30 minutes before the end of the reaction, 100 ppm of trimethyl phosphate (manufactured by Aldrich Co., Ltd.) was prepared as a 10 wt% ethylene glycol solution and added to the PET polymer.

[실시예 2] Example 2

중축합 반응의 말기에 트리메틸포스페이트를 첨가하는 대신, 중축합 반응의 종료 직전, 구체적으로 반응 종료 20분전에 에 PET 중합체에 대하여 450ppm의 폴리카보디이미드(Aldrich사 제품)를 10wt% 에틸렌글리콜 용액으로 제조하여 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 PET 중합체를 제조하였다.
Instead of adding trimethylphosphate at the end of the polycondensation reaction, 450 ppm of polycarbodiimide (from Aldrich) was added to the PET polymer immediately before the end of the polycondensation reaction, specifically 20 minutes before the end of the reaction. A PET polymer was prepared in the same manner as in Example 1, except for preparing and adding.

[실시예 3] Example 3

중축합 반응의 종료 직전에, PET 중합체에 대하여 450ppm의 폴리카보디이미드(Aldrich사 제품)를 10wt% 에틸렌글리콜 용액으로 제조하여 더욱 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 PET 중합체를 제조하였다.
Immediately before the end of the polycondensation reaction, the PET polymer was prepared in the same manner as in Example 1, except that 450 ppm polycarbodiimide (manufactured by Aldrich) was added to the PET polymer in a 10 wt% ethylene glycol solution and further added thereto. Prepared.

[비교예 1]Comparative Example 1

첨가제를 사용하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 PET 중합체를 제조하였다.
A PET polymer was prepared in the same manner as in Example 1, except that no additive was used.

[비교예 2] Comparative Example 2

중축합 반응의 말기에 트리메틸포스페이트를 첨가하는 대신, 중축합 반응의 초기에 PET 중합체에 대하여 450ppm의 폴리카보디이미드(Aldrich사 제품)를 10wt% 에틸렌글리콜 용액으로 제조하여 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 PET 중합체를 제조하였다.
Instead of adding trimethylphosphate at the end of the polycondensation reaction, except that 450 ppm of polycarbodiimide (from Aldrich) was prepared in 10 wt% ethylene glycol solution and added to the PET polymer at the beginning of the polycondensation reaction, PET polymer was prepared in the same manner as in Example 1.

[비교예 3] Comparative Example 3

중축합 반응의 말기에 트리메틸포스페이트를 첨가하는 대신, 중축합 반응의 초기에 PET 중합체에 대하여 100ppm의 트리메틸포스페이트(Aldrich사 제품)를 10wt% 에틸렌글리콜 용액으로 제조하여 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 PET 중합체를 제조하였다.
Instead of adding trimethylphosphate at the end of the polycondensation reaction, except that 100 ppm of trimethyl phosphate (Aldrich's product) was prepared as a 10 wt% ethylene glycol solution and added to the PET polymer at the beginning of the polycondensation reaction. PET polymer was prepared in the same manner as 1.

상기 실시예 및 비교예에서 제조된 PET 중합체의 내열성을 평가하여 하기 표 1에 나나태었다.To evaluate the heat resistance of the PET polymer prepared in Examples and Comparative Examples are shown in Table 1 below.

가수분해 실험Hydrolysis experiment 용융 실험Melting experiment 중축합 반응시간Polycondensation reaction time △I.V. 율ΔI.V. rate △CEG 율△ CEG rate △I.V. 율ΔI.V. rate △CEG 율△ CEG rate 비교예 1Comparative Example 1 4시간 10분4 hours 10 minutes 32%32% 84%84% 24%24% 46%46% 비교예 2Comparative Example 2 6시간 20분6 hours 20 minutes 30%30% 79%79% 22%22% 45%45% 비교예 3Comparative Example 3 5시간 40분5 hours 40 minutes 31%31% 70%70% 14%14% 30%30% 실시예 1Example 1 4시간 5분4 hours 5 minutes 25%25% 54%54% `15%`15% 35%35% 실시예 2Example 2 3시간 50분3 hours 50 minutes 24%24% 43%43% 13%13% 33%33% 실시예 3Example 3 4시간 15분4 hours 15 minutes 10%10% 21%21% 6%6% 18%18%

상기 표 1로부터, 폴리카보디이미드와 인계 내열 안정제를 각각 별도로 첨가한 경우에도(실시예 1 및 2), 첨가제를 투입하지 않은 경우(비교예 1)와 비교하여, 얻어진 PET 중합체의 내열성이 향상되며, 폴리카보디이미드와 인계 내열 안정제를 적절한 시점에 모두 투입하면(실시예 3), 얻어진 PET 중합체의 내열성이 현저히 상승함을 알 수 있다. 또한, 폴리카보디이미드와 인계 내열 안정제가 중축합 반응의 초기에 투입되면(비교예 2 및 3), 중축합 반응이 저해되어, 반응 시간이 길어지는 단점이 있음을 알 수 있다.
From the above Table 1, even when the polycarbodiimide and the phosphorus heat stabilizer were separately added (Examples 1 and 2), the heat resistance of the obtained PET polymer was improved as compared with the case where no additive was added (Comparative Example 1). When both the polycarbodiimide and the phosphorus heat stabilizer are added at an appropriate time point (Example 3), it can be seen that the heat resistance of the obtained PET polymer is significantly increased. In addition, when the polycarbodiimide and the phosphorus heat resistant stabilizer are added at the beginning of the polycondensation reaction (Comparative Examples 2 and 3), it can be seen that the polycondensation reaction is inhibited and the reaction time is long.

이상 상술한 바와 같이, 본 발명에 따라 제조된 폴리에틸렌테레프탈레이트 중합체는 내열성이 우수하며, 산업용 합성섬유의 원료로서 특히 유용하다.As described above, the polyethylene terephthalate polymer prepared according to the present invention is excellent in heat resistance and is particularly useful as a raw material of industrial synthetic fibers.

Claims (5)

에틸렌글리콜과 테레프탈산을 에스테르화 반응시켜 올리고머를 제조하는 단계; 및Preparing an oligomer by esterifying ethylene glycol and terephthalic acid; And 생성된 올리고머를 중축합하되, 상기 중축합 반응의 말기에 인계 내열 안정제를 첨가하거나, 중축합 반응 종료 직전에 폴리카보디이미드를 첨가하는 단계를 포함하는 폴리에틸렌테레프탈레이트의 제조방법.Polycondensation of the resulting oligomer, a method of producing a polyethylene terephthalate comprising the step of adding a polyphosphorus heat stabilizer at the end of the polycondensation reaction, or just before the end of the polycondensation reaction. 제1항에 있어서, 상기 인계 내열 안정제는 인산, 아인산, 폴리인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리메틸포스핀, 트리페닐포스핀 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인 폴리에틸렌테레프탈레이트의 제조방법.The preparation of polyethylene terephthalate according to claim 1, wherein the phosphorus heat stabilizer is selected from the group consisting of phosphoric acid, phosphorous acid, polyphosphoric acid, trimethylphosphate, triethylphosphate, trimethylphosphine, triphenylphosphine and mixtures thereof. Way. 제1항에 있어서, 상기 인계 내열 안정제의 사용량은 폴리에틸렌테레프탈레이트 중합체에 대하여 25 내지 500ppm인 것인 폴리에틸렌테레프탈레이트의 제조방법.The method of claim 1, wherein the amount of the phosphorus heat stabilizer is 25 to 500 ppm based on the polyethylene terephthalate polymer. 제1항에 있어서, 상기 폴리카보디이미드의 사용량은 폴리에틸렌테레프탈레이트 중합체에 대하여 200 내지 1000ppm인 것인 폴리에틸렌테레프탈레이트의 제조방법.The method of claim 1, wherein the polycarbodiimide is used in an amount of 200 to 1000 ppm based on the polyethylene terephthalate polymer. 제1항에 있어서, 상기 중축합 반응의 말기 및 중축합 반응 종료 직전에 인계 내열 안정제 및 폴리카보디이미드가 각각 첨가되는 것인 폴리에틸렌테레프탈레이트의 제조방법.The method for producing polyethylene terephthalate according to claim 1, wherein the phosphorus heat stabilizer and the polycarbodiimide are added at the end of the polycondensation reaction and immediately before the end of the polycondensation reaction.
KR1020040116055A 2004-12-30 2004-12-30 Method for producing polyethyleneterephthalate having improved heat resistance KR100855694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040116055A KR100855694B1 (en) 2004-12-30 2004-12-30 Method for producing polyethyleneterephthalate having improved heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040116055A KR100855694B1 (en) 2004-12-30 2004-12-30 Method for producing polyethyleneterephthalate having improved heat resistance

Publications (2)

Publication Number Publication Date
KR20060077247A true KR20060077247A (en) 2006-07-05
KR100855694B1 KR100855694B1 (en) 2008-09-03

Family

ID=37169356

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040116055A KR100855694B1 (en) 2004-12-30 2004-12-30 Method for producing polyethyleneterephthalate having improved heat resistance

Country Status (1)

Country Link
KR (1) KR100855694B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183771A1 (en) * 2016-04-19 2017-10-26 (주)효성 Polyethylene terephthalate polymer, yarn comprising same, and method for manufacturing car mat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0175204B1 (en) * 1995-10-10 1999-04-01 김준웅 Method for producing high molecular weight polybutylene terephthalate
KR20010008908A (en) * 1999-07-05 2001-02-05 조정래 Non-hydrolyzable polyetherester polymer and manufacturing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183771A1 (en) * 2016-04-19 2017-10-26 (주)효성 Polyethylene terephthalate polymer, yarn comprising same, and method for manufacturing car mat

Also Published As

Publication number Publication date
KR100855694B1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
KR100264317B1 (en) Process for producing polyesters using titanium-containing catalyst-inhibitor combinations
EP0900247B1 (en) Method of catalyst deactivation in continuous polyethylene terephthalate production
EP0882083B1 (en) Process for preparing copolyesters of terephthalic acid, ethylene glycol, and 1,4-cyclohexanedimethanol exhibiting a neutral hue, high clarity and increased brightness
US6342579B2 (en) Method for preparing polyester resin copolymerized with 1,4-cyclohexanedimethanol
US20020028904A1 (en) Crystalline polyester resins and processes for their preparation
KR100603346B1 (en) Method for the preparation of polybutylene terephthalate resin
CN102964579A (en) Reinforced thermoplastic polyester elastomer and preparation method thereof
KR100620665B1 (en) Process for the preparation of polyester resin
KR101496634B1 (en) Method for preparing polyester resin copolymerized with neopentyl glycol
KR100855694B1 (en) Method for producing polyethyleneterephthalate having improved heat resistance
KR20160052906A (en) Methods of preparing biodegradable polyester resin and resin from the method
KR20160048015A (en) Poly(cyclohexylenedimethylene terephthalate) having improved crystallization rate and the method manufacturing the same
KR100883955B1 (en) Method for producing polyethyleneterephthalate having improved heat resistance
KR20020075434A (en) Zero-heel polyester process
KR100525705B1 (en) Method for producing polybutylene terephthalate
CN114989406B (en) Application of non-metal organic compound in DMT method for synthesizing polyester, DMT method functional copolyester and preparation method thereof
KR101734421B1 (en) Improved process for the preparation of modified poly(alkylene terephthalate) employing an in-situ titanium-containing catalyst
KR101396443B1 (en) Polylactide resin having improved thermal stability
KR100286251B1 (en) Process for the preparation of polyethylene naphthalate based polymers
KR100513118B1 (en) Method for preparing polyester resin copolymerized with 1,4-cyclohexanedimethanol at enhanced condensation polymerization rate
JP3873428B2 (en) Process for producing polybutylene terephthalate
KR100225284B1 (en) Process for preparing poly(butylene terephthalate) having excellent heat resistance property
KR101562441B1 (en) Method for Preparing Polyester Polymer Having Excellent Physical and Chemical Characteristics
KR920009688B1 (en) Process for preparing polybutylene terephthalate
KR102252791B1 (en) Preparation method of polycyclohexylenedimethylene terephthalate resin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110623

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee