KR20060059639A - Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment - Google Patents

Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment Download PDF

Info

Publication number
KR20060059639A
KR20060059639A KR1020040098782A KR20040098782A KR20060059639A KR 20060059639 A KR20060059639 A KR 20060059639A KR 1020040098782 A KR1020040098782 A KR 1020040098782A KR 20040098782 A KR20040098782 A KR 20040098782A KR 20060059639 A KR20060059639 A KR 20060059639A
Authority
KR
South Korea
Prior art keywords
gas
carbon nanotube
gas sensor
film
adsorbed
Prior art date
Application number
KR1020040098782A
Other languages
Korean (ko)
Other versions
KR100697723B1 (en
Inventor
주병권
이양두
문승일
이현재
조우성
이종홍
이곤재
Original Assignee
한국과학기술연구원
주식회사 케이이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 주식회사 케이이씨 filed Critical 한국과학기술연구원
Priority to KR1020040098782A priority Critical patent/KR100697723B1/en
Publication of KR20060059639A publication Critical patent/KR20060059639A/en
Application granted granted Critical
Publication of KR100697723B1 publication Critical patent/KR100697723B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • G01N27/66Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber and measuring current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0407Field emission cathodes
    • H01J2329/0439Field emission cathodes characterised by the emitter material
    • H01J2329/0444Carbon types
    • H01J2329/0455Carbon nanotubes (CNTs)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

본 발명은 탄소나노튜브를 이용한 가스센서 제작 및 가스 감도 측정 장치를 제공하는 것에 관한 것이다.The present invention relates to the production of a gas sensor and a gas sensitivity measurement device using carbon nanotubes.

가스센서 제작에 있어서, 가스 감지물질은 탄소나노튜브 페이스트를 제작하여 양 끝단에 전극이 형성된 기판에 스크린 인쇄(screen printing)법으로 탄소나노튜브를 도포 후 열처리공정을 거친 후 탄소나노튜브 후막을 형성하였고, 상기 제작된 후막을 탄소나노튜브 수직 배향처리 시켰다. 가스 감도 측정 장치를 이용하여 상기 제작된 수직 배향된 탄소나노튜브를 가스 흡착시켰고, 전자방출(field electron emission) 현상을 적용시켜 흡착된 가스를 탈착시켰다.In the fabrication of gas sensor, the gas sensing material is made of carbon nanotube paste to apply carbon nanotubes by screen printing method to the substrate where electrodes are formed at both ends and then undergo heat treatment process to form carbon nanotube thick film The prepared thick film was subjected to vertical alignment of carbon nanotubes. The prepared vertically oriented carbon nanotubes were gas adsorbed using a gas sensitivity measurement device, and the adsorbed gas was desorbed by applying a field electron emission phenomenon.

따라서, 본 발명은 기존의 반도체형 가스센서보다 단순한 공정으로 가스 감지막을 제작하여 흡착된 가스를 히터물질로 온도를 올려 탈착 시키는 것이 아니라 새로운 방법인 탄소나노튜브 전자방출 현상을 적용시켰다.Therefore, the present invention applies a carbon nanotube electron emission phenomenon, which is a new method, rather than making a gas sensing film in a simpler process than a conventional semiconductor gas sensor and desorbing the adsorbed gas with a heater material.

탄소나노튜브, 가스센서, 가스감도, 전자방출 Carbon nanotube, gas sensor, gas sensitivity, electron emission

Description

탄소나노튜브를 이용한 가스센서 제조방법 및 가스감도 측정장치{Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment} Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment

도 1은 본 발명에 따른 탄소나노튜브를 이용한 가스센서 감지막 단면도이다.1 is a cross-sectional view of a gas sensor detection film using carbon nanotubes according to the present invention.

도 2a는 본 발명에 따른 가스센서/감도 측정장치의 구성도이다.Figure 2a is a block diagram of a gas sensor / sensitivity measuring apparatus according to the present invention.

도 2b은 본 발명에 따른 가스가 흡착된 탄소나노튜브에 전자방출 현상을 이용하여 가스 탈착을 위한 도면이다.Figure 2b is a view for the gas desorption using the electron emission phenomenon in the gas adsorbed carbon nanotubes according to the present invention.

도 3a은 본 발명에 따른 가스가 흡/탈착된 탄소나노튜브을 시간에 따른 저항변화 값을 나타낸 그래프이다.Figure 3a is a graph showing a resistance change value with time the carbon nanotubes adsorbed / desorbed in accordance with the present invention.

도 3b는 본 발명에 따라 가스가 흡착된 탄소나노튜브에 일정 전압을 주어 시간에 따른 전자방출 전류 값을 보여준 그래프이다. Figure 3b is a graph showing the electron emission current value with time given a constant voltage to the carbon nanotubes gas is adsorbed in accordance with the present invention.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

1 : 기판 2 : 탄소나노튜브 전극1 substrate 2 carbon nanotube electrode

3 : 탄소나노튜브 후막 4 : 애노드 기판3: carbon nanotube thick film 4: anode substrate

5 : 애노드 전극 6 : 제 1전압5: anode electrode 6: first voltage

7 : 제 2전압 7: second voltage

본 발명은 탄소나노튜브를 이용한 가스센서 제조방법 및 가스감도 측정장치에 관한 것이다. 보다 상세하게는 기존의 반도체형 가스센서 보다 단순한 새로운 공정으로 가스센서 감지막을 제작하고, 그와 더불어 가스감도를 측정하기 위한 기술에 관한 것이다. The present invention relates to a gas sensor manufacturing method and a gas sensitivity measuring apparatus using carbon nanotubes. More specifically, the present invention relates to a technology for manufacturing a gas sensor detection film using a simpler new process than a conventional semiconductor gas sensor, and measuring gas sensitivity.

반도체형 가스센서는 금속산화물 반도체인 SnO2, InO, WO3, TiO2, ZnO, In2O3 등의 소결체로 특정 가스의 농도를 저항변화로서 측정한다. 이와 같은 물질은 제조공정이 고온에서 이루어지고, 200 ~ 600℃에서 가열하여 센서의 동작이 이루어진다. 그러나, 탄소나노튜브는 반도체 성질을 가지고 있어 상온에서 동작이 가능하고, 반응속도가 빠르다는 장점을 가지고 있다. 이는 가스가 탄소나노튜브 표면에 흡/탈착 시 탄소나노튜브의 표면에 생기는 저항변화를 이용하여 감지하는 원리를 이용한 것이다. The semiconductor gas sensor is a sintered body such as SnO 2 , InO, WO 3 , TiO 2 , ZnO, In 2 O 3 , which are metal oxide semiconductors, and measures the concentration of a specific gas as a resistance change. Such a material is manufactured at a high temperature, and heated at 200 to 600 ° C. to operate the sensor. However, carbon nanotubes have semiconductor properties, so they can be operated at room temperature and have a fast reaction rate. This is based on the principle that the gas is detected using the change in resistance generated on the surface of the carbon nanotubes when the adsorption / desorption on the surface of the carbon nanotubes.

공개특허 제2002-0003464호의 " 탄소나노튜브를 이용한 가스센서 및 그의 제조방법 " 에서는 열화학 기상증착법(thermal chemical vapor deposition)으로 탄소나노튜브를 수평으로 성장시켜 가스센서에 적용하였지만, 가스 감응특성은 언급이 없었다.In the "2002-03003464" gas sensor using carbon nanotubes and a method of manufacturing the same, the carbon nanotubes were horizontally grown by thermal chemical vapor deposition and applied to the gas sensor. There was no.

또한, L. Valentini et al. 이 " Applied physics letters 82권 p.961 " 발표에 의하면, Si3N4/Si 기판위에 Ni에 플라즈마 화학증착법(plasma-enhanced chemical vapor deposition)으로 650℃, CH4를 흘러 탄소나노튜브를 성장시켜 합성하였다, 상기 제작된 기판을 NO2 gas상에 노출시켜 NO2가 흡착되어 저항이 감소하였고, 165℃ 열을 가하여 NO2가 탈착되어 회복되었다. 이 방법은 기판 위에 탄소나노튜브를 합성하는데 고온 공정이 필요하다는 제약이 따른다.In addition, L. Valentini et al. According to the announcement in "Applied physics letters 82, p.961", carbon nanotubes were grown by flowing CH 4 at 650 ° C by plasma-enhanced chemical vapor deposition on Si 3 N 4 / Si substrates. After synthesis, the prepared substrate was exposed to NO 2 gas and NO 2 was adsorbed to decrease the resistance, and NO 2 was desorbed and recovered by applying 165 ° C. heat. This method is limited by the high temperature process required to synthesize carbon nanotubes on a substrate.

Jing Li et al. 이 " NANO LETTERS지 3권 p.929 " 에서는 화학 정제된 단일벽 탄소나노튜브(single walled carbon nanotubes; SWNTs)와 DMF(dimethyl formanide)를 혼합하여 현탁액 제조하여 Au전극에 drop-deposited법을 사용하여 N2 gas 상에 전도도 변화를 측정하여 분석하였다. 이 방법은 전극 위에 탄소나노튜브 양을 제어가 어렵고, 탈착특성에 대한 데이터가 없다.Jing Li et al. In this "NANO LETTERS Vol. 3 p.929", a suspension is prepared by mixing chemically purified single walled carbon nanotubes (SWNTs) and dimethyl formanide (DMF), and using a drop-deposited method on Au electrodes. The change in conductivity on N 2 gas was measured and analyzed. This method is difficult to control the amount of carbon nanotubes on the electrode, and there is no data on the desorption characteristics.

등록특허 제10-03332742호의 " 가스센서 제조방법 " 에서는 450℃ ~ 800℃ 고온에서 반도체기판 웨이퍼에 절연물질을 형성하고, 스퍼터링 방법을 사용하여 히터물질 Pt를 증착하고, 촉매가 첨가된 금속산화물을 도포하여 가스 감지막을 형성하는데 반도체 공정을 이용함으로써 소형화에 유리하다는 장점은 있지만 고가의 공정장비가 필요하다는 단점이 있다.In the "Gas sensor manufacturing method" of Patent No. 10-03332742, an insulating material is formed on a semiconductor substrate wafer at a high temperature of 450 ° C to 800 ° C, a heater material Pt is deposited using a sputtering method, and a metal oxide to which a catalyst is added is deposited. Although the semiconductor process is used to form a gas sensing film by coating, it is advantageous in miniaturization, but there is a disadvantage in that expensive process equipment is required.

등록특허 제10-0279578호의 " 반도체형 가스센서 " 에서는 알루미나 기판 표면에 스크린 인쇄법(Screen Printing Method)으로 히터와 전극을 인쇄하여 1200℃ 로 소성 후에 산화물 감지막 재료(SnO2, InO, WO3, TiO2)를 사용하여 600℃ ~ 900℃ 에 소성시켜 제조한다.In the "Semi-conductor type gas sensor" of Korean Patent No. 10-0279578, an oxide sensing film material (SnO 2 , InO, WO 3 ) is printed on a surface of an alumina substrate using a screen printing method and then heated to 1200 ° C. , TiO 2 ) to be produced by firing at 600 ℃ ~ 900 ℃.

공개특허 제2003-0081863호의 " 후막형 가스센서의 제조 방법 " 에서는 기판에 Pt전극을 스크린 프린팅법으로 형성한 후 1200℃ ~ 1300℃ 에서 열처리 후, 바인 더가 포함되지 않은 센서물질(감지막) 현탁액을 원심력이 적용시켜 기판 위에 센서물질이 적층되어 형성한 후 700℃ 에서 소결시켜 제조하는 것으로 페이스트 제조공정을 생략하고 제조공정이 단순하고, 고온에서 센서의 감도 특성 측정이 이루어졌다. In the "Method of manufacturing a thick-film gas sensor" of Korean Patent Laid-Open Publication No. 2003-0081863, a Pt electrode is formed on a substrate by screen printing and then heat-treated at 1200 ° C to 1300 ° C, and the binder material does not include a sensor material (sensing film). The suspension was applied by centrifugal force to form a stack of sensor materials on the substrate, followed by sintering at 700 ° C. to omit the paste manufacturing process, and the manufacturing process was simple, and the sensitivity characteristics of the sensor were measured at high temperatures.

상술한 바와 같이, 종래의 특허 및 논문을 분석한 결과 후막형 가스센서 제조는 고온에서 이루어지고, 반도체형 가스센서는 고가의 반도체 공정 장비 및 제조공정상 다루기 힘들다는 문제점이 있으며, 가스 탈착을 위하여 히터물질인 고가의 백금(Pt)증착 공정이 필요하다.As described above, as a result of analyzing the conventional patents and papers, the thick-film gas sensor is manufactured at a high temperature, and the semiconductor-type gas sensor has a problem that it is difficult to deal with expensive semiconductor process equipment and manufacturing process, and a heater for gas desorption. Expensive platinum (Pt) deposition process is required.

이에, 본 발명은 상기한 문제점들을 해결하기 위해 것으로서 본 발명은 기존의 반도체형 가스센서 보다 단순한 공정으로 가스센서 감지막을 제작함으로써 흡착된 가스를 히터물질로 온도를 올려 탈착 시키는 것이 아니라 새로운 방법인 탄소나노튜브 전자방출 현상을 적용시키며, 이를 측정하기 위한 가스감도 측정장치를 제공하는데 그 목적이 있다.Accordingly, the present invention is to solve the above problems, the present invention is to produce a gas sensor sensor film in a simpler process than the conventional semiconductor gas sensor by degassing the adsorbed gas to the heater material temperature is a new method of carbon The purpose of the present invention is to apply a nanotube electron emission phenomenon and to provide a gas sensitivity measurement device for measuring the electron emission phenomenon.

상기의 목적을 달성하기 위한 기술적 사상으로서 본 발명은The present invention as a technical idea for achieving the above object

탄소나노튜브 페이스트를 형성하는 단계와;Forming a carbon nanotube paste;

상기 탄소나노튜브 페이스트를 이용하여 기판 상에 탄소나노튜브 전극을 형성하는 단계;Forming a carbon nanotube electrode on a substrate using the carbon nanotube paste;

상기 전극 상에 감지막용 탄소나노튜브 후막을 형성하는 단계; 및Forming a carbon nanotube thick film for the sensing film on the electrode; And

상기 기판을 열처리하여 가스센서 감지막을 형성하는 단계를 포함하는 것을 특징으로 하는 가스센서 제조방법을 제공한다. It provides a gas sensor manufacturing method comprising the step of forming a gas sensor detection film by heat-treating the substrate.                         

또한, 본 발명은In addition, the present invention

가스센서 감지막이 장착된 진공 챔버 및 진공 펌프가 구비되고,It is equipped with a vacuum chamber and a vacuum pump equipped with a gas sensor detection film,

상기 진공 챔버 및 진공 펌프에 연결된 라인관과 밸브를 통해 주입된 감지가스와 불활성 가스의 유량을 조절하는 가스 유량조절기와;A gas flow controller for controlling a flow rate of the sensing gas and the inert gas injected through the line tube and the valve connected to the vacuum chamber and the vacuum pump;

상기 진공 챔버와 연결되어 가스의 흡/착탈시 전류 및 저항 변화를 측정하기 위해 제 1전압을 공급하는 제 1전압 공급장치와;A first voltage supply device connected to the vacuum chamber to supply a first voltage to measure a change in current and resistance when gas is absorbed / desorbed;

상기 진공 챔프와 연결되어 흡착된 가스를 탈착시켜 전자방출 전류 값을 측정하기 위해 제 2전압을 공급하는 제 2전압 공급장치; 및A second voltage supply device connected to the vacuum chamber to supply a second voltage to desorb the gas adsorbed to measure an electron emission current value; And

제어 프로그램이 구비되며, 상기 제 1 및 제 2전압 공급장치의 전압 제어에 의해 전류/저항/전자방출 전류값을 측정하기 위한 컴퓨터(PC)를 포함하는 것을 특징으로 하는 가스센서 감도 측정장치를 제공한다.A control program is provided and includes a computer (PC) for measuring a current / resistance / electron emission current value by voltage control of the first and second voltage supply devices. do.

이하, 첨부도면을 참조하여 본 발명에 의한 탄소나노튜브를 이용한 가스센서 제조방법 및 가스 감도 측정장치에 대해 상세히 살펴보면 다음과 같다.Hereinafter, a gas sensor manufacturing method and a gas sensitivity measuring apparatus using carbon nanotubes according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 탄소나노튜브를 이용한 가스센서 감지막 단면도이다.1 is a cross-sectional view of a gas sensor detection film using carbon nanotubes according to the present invention.

도 1을 살펴보면, 탄소나노튜브 페이스트를 제조하여 기판(1)에 탄소나노튜브 전극(2)을 형성 한 후, 상기 제공된 기판(1)에 가스센서 감지막 물질인 탄소나노튜브 후막(3)을 형성하였고, 스크린 인쇄법으로 막 공정을 실시하였다.Referring to FIG. 1, after the carbon nanotube paste is manufactured to form the carbon nanotube electrode 2 on the substrate 1, the carbon nanotube thick film 3, which is a gas sensor sensing material, is formed on the provided substrate 1. It formed and the film process was performed by the screen printing method.

본 발명에서는 스크린 인쇄법 대신에 잉크젯 인쇄(ink jet printing)법으로 사용할 수 있다. 상기 제공된 기판을 350℃ ~ 450℃ 로 열처리를 실시하여 가스센서 감지막(3)이 형성된다. 상기 감지물질은 SnO2, InO, WO3, TiO2, ZnO, In 2O3와 같은 산화물 반도체 물질을 사용할 수 있다.In the present invention, it can be used by ink jet printing instead of screen printing. The provided substrate is subjected to heat treatment at 350 ° C. to 450 ° C. to form a gas sensor detection film 3. The sensing material may be an oxide semiconductor material such as SnO 2 , InO, WO 3 , TiO 2 , ZnO, In 2 O 3 .

도 2a는 본 발명에 따른 가스센서 감도 측정장치의 구성도 이다.Figure 2a is a block diagram of a gas sensor sensitivity measuring apparatus according to the present invention.

도 2a에 도시된 바와 같이, 가스센서 감도 측정장치는 진공챔버(9), 진공펌프(10), 가스의 유량을 조절할 수 있는 가스 유량조절기(11), 감지 가스(14)와 샘플로딩 시 대기압을 조절할 수 있는 불활성 가스(15)를 사용하고, 각 부속품은 라인관(12)과 밸브(13)로 연결되어 있고, 가스 흡·탈착시 컴퓨터(8)로 제어된 프로그램으로 제 1전압(6)을 주어 전류 및 저항 변화를 측정하고, 흡착된 가스를 탈착시키기 위하여 애노드 기판(4)을 설치하여 컴퓨터(7)로 제어된 프로그램으로 제 2전압(7)을 가하여 전자방출 전류 값을 얻을 수 있는 것으로 구성되어 있다. As shown in FIG. 2A, the gas sensor sensitivity measuring device includes a vacuum chamber 9, a vacuum pump 10, a gas flow regulator 11 capable of adjusting the flow rate of gas, a sensing gas 14, and atmospheric pressure during sample loading. Using an inert gas (15) that can adjust the, each accessory is connected to the line tube 12 and the valve 13, the first voltage (6) by the program controlled by the computer (8) at the time of gas adsorption and desorption ) To measure current and resistance changes, and to install the anode substrate 4 to desorb the adsorbed gas, and to apply the second voltage 7 with a program controlled by the computer 7 to obtain the electron emission current value. It consists of being.

도 2b는 본 발명에 따른 가스가 흡착된 탄소나노튜브에 전자방출 현상을 이용하여 가스 탈착을 위한 도면이다. Figure 2b is a view for the gas desorption using the electron emission phenomenon in the gas adsorbed carbon nanotubes according to the present invention.

도 2a에 있는 (b)부분을 상세히 설명하면 다음과 같다. 상기 제공된 탄소나노튜브 후막 즉, 가스센서 감지막(3)에 양단에 있는 전극(2)을 연결하여 컴퓨터(6)로 제어된 프로그램으로 일정 전압(6) 1V를 가하여 챔버(9) 내부에 있는 가스(14)가 감지막(3)에 흡/탈착시 전류 및 저항값을 얻고, 기판(4)에 애노드 전극(5)과 감지막(3)에 제 2전압(7)을 가하여 상기 감지막 에미터(emitter)에서 방출되는 전자에 의해 흡착된 가스를 탈착시켜 방출전류 값이 측정되고, 상기 감지막과 애노드전극 간격은 500㎛로 유지하였다.Referring to part (b) of Figure 2a in detail as follows. Connect the electrodes 2 at both ends to the provided carbon nanotube thick film, that is, the gas sensor detecting film 3, and apply a predetermined voltage 6 1V to the computer 6 to control the inside of the chamber 9. When the gas 14 absorbs and desorbs the sensing film 3, current and resistance values are obtained, and the sensing film is applied by applying a second voltage 7 to the anode electrode 5 and the sensing film 3 on the substrate 4. The emission current value was measured by desorbing the gas adsorbed by the electrons emitted from the emitter, and the gap between the sensing film and the anode electrode was maintained at 500 μm.

도 3a는 본 발명에 따른 가스가 흡/탈착된 탄소나노튜브를 시간에 따른 저항변화 값을 나타낸 그래프이다.Figure 3a is a graph showing the resistance change value with time the carbon nanotubes adsorption / desorption according to the present invention.

그래프를 보면 ①곡선은 탄소나노튜브에 100ppm NO2 gas 가 흡착되어 초기저항보다 감소하고, ②곡선은 전압을 가하여 전자방출에 의해서 상기 흡착된 가스가 탈착되어 저항이 증가 즉, 원래대로 회복된 값을 보여주고 있다. 상기 측정을 수회 실시하여 그래프를 나타낸 것이다. 감지 가스는 O2, NOx, CO2, H2 등 산화성 가스와 NH3, CO, CH4 등 환원성 가스를 사용할 수 있다. In the graph, ① curve is 100ppm NO 2 gas is adsorbed on the carbon nanotubes and decreases than the initial resistance, ② curve is the value that the adsorbed gas is desorbed by the electron emission by applying a voltage, that is, the resistance is restored to its original value Is showing. The graph is shown by performing the measurement several times. The sensing gas may be an oxidizing gas such as O 2 , NO x , CO 2 , H 2 , or a reducing gas such as NH 3 , CO, or CH 4 .

도 3b는 본 발명에 따라 가스가 흡착된 탄소나노튜브에 일정 전압 1700V를 주어 시간에 따른 전자방출 전류값을 보여준 그래프이다. 도 3a에 있는 상기 가스가흡착된 감지막에 전압을 주어 전자방출전류에 의해 저항이 증가되어 원래대로 회복된 현상을 ②곡선 부분에서 보여주고 있다.Figure 3b is a graph showing the electron emission current value with time given a constant voltage 1700V gas adsorbed carbon nanotubes according to the present invention. 2A shows a phenomenon in which the gas is absorbed by the gas-sorption sensing film, and the resistance is increased by the electron emission current, thereby restoring the original state.

상술한 바와 같이, 본 발명은 전술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다. As described above, the present invention is not limited to the above-described embodiments and the accompanying drawings, and the present invention belongs to various substitutions, modifications, and changes that can be made without departing from the spirit of the present invention. It will be apparent to those of ordinary skill in the art.

이상에서와 같이, 본 발명에 의한 탄소나노튜브를 이용한 가스센서 제조방법 및 가스 감도 측정장치를 제공함으로써 기존의 반도체형 가스센서 보다 단순한 공정으로 용이하게 가스센서 감지막을 제작할 수 있다.As described above, by providing a gas sensor manufacturing method and a gas sensitivity measuring apparatus using a carbon nanotube according to the present invention it is possible to easily produce a gas sensor detection film in a simpler process than a conventional semiconductor gas sensor.

Claims (6)

탄소나노튜브 페이스트를 형성하는 단계와;Forming a carbon nanotube paste; 상기 탄소나노튜브 페이스트를 이용하여 기판 상에 탄소나노튜브 전극을 형성하는 단계;Forming a carbon nanotube electrode on a substrate using the carbon nanotube paste; 상기 전극 상에 감지막용 탄소나노튜브 후막을 형성하는 단계; 및Forming a carbon nanotube thick film for the sensing film on the electrode; And 상기 기판을 열처리하여 가스센서 감지막을 형성하는 단계를 포함하는 것을 특징으로 하는 가스센서 제조방법.And heat-treating the substrate to form a gas sensor detection film. 청구항 1에 있어서, 상기 탄소나노튜브 후막은 스크린 인쇄법 혹은 잉크젯 인쇄법을 이용하여 형성된 것을 특징으로 하는 가스센서 제조방법.The method of claim 1, wherein the carbon nanotube thick film is formed using a screen printing method or an inkjet printing method. 청구항 1에 있어서, 상기 감지막은 SnO2, InO, WO3, TiO2, ZnO, In2 O3 등이 포함되는 산화물 반도체 물질을 이용하는 것을 특징으로 하는 가스센서 제조방법.The method of claim 1, wherein the sensing film uses an oxide semiconductor material including SnO 2 , InO, WO 3 , TiO 2 , ZnO, In 2 O 3, and the like. 가스센서 감지막이 장착된 진공 챔버 및 진공 펌프가 구비되고,It is equipped with a vacuum chamber and a vacuum pump equipped with a gas sensor detection film, 상기 진공 챔버 및 진공 펌프에 연결된 라인관과 밸브를 통해 주입된 감지가스와 불활성 가스의 유량을 조절하는 가스 유량조절기와;A gas flow controller for controlling a flow rate of the sensing gas and the inert gas injected through the line tube and the valve connected to the vacuum chamber and the vacuum pump; 상기 진공 챔버와 연결되어 가스의 흡/착탈시 전류 및 저항 변화를 측정하기 위해 제 1전압을 공급하는 제 1전압 공급장치와;A first voltage supply device connected to the vacuum chamber to supply a first voltage to measure a change in current and resistance when gas is absorbed / desorbed; 상기 진공 챔프와 연결되어 흡착된 가스를 탈착시켜 전자방출 전류 값을 측정하기 위해 제 2전압을 공급하는 제 2전압 공급장치; 및A second voltage supply device connected to the vacuum chamber to supply a second voltage to desorb the gas adsorbed to measure an electron emission current value; And 제어 프로그램이 구비되며, 상기 제 1 및 제 2전압 공급장치의 전압 제어에 의해 전류/저항/전자방출 전류값을 측정하기 위한 컴퓨터(PC)를 포함하는 것을 특징으로 하는 가스감도 측정장치.A control program is provided, comprising a computer (PC) for measuring the current / resistance / electron emission current value by the voltage control of the first and second voltage supply device. 청구항 4에 있어서, 상기 가스가 흡착된 가스센서 감지막의 캐소드 전극 기판과 애노드 전극 기판을 정열하여 상기 감지막의 에미터 전극 기판에서 방출되는 전자에 의해 흡착된 가스를 탈착시키는 것을 특징으로 하는 가스감도 측정장치.The gas sensitivity measurement according to claim 4, wherein the cathode electrode substrate and the anode electrode substrate of the gas sensor sensing film to which the gas is adsorbed are aligned to desorb the gas adsorbed by electrons emitted from the emitter electrode substrate of the sensing film. Device. 청구항 4에 있어서, 상기 감지 가스는 O2, NOx, CO2, H2 등 산화성 가스와 NH3, CO, CH4 등 환원성 가스를 포함하는 것을 특징으로 하는 가스감도 측정장치. The gas sensitivity measuring apparatus of claim 4, wherein the sensing gas comprises an oxidizing gas such as O 2 , NO x , CO 2 , H 2 , and a reducing gas such as NH 3 , CO, or CH 4 .
KR1020040098782A 2004-11-29 2004-11-29 Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment KR100697723B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040098782A KR100697723B1 (en) 2004-11-29 2004-11-29 Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040098782A KR100697723B1 (en) 2004-11-29 2004-11-29 Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment

Publications (2)

Publication Number Publication Date
KR20060059639A true KR20060059639A (en) 2006-06-02
KR100697723B1 KR100697723B1 (en) 2007-03-20

Family

ID=37156800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040098782A KR100697723B1 (en) 2004-11-29 2004-11-29 Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment

Country Status (1)

Country Link
KR (1) KR100697723B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745481B1 (en) * 2006-08-24 2007-08-02 세메스 주식회사 Apparatus and method for collection carbon nano tube
KR100775412B1 (en) * 2006-04-24 2007-11-12 재단법인서울대학교산학협력재단 Fabrication method of carbon nanotube gas sensors using anodic aluminum oxide templates
KR101104207B1 (en) * 2009-06-30 2012-01-09 한국이엔에쓰 주식회사 carbon-nano-tube gas sensor for detecting ethanol, and manufacturing method thereof
KR101304340B1 (en) * 2011-10-31 2013-09-11 한국표준과학연구원 Hydrogen consistency measuring equipment and its fabrication method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203181B1 (en) * 2010-03-05 2012-11-20 전자부품연구원 Flexible gas sensor array, method of process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775412B1 (en) * 2006-04-24 2007-11-12 재단법인서울대학교산학협력재단 Fabrication method of carbon nanotube gas sensors using anodic aluminum oxide templates
KR100745481B1 (en) * 2006-08-24 2007-08-02 세메스 주식회사 Apparatus and method for collection carbon nano tube
KR101104207B1 (en) * 2009-06-30 2012-01-09 한국이엔에쓰 주식회사 carbon-nano-tube gas sensor for detecting ethanol, and manufacturing method thereof
KR101304340B1 (en) * 2011-10-31 2013-09-11 한국표준과학연구원 Hydrogen consistency measuring equipment and its fabrication method

Also Published As

Publication number Publication date
KR100697723B1 (en) 2007-03-20

Similar Documents

Publication Publication Date Title
Yuan et al. Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors
Law et al. Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration
Liao et al. A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability
US8178157B2 (en) Gas sensor and manufacturing method thereof
Cho et al. Multiwall carbon nanotube gas sensor fabricated using thermomechanical structure
JP2008216083A (en) Chemical substance sensing element, chemical substance sensing device, and manufacturing method of the chemical substance sensing element
JP2008128747A (en) High sensitivity gas sensor and its manufacturing method
KR100697723B1 (en) Method for fabricating gas sensor using carbon nanotube and gas sensibility measurement equipment
KR101113315B1 (en) Gas sensor having catalyst layer and method for operating the same
KR20110066849A (en) Semiconductor gas sensor with low power consumption
CN113640361A (en) Grid sensitive FET gas sensor array for trace formaldehyde gas detection and preparation method thereof
WO2007029684A1 (en) Fullerene or nanotube, and method for producing fullerene or nanotube
KR20110120039A (en) Hydrogen sensor and manufacturing method thereof
CN114428107B (en) Pd/SnO 2 MWCNTs nano gas-sensitive composite material, gas-sensitive element and application thereof in CO sensing
CN107907572A (en) A kind of respond style control method of tungsten oxide nano gas sensor
KR20030080833A (en) Method for fabricating carbon nano tube gas sensor
Tong et al. High sensitivity and switching-like response behavior of SnO 2-Ag-SnO 2 element to H 2 S at room temperature
Liu et al. A Low Power Bridge-Type Gas Sensor With Enhanced Sensitivity to Ethanol by Sandwiched ZnO/Au/ZnO Film Sputtered in O₂ Atmosphere
KR20200134042A (en) GASS SENSOR BASED ON THE 3ω-METHOD USING A SUSPENDED CARBON NANOWIRE AND METHOD FOR MANUFACTURING GASS SENSOR
Mishra et al. Metal-oxide thin film with Pt, Au and Ag nano-particles for gas sensing applications
KR102009938B1 (en) Gas detecting element and gas sensor using same
JP4764981B2 (en) Method for manufacturing thin film gas sensor
Hayasaka et al. Temperature characterizations on graphene-based gas sensors
KR100654890B1 (en) Method of manufacturing thin film type gas sensor
Bhowmik et al. Low temperature acetone sensor based on Sol-gel grown nano TiO 2 thin film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140303

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee