KR20060064967A - Method for forming aluminum silicate thin film - Google Patents

Method for forming aluminum silicate thin film Download PDF

Info

Publication number
KR20060064967A
KR20060064967A KR1020040103662A KR20040103662A KR20060064967A KR 20060064967 A KR20060064967 A KR 20060064967A KR 1020040103662 A KR1020040103662 A KR 1020040103662A KR 20040103662 A KR20040103662 A KR 20040103662A KR 20060064967 A KR20060064967 A KR 20060064967A
Authority
KR
South Korea
Prior art keywords
silicon
thin film
aluminum
chamber
deposition
Prior art date
Application number
KR1020040103662A
Other languages
Korean (ko)
Other versions
KR100624391B1 (en
Inventor
임정욱
윤선진
이진호
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020040103662A priority Critical patent/KR100624391B1/en
Publication of KR20060064967A publication Critical patent/KR20060064967A/en
Application granted granted Critical
Publication of KR100624391B1 publication Critical patent/KR100624391B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Abstract

본 발명은 플라즈마 원자층 증착법(PEALD))을 이용한 알루미늄 실리케이트(알루미늄과 실리콘 산화물) 박막 형성 방법에 관한 것으로, 알루미늄 산화물과 실리콘 산화물의 증착 사이클을 1:1, 1:2, 1:3과 같이 작은 정수비로 제어하므로써 상호 촉매작용에 의해 증착속도가 향상되고 사이클 바에 따라 실리콘의 함량이 조절될 수 있다. 150 ℃ 이하의 저온에서도 우수한 특성을 나타내며, 알루미늄 산화물을 이용하는 경우보다 플라스틱 기판과 무기물 박막 간의 잔류응력이 적으며, 열팽창 계수도 낮다. 또한, 알루미나 산화물보다 식각속도가 빠르기 때문에 폴리실리콘이나 금속박막에 대해 높은 식각 선택비를 갖는다.The present invention relates to a method for forming an aluminum silicate (aluminum and silicon oxide) thin film using plasma atomic layer deposition (PEALD), wherein the deposition cycles of aluminum oxide and silicon oxide are as follows: 1: 1, 1: 2, 1: 3. By controlling with a small water ratio, the deposition rate can be improved by the intercatalysis and the silicon content can be adjusted according to the cycle bar. It exhibits excellent properties even at low temperatures below 150 ° C, less residual stress between the plastic substrate and the inorganic thin film than the case of using aluminum oxide, and also has a low coefficient of thermal expansion. In addition, since the etching rate is faster than that of the alumina oxide, it has a high etching selectivity with respect to polysilicon or a metal thin film.

알루미늄 실리케이트, 플라즈마 원자층 증착법, 사이클, 증착속도, 잔류응력 Aluminum silicate, plasma atomic layer deposition, cycle, deposition rate, residual stress

Description

알루미늄 실리케이트 박막 형성 방법 {Method for forming aluminum silicate thin film}Method for forming aluminum silicate thin film

도 1은 본 발명에 따른 알루미늄 실리케이트 박막 형성 방법을 설명하기 위한 공정도.1 is a process chart for explaining a method for forming an aluminum silicate thin film according to the present invention.

도 2는 사이클 수에 따른 알루미늄 산화막과 알루미늄 실리케이트 박막의 두께 변화를 나타낸 그래프.Figure 2 is a graph showing the thickness change of the aluminum oxide film and aluminum silicate thin film according to the number of cycles.

도 3은 사이클 비에 따른 알루미늄 실리케이트 박막의 증착속도와 식각속도의 변화를 나타낸 그래프.3 is a graph showing the change in deposition rate and etching rate of the aluminum silicate thin film according to the cycle ratio.

도 4는 사이클 비에 따른 알루미늄 실리케이트 박막의 증착속도 변화를 나타낸 그래프.4 is a graph showing the deposition rate change of the aluminum silicate thin film according to the cycle ratio.

도 5는 사이클 비에 따른 알루미늄 실리케이트 박막의 실리콘 함량 변화를 나타낸 그리프.Figure 5 is a glyph showing the change in the silicon content of the aluminum silicate thin film with a cycle ratio.

도 6a 및 도 6b는 플라스틱 기판에 증착된 알루미늄 산화막과 알루미늄 실리케이트 박막의 잔류응력을 설명하기 위한 단면도.6A and 6B are cross-sectional views illustrating residual stresses of an aluminum oxide film and an aluminum silicate thin film deposited on a plastic substrate.

본 발명은 반도체 소자나 디스플레이 소자 또는 바이오 소자에 적용되는 알루미늄 실리케이트(알루미늄과 실리콘 산화물) 박막 형성 방법에 관한 것으로, 보다 상세하게는 플라즈마 원자층 증착법(Plasma Enhanced Atomic Layer Deposition; PEALD)을 이용한 알루미늄 실리케이트 박막 형성 방법에 관한 것이다.The present invention relates to a method for forming an aluminum silicate (aluminum and silicon oxide) thin film applied to a semiconductor device, a display device or a bio device, and more particularly, to an aluminum silicate using plasma enhanced atomic layer deposition (PEALD). It relates to a thin film formation method.

최근들어 플라스틱 기판을 사용하여 구부리거나 휠 수 있으며 의복에 부착이 가능한 반도체 소자나 디스플레이 소자 또는 바이오 소자를 구현하는 기술이 개발되고 있다. Recently, a technology for implementing a semiconductor device, a display device, or a bio device that can be bent or bent using a plastic substrate and attached to a garment has been developed.

플라스틱 기판을 사용하는 경우 기판 상에 무기절연막을 증착하려면 150 ℃ 이하의 온도에서 공정이 진행되어야 한다 ["Thin Solid Films", 430, pp 15 (2003) 참조]. 150 ℃ 이하의 저온에서 박막을 성장시키더라도 플라스틱 기판과 무기절연막의 열팽창 계수 차이로 인해 잔류응력이 발생한다. 따라서 잔류응력을 감소시킬 수 있는 박막 형성 방법이 필요하다.If a plastic substrate is used, the process must be carried out at a temperature below 150 ° C. to deposit an inorganic insulating film on the substrate [see “Thin Solid Films”, 430, pp 15 (2003)]. Even when the thin film is grown at a low temperature of less than 150 ℃, residual stress occurs due to the difference in thermal expansion coefficient between the plastic substrate and the inorganic insulating film. Therefore, there is a need for a thin film formation method that can reduce the residual stress.

일반적으로 저온에서는 박막의 제반 특성이 저하되고, 박막의 조밀도가 감소한다. 플라스틱 기판을 사용하는 경우 150 ℃ 이하의 저온에서 증착이 이루어져야 하기 때문에 이러한 특성 저하는 매우 급격하게 나타난다. 절연막의 경우 증착 온도가 감소하면 급격히 누설전류가 증가하고 유전상수가 감소하며, 또한 증착속도도 감소하게 된다. Generally, at low temperatures, the overall properties of the thin film are reduced, and the density of the thin film is reduced. In the case of using a plastic substrate, such deterioration occurs very rapidly because deposition must be performed at a low temperature of 150 ° C. or lower. In the case of the insulating film, as the deposition temperature decreases, the leakage current rapidly increases, the dielectric constant decreases, and the deposition rate also decreases.

미국특허 제6,723,642호(J.W. Lim et al., 2004)는 플라즈마를 이용한 원자층 증착법(PEALD)으로 저온에서 우수한 특성을 나타내는 알루미늄 산화막(Al2O3)을 형성하였다. 그러나 플라스틱 기판 상에 알루미늄 산화막을 형성하면 어느 정도의 잔류응력이 존재한다고 보고되었다 [Electrochemical and Solid State Letters, 7, pp C13, 2004 참조]. US Patent No. 6,723,642 (JW Lim et al., 2004) formed an aluminum oxide film (Al 2 O 3 ) exhibiting excellent properties at low temperatures by atomic layer deposition (PEALD) using plasma. However, it has been reported that the formation of aluminum oxide films on plastic substrates has some residual stress [see Electrochemical and Solid State Letters, 7, pp C13, 2004].

원자층 증착법을 이용하면 특히, 200 ℃ 이하의 온도에서는 실리콘 산화막을 증착하기 매우 힘든 것으로 보고되었으나, 유기물이나 암모니아 촉매를 사용하여 실리콘 산화막을 형성한 보고가 있었다 [SCIENCE, 278, pp. 1934, 1997]. 촉매를 사용하지 않는 경우 실리콘 산화막의 형성이 거의 불가능한 것으로 알려져있다.Although atomic layer deposition has been reported to be very difficult to deposit a silicon oxide film, especially at temperatures below 200 ° C., there have been reports of forming silicon oxide films using organic or ammonia catalysts [SCIENCE, 278, pp. 1934, 1997]. It is known that formation of a silicon oxide film is almost impossible without a catalyst.

실리케이트(실리콘과 다른 산화물의 화합물)의 경우 실리콘과 다른 금속이 포함된 전구체가 개발되어 박막의 증착이 가능하지만, 조성을 제어하기 어려우며, 온도에 따라 조성이 변화되는 문제점이 있다 [S. W. Rhee et al., 미국특허 제2003/0203126호, 2003 참조]. 또한, 시드층(seed layer)을 이용하여 실리케이트를 형성하는 방법도 제시되었으나, 조성을 미세하게 조절하기 어려운 단점이 있다 [J. Ramdani et al., 미국특허 제2002/0197881호, 2002 참조]. In the case of silicates (compounds of silicon and other oxides), precursors containing silicon and other metals are developed to allow deposition of thin films, but it is difficult to control the composition, and there is a problem in that the composition changes with temperature [S. W. Rhee et al., US Patent 2003/0203126, 2003]. In addition, a method of forming a silicate using a seed layer has also been proposed, but it is difficult to finely control the composition [J. Ramdani et al., US Pat. No. 2002/0197881, 2002].

본 발명의 목적은 저온에서 증착이 가능하며, 잔류응력이 적고, 조성을 용이하게 조절할 수 있는 알루미늄 실리케이트 박막 형성 방법을 제공하는 데 있다.An object of the present invention is to provide a method for forming an aluminum silicate thin film that can be deposited at a low temperature, low residual stress, easy to control the composition.

상기한 목적을 달성하기 위한 본 발명은 챔버 내부에 기판을 장착하는 제 1 단계, 상기 기판 상에 알루미늄 산화물을 증착하는 제 2 단계, 상기 알루미늄 산화물 상에 실리콘 산화물을 증착하는 제 3 단계를 포함하며, 상기 제 2 단계와 상기 제 3 단계가 m:n의 비율로 교대로 진행되는 것을 특징으로 한다. The present invention for achieving the above object includes a first step of mounting a substrate in the chamber, a second step of depositing aluminum oxide on the substrate, a third step of depositing silicon oxide on the aluminum oxide; In this case, the second step and the third step are characterized in that the alternating progress in the ratio of m: n.                         

상기 제 1 단계는 상기 챔버 내부로 알루미늄 전구체를 공급하는 단계, 상기 챔버 내부를 1차 정화시키는 단계, 상기 챔버 내부로 산소 플라즈마를 공급하여 상기 알루미늄 산화물이 증착되도록 하는 단계, 상기 챔버 내부를 2차 정화시키는 단계를 포함하며, 상기 제 2 단계는 상기 챔버 내부로 실리콘 전구체를 공급하는 단계, 상기 챔버 내부를 1차 정화시키는 단계, 상기 챔버 내부로 산소 플라즈마를 공급하여 상기 실리콘 산화물이 증착되도록 하는 단계, 상기 챔버 내부를 2차 정화시키는 단계를 포함하는 것을 특징으로 한다.The first step includes supplying an aluminum precursor into the chamber, first purifying the interior of the chamber, supplying an oxygen plasma to the chamber to deposit the aluminum oxide, and secondly depositing the interior of the chamber. Purifying, wherein the second step includes supplying a silicon precursor into the chamber, first purifying the interior of the chamber, and supplying an oxygen plasma into the chamber to deposit the silicon oxide. And purifying the inside of the chamber.

본 발명은 특히 150 ℃ 이하의 저온 공정이 요구되는 플라스틱 기판을 사용하는 경우 유용하게 적용할 수 있는 알루미늄 실리케이트 박막 형성 방법을 제공한다. The present invention provides a method for forming an aluminum silicate thin film that can be usefully applied, particularly when using a plastic substrate requiring a low temperature process of less than 150 ℃.

원자층 증착법의 경우 한 사이클이 여러 개의 펄스로 구성되고, 각 반응가스가 시분할로 공급되므로 실리콘 산화물(SiO2)을 알루미늄 산화물과 교대로 공급할 수 있다. 본 발명은 플라즈마 원자층 증착법(Plasma Enhanced Atomic Layer Deposition; PEALD)을 이용하여 알루미늄 산화물과 실리콘 산화물의 증착 사이클 수를 제어함으로써 실리콘 함량을 조절할 수 있도록 한다. 실리콘의 함량을 조절하면 플라스틱 기판과 무기박막 사이의 잔류응력이 감소되고 열팽창 계수도 감소하는 효과를 얻을 수 있으며, 식각속도가 향상되어 식각 선택비가 향상되는 효과도 역시 기대할 수 있다.In the case of the atomic layer deposition method, one cycle consists of several pulses, and each reaction gas is supplied in time division, so that silicon oxide (SiO 2 ) may be alternately supplied with aluminum oxide. The present invention enables the silicon content to be controlled by controlling the number of deposition cycles of aluminum oxide and silicon oxide using plasma enhanced atomic layer deposition (PEALD). By controlling the content of silicon, the residual stress between the plastic substrate and the inorganic thin film can be reduced, and the coefficient of thermal expansion can be reduced. Also, the etching rate can be improved to improve the etching selectivity.

그러면 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이하의 실시예는 이 기술 분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서, 여러가지 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided to those skilled in the art to fully understand the present invention, and may be modified in various forms, and the scope of the present invention is not limited to the embodiments described below. .

도 1은 본 발명의 바람직한 실시예에 따른 알루미늄 실리케이트 박막 형성 방법을 설명하기 위한 공정도이다.1 is a process chart for explaining a method for forming an aluminum silicate thin film according to a preferred embodiment of the present invention.

알루미늄 산화물과 실리콘 산화물을 증착하기 위한 서브 사이클(sub-cycle)은 각각 4개의 펄스로 구성된다. 즉, 전구체 주입, 불활성 기체를 이용한 퍼지(purge), 산소 플라즈마 공급, 퍼지 공정으로 이루어진다.The sub-cycles for depositing aluminum oxide and silicon oxide consist of four pulses each. That is, it consists of precursor injection, purge using an inert gas, oxygen plasma supply, and purge process.

알루미늄 산화물이 m 서브 사이클에 의해 증착되고, 실리콘 산화물이 n 서브 사이클에 증착된다고 가정하면(여기서, m, n은 정수), 한 사이클은 m+n 개의 서브 사이클로 구성된다. 이를 (m, n)으로 표시한다면, (1, 2)는 한 사이클에 한번의 알루미늄 산화물 증착 서브 사이클과 두번의 실리콘 산화물 서브 사이클로 구성됨을 의미한다.Assuming that aluminum oxide is deposited by m subcycles and silicon oxide is deposited by n subcycles, where m and n are integers, one cycle consists of m + n subcycles. If it is expressed as (m, n), it means that (1, 2) consists of one aluminum oxide deposition subcycle and two silicon oxide subcycles in one cycle.

먼저, 플라즈마 원자층 증착 장비의 챔버 내부에 플라스틱 기판을 장착한 다음 상기 챔버 내부로 알루미늄(Al) 전구체를 공급한다. 그리고 불활성 기체를 이용하여 상기 챔버 내부를 정화시킨 다음 상기 챔버 내부로 산소(O2) 플라즈마를 공급하여 상기 기판 상에 알루미늄 산화물이 증착되도록 한 후 상기 챔버 내부를 정화시킨다. First, a plastic substrate is mounted in a chamber of a plasma atomic layer deposition apparatus, and then aluminum (Al) precursor is supplied into the chamber. After purifying the inside of the chamber using an inert gas, oxygen (O 2 ) plasma is supplied into the chamber to deposit aluminum oxide on the substrate, and then the inside of the chamber is purged.

다음으로, 상기 챔버 내부로 실리콘(Si) 전구체를 공급한 후 상기 챔버 내부를 정화시킨다. 그리고 상기 챔버 내부로 산소(O2) 플라즈마를 공급하여 상기 알루미늄 산화물 상에 실리콘 산화물이 증착되도록 한 후 상기 챔버 내부를 정화시킨다.Next, the silicon (Si) precursor is supplied into the chamber and the inside of the chamber is purified. Then, oxygen (O 2 ) plasma is supplied into the chamber so that silicon oxide is deposited on the aluminum oxide, and then the inside of the chamber is purified.

상기와 같이 알루미늄 산화물 증착 단계(m)와 실리콘 산화물 증착 단계(n)를 m:n의 비율로 교대로 진행한다. 이 때 상기 m:n은 1:1, 1;2, 1;3과 같이 작은 정수비가 되도록 하는 것이 바람직하다.As described above, the aluminum oxide deposition step (m) and the silicon oxide deposition step (n) are alternately performed at a ratio of m: n. At this time, m: n is preferably such that a small integer ratio, such as 1: 1, 1; 2, 1; 3.

상기 알루미늄(Al) 전구체로는 Trimethyl Aluminum(TMA) 등을 사용하며, 상기 실리콘(Si) 전구체로는 TEOS, Tetramethyl Silicon(TMS), Tetraethyl Silicon(TES), Tetradimethylamino Silicon(TDMAS) 또는 Tetraethylmethylamino Silicon(TEMAS)을 사용한다. 상기 정화 공정은 아르곤(Ar)과 같은 불활성 기체를 이용하여 진행하며, 상기 산소(O2) 플라즈마는 산소, 질소 및 아르곤을 포함하는 반응가스를 이용하여 생성한다.Trimethyl Aluminum (TMA) may be used as the aluminum (Al) precursor, and TEOS, Tetramethyl Silicon (TMS), Tetraethyl Silicon (TES), Tetradimethylamino Silicon (TDMAS) or Tetraethylmethylamino Silicon (TEMAS) may be used as the silicon (Si) precursor. ). The purification process is performed using an inert gas such as argon (Ar), and the oxygen (O 2 ) plasma is generated using a reaction gas containing oxygen, nitrogen, and argon.

도 2는 사이클 수에 따른 알루미늄 실리케이트 박막(선 1)과 알루미늄 산화막(선 2)의 증착 두께 변화를 나타낸 그래프로서, 알루미늄 실리케이트 박막(선 1)의 경우 기울기가 크게 나타났다. 초기에는 알루미늄 산화막이 같은 사이클 수에서 더 두껍게 증착되지만, 소정의 사이클 수(약 200 사이클)가 경과하면 증착두께가 증가하여 알루미늄 실리케이트 박막이 더 두껍게 증착됨을 알 수 있다. 2 is a graph showing the deposition thickness change of the aluminum silicate thin film (line 1) and the aluminum oxide film (line 2) according to the number of cycles, the slope of the aluminum silicate thin film (line 1) was large. Initially, the aluminum oxide film is deposited thicker at the same number of cycles, but when a predetermined number of cycles (about 200 cycles) elapse, the deposition thickness increases, indicating that the aluminum silicate thin film is deposited thicker.

도 3은 사이클 비에 따른 알루미늄 산화막과 실리콘 산화막의 증착속도 및 식각속도의 변화를 나타낸 그래프이다.3 is a graph illustrating changes in deposition rates and etching rates of aluminum oxide and silicon oxide films according to cycle ratios.

그래프에서 사이클 비 0.5는 (2,1), 1.0은 (1,1), 2.0은 (1,2), 3.0은 (1,3)인 조건을 나타내며, 150 ℃의 온도에서 증착이 이루어졌다. 초기값(사이클 비 0, 0)에서는 실리콘 산화물은 증착하지 않고 알루미늄 산화물 만을 증착하였다. 사이클 비가 증가할수록 즉, 실리콘 산화물의 증착 사이클 비가 증가할수록 증착속도가 증가하였다. 실리콘 산화물 만을 증착하는 경우에는 증착속도가 거의 0에 가까운 값이었는데, 이는 상호 간의 촉매 작용을 의미한다. In the graph, a cycle ratio of 0.5 is (2,1), 1.0 is (1,1), 2.0 is (1,2), and 3.0 is (1,3), and deposition is performed at a temperature of 150 ° C. At the initial value (cycle ratio 0, 0), only aluminum oxide was deposited without depositing silicon oxide. As the cycle ratio increased, that is, as the deposition cycle ratio of silicon oxide increased, the deposition rate increased. In the case of depositing only silicon oxide, the deposition rate was almost close to zero, which means a mutual catalysis.

식각은 불산 용액을 이용한 습식식각으로 진행하였다. 실리콘 산화물의 증착 사이클 수가 증가할수록 식각속도도 함께 증가함을 알 수 있다. 하지만, 누설전류를 측정한 결과 실리콘 산화물의 증착 사이클 수가 증가하면 오히려 누설전류가 약간 감소하는 결과를 보였다. 따라서 전기적 특성이 저하되지 않으며 식각속도가 증가함을 알 수 있었고, 상대적으로 다른 박막 예를 들면, 폴리실리콘이나 알루미늄 금속에 대한 식각 선택비가 상대적으로 향상될 것으로 보인다.Etching was performed by wet etching with hydrofluoric acid solution. As the number of deposition cycles of the silicon oxide increases, the etching rate also increases. However, when the leakage current was measured, the leakage current decreased slightly as the number of silicon oxide deposition cycles increased. Therefore, it was found that the electrical properties were not deteriorated and the etching rate was increased, and the etching selectivity for the relatively other thin films, for example, polysilicon or aluminum metal, was relatively improved.

도 4는 각기 다른 증착 온도에서 사이클 비에 따른 증착속도의 변화를 나타낸 그래프이다.4 is a graph showing a change in deposition rate according to a cycle ratio at different deposition temperatures.

증착 온도가 낮아질수록 증착속도는 향상됨을 알 수 있다. 이러한 변화는 알루미늄 산화막이 증착되는 경우에도 관찰되었다 [J.W. Lim et al., 미국특허 제6,723,642호, 2004 참조]. It can be seen that as the deposition temperature is lowered, the deposition rate is improved. This change was observed even when aluminum oxide films were deposited [J.W. Lim et al., US Pat. No. 6,723,642, 2004].

도 5는 사이클 수에 따른 실리콘의 함량 변화를 나타낸 그래프로서, 실리콘의 증착 사이클 수가 증가하면 실리콘의 함량도 증가한다. 따라서 사이클 비를 조 절하면 실리콘의 함유량을 제어할 수 있게 된다. 5 is a graph showing a change in the content of silicon according to the number of cycles, the silicon content also increases as the number of deposition cycles of silicon increases. Therefore, by adjusting the cycle ratio, it is possible to control the content of silicon.

또한, 사이클 비가 같은 (1, 1)의 조건과, (10, 10)의 조건을 비교할 때 (1, 1)의 조건에서 더 많은 실리콘이 함유되었다. 따라서 사이클 수가 1:1, 1:2, 1:3과 같이 작은 정수비에서 촉매 작용이 더 활발히 이루어짐을 알 수 있고, (1, 1)의 조건에서의 증착속도가 (10, 10)의 조건에서보다 더 높았다.Further, more silicon was contained under the conditions of (1, 1) when comparing the conditions of (1, 1) with the same cycle ratio and (10, 10). Therefore, it can be seen that the number of cycles is more actively catalyzed at a small integer ratio such as 1: 1, 1: 2, 1: 3, and the deposition rate at the condition of (1, 1) is (10, 10). Higher than in

도 6a 및 도 6b는 잔류응력을 확인하기 위한 실험으로, 150 ℃의 온도에서 플라스틱 기판에 알루미늄 산화막(Al2O3)(도 6a)과 알루미늄 실리케이트 박막(AlSiO)(도 6b)을 각각 증착하고, 상온에서 냉각시켜 밴딩(bending)된 크기를 측정한 상태를 도시한다.6A and 6B are experiments for checking the residual stress, by depositing an aluminum oxide film (Al 2 O 3 ) (FIG. 6 a) and an aluminum silicate thin film (AlSiO) (FIG. 6 b) on a plastic substrate at a temperature of 150 ° C., respectively. , And shows a state in which the bending is performed at room temperature and the size of the bending is measured.

열팽창 계수의 차이로 인하여 응력만큼 밴딩이 발생한다. 기판 표면의 중심에서 플라스틱 기판과 박막의 휘어진 호의 중심까지의 거리를 d라고 하면, 응력은 d에 비례하게 된다. 실험 결과 알루미늄 실리케이트 박막의 경우 (1, 1)인 조건에서 약 20 내지 30%의 응력 감소를 나타내었다.Due to the difference in thermal expansion coefficient, banding occurs as much as stress. If the distance from the center of the substrate surface to the center of the curved arc of the plastic substrate and the thin film is d, the stress is proportional to d. Experimental results showed that the aluminum silicate thin film had a stress reduction of about 20 to 30% under the conditions of (1, 1).

이상에서와 같이 상세한 설명과 도면을 통해 본 발명의 최적 실시예를 개시하였다. 상기 실시예에서는 알루미늄 실리케이트 박막에 대해서만 설명하였으나, 본 발명은 티타늄(Ti) 등의 금속을 이용한 금속 실리케이트 박막 형성에도 적용될 수 있다. 용어들은 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, the preferred embodiment of the present invention has been disclosed through the detailed description and the drawings. In the above embodiment, only the aluminum silicate thin film has been described, but the present invention may be applied to the formation of a metal silicate thin film using a metal such as titanium (Ti). The terms are used only for the purpose of describing the present invention and are not used to limit the scope of the present invention as defined in the meaning or claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

상술한 바와 같이 본 발명은 플라즈마 원자층 증착법(PEALD)을 이용한 알루미늄 실리케이트 박막 형성 과정에서 알루미늄 산화물과 실리콘 산화물의 증착 사이클을 1:1, 1:2, 1:3과 같이 작은 정수비로 제어한다. 따라서, 첫째, 상호 촉매작용에 의해 증착속도가 향상되고 실리콘의 함량이 사이클 비에 따라 조절될 수 있다. 둘째, 150 ℃ 이하의 저온에서도 우수한 특성을 나타내며, 알루미늄 산화물을 이용하는 경우보다 플라스틱 기판과 무기물 박막 간의 잔류응력이 적으며, 열팽창 계수도 낮다. 셋째, 알루미나 산화물보다 식각속도가 빠르기 때문에 폴리실리콘이나 금속박막에 대해 높은 식각 선택비를 갖는다.As described above, the present invention controls the deposition cycles of aluminum oxide and silicon oxide in a small integer ratio such as 1: 1, 1: 2, 1: 3 during the aluminum silicate thin film formation process using plasma atomic layer deposition (PEALD). Therefore, firstly, the deposition rate is improved by the mutual catalysis and the content of silicon can be adjusted according to the cycle ratio. Second, it exhibits excellent characteristics even at a low temperature of less than 150 ℃, less residual stress between the plastic substrate and the inorganic thin film than the case of using aluminum oxide, and also has a low coefficient of thermal expansion. Third, since the etching rate is faster than that of the alumina oxide, it has a high etching selectivity for polysilicon or a metal thin film.

또한, 본 발명에 따라 실리콘 함량을 조절하면 본 발명의 알루미늄 실리케이트 박막을 게이트 절연막 뿐 아니라 완충층이나 커패시터의 유전체막으로 사용할 수 있다. 특히, 결정화될 비정질 실리콘이 형성되는 절연층으로 이용될 경우 완충층 역할을 하는 절연층의 특성에 따라 실리콘층의 특성이 결정되는데, 알루미늄 산화물의 경우 열팽창 계수가 비교적 커서 실리콘이나 실리콘 산화물과의 차이로 인하여 열 공정에서 박막의 이탈 현상이 유발되거나 벗겨짐이 발생하지만, 본 발명의 알루미늄 실리케이트 박막을 이용하면 열팽창 계수를 낮추어 이와 같은 현상을 방지하고 응력을 감소시킬 수 있다.In addition, by controlling the silicon content according to the present invention, the aluminum silicate thin film of the present invention can be used as a dielectric layer of a buffer layer or a capacitor as well as a gate insulating film. In particular, when used as an insulating layer to form amorphous silicon to be crystallized, the characteristics of the silicon layer are determined according to the characteristics of the insulating layer that acts as a buffer layer. In the case of aluminum oxide, the thermal expansion coefficient is relatively large and is different from that of silicon or silicon oxide. Due to the separation process of the thin film is caused or peeling occurs in the thermal process, by using the aluminum silicate thin film of the present invention it is possible to prevent such a phenomenon by reducing the thermal expansion coefficient and to reduce the stress.

Claims (8)

챔버 내부에 기판을 장착하는 제 1 단계,A first step of mounting the substrate inside the chamber, 상기 기판 상에 알루미늄 산화물을 증착하는 제 2 단계,A second step of depositing aluminum oxide on the substrate, 상기 알루미늄 산화물 상에 실리콘 산화물을 증착하는 제 3 단계를 포함하며, 상기 제 2 단계와 상기 제 3 단계가 m:n의 비율로 교대로 진행되는 것을 특징으로 하는 알루미늄 실리케이트 박막 형성 방법.And depositing silicon oxide on the aluminum oxide, wherein the second and third steps are alternately performed at a ratio of m: n. 제 1 항에 있어서, 상기 기판은 플라스틱 기판인 것을 특징으로 하는 알루미늄 실리케이트 박막 형성 방법.The method of claim 1, wherein the substrate is a plastic substrate. 제 1 항에 있어서, 상기 제 1 단계는 상기 챔버 내부로 알루미늄 전구체를 공급하는 단계,The method of claim 1, wherein the first step comprises: supplying an aluminum precursor into the chamber; 상기 챔버 내부를 1차 정화시키는 단계,First purifying the interior of the chamber, 상기 챔버 내부로 산소 플라즈마를 공급하여 상기 알루미늄 산화물이 증착되도록 하는 단계,Supplying an oxygen plasma into the chamber to deposit the aluminum oxide; 상기 챔버 내부를 2차 정화시키는 단계를 포함하는 것을 특징으로 하는 알루미늄 실리케이트 박막 형성 방법.And purifying the inside of the chamber. 제 3 에 있어서, 상기 알루미늄 전구체는 Trimethyl Aluminum(TMA)인 것을 특징으로 하는 알루미늄 실리케이트 박막 형성 방법.The method of claim 3, wherein the aluminum precursor is Trimethyl Aluminum (TMA). 제 1 항에 있어서, 상기 제 2 단계는 상기 챔버 내부로 실리콘 전구체를 공급하는 단계,The method of claim 1, wherein the second step comprises: supplying a silicon precursor into the chamber; 상기 챔버 내부를 1차 정화시키는 단계,First purifying the interior of the chamber, 상기 챔버 내부로 산소 플라즈마를 공급하여 상기 실리콘 산화물이 증착되도록 하는 단계,Supplying an oxygen plasma into the chamber to deposit the silicon oxide; 상기 챔버 내부를 2차 정화시키는 단계를 포함하는 것을 특징으로 하는 알루미늄 실리케이트 박막 형성 방법.And purifying the inside of the chamber. 제 5 항에 있어서, 상기 실리콘 전구체는 TEOS, Tetramethyl Silicon(TMS), Tetraethyl Silicon(TES), Tetradimethylamino Silicon(TDMAS) 및 Tetraethylmethylamino Silicon(TEMAS) 중 어느 하나인 것을 특징으로 하는 알루미늄 실리케이트 박막 형성 방법.The method of claim 5, wherein the silicon precursor is any one of TEOS, Tetramethyl Silicon (TMS), Tetraethyl Silicon (TES), Tetradimethylamino Silicon (TDMAS) and Tetraethylmethylamino Silicon (TEMAS). 제 3 항 또는 제 5 항에 있어서, 상기 산소 플라즈마를 생성하기 위해 산소, 질소 및 아르곤을 포함하는 반응가스가 사용되는 것을 특징으로 하는 알루미늄 실리케이트 박막 형성 방법.6. The method of claim 3 or 5, wherein a reaction gas comprising oxygen, nitrogen, and argon is used to generate the oxygen plasma. 제 1 항에 있어서, 상기 m:n은 1:1, 1:2, 1:3인 것을 특징으로 하는 알루미 늄 실리케이트 박막 형성 방법.The method of claim 1, wherein m: n is 1: 1, 1: 2, 1: 3.
KR1020040103662A 2004-12-09 2004-12-09 Method for forming aluminum silicate thin film KR100624391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040103662A KR100624391B1 (en) 2004-12-09 2004-12-09 Method for forming aluminum silicate thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040103662A KR100624391B1 (en) 2004-12-09 2004-12-09 Method for forming aluminum silicate thin film

Publications (2)

Publication Number Publication Date
KR20060064967A true KR20060064967A (en) 2006-06-14
KR100624391B1 KR100624391B1 (en) 2006-09-18

Family

ID=37160319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040103662A KR100624391B1 (en) 2004-12-09 2004-12-09 Method for forming aluminum silicate thin film

Country Status (1)

Country Link
KR (1) KR100624391B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021003A (en) * 2014-08-14 2016-02-24 삼성전자주식회사 Method of forming a thin film of a semiconductor device
KR20160069138A (en) * 2014-12-08 2016-06-16 주성엔지니어링(주) Substrate disposition method
US10418236B2 (en) * 2016-09-30 2019-09-17 Lam Research Corporation Composite dielectric interface layers for interconnect structures
US10651080B2 (en) 2016-04-26 2020-05-12 Lam Research Corporation Oxidizing treatment of aluminum nitride films in semiconductor device manufacturing
US10665501B2 (en) 2016-11-14 2020-05-26 Lam Research Corporation Deposition of Aluminum oxide etch stop layers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021003A (en) * 2014-08-14 2016-02-24 삼성전자주식회사 Method of forming a thin film of a semiconductor device
KR20160069138A (en) * 2014-12-08 2016-06-16 주성엔지니어링(주) Substrate disposition method
US10651080B2 (en) 2016-04-26 2020-05-12 Lam Research Corporation Oxidizing treatment of aluminum nitride films in semiconductor device manufacturing
US10418236B2 (en) * 2016-09-30 2019-09-17 Lam Research Corporation Composite dielectric interface layers for interconnect structures
US10665501B2 (en) 2016-11-14 2020-05-26 Lam Research Corporation Deposition of Aluminum oxide etch stop layers
US10804144B2 (en) 2016-11-14 2020-10-13 Lam Research Corporation Deposition of aluminum oxide etch stop layers

Also Published As

Publication number Publication date
KR100624391B1 (en) 2006-09-18

Similar Documents

Publication Publication Date Title
JP4403824B2 (en) Method for forming silicon nitride film
JP5775947B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
KR100560654B1 (en) Nitrogenous compound for forming silicon nitride film and method of forming silicon nitride film using the same
US6740977B2 (en) Insulating layers in semiconductor devices having a multi-layer nanolaminate structure of SiNx thin film and BN thin film and methods for forming the same
US8828890B2 (en) Method for depositing cyclic thin film
KR100647442B1 (en) Method of forming a thin film using atomic layer deposition
JP5287964B2 (en) Film forming method and film forming apparatus
US6528430B2 (en) Method of forming silicon containing thin films by atomic layer deposition utilizing Si2C16 and NH3
US7547952B2 (en) Method for hafnium nitride deposition
US9899211B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
KR100539274B1 (en) Method for depositing cobalt layer
US8815751B2 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and non-transitory computer-readable recording medium
KR20090016403A (en) Method of depositing silicon oxidation film
KR20020044422A (en) Method of forming thin film by atomic layer deposition
KR20020096798A (en) A method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
US6436822B1 (en) Method for making a carbon doped oxide dielectric material
US20130101752A1 (en) Method for depositing cyclic thin film
KR20140114762A (en) Semiconductor device manufacturing method, substrate processing apparatus and recording medium
KR20200099994A (en) Atomic layer deposition of oxides and nitrides
KR100624391B1 (en) Method for forming aluminum silicate thin film
JP2014075491A (en) Manufacturing method of semiconductor device, substrate processing method, substrate processing apparatus, and program
KR100589629B1 (en) Method for fabricating silicon oxide layer by ALD using O3
WO2014152826A1 (en) Deposition of films using disiloxane precursors
US20220108881A1 (en) Method and system for forming silicon nitride on a sidewall of a feature
KR20040096337A (en) Method for fabricating of semiconductor device using PECYCLE-CVD

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100901

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee