KR20060071106A - Porous calcium phosphates using a hydrothermal hot pressing method and preparation thereof - Google Patents

Porous calcium phosphates using a hydrothermal hot pressing method and preparation thereof Download PDF

Info

Publication number
KR20060071106A
KR20060071106A KR1020040109228A KR20040109228A KR20060071106A KR 20060071106 A KR20060071106 A KR 20060071106A KR 1020040109228 A KR1020040109228 A KR 1020040109228A KR 20040109228 A KR20040109228 A KR 20040109228A KR 20060071106 A KR20060071106 A KR 20060071106A
Authority
KR
South Korea
Prior art keywords
phosphate
weight
calcium
porous body
calcium phosphate
Prior art date
Application number
KR1020040109228A
Other languages
Korean (ko)
Other versions
KR100759718B1 (en
Inventor
김수룡
김영희
김해중
권우택
송희
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR1020040109228A priority Critical patent/KR100759718B1/en
Publication of KR20060071106A publication Critical patent/KR20060071106A/en
Application granted granted Critical
Publication of KR100759718B1 publication Critical patent/KR100759718B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 삼인산칼슘(TCP:tricalcium phosphate) 40∼60 중량%, 사인산칼슘(TeCP:tetracalcium phosphate) 35∼50 중량%, 이인산칼슘(DCPD:dicalcium phosphate) 5∼10 중량%로 이루어지고 전체 조성물 중 Ca/P 비가 1.5∼1.67이고 기공크기 300∼500㎛이고 기공율이 60∼70%인 것을 특징으로 하는 수열열간가압법을 이용한 인산칼슘계 다공체에 관한 것으로, 본 발명으로부터 제조한 인산칼슘계 복합 화합물 다공체는 기존의 폴리우레탄를 이용하여 만든 인산칼슘계 다공체보다 기계적강도, 생체 흡수성이 높아 인공뼈 등의 각종 생체조직 및 의료용 재료 등으로 이용가능하다. The present invention consists of 40 to 60% by weight calcium triphosphate (TCP: tricalcium phosphate), 35 to 50% by weight calcium phosphate (TeCP: tetracalcium phosphate), 5 to 10% by weight calcium diphosphate (DCPD: dicalcium phosphate) The present invention relates to a calcium phosphate-based porous body using a hydrothermal hot pressing method, wherein the Ca / P ratio is 1.5 to 1.67, pore size is 300 to 500 µm, and porosity is 60 to 70%. The composite compound porous body has higher mechanical strength and bioabsorption than a calcium phosphate-based porous body made of a conventional polyurethane, and can be used for various biological tissues and medical materials such as artificial bones.

Description

수열 열간 가압법을 이용한 인산칼슘계 다공체 및 그 제조방법 {Porous calcium phosphates using a hydrothermal hot pressing method and Preparation thereof} Calcium phosphate porous body using hydrothermal hot pressing method and its manufacturing method {Porous calcium phosphates using a hydrothermal hot pressing method and Preparation individual}             

도 1은 본 발명에서 사용한 수열 열간 가압장치의 단면도이다.1 is a cross-sectional view of a hydrothermal hot press device used in the present invention.

도 2는 본 발명의 수열 열간 가압법을 이용한 인산칼슘계 다공체 시료의 X-선 회절분석결과를 나타낸 그래프이다.2 is a graph showing the results of X-ray diffraction analysis of a calcium phosphate-based porous sample using the hydrothermal hot pressing method of the present invention.

도 3은 본 발명의 시료의 주사전자현미경을 이용한 미세구조사진이다.3 is a microstructure photograph of a sample of the present invention using a scanning electron microscope.

※도면의 주요부호에 대한 설명※※ Description of the major symbols in the drawings ※

1 : 상부펀치 2 : 열전대삽입구1: upper punch 2: thermocouple insertion hole

3 : 테프론패킹 4 : 상부피스톤3: teflon packing 4: upper piston

5 : 시편 6 : 반응용수분5: Specimen 6: Water for Reaction

7 : 본체7: body

본 발명은 뼈의 구성성분과 유사하고, 인공뼈 등의 각종 생체조직 및 임플란트등과 같은 의료용재에 이용가능한 물질에 관한 것으로서, 보다 구체적으로는 개선된 기계적강도, 생체 흡수성을 갖는 인산칼슘계 복합 화합물의 다공체 및 그 제조방법에 관한 것이다. The present invention relates to a substance similar to the constituents of bone, and usable for various biological tissues such as artificial bones and medical materials such as implants, and more specifically, a calcium phosphate-based composite having improved mechanical strength and bioabsorbability. The porous body of a compound and its manufacturing method are related.

인산칼슘계 화합물은 우수한 생체활성을 나타내며 골전도성이 우수하여 바이오 세라믹으로 많이 사용되고 있으며 바이오글라스(Bioglass) 또는 에이-더블유 글라스(A-W glass)등의 다른 바이오 세라믹과 비교하여 생체뼈 성분과 유사하다는 장점이 있다. Calcium phosphate compound has excellent bioactivity and has good bone conductivity, so it is widely used as a bio ceramic, and it is similar to other bone ceramic components compared with other bio ceramics such as Bioglass or A-double glass. There is this.

상기 세라믹스 재료 중 실제 뼈대체재로 사용되기 위해서는 살아있는 뼈와 신속히 결합하여야 하는데, 뼈와 신속히 결합하기 위하여 뼈 대체물은 300∼500㎛의 기공(pore)이 삼차원적으로 연결된 다공체로 제조되어야 하며, 그와 같은 이유는 실제로 몸속에 임플란트(Implant)하였을 때 이러한 기공들 사이로 체액이 자유로이 통과하여 새로운 뼈의 생성을 돕는다. 다공체를 제조하기 위하여 폴리우레탄 폼(Polyurethane foam)에 슬러리를 함침하여 소결하는 방법이 있으나, 이러한 방법으로 제조한 아파타이트 다공체는 기계적 강도가 매우 약하여 보관, 운반등이 용이하지 않으며, 하소시 폴리우레탄 폼의 분해로 인하여 발생하는 휘발성유기화합물(Volatile Organic Compound)이 작업 환경에 나쁜 영향을 미치기 때문에 바람직하 지 않다. In order to be used as a real bone substitute of the ceramic material, it must be quickly bonded to the living bone, in order to bond quickly to the bone substitute should be made of a porous body three-dimensionally connected pores (pore) of 300 ~ 500㎛, and The same reason is that when the implant is actually implanted into the body, fluid flows freely between these pores to help produce new bone. In order to manufacture a porous body, there is a method of sintering by impregnating a slurry in a polyurethane foam, but the apatite porous body prepared by this method is very weak in mechanical strength and is not easy to store and transport. Volatile Organic Compounds resulting from the decomposition of are undesirable because they adversely affect the working environment.

수열 열간 가압법(Hydrothermal hot pressing method)은 포화 증기압 조건하에서 비교적 낮은 온도에서 단단한 소결체를 제조하는 방법으로서, 주로 소결이 어려운 탄산칼슘, 탄산마그네슘등을 고화(solid body)시키는데 주로 사용되어져 왔다. 하지만 90년도 이후 생체재료제조에 이 방법을 응용하기 시작하여 미국특허 US 6,338,810 B1에서는 삼인산칼슘(α-TCP:α-tricalcium phosphate), 사인산칼슘 (TeCP:tetracalcium phosphate)등의 인산칼슘 분말을 수분 존재하에서 100∼500℃ 사이에서 100∼500Mpa의 압력을 가하여 치밀체로 고화시키는 방법에 대하여 기재하고 있다. Hydrothermal hot pressing (Hydrothermal hot pressing method) is a method for producing a solid sintered body at a relatively low temperature under saturated vapor pressure conditions, mainly used to solidify the solid body (calcium carbonate, magnesium carbonate, etc.) difficult to sinter. However, since 1990, this method has been applied to the manufacture of biomaterials, and US patent US 6,338,810 B1 has been used to extract calcium phosphate powders such as calcium triphosphate (α-TCP: α-tricalcium phosphate) and calcium phosphate (TeCP). It describes about the method of solidifying to a dense body by applying the pressure of 100-500 Mpa between 100-500 degreeC in presence.

또한 카주유키 호소이(Kazuyuki Hosoi)등은 역시 이인산칼슘이수화물(DCPD: dicalcium phosphate dihydrate)과 수산화칼슘을 150℃, 40Mpa에서 처리하여 고화시키는 방법을 제안하였다.(J. Am. Ceram. Soc., 79 [10] 2771-2774, 1996) 이 방법에서는 외부에서 수분을 가하지 않아도 고온에서 이인산칼슘이수화물의 탈수가 일어나 반응기에 수열 조건을 유지하게 된다. Kazuyuki Hosoi et al. Also proposed a method of solidifying by treating dicalcium phosphate dihydrate (DCPD) and calcium hydroxide at 150 ° C and 40 MPa. (J. Am. Ceram. Soc., 79 [10] 2771-2774, 1996) In this method, calcium diphosphate dihydrate is dehydrated at a high temperature even without external moisture to maintain hydrothermal conditions in the reactor.

N. 야마사키(N. Yamasaki)등은 수산화칼슘과 인산수소암모늄을 300℃, 30Mpa에서 처리하여 100㎛이상의 열린 기공이 존재하는 하이드록시아파타이트 다공체를 제조하였다. 그럴지라도 이 경우에는 기공을 만들기 위하여 템플레이트를 사용하지 않고 반응의 부산물로 나오는 암모니아 가스에 의해 기공이 형성되었기 때문에 기공의 크기분포가 일정하지 않고 기공율이 40% 정도로 작아 생체뼈 대체용으로 적합하지 않았다.N. Yamasaki et al. Prepared a hydroxyapatite porous body having open pores of 100 μm or more by treating calcium hydroxide and ammonium hydrogen phosphate at 300 ° C. and 30 Mpa. However, in this case, because the pores were formed by the ammonia gas coming out as a by-product of the reaction without using a template to make the pores, the size distribution of the pores was not constant and the porosity was about 40%, which was not suitable for the replacement of living bones. .

지금까지 알려진 수열 열간 가압법에 의해 고화된 인산 칼슘계 재료는 기공성이 전혀 없는 치밀체이거나 기공율이 최고 40%인 것으로서 생체뼈 대체용으로 사용하기에는 기공율이 너무 작아 부적합한 문제점이 있었다. Calcium phosphate-based materials solidified by hydrothermal hot pressurization have been known to have no porosity at all, or have a porosity of up to 40%. The porosity is too small to be used as a substitute for living bone.

본 발명의 목적은 조성 및 형태를 생체뼈와 유사하게 하여 60% 이상의 기공율을 가지며 기계적강도, 생체 흡수성을 증진시켜 임플란트 등의 의료용 재료로 이용할 수 있는 골대체재용 인산칼슘계 복합 다공체를 제공하는 데에 있다.
It is an object of the present invention to provide a calcium phosphate-based composite porous body for bone substitute material which has a porosity of 60% or more by making the composition and shape similar to living bone, and which can be used as a medical material such as an implant by improving mechanical strength and bioabsorption. Is in.

상기한 목적을 달성한 본 발명에 의하면, 삼인산칼슘(TCP:tricalcium phosphate) 40∼60 중량%, 사인산칼슘(TeCP:tetracalcium phosphate) 35∼50 중량%, 이인산칼슘(DCPD:dicalcium phosphate) 5∼10 중량%로 이루어지고 전체 조성물 중 Ca/P 비가 1.5∼1.67이고 기공크기 300∼500㎛이고 기공율이 60∼70%인 것을 특징으로 하는 수열열간가압법을 이용한 인산칼슘계 다공체가 제공된다. According to the present invention to achieve the above object, 40 to 60% by weight of calcium triphosphate (TCP: tricalcium phosphate), 35 to 50% by weight of calcium phosphate (TeCP), calcium diphosphate (DCPD: dicalcium phosphate) 5 The calcium phosphate-based porous body using the hydrothermal hot-pressing method is characterized by consisting of ~ 10% by weight, Ca / P ratio of the total composition of 1.5 to 1.67, pore size of 300 to 500㎛, porosity of 60 to 70%.

또한 본 발명에 의하면, 상기한 인산칼슘계 복합 화합물의 다공체를 제조하기 위한 방법으로서, 삼인산칼슘(TCP:tricalcium phosphate) 40∼60 중량%, 사인산칼슘(TeCP:tetracalcium phosphate) 35∼50 중량%, 이인산칼슘(DCPD:dicalcium phosphate) 5∼10 중량%를 혼합하고, 기공형성제로서 NaCl, KCl, NH4Cl, NaF을 포함 하는 무기염, 수용성유리 및 합성수지중 어느 한 성분을 100∼200 중량부 첨가하고, 인산수소암모늄 용액을 20∼40중량부 첨가한 후, 수열열간가압장치의 셀내부에서 100∼300℃의 온도, 30∼100KN의 압력에서 처리한 후, 25∼60℃의 증류수에 24∼72시간 동안 담구어 상기 기공형성제를 녹여낸 다음, 800∼1200℃에서 소결시키는 것을 특징으로 하는 수열열간가압법을 이용한 인산칼슘계 다공체의 제조방법이 제공된다.In addition, according to the present invention, as a method for producing a porous body of the calcium phosphate complex compound, 40 to 60% by weight calcium triphosphate (TCP: tricalcium phosphate), 35 to 50% by weight calcium phosphate (TeCP: tetracalcium phosphate) , 5-10% by weight of calcium diphosphate (DCPD: dicalcium phosphate), and the inorganic salt containing NaCl, KCl, NH 4 Cl, NaF as a pore-forming agent, water-soluble glass and synthetic resin any component 100-200 After the addition of 20 parts by weight to 20 parts by weight of ammonium hydrogen phosphate solution, the mixture was treated at a temperature of 100 to 300 ° C. and a pressure of 30 to 100 KN in the cell of the hydrothermal pressurization apparatus, followed by distilled water at 25 to 60 ° C. A method for producing a calcium phosphate-based porous body using a hydrothermal hot-pressing method, which is immersed for 24 to 72 hours to dissolve the pore-forming agent and then sintered at 800 to 1200 ° C.

이하, 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르는 인산칼슘계 다공체는 하이드록시아파타이트/트리칼슘포스페이트의 혼합물의 일종으로서 생체 뼈와 기공율 및 형태가 유사하고, 생체흡수성이 순수한 하이드록시아파타이트 다공체에 비하여 월등히 우수하여 인공뼈 등의 각종 생체조직 및 의료용 재료 등에 이용할 수 있는 소재이다. 본 발명의 인산칼슘계 다공체는 기공크기 300∼500㎛이고 기공율이 60∼70%일 때 특히 바람직한 생체친화성을 나타낸다. 그와 같은 이유는 실제로 몸속에 임플란트(Implant)하였을 때 이러한 기공들 사이로 체액이 자유로이 통과하여 새로운 뼈의 생성을 돕는다.The calcium phosphate-based porous body according to the present invention is a kind of a mixture of hydroxyapatite / tricalcium phosphate, which has similar porosity and shape to living bones, and is superior to pure hydroxyapatite porous bodies having high bioabsorption, and thus, various living bodies such as artificial bones. It is a material that can be used for tissues and medical materials. The calcium phosphate-based porous body of the present invention exhibits particularly favorable biocompatibility when the pore size is 300 to 500 µm and the porosity is 60 to 70%. The reason for this is that when fluid is actually implanted in the body, fluid flows freely between these pores to help produce new bone.

본 발명의 삼인산칼슘(TCP:tricalcium phosphate) 40∼60 중량%, 사인산칼슘(TeCP:tetracalcium phosphate) 35∼50 중량%, 이인산칼슘(DCPD:dicalcium phosphate) 5∼10 중량%를 혼합한 것을 사용하는 것이 바람직하다. 위 원료로 사용한 인산칼슘화합물은 고온에서 비교적 용해도가 높아 서로 반응하여 하이드록시아파타이트로 변화되기가 쉬운 물질들이다. 40 to 60% by weight of calcium triphosphate (TCP: tricalcium phosphate), 35 to 50% by weight of calcium phosphate (TeCP) and 5 to 10% by weight of calcium diphosphate (DCPD: dicalcium phosphate) It is preferable to use. Calcium phosphate compounds used as the above raw materials are relatively high solubility at high temperature and are easily reacted with each other to change into hydroxyapatite.

또한 본 발명에서는 인산칼슘(MCP:monocalcium phosphate) 5∼10 중량부를 더 추가하여 혼합할 수 있다.In addition, in the present invention, 5-10 parts by weight of calcium phosphate (MCP: monocalcium phosphate) may be further added and mixed.

상기와 같은 조성으로 혼합하게 되면 최종물에서의 Ca/P 비가 1.5∼1.67인 하이드록시아파타이트가 얻어질 수 있는데, Ca/P 비가 1.5미만인 경우에는 생체내에서 너무 빨리 용해되어 생체뼈 대체제로 사용이 어려우며 1.67초과시에는 생체 흡수성이 떨어져 생체 친화성이 낮아지는 문제가 발생한다. 상기 Ca/P 비를 가장 바람직한 1.5 -1.67로 변화시키기 위해서는 각각 Ca/P 비가 다른 (예를들어 삼인산칼슘=1.5 사인산칼슘=2, 이인산칼슘=1, 인산칼슘=0.5) 원료의 적절한 조합이 필요하다.When the composition is mixed as described above, hydroxyapatite having a Ca / P ratio of 1.5 to 1.67 in the final product can be obtained. When Ca / P ratio is less than 1.5, it is dissolved too quickly in vivo and used as a substitute for living bone. It is difficult and when the 1.67 exceeds, there is a problem that the bioavailability is lowered and the biocompatibility is lowered. In order to change the Ca / P ratio to the most desirable 1.5 -1.67, appropriate combinations of raw materials having different Ca / P ratios (for example, calcium triphosphate = 1.5 calcium phosphate = 2, calcium diphosphate = 1, calcium phosphate = 0.5) This is necessary.

본 발명에서는 상기 혼합물을 포화 증기압 조건하에서 비교적 낮은 온도에서 단단한 소결체를 제조하는 장치인 수열열간가압장치에서 처리함으로써 하이드록시아파타이트와 트리칼슘포스페이트의 혼성물을 만들 수 있다.In the present invention, a mixture of hydroxyapatite and tricalcium phosphate can be prepared by treating the mixture in a hydrothermal hot press, which is a device for producing a rigid sintered body at a relatively low temperature under saturated vapor pressure conditions.

상기 혼합물에 기공형성제로서 NaCl, KCl, NH4Cl, NaF을 포함하는 무기염, 수용성유리 및 합성수지중 어느 한 성분을 100∼200중량부 첨가하여 후공정에서 녹여 기공을 형성할 수 있다. 본 발명에서는 기존의 암모니아 가스에 의한 기공발생방법이 아닌 상기 기공형성제를 사용하기 때문에 기공의 입자크기를 300∼500㎛로서 일정하게 조절할 수 있다.100 to 200 parts by weight of any one of an inorganic salt including NaCl, KCl, NH 4 Cl, NaF, water-soluble glass, and synthetic resin as a pore-forming agent may be added to the mixture to dissolve in a later step to form pores. In the present invention, since the pore-forming agent is used instead of the pore-generating method by the existing ammonia gas, the particle size of the pores can be constantly adjusted as 300 to 500 μm.

본 발명에서는 상기 혼합물에 인산수소암모늄 용액을 20∼40중량부 첨가하여 반응을 촉진시킬 수 있다. 상기 혼합물을 실린더의 형태의 수열열간가압장치의 셀내부에서 100∼300℃의 온도, 30∼100KN의 압력에서 처리한 후, 25∼60℃의 증류수 에 24∼72시간 동안 담구어 상기 기공형성제를 녹여낸 다음 800∼1200℃에서 소결시키게 되면 본 발명의 인산칼슘계 다공체를 제조할 수 있게 된다. In the present invention, the reaction may be accelerated by adding 20 to 40 parts by weight of an ammonium hydrogen phosphate solution to the mixture. The mixture was treated at a temperature of 100 to 300 ° C. and a pressure of 30 to 100 KN in a cell of a hydrothermal hot pressurizing device in the form of a cylinder, and then immersed in distilled water at 25 to 60 ° C. for 24 to 72 hours. Melting and then sintering at 800 ~ 1200 ℃ it is possible to manufacture the calcium phosphate-based porous body of the present invention.

본 발명의 인산칼슘계 다공체는 기공크기 300∼500㎛이고 기공율이 60∼70%이어서 이용하여 의료용 재료로 활용할 수 있다.The calcium phosphate-based porous body of the present invention has a pore size of 300 to 500 µm and a porosity of 60 to 70%, so that it can be used as a medical material.

이상과 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단, 본 발명이 하기 실시예로 제한되는 것은 아니다.The above features and other advantages of the present invention will become more apparent from the following examples. However, the present invention is not limited to the following examples.

[실시예 1]Example 1

알파-삼인산칼슘(α-TCP:α-tricalcium phosphate) 5g, 사인산칼슘 (TeCP:tetracalcium phosphate) 4.2g 그리고 이인산칼슘 이수화물(DCPD:dicalcium phosphate dihydrate) 0.8g을 볼밀을 이용하여 잘 섞은 후, 상기 분말에 결정성이 뛰어난 NaCl 7g을 섞은 후 0.5M 인산수소암모늄(ammonium hydrogen phosphate: NH4H2PO4)용액 2㎖를 넣고 잘 섞었다. 상기 출발물질을 수열 열간 가압장치(도 1)의 셀에 옮긴 후 250℃의 온도에서 50 kN(뉴우톤)의 압력을 1시간 동안 가하였다. 수열 열간 가압처리한 시료를 꺼내어 40℃ 증류수에 24시간동안 담구어 템플레이트로 사용한 NaCl 결정을 녹여낸 다음 건조시킨 후 1000℃에서 열처리하여 인산칼슘계 복합화합물 다공체를 제조하였다. Mix 5 g of alpha-calcium phosphate (α-TCP: α-tricalcium phosphate), 4.2 g of calcium phosphate (TeCP) and 0.8 g of dicalcium phosphate dihydrate (DCPD) using a ball mill. After mixing 7 g of NaCl having excellent crystallinity to the powder, 2 ml of 0.5 M ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) solution was added and mixed well. The starting material was transferred to a cell of a hydrothermal pressurizer (FIG. 1), and then a pressure of 50 kN (Newton) was applied at a temperature of 250 ° C. for 1 hour. A hydrothermal hot pressurized sample was taken out, soaked in distilled water at 40 ° C. for 24 hours to dissolve NaCl crystals used as a template, dried, and heat treated at 1000 ° C. to prepare a calcium phosphate-based composite compound.

제조된 인산칼슘계 다공체의 XRD 데이타를 얻어 분석하여 그 결과를 도 2에 나타내었다. 도 2의 XRD 데이타는 Cu Ka 라디에이션(radiation)을 사용해서 맥사 이언스 회절계(MacScience diffractometer)를 사용하여 얻었다. 도 2의 XRD 데이터로 부터 하이드록시아파타이트와 트리칼슘포스페이트의 혼성물인 것을 확인하였다. 주사전자현미경을 통해 인산칼슘계 다공체의 미세구조 분석을 한 결과 기공의 크기가 300∼500㎛로 기공들이 서로 연결된 개기공임을 확인할 수 있었으며(도 3) 아르키메데스법에 의해 기공율을 측정해본 결과 71%의 기공을 가지고 있었다. XRD data of the prepared calcium phosphate-based porous body was analyzed and the results are shown in FIG. 2. The XRD data in FIG. 2 were obtained using a MacScience diffractometer using Cu Ka radiation. It was confirmed from the XRD data of FIG. 2 that it was a hybrid of hydroxyapatite and tricalcium phosphate. As a result of analyzing the microstructure of the calcium phosphate-based porous body through the scanning electron microscope, the pore size was 300-500 μm, indicating that the pores were connected to each other (Fig. 3). The porosity was measured by the Archimedes method. Had pore.

제조된 인산칼슘계 다공체의 기계적 강도를 측정하기 위하여 5㎜ x 5㎜ x 10㎜크기의 시료를 위아래 표면에 레진으로 채워 만능시험기(Model 4204, Instron Corp., Danvers, MA)로 압축강도를 측정해본 결과 2.5MPa의 강도를 나타내었으며 손으로 눌러도 부서지지 않을 만큼 단단하였다.In order to measure the mechanical strength of the prepared calcium phosphate-based porous body, compressive strength was measured by a universal testing machine (Model 4204, Instron Corp., Danvers, MA) by filling a 5 mm x 5 mm x 10 mm size sample with resin on the upper and lower surfaces. As a result, it showed the strength of 2.5MPa and was hard enough not to be broken even if pressed by hand.

[비교예 1]Comparative Example 1

하이드록시아파타이트 분말 10g에 수용성 결합제인 분자량이 85,000인 폴리비닐알코올(PVA) 0.2g를 증류수 20g에 첨가하여 잘 섞어 하이드록시아파타이트 슬러리를 만들었다. 평균셀크기가 약 80 PPI(pore per inch)인 폴리우레탄 폼을 10wt%의 PVA용액에 담구어 표면처리를 하였다. 표면처리한 폴리우레탄 폼을 하이드록시아파타이트 슬러리에 담구어 코팅한 다음 건조시키는 과정을 3회 반복 후 600℃에서 열처리하여 템플레이트로 사용한 폴리우레탄을 제거하여 하이드록시아파타이트 다공체를 제조하였다. 제조한 하이드록시아파타이트 다공체의 XRD 데이타를 얻어 분석하였다. 그 결과 XRD 데이터로 부터 하이드록시아파타이트 단일상인 것을 확인하였다. 주사현미경을 통해 인산칼슘계 다공체의 미세구조 분석을 한 결과 기 공의 크기가 300∼500㎛로 기공들이 서로 연결된 개기공임을 확인할 수 있었으며 아르키메데스법에 의해 기공율을 측정해본 결과 65%의 기공을 가지고 있었다. 제조한 인산칼슘계 다공체의 기계적 강도를 측정하기 위하여 5㎜ x 5㎜ x 10㎜ 크기의 시료를 위 아래 표면에 레진으로 채워 만능 시험기(Model 4204, Instron Corp., Danvers, MA)으로 압축강도를 측정해본 결과 1.3Mpa의 강도를 나타내었고 손으로 눌러서 부서질 정도의 약한 다공체였다. To 10 g of hydroxyapatite powder, 0.2 g of polyvinyl alcohol (PVA) having a molecular weight of 85,000, which is a water-soluble binder, was added to 20 g of distilled water and mixed well to form a hydroxyapatite slurry. Polyurethane foam having an average cell size of about 80 PPI (pore per inch) was immersed in 10 wt% PVA solution and subjected to surface treatment. The surface-treated polyurethane foam was immersed in a hydroxyapatite slurry and coated, followed by drying three times, followed by heat treatment at 600 ° C. to remove the polyurethane used as a template, thereby preparing a hydroxyapatite porous body. XRD data of the prepared hydroxyapatite porous body was obtained and analyzed. As a result, it was confirmed from the XRD data that it was a hydroxyapatite single phase. As a result of the microstructure analysis of calcium phosphate-based porous body through the scanning microscope, the pore size was 300 ~ 500㎛ and it was confirmed that the pores were connected to each other.The porosity was measured by the Archimedes method. there was. In order to measure the mechanical strength of the prepared calcium phosphate-based porous body, a compressive strength was measured with a universal testing machine (Model 4204, Instron Corp., Danvers, MA) by filling a 5 mm x 5 mm x 10 mm sample with resin on the upper and lower surfaces. As a result of the measurement, the strength was 1.3Mpa and it was a weak porous body that could be pressed by hand.

이상 설명한 바와 같이 본 발명에 따르는 인산칼슘계 다공체는 생체 뼈와 기공율 및 형태가 유사하고, 생체흡수성이 순수한 하이드록시아파타이트 다공체에 비하여 월등히 우수하여 인공뼈등의 각종 생체조직 및 의료용 재료 등에 이용이 가능하다. As described above, the calcium phosphate-based porous body according to the present invention has similar porosity and morphology to living bones, and is much superior to hydroxyapatite porous bodies having high bioabsorbability, so that it can be used in various biological tissues and medical materials such as artificial bones. Do.

Claims (4)

삼인산칼슘(TCP:tricalcium phosphate) 40∼60 중량%, 사인산칼슘(TeCP:tetracalcium phosphate) 35∼50 중량%, 이인산칼슘(DCPD:dicalcium phosphate) 5∼10 중량%로 이루어지고 전체 조성물 중 Ca/P 비가 1.5∼1.67이고 기공크기 300∼500㎛이고 기공율이 60∼70%인 것을 특징으로 하는 수열열간가압법을 이용한 인산칼슘계 다공체.40 to 60% by weight of calcium triphosphate (TCP) tricalcium phosphate, 35 to 50% by weight of calcium tetraphosphate (TeCP), 5 to 10% by weight of dicalcium phosphate (DCPD), Ca in the total composition A calcium phosphate-based porous body using the hydrothermal hot-pressing method, characterized in that the / P ratio is 1.5 to 1.67, the pore size is 300 to 500 µm, and the porosity is 60 to 70%. 제1항에 있어서, 상기 조성물에 인산칼슘(MCP:monocalcium phosphate) 5∼10 중량부를 더 추가하는 것을 특징으로 하는 수열열간가압법을 이용한 인산칼슘계 다공체.According to claim 1, Calcium phosphate-based porous body using the hydrothermal hot-pressure method, characterized in that 5 to 10 parts by weight of calcium phosphate (MCP: monocalcium phosphate) is added to the composition. 제1항 기재의 인산칼슘계 다공체를 이용한 의료용 재료.A medical material using the calcium phosphate-based porous body according to claim 1. 삼인산칼슘(TCP:tricalcium phosphate) 40∼60 중량%, 사인산칼슘(TeCP:tetracalcium phosphate) 35∼50 중량%, 이인산칼슘(DCPD:dicalcium phosphate) 5∼10 중량%를 혼합하고, 기공형성제로서 NaCl, KCl, NH4Cl, NaF을 포함하는 무기염, 수용성유리 및 합성수지중 어느 한 성분을 100∼200 중량부 첨가하고, 인산수소암모늄 용액을 20∼40중량부 첨가한 후, 수열열간가압장치의 셀내부에서 100∼300℃의 온도, 30∼100KN의 압력에서 처리한 후, 25∼60℃의 증류수에 24∼72시간 동안 담구어 상기 기공형성제를 녹여낸 다음, 800∼1200℃에서 소결시키는 것을 특징으로 하는 수열열간가압법을 이용한 인산칼슘계 다공체의 제조방법. 40 to 60% by weight of calcium triphosphate (TCP: tricalcium phosphate), 35 to 50% by weight of calcium tetraphosphate (TeCP), 5 to 10% by weight of dicalcium phosphate (DCPD), and a pore-forming agent 100 to 200 parts by weight of any one of inorganic salts, water-soluble glass and synthetic resin containing NaCl, KCl, NH 4 Cl, NaF, and 20 to 40 parts by weight of ammonium hydrogen phosphate solution were added. After treatment at a temperature of 100 to 300 DEG C and a pressure of 30 to 100 KN in the cell of the apparatus, it is immersed in distilled water at 25 to 60 DEG C for 24 to 72 hours to dissolve the pore-forming agent and then sintered at 800 to 1200 DEG C. Method for producing a calcium phosphate-based porous body using a hydrothermal hot pressing method characterized in that.
KR1020040109228A 2004-12-21 2004-12-21 Porous calcium phosphates using a hydrothermal hot pressing method and Preparation thereof KR100759718B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040109228A KR100759718B1 (en) 2004-12-21 2004-12-21 Porous calcium phosphates using a hydrothermal hot pressing method and Preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040109228A KR100759718B1 (en) 2004-12-21 2004-12-21 Porous calcium phosphates using a hydrothermal hot pressing method and Preparation thereof

Publications (2)

Publication Number Publication Date
KR20060071106A true KR20060071106A (en) 2006-06-26
KR100759718B1 KR100759718B1 (en) 2007-10-04

Family

ID=37164650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040109228A KR100759718B1 (en) 2004-12-21 2004-12-21 Porous calcium phosphates using a hydrothermal hot pressing method and Preparation thereof

Country Status (1)

Country Link
KR (1) KR100759718B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092436A1 (en) * 2012-12-11 2014-06-19 한서대학교 산학협력단 Method for preparing functional porous ceramic material using direct foaming method, and functional porous ceramic material
KR20210139024A (en) * 2020-05-13 2021-11-22 (주)바이오리진 porous materials of biphasic calcium phosphate having dual structure and manufacturing method thereof and manufacturing method of synthetic bone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397043B1 (en) 2012-02-17 2014-05-20 영남대학교 산학협력단 Preparation Method of Porous Bone Substitutes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861733A (en) 1987-02-13 1989-08-29 Interpore International Calcium phosphate bone substitute materials
JPH06343456A (en) * 1993-06-10 1994-12-20 Japan Steel Works Ltd:The Cell culture supporter and culture of osteoblast
KR100429937B1 (en) 1995-09-14 2004-08-02 타키론 가부시기가이샤 Bone Bonding Materials, High Strength Graft Materials and Their Manufacturing Methods
FR2772746B1 (en) 1997-12-23 2000-01-28 Commissariat Energie Atomique PROCESS FOR THE MANUFACTURE OF AN APATITIC CERAMIC, PARTICULARLY FOR BIOLOGICAL USE
US6642285B1 (en) 1999-02-02 2003-11-04 Robert Mathys Stiftung Implant comprising calcium cement and hydrophobic liquid
US6793725B2 (en) 2001-01-24 2004-09-21 Ada Foundation Premixed calcium phosphate cement pastes
GB0110726D0 (en) 2001-05-02 2001-06-27 Biocomposites Ltd Bone implant composition
KR100475828B1 (en) * 2002-08-30 2005-03-10 요업기술원 Porous calcium phosphates using a natural coral and preparation thereof
KR100563714B1 (en) * 2003-04-03 2006-03-28 요업기술원 Inorganic bone cement with high strength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092436A1 (en) * 2012-12-11 2014-06-19 한서대학교 산학협력단 Method for preparing functional porous ceramic material using direct foaming method, and functional porous ceramic material
KR20210139024A (en) * 2020-05-13 2021-11-22 (주)바이오리진 porous materials of biphasic calcium phosphate having dual structure and manufacturing method thereof and manufacturing method of synthetic bone

Also Published As

Publication number Publication date
KR100759718B1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Shen et al. Dense hydroxyapatite–zirconia ceramic composites with high strength for biological applications
Gbureck et al. Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping
Sarin et al. Porous biphasic calcium phosphate scaffolds from cuttlefish bone
JPH04504403A (en) Synthetic ceramic materials and their manufacturing methods
Pattanayak et al. Synthesis and evaluation of hydroxyapatite ceramics
KR101357673B1 (en) The scaffold composition for regeneration of hard tissue having magnesium phosphate, scaffold for regeneration of hard tissue comprising the same and preparation methods thereof
US20200276355A1 (en) Large 3d porous scaffolds made of active hydroxyapatite obtained by biomorphic transformation of natural structures and process for obtaining them
WO2018159417A1 (en) Method of manufacturing composite material shaped article containing acicular hydroxyapatite, and composite material shaped article
CN103086708B (en) Calcium silicophosphate biomaterial, and preparation method and use thereof
CN102276247B (en) Calcium phosphate silicate biomaterial, and preparation method and purpose thereof
KR102286084B1 (en) Control method of curing rate of calcium phosphate Support
Sarkar et al. Synthesis of bioactive glass by microwave energy irradiation and its in-vitro biocompatibility
JP3974276B2 (en) Method for producing ceramic composite and ceramic composite
KR100759718B1 (en) Porous calcium phosphates using a hydrothermal hot pressing method and Preparation thereof
Li et al. Preparation of hydroxyapatite ceramics by hydrothermal hot-pressing method at 300 C
Rahim et al. Eggshell Derived Calcium Phosphate and Its Conversion to Dense Bodies
Salma-Ancane et al. Effect of Mg content on thermal stability of β-tricalcium phosphate ceramics
EP1855991B1 (en) Process for the preparation of a biomimetic bone substitute and its uses
Nakamura et al. Synthesis and evaluation of porous hydroxyapatite prepared by hydrothermal treatment and subsequent sintering method
CN103253932B (en) Silicon calcium phosphate biomaterial, preparation method and uses thereof
KR100875197B1 (en) Calcium phosphate-based biological ceramics using a tooth and a method of manufacturing the same.
PL221445B1 (en) Process for the preparation of bone implants and the bone implant
KR101487775B1 (en) Artificial bones containing nano β-TPC and preparation method thereof
KR101832030B1 (en) MULTIPOROUS HYDROXYAPATITE-TRICALCIUM PHOSPHATE CERAMIC COMPOSITES(biphasic calcium phosphate: BCP) USING AMMONIUM HYDROGEN CARBONATE AS SUPPORT BODY AND METHOD FOR MANUFACTURING THEREOF
Santos et al. Production of Hydroxyapatite/Polyhydroxibutirate Based Composites for Biomaterials Applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120913

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130912

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee