KR20060073436A - Cathod for lithium secondary batteries having improved cathode coating nature and lithium secondary batteries using the same - Google Patents

Cathod for lithium secondary batteries having improved cathode coating nature and lithium secondary batteries using the same Download PDF

Info

Publication number
KR20060073436A
KR20060073436A KR1020050106944A KR20050106944A KR20060073436A KR 20060073436 A KR20060073436 A KR 20060073436A KR 1020050106944 A KR1020050106944 A KR 1020050106944A KR 20050106944 A KR20050106944 A KR 20050106944A KR 20060073436 A KR20060073436 A KR 20060073436A
Authority
KR
South Korea
Prior art keywords
positive electrode
lithium secondary
slurry
secondary battery
weight
Prior art date
Application number
KR1020050106944A
Other languages
Korean (ko)
Other versions
KR100643631B1 (en
Inventor
윤희찬
김종섭
양호석
이영기
곽동학
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to US11/314,210 priority Critical patent/US7829219B2/en
Publication of KR20060073436A publication Critical patent/KR20060073436A/en
Application granted granted Critical
Publication of KR100643631B1 publication Critical patent/KR100643631B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 슬러리에 중합금지제를 포함하는 것을 특징으로 하는 리튬이차전지용 정극에 관한 것이다. 본 발명에 따른 리튬이차전지용 정극의 구성에 의하면 정극을 제조할 때 발생할 수 있는 슬러리(Slurry)의 겔화(gelation)를 방지함으로써 정극의 접착성을 증가시켜 코팅성을 향상시키고, 코팅의 용이성 또한 향상킬 수 있다.The present invention relates to a positive electrode for a lithium secondary battery, wherein the slurry contains a polymerization inhibitor. According to the configuration of the positive electrode for a lithium secondary battery according to the present invention by increasing the adhesion of the positive electrode by preventing the gelation of the slurry (Slurry) that can occur when manufacturing the positive electrode to improve the coating properties, also improves the ease of coating Can kill.

중합금지제, 리튬이차전지, 정극, 슬러리, 겔화 Polymerization inhibitor, lithium secondary battery, positive electrode, slurry, gelation

Description

향상된 정극 코팅성을 가지는 리튬이차전지용 정극 및 이를 이용한 리튬이차전지{Cathod for Lithium secondary batteries having improved cathode coating nature And Lithium secondary batteries using the same}Cathode for Lithium secondary batteries having improved cathode coating nature And Lithium secondary batteries using the same

본 발명은 향상된 정극 코팅성을 가지는 리튬이차 전지용 정극에 관한 것으로서, 보다 상세하게는 전지의 정극 제조시 발생할 수 있는 슬러리(Slurry)의 겔화(gelation)를 방지함으로써 향상된 정극 코팅성을 가지는 리튬이차 전지용 정극에 관한 것이다.   The present invention relates to a positive electrode for a lithium secondary battery having an improved positive electrode coating property, and more particularly, for a lithium secondary battery having an improved positive electrode coating property by preventing gelation of a slurry that may occur in manufacturing a positive electrode of a battery. It is about a positive electrode.

일반적으로 정극 활물질로 사용되는 리튬메탈옥사이드(LiMO2)는 구형 또는 유사구형을 가지는 분말로써, 전자전도를 원활하게 하기 위해서 입자간의 접착력이 좋은 것을 사용한다. In general, lithium metal oxide (LiMO 2 ) used as a positive electrode active material is a powder having a spherical or pseudo-spherical shape, in order to facilitate electron conduction, a good adhesion between particles is used.

이러한 용도로 투입되어 사용되는 물질을 바인더라고 하며, 주로 폴리비닐리덴 플르오라이드(Polyvinylidene Fluoride, PVdF)가 사용된다. PVdF는 원소 중 전기음성도가 가장 큰 불소(F) 성분과 전기 음성도가 가장 낮은 수소(H) 성분으로 구성되는데, 이는 다이폴모멘트(dipole moment)가 큰 분자구조를 갖고 있는 단량체로 이루어진 고분자이다.     The material used for this purpose is called a binder, and polyvinylidene fluoride (PVdF) is mainly used. PVdF is composed of fluorine (F), which has the highest electronegativity, and hydrogen (H), which has the lowest electronegativity.It is a polymer composed of monomers with a molecular structure with a large dipole moment. .

리튬이온전지 및 리튬폴리머전지의 극판 바인더로서 주로 이용되는 PVdF는 수평균 분자량이 130,000 ~ 220,000 정도의 사슬을 형성하고 있다. PVdF의 제조공정에서 만들어지는 pVdF는 α와 ß형이 혼재된 상을 이루고 있다. 그러나 이를 용액성형(solvent casting)하게 되면, α상이 뒤틀린(distortion) γ상을 갖게 되는 것이 일반적인 구조이다.      PVdF, which is mainly used as a plate binder of lithium ion batteries and lithium polymer batteries, forms a chain having a number average molecular weight of about 130,000 to 220,000. PVdF produced in the PVdF manufacturing process is a mixture of α and ß form. However, when the solution casting (solvent casting), it is a general structure that the α phase has a distortion (γ) phase.

일반적으로 PVdF 바인더를 정극에 투입하는 방법은 용매인 N-메틸 피롤리돈(N-methyl- Pyrrolidone)에 PVdF 바인더를 용해하여 용액을 만들고 여기에 활물질을 가하여 혼합한다. 이와 같이 활물질, 도전재, 바인더, NMP가 고루 분산되어 있는 상태를 슬러리라 하는데, 이 슬러리를 집전체 위에 일정한 두께로 코팅하고, 건조하게 되면 집전체위에 코팅 고형분의 정극이 제조되는 것이다.    In general, a method of injecting a PVdF binder into a positive electrode dissolves a PVdF binder in a solvent, N-methyl-pyrrolidone, to form a solution, and adds an active material thereto to mix the same. As such, a state in which the active material, the conductive material, the binder, and the NMP are evenly dispersed is referred to as a slurry, and when the slurry is coated on a current collector to a certain thickness and dried, a positive electrode of a coated solid is produced on the current collector.

정극의 접착력은 슬러리가 액상의 바인더에서 건조되면서 고체상으로 변화하게 되고, 이때 입자와 입자간 또는 집전체와 입자간에 바인더가 고체상으로 존재하면서 접착력을 가지게 된다. 이때 PVdF는 ß또는 γ-PVdF로 변화한다. 상기 PVdF 구조는 불소원자가 한쪽 방향으로 배열되어 있어, 다이폴 모멘트가 크게 증가하여 많은 수소 분자 결합을 이루게 된다.     The adhesive force of the positive electrode is changed into a solid phase as the slurry is dried in a liquid binder, and at this time, the binder is present as a solid phase between particles and particles or between the current collector and the particles to have an adhesive force. At this time, PVdF is changed to ß or γ-PVdF. In the PVdF structure, since the fluorine atoms are arranged in one direction, the dipole moment is greatly increased to form many hydrogen molecular bonds.

이러한 극성에 의하여 수소이온은 용매 중의 양이온에 특히 취약한 성질을 가지게 된다. 이때 만약 양극 활물질의 Li+ 이온과 같은 알칼리 성분이 접근하면, 수소는 그 극성에 의하여 불소와 결합하여 불산(HF)과 같은 형태로 탈리되고, 이온 을 잃어버린 탄소들은 전자를 공유하게 되어 이중결합을 형성하게 된다.     Due to this polarity, hydrogen ions are particularly vulnerable to cations in the solvent. At this time, if an alkaline component such as Li + ion of the positive electrode active material approaches, hydrogen bonds with fluorine by its polarity and is released in the form of hydrofluoric acid (HF), and carbons which lose ions share electrons to form a double bond. Done.

상기와 같이 형성된 이중결합들은 산소,수분 및 기타 가교화를 촉진시키는 화합물에 의해 가교화가 진행되어 결과적으로 슬러리의 겔화를 야기시킨다. 이러한 겔화는 슬러리가 집전체에 균일하게 코팅되는 것을 불가능하게 하고, 코팅을 하더라도 입자와 입자 또는 입자와 집전체간의 접착력을 감소시킨다.    The double bonds formed as described above undergo crosslinking by compounds that promote oxygen, moisture and other crosslinking, resulting in gelation of the slurry. This gelation makes it impossible for the slurry to be uniformly coated on the current collector and, even when coated, reduces the adhesion between the particles and the particles or between the particles and the current collector.

입자와 입자간 접착력이 부족하면 정극 표면에서 입자의 탈락이 용이하게 되고, 그 결과 전지안전성이 저하될 수 있다. 즉 불충분한 접착력으로 인해 탈락된 정극의 입자는 전지 내부에서 마이크로쇼트(microshort)를 발생시켜 전지의 성능을 저하시킬 수 있으며, 쇼트가 커지면 단락으로 인한 화재가 발생할 수 있다.     Lack of adhesion between the particles and the particles facilitates the dropping of the particles from the surface of the positive electrode, resulting in deterioration of battery safety. That is, the particles of the positive electrode dropped due to insufficient adhesive force may generate microshort inside the battery, thereby degrading the performance of the battery, and when the short is large, a fire due to a short circuit may occur.

또한 입자와 집전체간의 접착력이 감소하게 되면 입자로부터 집전체로의 전자이동에 저항을 받게 되어, 전자전도속도가 감소하게 되며 그 결과로 고율특성 및 수명특성이 감소할 수 있다.    In addition, if the adhesion between the particles and the current collector is reduced, the resistance of the electrons from the particles to the current collector is reduced, and the electron conduction speed is reduced, and as a result, high-rate characteristics and lifetime characteristics can be reduced.

뿐만 아니라, 슬러리 코팅이 완료되면 집전체 위에 수백 마이크로미터(㎛)로 도포된 입자들은 프레싱 공정을 거치게 되는데, 이때 접착력 부족으로 입자들이 연속적으로 회전하는 롤(roll)에 달라붙어 표면불량 또는 과압을 가하게 되어 극판의 불량을 초래하기 때문에 입자와 집전체간의 접착력이 감소하면 전지 제조 공정의 수율도 감소되는 문제점이 발생한다.      In addition, when the slurry coating is completed, the particles coated on the current collector hundreds of micrometers (㎛) is subjected to a pressing process, the surface adhesion or overpressure due to the adhesion of the particles to the continuous rotation (roll) Since the negative electrode of the electrode plate is applied to reduce the adhesion between the particles and the current collector, the yield of the battery manufacturing process also decreases.

이에 본 발명은 상기 종래 기술의 제반 문제점을 해결하기 위하여 발명된 것으로 전지의 정극 제조시 발생할 수 있는 겔화를 방지하여 집전체에 슬러리의 코팅을 가능하게 하고, 입자와 입자간 또는 입자와 집전체간 잡착력이 우수한 정극을 제공함에 그 목적이 있다.Accordingly, the present invention is invented to solve the above problems of the prior art to prevent the gelation that may occur during the production of the positive electrode of the battery to enable the coating of the slurry on the current collector, between the particles and the particles or between the particles and the collector The purpose is to provide a positive electrode having excellent adhesion.

본 발명은 상기 목적을 달성하기 위하여, 활물질, 바인더 및 용매를 포함하는 슬러리가 코팅된 리튬이차 전지용 정극에 있어서, 상기 슬러리가 중합금지제를 포함하는 것을 특징으로 하는 리튬이차 전지용 정극을 제공한다.     In order to achieve the above object, the present invention provides a positive electrode for a lithium secondary battery, wherein the slurry contains a polymerization inhibitor in a slurry coated positive electrode including an active material, a binder, and a solvent.

상기 중합금지제는 하기 화학식 1의 카테콜류인 것을 특징으로 한다.The polymerization inhibitor is characterized in that the catechols of the formula (1).

[화학식 1][Formula 1]

Figure 112005064440625-PAT00001
Figure 112005064440625-PAT00001

(단, R1,R2,R3, 및 R4 는 각각 서로 독립적으로 수소 또는 알킬기이다) (Wherein R 1, R 2, R 3, and R 4 are each independently hydrogen or an alkyl group)

상기 화학식 1의 카테콜류는 하기 화학식 2의 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)인 것을 특징으로 한다.The catechols of the formula (1) is characterized in that 4-tert-butyl-catechol (4-tert-butyl-catechol) of the formula (2).

[화학식 2][Formula 2]

Figure 112005064440625-PAT00002
Figure 112005064440625-PAT00002

상기 중합금지제는 카테콜류의 유도체 화합물인 것을 특징으로 한다.The polymerization inhibitor is characterized in that the derivative compound of catechols.

상기 슬러리는 중합금지제 0.01 내지 10 중량부, 활물질 80 내지 99 중량부, 폴리비닐리덴플루오라이드(PVdF) 바인더 0.3 내지 10 중량부를 포함하는 것을 특징으로 한다.The slurry is characterized in that it comprises 0.01 to 10 parts by weight of the polymerization inhibitor, 80 to 99 parts by weight of the active material, 0.3 to 10 parts by weight of polyvinylidene fluoride (PVdF) binder.

또한, 본 발명에서는 도전재로서 아세틸렌블랙 또는 흑연을 0.1 내지 10 중량부를 더 포함하는 것을 특징으로 하는 리튬이차 전지용 정극을 제공한다.In addition, the present invention provides a positive electrode for a lithium secondary battery, further comprising 0.1 to 10 parts by weight of acetylene black or graphite as a conductive material.

또한, 본 발명에서의 활물질은 리튬 전이금속 복합산화물인 것을 특징으로 하는 리튬이차 전지용 정극을 제공한다.In addition, the active material in the present invention provides a lithium secondary battery positive electrode, characterized in that the lithium transition metal composite oxide.

본 발명에서는 상기 리튬이차 전지용 정극을 사용하는 것을 특징으로 하는 리튬이차 전지를 제공한다.The present invention provides a lithium secondary battery, wherein the lithium secondary battery positive electrode is used.

이하, 본 발명의 리튬이차전지용 정극의 구성 성분 및 그 제조과정을 상세히 설명한다.Hereinafter, the components of the lithium secondary battery positive electrode of the present invention and the manufacturing process thereof will be described in detail.

본 발명의 중합금지제란 슬러리의 겔화를 방지하기 위해 첨가하는 물질이다.The polymerization inhibitor of the present invention is a substance added to prevent gelation of the slurry.

중합금지제로는 하기 화학식 1의 카테콜류를 사용하는 것이 바람직하며, 하기 화학 식 2의 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)을 사용하는 것이 보다 바람직하다. It is preferable to use the catechols of the following general formula (1) as a polymerization inhibitor, and it is more preferable to use 4-tert-butyl-catechol of the following chemical formula (2).

[화학식 1][Formula 1]

Figure 112005064440625-PAT00003
Figure 112005064440625-PAT00003

(단, R1,R2,R3, 및 R4는 각각 서로 독립적으로 수소 또는 알킬기이다)(Wherein R 1, R 2, R 3, and R 4 are each independently hydrogen or an alkyl group)

[화학식 2][Formula 2]

Figure 112005064440625-PAT00004
Figure 112005064440625-PAT00004

카테콜(catechol)류 또는 그 유도체를 중합금지제로 첨가하게 되면, 슬러리의 혼합 또는 극판 코팅시 겔화를 억제하여 코팅을 가능하게 할 뿐만 아니라 접착력도 증대된다.     When catechols or derivatives thereof are added as a polymerization inhibitor, not only the coating is possible by inhibiting gelation during mixing or slurry coating of the slurry, but also adhesion is increased.

또한, 중합금지제로 페놀류 또는 크레졸류를 사용할 경우에는 단위 분자당 중합금지 역할을 할 수 있는 하이드록시 그룹이 카테콜류보다 적게 존재하므로, 같은 효과를 내기 위해서 더 많은 양을 투입해야 하는데, 이럴 경우 전지의 조립 후 충방전 시 초기 방전 효율이 떨어지고, 고율에서는 전지 특성이 나빠지게 된다.   In addition, when phenols or cresols are used as polymerization inhibitors, there are less hydroxy groups that can act as polymerization inhibitors per unit molecule than catechols. Therefore, a larger amount should be added to achieve the same effect. After assembling, the initial discharge efficiency during charging and discharging decreases, and at high rates, the battery characteristics deteriorate.

중합금지제는 슬러리를 제조할 때 첨가하는 것이 바람직하며, 용매에 용해시켜 사용하는 것이 더욱 바람직하다. 이를 위하여 a) 활물질 80 내지 99 중량부, 바람직하게는 92 내지 96 중량부 b) PVdF 바인더 0.3 내지 10 중량부, 바람직하게는 1 내지 6 중량부, 및 c) 카테콜류 또는 그 유도체 0.01 중량부 내지 10 중량부, 바람직하게는 0.05 중량부 내지 2 중량부를 용매에 용해 및 분산시켜 정극 슬러리를 제조한 후 이를 각 정극의 집전체에 코팅하고, 건조하여 정극을 제조한다.     It is preferable to add a polymerization inhibitor at the time of manufacturing a slurry, and it is more preferable to use it, melt | dissolving in a solvent. To this end, a) 80 to 99 parts by weight of the active material, preferably 92 to 96 parts by weight b) 0.3 to 10 parts by weight, preferably 1 to 6 parts by weight of PVdF binder, and c) 0.01 parts by weight to catechols or derivatives thereof. 10 parts by weight, preferably 0.05 parts by weight to 2 parts by weight of a solvent is prepared by dissolving and dispersing it in a positive electrode slurry, which is then coated on a current collector of each positive electrode and dried to produce a positive electrode.

또한 상기 정극 슬러리는 d) 도전재로서 아세틸렌블랙 또는 흑연을 0.1 내지 10 중량부, 바람직하게는 1 내지 5 중량부로 더 포함할 수 있다.      In addition, the positive electrode slurry may further include 0.1 to 10 parts by weight, preferably 1 to 5 parts by weight of acetylene black or graphite as the conductive material.

상기 용매는 N-메틸피롤리돈, 아세톤, 디메틸아세트아마이드, 또는 디메틸포름알데하이드와 같은 유기용매 및 물과 같은 무기용매로 이루어진 군에서 적어도 하나 이상을 선택할 수 있다.   The solvent may be at least one selected from the group consisting of an organic solvent such as N-methylpyrrolidone, acetone, dimethylacetamide, or dimethylformaldehyde and an inorganic solvent such as water.

용매의 사용량은 정극 슬러리의 코팅 두께, 제조 수율을 고려하여 상기 활물질, 도전재, 정극바인더 및 겔화 방지제가 용해, 분산될 수 있는 정도이면 충분하다. 이 용매들은 정극 슬러리를 코팅한 후 건조에 의해 제거된다.    The amount of the solvent used is sufficient to dissolve and disperse the active material, the conductive material, the positive electrode binder, and the gelling agent in consideration of the coating thickness and production yield of the positive electrode slurry. These solvents are removed by drying after coating the positive electrode slurry.

본 발명의 접착력 증진 첨가제는 일반적인 리튬이온전지 또는 리튬폴리머전지의 양극과 음극 모두에 사용될 수 있다. The adhesion promoting additive of the present invention can be used for both the positive electrode and the negative electrode of a general lithium ion battery or a lithium polymer battery.

상기 양극으로서 리튬 전이금속 복합산화물(LiaMO2)을 사용할 수 있다. As the positive electrode, a lithium transition metal composite oxide (Li a MO 2 ) may be used.

(단, M은 Co,Ni,Mn,Al, Mg, Sr, Ca, P, Pb, Y, Zr 으로 이루어진 군에서 선택되는 적어도 하나이고, 0.9≤a≤1.1이다.)(However, M is at least one selected from the group consisting of Co, Ni, Mn, Al, Mg, Sr, Ca, P, Pb, Y, Zr, and 0.9≤a≤1.1.)

또한 도전성을 향상시킬 목적으로 사용되는 상기 도전재로서 아세틸렌블랙 또는 흑연 등을 추가로 사용할 수 있다.       In addition, acetylene black or graphite may be further used as the conductive material used for the purpose of improving conductivity.

본 발명의 정극을 포함하는 전지의 전해액은 일반적인 이차전지의 전해액과 같이 LiClO4,LiPF6 등과 같은 리튬염을 비수소성 유기용매에 용해한 것을 사용한다. As the electrolyte solution of the battery including the positive electrode of the present invention, a lithium salt such as LiClO 4 , LiPF 6 or the like dissolved in a non-hydrogen organic solvent is used as the electrolyte solution of a general secondary battery.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석해서는 안 된다.       Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.

<실시예 1><Example 1>

(슬러리의 제조)      (Manufacture of Slurry)

활물질 분말 96wt%에 도전재 2wt%와 PVDF 2wt%를 혼합하고,4-터셔리-부틸-카테콜(4-tert-butyl-catechol)을 5wt% NMP수용액으로 만든 후, 활물질의 0.01wt%가 되도록 투입하고, 추가로 적당량의 NMP를 첨가하여 슬러리를 만들었다. 상기 슬러리를 온도 22℃, 상대습도 50% 분위기에서 방치하면서 겔화 시간을 관찰하였다.       96 wt% of the active material powder was mixed with 2 wt% of the conductive material and 2 wt% of the PVDF, 4-tert-butyl-catechol was prepared from 5 wt% NMP aqueous solution, and then 0.01 wt% of the active material was added. The slurry was added as much as possible, and an appropriate amount of NMP was further added. The slurry was left to stand at a temperature of 22 ° C. and a relative humidity of 50% to observe the gelation time.

(양극의 제조)      (Manufacture of Anode)

상기의 방법으로 제조한 슬러리를 두께 20㎛의 알루미늄박에 닥터 블레이드를 이용하여 코팅, 건조하여 극판을 제작하였다. The slurry prepared by the above method was coated and dried on an aluminum foil having a thickness of 20 μm using a doctor blade to prepare a plate.

(전지의 제조)      (Production of battery)

음극으로서 리튬 금속을, 전해액으로는 1.15M의 LiPF6 EC/DMC/DEC 용매를 사용하여 Ar 분위기의 글로브 박스(glove box) 속에서 2016형 코인전지를 제작했다. 제작한 전지는 12시간 동안 숙성(aging)시켜 초기전압(OCV)이 안정된 후, 정극에 대한 전류 밀도를 0.150mA/ 로 하여 4.3 ∼ 3.0 V 전압범위에서 충방전 시험을 행했다. 첫 번째 사이클의 방전 용량(초기용량)을 표1에 나타내었다.A 2016 type coin cell was fabricated in a glove box in an Ar atmosphere using lithium metal as a negative electrode and 1.15M of LiPF 6 EC / DMC / DEC solvent as an electrolyte. The produced battery was aged for 12 hours to stabilize the initial voltage (OCV), and then the charge and discharge test was conducted in the voltage range of 4.3 to 3.0 V with a current density of 0.150 mA / cm 2 . The discharge capacity (initial capacity) of the first cycle is shown in Table 1.

<실시예 2 ><Example 2>

슬러리 및 양극의 제조 시 첨가하는 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)의 양을 활물질의 0.03wt%로 변경하는 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다. The slurry was prepared in the same manner as in Example 1 except for changing the amount of 4-tert-butyl-catechol added to the slurry and the positive electrode to 0.03 wt% of the active material. And batteries were prepared.

<실시예 3><Example 3>

슬러리 및 양극의 제조 시 첨가하는 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)의 양을 활물질의 0.05wt%로 변경하는 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다. The slurry was prepared in the same manner as in Example 1 except for changing the amount of 4-tert-butyl-catechol added to the slurry and the positive electrode to 0.05 wt% of the active material. And batteries were prepared.

<실시예 4><Example 4>

슬러리 및 양극의 제조 시 첨가하는 4-터셔리-부틸-카테콜(4-tert-butyl- catechol)의 양을 활물질의 0.07wt%로 변경하는 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다.  The slurry was prepared in the same manner as in Example 1, except that the amount of 4-tert-butyl-catechol added to the slurry and the cathode was changed to 0.07 wt% of the active material. And batteries were prepared.

<실시예 5>Example 5

슬러리 및 양극의 제조 시 첨가하는 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)의 양을 활물질의 0.1wt%로 변경하는 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다.   The slurry was prepared in the same manner as in Example 1, except that the amount of 4-tert-butyl-catechol added in the preparation of the slurry and the positive electrode was changed to 0.1 wt% of the active material. And batteries were prepared.

<실시예 6><Example 6>

슬러리 및 양극의 제조 시 첨가하는 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)의 양을 활물질의 0.2wt%로 변경하는 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다.   The slurry was prepared in the same manner as in Example 1, except that the amount of 4-tert-butyl-catechol added to the slurry and the cathode was changed to 0.2 wt% of the active material. And batteries were prepared.

<실시예 7><Example 7>

슬러리 및 양극의 제조 시 첨가하는 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)의 양을 활물질의 0.3wt%로 변경하는 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다.   The slurry was prepared in the same manner as in Example 1, except that the amount of 4-tert-butyl-catechol added to the slurry and the cathode was changed to 0.3 wt% of the active material. And batteries were prepared.

<비교예 1>Comparative Example 1

슬러리 및 양극의 제조 시 중합금지제인 4-터셔리-부틸-카테콜(4-tert-butyl- catechol)을 투입하지 않은 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다.   A slurry and a battery were prepared in the same manner as in Example 1, except that 4-tert-butyl-catechol, a polymerization inhibitor, was not added when preparing the slurry and the positive electrode.

<비교예 2>Comparative Example 2

슬러리 및 양극의 제조 시 겔화방지제인 4-터셔리-부틸-카테콜(4-tert-butyl-catechol) 대신에 페놀(Phenol) 0.5wt%를 투입한 것을 제외하고는 상기 실시예 1과 같은 방법으로 슬러리 및 전지를 제조하였다.   The same method as in Example 1, except that 0.5 wt% of phenol was added instead of 4-tert-butyl-catechol, which is an antigelling agent, in preparing the slurry and the positive electrode. Slurries and batteries were prepared.

0.1C 방전 (mAh/g)0.1C discharge (mAh / g) 0.1C 효율 (%)0.1C efficiency (%) 1.0C 방전 (mAh/g)1.0C discharge (mAh / g) 1.0C/0.1C (%)1.0C / 0.1C (%) 겔화 시간 (hr)Gel time (hr) 실시예1Example 1 191.0191.0 93.793.7 171.3171.3 89.789.7 1 hr1 hr 실시예2Example 2 191.7191.7 94.294.2 172.1172.1 89.889.8 4 hr4 hr 실시예3Example 3 190.4190.4 93.993.9 170.8170.8 89.789.7 9 hr9 hr 실시예4Example 4 188.7188.7 93.293.2 167.8167.8 88.988.9 12 hr12 hr 실시예5Example 5 187.5187.5 91.391.3 168.2168.2 89.789.7 20 hr20 hr 실시예6Example 6 190.5190.5 89.089.0 167.6167.6 87.987.9 63 hr63 hr 실시예7Example 7 190.4190.4 87.787.7 164.7164.7 86.686.6 112 hr112 hr 비교예1Comparative Example 1 190.2190.2 92.592.5 167.5167.5 88.188.1 0.3 hr0.3 hr 비교예2Comparative Example 2 180.5180.5 84.284.2 155.7155.7 86.386.3 43 hr43 hr

본 발명에 의하여 제조한 전지는 전지 조립 후 충방전 시의 초기 방전 효율 및 고율에서의 전지 특성이 우수하며, 양극 활물질의 슬러리 제조 시 발생할 수 있는 겔화를 현저히 억제해 줌으로써, 극판의 제조를 가능하게 하며 또한 슬러리의 코팅특성을 우수하게 해 주어 전지의 특성이 향상되었다.      The battery manufactured according to the present invention has excellent initial discharge efficiency and high battery characteristics at high rate during charge and discharge after battery assembly, and significantly suppresses gelation that may occur during slurry production of a positive electrode active material, thereby enabling production of a pole plate. In addition, the excellent coating properties of the slurry improved the characteristics of the battery.

Claims (8)

활물질, 바인더 및 용매를 포함하는 슬러리가 코팅된 리튬이차 전지용 정극에 있어서, 상기 슬러리가 중합금지제를 포함하는 것을 특징으로 하는 리튬이차 전지용 정극.      A positive electrode for a lithium secondary battery coated with a slurry containing an active material, a binder, and a solvent, wherein the slurry contains a polymerization inhibitor. 제 1항에 있어서, 상기 중합금지제는 하기 화학식 1의 카테콜류인 것을 특징으로 하는 리튬이차 전지용 정극. The positive electrode for a lithium secondary battery according to claim 1, wherein the polymerization inhibitor is catechols of the following Chemical Formula 1. [화학식 1][Formula 1]
Figure 112005064440625-PAT00005
Figure 112005064440625-PAT00005
(단, R1,R2,R3, 및 R4 는 각각 서로 독립적으로 수소 또는 알킬기이다) (Wherein R 1, R 2, R 3, and R 4 are each independently hydrogen or an alkyl group)
제 2항에 있어서, 상기 화학식 1의 카테콜류는 하기 화학식 2의 4-터셔리-부틸-카테콜(4-tert-butyl-catechol)인 것을 특징으로 하는 리튬이차 전지용 정극.The cathode of claim 2, wherein the catechols of Chemical Formula 1 are 4-tert-butyl-catechol of Chemical Formula 2 below. [화학식 2][Formula 2]
Figure 112005064440625-PAT00006
Figure 112005064440625-PAT00006
제 1항에 있어서, 상기 중합금지제는 카테콜류의 유도체 화합물인 것을 특징으로 하는 리튬이차 전지용 정극.The positive electrode for a lithium secondary battery according to claim 1, wherein the polymerization inhibitor is a derivative compound of catechols. 제 1항에 있어서, 상기 슬러리는 중합금지제 0.01 내지 10 중량부, 활물질 80 내지 99 중량부, 폴리비닐리덴플루오라이드(PVdF) 바인더 0.3 내지 10 중량부를 포함하는 것을 특징으로 하는 리튬이차 전지용 정극.The positive electrode of claim 1, wherein the slurry comprises 0.01 to 10 parts by weight of a polymerization inhibitor, 80 to 99 parts by weight of an active material, and 0.3 to 10 parts by weight of a polyvinylidene fluoride (PVdF) binder. 제 5항에 있어서, 도전재로서 아세틸렌블랙 또는 흑연을 0.1 내지 10 중량부를 더 포함하는 것을 특징으로 하는 리튬이차 전지용 정극.The cathode for a lithium secondary battery according to claim 5, further comprising 0.1 to 10 parts by weight of acetylene black or graphite as a conductive material. 제 1항에 있어서, 상기 활물질은 리튬 전이금속 복합산화물인 것을 특징으로 하는 리튬이차 전지용 정극.The positive electrode for a lithium secondary battery according to claim 1, wherein the active material is a lithium transition metal composite oxide. 제 1항 내지 제 7항 중 어느 하나의 항에 따른 리튬이차 전지용 정극을 사용하는 것을 특징으로 하는 리튬이차 전지.The lithium secondary battery using the positive electrode for lithium secondary batteries in any one of Claims 1-7.
KR1020050106944A 2004-12-23 2005-11-09 Cathod for Lithium secondary batteries having improved cathode coating nature And Lithium secondary batteries using the same KR100643631B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/314,210 US7829219B2 (en) 2004-12-23 2005-12-21 Cathode for lithium secondary batteries having improved coating properties and lithium secondary batteries using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040111414 2004-12-23
KR20040111414 2004-12-23

Publications (2)

Publication Number Publication Date
KR20060073436A true KR20060073436A (en) 2006-06-28
KR100643631B1 KR100643631B1 (en) 2006-11-10

Family

ID=37166503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050106944A KR100643631B1 (en) 2004-12-23 2005-11-09 Cathod for Lithium secondary batteries having improved cathode coating nature And Lithium secondary batteries using the same

Country Status (1)

Country Link
KR (1) KR100643631B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034769A (en) * 2017-09-25 2019-04-03 에스케이이노베이션 주식회사 Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode
US10581079B2 (en) 2012-11-20 2020-03-03 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and rechargeable lithium battery
CN114335539A (en) * 2021-12-27 2022-04-12 苏州宇量电池有限公司 Method for preventing gel formation of lithium ion battery anode slurry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754611B1 (en) 2012-11-05 2017-07-06 삼성에스디아이 주식회사 Composition for positive electrode of rechargable lithium battery and rechargable lithium battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581079B2 (en) 2012-11-20 2020-03-03 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and rechargeable lithium battery
KR20190034769A (en) * 2017-09-25 2019-04-03 에스케이이노베이션 주식회사 Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode
CN114335539A (en) * 2021-12-27 2022-04-12 苏州宇量电池有限公司 Method for preventing gel formation of lithium ion battery anode slurry

Also Published As

Publication number Publication date
KR100643631B1 (en) 2006-11-10

Similar Documents

Publication Publication Date Title
US7829219B2 (en) Cathode for lithium secondary batteries having improved coating properties and lithium secondary batteries using the same
KR100818263B1 (en) Porous anode active material, method of preparing the same, and anode and lithium battery containing the material
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
KR101328982B1 (en) Anode active material and method of preparing the same
KR101473322B1 (en) Cathode active material and cathode and lithium battery containing the material
KR100682862B1 (en) Electrode for electrochemical cell, manufacturing method thereof, and electrochemical cell containing the electrode
KR101560553B1 (en) Anode active material for lithium rechargeable battery its preparation and lithium battery using same
US8585935B2 (en) Composite for Li-ion cells and the preparation process thereof
KR101460282B1 (en) Lithium electrode and lithium metal batteries fabricated by using the same
KR101255249B1 (en) Positive active material composition, positive electrode prepared by using the same and lithium battery comprising the same
KR101972187B1 (en) Structurally stable active material for battery electrodes
KR20140096915A (en) Composite anode active material, anode and lithium battery containing the same, and preparation method thereof
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
KR20070113794A (en) Organic electrolytic solution and lithium battery employing the same
KR102176341B1 (en) Negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20180025686A (en) Composite anode active material, and Anode and Lithium battery comprising composite anode active material
KR20100062744A (en) Ncm type cathode active material for secondary battery and secondary battery including the same
KR100643631B1 (en) Cathod for Lithium secondary batteries having improved cathode coating nature And Lithium secondary batteries using the same
JP2014096309A (en) Positive electrode for secondary battery and secondary battery using the same
KR20200023623A (en) Anode for lithium secondary battery and lithium secondary battery using the same
KR101919523B1 (en) Positive active material for rechargeable lithium battery and method of preparing the same
KR20160042357A (en) Manufacturing Methods of Silicon Anode withLTO-Coating in Reduced Environment
KR20190118280A (en) Slurry composition for manufacturing secondary battery anode and preparing method thereof and anode for secondary battery comprising the same and lithium secondary battery
EP3121883B1 (en) Electrode for non-aqueous electrolyte secondary battery
KR101783316B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121025

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130829

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161101

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171016

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191004

Year of fee payment: 14