KR20060059622A - A producing method of fructose-6-phosphate using thermostable enzymes - Google Patents

A producing method of fructose-6-phosphate using thermostable enzymes Download PDF

Info

Publication number
KR20060059622A
KR20060059622A KR1020040098757A KR20040098757A KR20060059622A KR 20060059622 A KR20060059622 A KR 20060059622A KR 1020040098757 A KR1020040098757 A KR 1020040098757A KR 20040098757 A KR20040098757 A KR 20040098757A KR 20060059622 A KR20060059622 A KR 20060059622A
Authority
KR
South Korea
Prior art keywords
phosphate
fructose
starch
glucose
enzyme
Prior art date
Application number
KR1020040098757A
Other languages
Korean (ko)
Inventor
신현재
조연정
전병진
Original Assignee
주식회사 엔지뱅크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔지뱅크 filed Critical 주식회사 엔지뱅크
Priority to KR1020040098757A priority Critical patent/KR20060059622A/en
Publication of KR20060059622A publication Critical patent/KR20060059622A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01001Phosphorylase (2.4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01009Glucose-6-phosphate isomerase (5.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02002Phosphoglucomutase (5.4.2.2)

Abstract

본 발명은 내열성 효소를 이용하여 전분으로부터 인산당(phosphosugar)의 일종인 6-인산과당(fructose 6-phosphate)을 제조하는 방법에 관한 것이다. 좀더 자세하게는 전분인산화효소(starch phosphorylase), 인산포도당 자리옮김효소 (phosphoglucomutase), 6-인산포도당 이성질화효소(glucose 6-phosphate isomerase) 및 플룰란아제(pullulanase) 등의 여러 내열성 효소를 이용하여 반응을 이루고, 이온교환 수지 등을 이용하여 분리하며, 결정화 등을 이용하여 정제하는 방법에 관한 것이다.The present invention relates to a method for preparing 6-fructose 6-phosphate which is a kind of phosphosugar from starch by using a heat-resistant enzyme. More specifically, the reaction is performed using various heat-resistant enzymes such as starch phosphorylase, phosphoglucomutase, glucose 6-phosphate isomerase, and pullulanase. The present invention relates to a method of forming a resin, separating using an ion exchange resin, or the like, and purifying using crystallization or the like.

6-인산과당(fructose 6-phosphate), 1-인산포도당(glucose 1-phosphate), 6-인산포도당(glucose 6-phosphate), 글루칸 인산화효소(starch phosphorylase), 인산포도당 자리옮김효소(phosphoglucomutase), 6-인산포도당 이성질화효소(glucose 6-phosphate isomerase), 플룰란아제(pullulanase), 내열성 효소6-fructose 6-phosphate, 1-glucose 1-phosphate, 6-glucose 6-phosphate, glucan phosphatase, starch phosphorylase, phosphoglucomutase, Glucose 6-phosphate isomerase, pullulanase, heat resistant enzyme

Description

내열성 효소를 이용하여 전분으로부터 6-인산과당을 제조하는 방법{A producing method of fructose-6-phosphate using thermostable enzymes} A production method of fructose-6-phosphate using thermostable enzymes}             

도 1은 당류로부터 6-인산과당을 제조하는 루트 개략도,1 is a schematic diagram of the route for preparing 6-phosphate fructose from saccharides,

각 단계에서 사용되는 효소는The enzymes used in each step

전분에서 G1P 생산: 전분인산화효소(a)G1P production in starch: starch kinase (a)

글리코겐에서 G1P 생산: 글리코겐 인산화효소(b)G1P production from glycogen: glycogen kinase (b)

설탕에서 G1P 생산: 설탕 인산화효소(c)G1P production from sugar: sugar kinase (c)

맥아당에서 G1P 생산: 맥아당 인산화효소(d)G1P Production in Maltose: Maltose Kinase (d)

포도당에서 G6P 생산: 포도당 키나아제(e)G6P Production in Glucose: Glucose Kinase (e)

과당에서 F6P 생산: 과당 키나아제(f)F6P Production in Fructose: Fructose Kinase (f)

G1P에서 G6P 생산: 인산포도당자리옮김효소(g)G6P Production from G1P: Glucose-Transferase (g)

G6P에서 F6P 생산: 6-인산포도당 이성질화효소(h)이다.F6P production in G6P: 6-glucose isomerase (h).

도 2는 재조합 대장균을 회분식 배양하여 생산되는 균체의 흡광도 변화 및 포도당 농도 변화를 나타낸 그래프,Figure 2 is a graph showing the change in absorbance and glucose concentration of the cells produced by batch culture of recombinant E. coli,

도 3은 재조합 대장균을 유가식 배양하여 생산되는 균체의 흡광도 변화 및 포도당 농도 변화를 나타낸 그래프,3 is a graph showing the change in absorbance and glucose concentration of the cells produced by fed-batch culture of recombinant E. coli,

도 4는 내열성효소를 이용하여 1-인산 포도당(G1P)에서 6-인산 과당(F6P)으로 생전환하는 과정의 각 반응물, 생성물 농도변화를 나타낸 그래프이다.Figure 4 is a graph showing the change of each reactant, product concentration in the process of bio conversion from 1-phosphate glucose (G1P) to 6-phosphate fructose (F6P) using a heat resistant enzyme.

6-인산과당(fructose 6-phosphate)은 과당의 6번 위치가 인산화된 당 화합물로서 식물세포나 동물의 조직 내에 광범위하게 존재한다. 특히 식물세포 내에서 6-인산과당은 해당과정(glycolysis)이나 당생성과정(gluconeogenesis), 5당 인산화과정(pentose phosphate pathway) 및 캘빈회로(Calvin cycle)의 중요한 중간물질이다. 이 물질은 또한 동물 조직 내에서 6-인산포도당(glucose 6-phosphate)과 평형을 이루어 존재하는 것으로 알려져 있다. 일반적으로 D-형 이성질체로 존재하며 약어로는 F6P라고 표기한다.Fructose 6-phosphate is a sugar compound phosphorylated at position 6 of fructose and is widely present in plant cells or animal tissues. Especially in plant cells, 6-phosphate fructose is an important intermediate of glycolysis, gluconeogenesis, pentasaccharide phosphate pathway, and the Calvin cycle. The substance is also known to exist in equilibrium with glucose 6-phosphate in animal tissues. It generally exists as D-form isomers and is abbreviated as F6P.

생명체 내에서 6-인산과당의 합성은 해당과정의 두 번째 단계에서 6-인산포도당에 이성질화효소(phosphoglucoisomerase)가 작용하여 생성된다. 해당과정의 다음 단계는 6-인산과당이 ATP와 만나 인산과당키나아제(phosphofructokinase)라는 효소의 도움으로 1,6-이인산과당(fructose 1,6-biphosphate)과 ADP를 생성한다.Synthesis of 6-phosphate fructose in living organisms is produced by the action of isoglucoisomerase on 6-phosphate glucose in the second stage of glycolysis. The next step in glycolysis is 6-phosphate fructose with ATP to produce 1,6-diphosphate fructose (Fructose 1,6-biphosphate) and ADP with the help of an enzyme called phosphofructokinase.

문헌에 따르면 6-인산과당은 다양한 용도가 잠재되어 있는 것으로 밝혀졌다. 특히 1992년도 문헌 EP0506772(WO9109604)에 따르면 탄수화물에 인산이 결합된 인산화당(phosphosugar)이 당뇨병, 염증 등 다양한 분야에 사용될 수 있는 가능성이 언급되었다. 그러나 구체적인 작용 기작이나 임상실험 자료가 자세히 나와 있지는 않다.According to the literature, 6-phosphate fructose has potential for various uses. Particularly, according to the 1992 document EP0506772 (WO9109604), the possibility that phosphosugar, in which carbohydrates are combined with phosphoric acid, can be used in various fields such as diabetes and inflammation. However, no specific mechanism of action or clinical trial data is available.

효소를 이용하는 생전환(bioconversion)을 산업적으로 사용하기 위해서는 효소의 안정성 및 높은 생산성이 무척 중요하다. 이런 점에서 재조합 내열성 효소는 그 산업적 가치가 무척 높다고 할 수 있다. 최근 산업적으로 유용하게 사용할 수 있는 미생물 가운데 대표적인 더머스 속(Thermus Sp.)의 게놈정보가 공개되어 (Nature Biotech. 22: 547-553 (2004)) 유용한 유전자 자원으로서의 가치가 더욱 높아졌다. 그러나, 이러한 정보가 밝혀진 것은 최근의 일이며, 내열성 효소를 이용한 인산당의 대량 생전환에 관한 보고는 아직 없다. 내열성 효소가 아닌 일반적인 효소를 이용한 인산당의 생전환에 관한 연구로서 주목할 만한 것으로는 1-인산 포도당의 생전환 연구가 있다.Enzyme stability and high productivity are very important for industrial use of bioconversion using enzymes. In this sense, the recombinant heat-resistant enzyme has a high industrial value. Recently, genome information of Thermus Sp., A representative microorganism among industrially available microorganisms, has been published ( Nature Biotech. 22: 547-553 (2004)), further increasing its value as a useful genetic resource. However, this information has been discovered recently, and there are no reports on the massive bioconversion of phosphate sugars using heat-resistant enzymes. One of the notable researches on the bioconversion of phosphate sugar using a non-heat resistant enzyme is a bioconversion study of 1-phosphate glucose.

본 발명에서는 전분으로부터 6-인산과당(F6P)을 생산하기 위해 세부적으로 전분으로부터 1-인산 포도당(G1P)으로 생전환, 1-인산 포도당(G1P)에서 6-인산 포도당(G6P)으로 내부 생전환, 6-인산 포도당(G6P)으로부터 6-인산과당(F6P)으로 생전환 등 총 세 단계를 거치게 된다. 이에 따른 종래 보고들을 살펴보면, 우선 효소를 이용한 1-인산 포도당(G1P)의 생산에는 설탕(sucrose)으로부터 과당 (fructose)과 1-인산 포도당을 합성하는 류코노스톡 메센테로이드(Leuconostoc mesenteroides) 유래의 설탕인산화효소(sucrose phosphorylase)가 보고되어 있으며[Agric. Biol. Chem. 557: 1805-1810 (1991)], 알파-글루칸(α-glucan) 또는 말토덱스트린 (maltodextrins), 덱스트린(dextrin), 전분 등과 같은 중합도가 높은 다당류로부터 1-인산 포도당을 합성하는 글루칸 인산화효소(α-glucan-phosphorylases)가 보고되어 있다. 특히 유럽특허의 Kayane et al.은 전분으로부터 전분 인산화효소를 이용하여 1-인산 포도당을 60%까지 생전환할 수 있음을 보고하였다[EP 0305981A2(1989), Recent developments in the chemistry of natural carbon compounds Springer Berlin(1971)]. 그리고 담체에 고정화된 전분 인산화효소를 이용한 1-인산 포도당의 연속생산 공정 개발에 관한 보고도 있다[J. Biotechnol. 36: 11-17 (1994)].In the present invention, in order to produce 6-phosphate fructose (F6P) from starch in detail, bioconversion from starch to 1-phosphate glucose (G1P), internal bioconversion from 1-phosphate glucose (G1P) to 6-phosphate glucose (G6P) And three stages: bioconversion from 6-phosphate glucose (G6P) to 6-phosphate fructose (F6P). According to the conventional reports, first, the production of 1-phosphate glucose (G1P) using an enzyme is derived from the sugar ( ruuconostock mesenteroides ) that synthesizes fructose (fructose) and 1-phosphate glucose from sugar (sucrose) Sucrose phosphorylase has been reported [ Agric. Biol. Chem. 557: 1805-1810 (1991)], glucan kinase that synthesizes 1-phosphate glucose from highly polymerizable polysaccharides such as alpha-glucan or αtoglucan, maltodextrins, dextrin, starch, and the like. -glucan-phosphorylases have been reported. In particular, Kayane et al . Of the European patent have reported that it is possible to bioconvert up to 60% of 1-phosphate glucose using starch kinase from starch [EP 0305981A2 (1989), Recent developments in the chemistry of natural carbon compounds Springer Berlin (1971). There is also a report on the development of a continuous production process of 1-phosphate glucose using starch kinase immobilized on a carrier [ J. Biotechnol. 36: 11-17 (1994).

한편 6-인산 포도당(G6P)은 1-인산 포도당으로부터 내부 생전환되어야 하는데, 이는 설탕의 소비 및 합성에 있어서 자리옮김효소(phosphoglucomutases, PGM)에 의해 촉매된다. 이 효소는 유전자 재조합 방법에 의하여 여러 다양한 형태의 단백질로 발현된다[Plant Physiol. 117:997-1006(1998), Microbiol. 143:855-865(1997)].Meanwhile, 6-phosphate glucose (G6P) must be internally converted from mono-phosphate glucose, which is catalyzed by phosphoglucomutases (PGM) in the consumption and synthesis of sugar. This enzyme is expressed in many different forms of proteins by genetic recombination [ Plant Physiol. 117: 997-1006 (1998), Microbiol. 143: 855-865 (1997).

6-인산과당을 생산하기 위해서는 6-인산포도당이 6-인산포도당 이성질화효소(phosphoglucose isomerase)에 의해 생전환되어야 한다. 이 효소는 바나나와 같은 식물 유래도 있으며, 에어로피룸 페르닉스(Aeropyrum pernix), 더모플라스마 애시도필룸(Thermoplasma acidophilum) 등과 같은 미생물 유래도 보고되어 왔다[Biosci. Biotechnol. Biochem. 65:2174-2180 (2001), J. Biologic. Chem. 279: 2262-2272 (2004)]. 언급한 사항 이외에 산업용 기질을 이용한 일반적인 6-인산과당(F6P)의 생산루트가 도 1에 자세히 나타나 있다.To produce 6-phosphate fructose, 6-phosphate glucose must be bioconverted by 6-phosphoglucose isomerase. The enzyme is also derived from plants such as bananas, and microorganisms such as Aeropyrum pernix and Thermoplasma acidophilum have also been reported [ Biosci. Biotechnol. Biochem. 65: 2174-2180 (2001), J. Biologic. Chem. 279: 2262-2272 (2004). In addition to the points mentioned, a typical production route of 6-phosphate fructose (F6P) using an industrial substrate is shown in detail in FIG. 1.

더머스 속(Thermus sp.) 박테리아는 고온에서 자라는 호열성 박테리아로서, 일반적으로 70-75℃에서 성장하고, 일부 종들은 85℃에서도 성장한다고 알려져 있다(Brock, T. D.(1986) Thermophiles, pp 27-28, John Wiley Sons, Inc., New York). 따라서, 더머스 속 박테리아는 고온에서 활성을 보이는 효소를 얻기 위한 좋은 원천 자원이며, 실제로 여러 종류의 내열성 효소들이 더머스 속 박테리아로부터 분리되어 보고된 바 있다. 그러나, 탄수화물 관련 효소는 생전환 분야에서 그 유용성이 큼에도 불구하고 더머스 속 박테리아에서 분리된 효소를 이용하여 생전환에 이용한 연구는 아직까지 많지 아니하다(Taguchi, H. et al. J. Biochem., Tokyo(1982)91, 1343-1348; Hoide, S. et al. J. Biochem., Tokyo, (1991) 109, 6-7; Park, J. H. et al. Eur. J. Biochem. (1993) 241, 135-140; Ono, M. et al. J. Biochem. (1990)107, 21-26). Thermus sp. Bacteria are thermophilic bacteria that grow at high temperatures, generally growing at 70-75 ° C, and some species growing at 85 ° C (Brock, TD (1986) Thermophiles, pp 27-). 28, John Wiley Sons, Inc., New York. Thus, bacteria in Dermus are a good source of enzymes for activity at high temperatures, and several types of heat-resistant enzymes have been reported to be separated from bacteria in Dermus. However, although carbohydrate-related enzymes are useful in the field of biotransformation, there are not many studies on biotransformation using enzymes isolated from the bacteria of Dermus (Taguchi, H. et al. J. Biochem) . ., Tokyo (1982) 91, 1343-1348; Hoide, S. et al J. Biochem, Tokyo, (1991) 109, 6-7;.... Park, JH et al Eur J. Biochem (1993). 241, 135-140; Ono, M. et al. J. Biochem. (1990) 107, 21-26).

본 발명의 목적은 비교적 저렴한 원료인 전분으로부터 6-인산과당을 고효율로 제조하려는 것이다.It is an object of the present invention to produce high efficiency 6-phosphate fructose from starch which is a relatively inexpensive raw material.

본 발명에서는 더머스(Thermus) 균주에서 유래한 다양한 내열성 효소의 유전자를 대장균에 이식시킨 후 이 대장균을 대량 발효하고, 여기에서 생산된 효소를 이용하여 전분으로부터 6-인산과당을 생산하였다. 또한 이렇게 생산된 6-인산과당을 효율적으로 분리·정제하였다.
In the present invention, genes of various heat-resistant enzymes derived from the Thermus strain were transferred to E. coli, and then fermented to E. coli in large quantities, and 6-phosphate fructose was produced from starch using the enzyme produced therein. In addition, the 6-phosphate fructose thus produced was efficiently isolated and purified.

본 발명은 더머스 속(Thermus sp.) 유래 내열성의 전분인산화효소(starch phosphorylase), 인산포도당 자리옮김효소(phosphoglucomutase), 6-인산포도당 이성질화효소(glucose 6-phosphate isomerase)를 이용하여 반응 온도 40∼80℃에서 수용성 또는 불용성 전분으로부터 6-인산과당을 제조하는 방법에 관한 것이다.The present invention is a reaction temperature using a heat resistant starch phosphorylase derived from the genus Thermus sp., Phosphoglucomutase, 6-glucose 6-phosphate isomerase It relates to a process for producing 6-phosphate fructose from water-soluble or insoluble starch at 40-80 ° C.

또한, 본 발명은 상기 방법에 더머스 속(Thermus sp.) 유래 플룰란아제(pullulanase)를 부가하여 전분으로부터 6-인산과당을 제조하는 방법에 관한 것이다.The present invention also relates to a method for producing 6-phosphate fructose from starch by adding pullulanase derived from Thermus sp.

또한, 본 발명은 상기 인산포도당 자리옮김효소: 6-인산포도당 이성질화 효소의 비율이 1:1∼1:1.5인 것을 특징으로 하는, 전분으로부터 6-인산과당을 제조하는 방법에 관한 것이다. 상기 두 효소의 비율이 위 범위 내일 때 6-인산과당의 수율이 높은 것으로 나타났다.The present invention also relates to a method for producing 6-phosphate fructose from starch, characterized in that the ratio of the glucose phosphate transferase: 6-glucose isomerization enzyme is 1: 1 to 1: 1.5. The yield of 6-phosphate fructose was high when the ratio of the two enzymes was in the above range.

또한, 본 발명은 상기 반응 온도가 60∼70℃인 것을 특징으로 하는, 전분으로부터 6-인산과당을 제조하는 방법에 관한 것이다. 온도 60∼70℃일 때 기질인 전분의 용해도가 높아지고 다른 단백질이 불활성화되는 효과가 우수하다.The present invention also relates to a process for producing 6-phosphate fructose from starch, characterized in that the reaction temperature is 60 to 70 ° C. When the temperature is 60 ~ 70 ℃, the solubility of the starch, which is a substrate increases, and the effect of inactivating other proteins is excellent.

또한, 본 발명은 상기 불용성 전분의 농도가 0.01g/ℓ∼20g/ℓ인 것을 특징으로 하는, 전분으로부터 6-인산과당을 제조하는 방법에 관한 것이다. 이 범위를 넘을 경우 전분기질 대비 G1P 생산성이 낮아 산업적 활용 측면에서 바람직하지 않다.The present invention further relates to a method for producing 6-phosphate fructose from starch, wherein the concentration of the insoluble starch is 0.01 g / L to 20 g / L. If this range is exceeded, G1P productivity is lower than that of the previous quarter, which is undesirable in terms of industrial utilization.

뿐만 아니라, 본 발명은 상기 6-인산과당 제조공정 후 분리, 정제공정을 부가하는 것을 특징으로 한다.In addition, the present invention is characterized by adding the separation, purification step after the 6-phosphate fructose manufacturing process.

본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나, 본 발명의 범위가 아래 실시예의 기재에만 한정되는 것이 아님은 당업자에게 자명하다.An embodiment of the present invention will be described in detail as follows. However, it will be apparent to those skilled in the art that the scope of the present invention is not limited only to the description of the following examples.

[실시예 1] 효소생산을 위한 재조합 대장균의 유가식 배양Example 1 Fed-Batch Culture of Recombinant Escherichia Coli for Enzyme Production

더머스 칼도필러스(Thermus caldophilus) 균주에서 유래한 글루칸 인산화효소(α-glucan phosphorylase, EC 2.4.1.1) 유전자를 이식한 대장균의 대량발효를 위해 5ℓ발효조(fermentor)에서 조업부피 2ℓ, 교반속도 700rpm, 공기유량 1vvm, 배양온도 37℃, 접종량 10%로 하여 배양을 실시하였다. 회분식 배양을 시행하였을 경우 최고 세포질량이 흡광도(O.D. 600) 14에 머물렀으나(도 2), 유가식 배양을 시행한 경우 최고 세포질량이 흡광도 45(도 3)까지 증가함을 알 수 있다. 이 때 효소를 생산하기 위해 첨가되는 유도물질인 IPTG의 최종 농도는 5mM이었다.For the large-scale fermentation of E. coli grafted with the glucan phosphorylase gene derived from the Thermus caldophilus strain, a working volume of 2l and a stirring speed of 700rpm in a 5l fermentor The culture was carried out with an air flow rate of 1 vvm, a culture temperature of 37 ° C., and an inoculation amount of 10%. When batch culture was performed, the highest cell mass remained at absorbance (OD 600) of 14 (FIG. 2), but when fed-batch culture, the peak cell mass increased to absorbance 45 (FIG. 3). At this time, the final concentration of IPTG, an inducer added to produce enzyme, was 5 mM.

또한, 본 발명에서 사용되는 더머스 칼도필러스(Thermus caldophilus) 유래의 재조합 효소인 인산포도당 자리옮김효소(phosphoglucomutase)와 인산포도당 이성질화효소(phosphoglucose isomerase) 역시 위와 같은 방법으로 대량발효하여 유사한 결과를 얻을 수 있었다(J. Ind. Microbiol. Biot. (2000) 24, 89-93 참조).In addition, phosphoglucomutase and phosphoglucose isomerase, which are recombinant enzymes derived from Thermus caldophilus , used in the present invention, are also fermented in the same manner as above to obtain similar results. ( J. Ind. Microbiol. Biot. (2000) 24, 89-93).

[실시예 2] 전분으로부터 1-인산포도당의 제조Example 2 Preparation of 1-Glucose Glucose from Starch

1-인산 포도당(G1P)은 용해성 전분으로부터 글루칸 인산화효소(α-glucan phosphorylase)를 이용하여 제조되었다. 더머스 속(Thermus sp.) 유래의 재조합 글 루칸 인산화효소는 SDS-PAGE 에서 단일 밴드 90kDa로 특성화되었고, 최적 pH 7.0, 70℃에서 최대 활성을 나타내었다. 상기 효소는 고온(70℃ 이상)에서 반응이 원활하게 이루어지므로 실온에서 용해도가 낮은 전분의 용해도를 증가시킬 수 있어 고농도의 기질반응이 가능하다는 장점이 있다. 무게비로 5% 용해성 전분과 1M 인산완충용액(potassium phosphate buffer, pH7.0, 70℃) 하에서 효소 9.4 U/g-전분을 첨가함으로써 반응이 시작되었으며 이때 164mM의 G1P가 생성되었다. 기질 전분 g당 13-50U 사이에서 효소 첨가량을 조절하여 G1P의 생산을 시간별로 조사한 결과 최종 생성물 농도는 유사하게 높았으나 기질 전분의 농도가 초기 반응속도에 영향을 미침을 볼 수 있었다. 반응동안 전분의 노화 방지 등을 고려해 볼 때 효소 첨가량을 조절하여 최적 반응시간의 조절이 필요하다(표 1). 온도 조건 70℃에서 수행되었다.Glucose monophosphate (G1P) was prepared from soluble starch using α-glucan phosphorylase. Recombinant glucan kinase from Thermus sp. Was characterized as a single band 90kDa on SDS-PAGE and showed maximum activity at optimal pH 7.0, 70 ° C. Since the enzyme is smoothly reacted at a high temperature (70 ° C. or more), it is possible to increase the solubility of starch having low solubility at room temperature, thereby enabling a high concentration of substrate reaction. The reaction was initiated by adding the enzyme 9.4 U / g-starch at 5% soluble starch and 1M phosphate buffer (pH 7.0, 70 ° C.) by weight, yielding 164 mM G1P. The production of G1P by the amount of enzyme added between 13-50U per g of substrate starch was examined over time. The final product concentration was similarly high, but the concentration of substrate starch influenced the initial reaction rate. Considering the prevention of aging of starch during the reaction, it is necessary to control the optimum reaction time by adjusting the amount of enzyme addition (Table 1). Temperature conditions were carried out at 70 ° C.

효소량 (U/g starch)Enzyme amount (U / g starch) G1P 생산(mM)G1P Production (mM) 1h1h 4h4h 8h8h 72h72h 1313 -- 2020 6060 141.6141.6 2525 45.145.1 91.791.7 100100 152.2152.2 5050 55.555.5 9595 109.8109.8 158.7158.7

반면 산업용 불용성 전분으로 반응시킬 경우 용해도 제한으로 인해 고농도의 전분을 기질로 이용할 수 없었다. 산업용 2% 불용성 전분을 300mM 인산완충용액에 녹여 효소 37 U/g-전분으로 반응이 이루어질 경우 15.3mM의 G1P를 얻을 수 있었다. 불용성 전분의 농도별 G1P생성량을 비교해 보면 다음 표 2와 같다. 온도 조건 70℃ 에서 수행되었다.On the other hand, when reacting with industrial insoluble starch, high concentration of starch could not be used as a substrate due to solubility limitation. When industrial 2% insoluble starch was dissolved in 300mM phosphate buffer solution, reaction with 37 U / g-starch of enzyme yielded 15.3mM G1P. Comparing G1P production by concentration of insoluble starch is shown in Table 2 below. Temperature conditions were performed at 70 ° C.

불용성 전분 (g/ℓ)Insoluble Starch (g / ℓ) 300mM 인산 나트륨 완충용액(pH 7.0)300 mM sodium phosphate buffer (pH 7.0) 1-인산 포도당(g/ℓ)1-phosphate glucose (g / ℓ) 생산성(Ys/g)*Productivity (Ys / g) * 1One 0.5(0.2)0.5 (0.2) 0.170.17 55 10(3.3)10 (3.3) 0.670.67 1010 10.8(3.6)10.8 (3.6) 0.360.36 2020 15.3(5.1)15.3 (5.1) 0.260.26

*Ys/g = 1-인산 포도당 농도(g/ℓ)/전분 농도(g/ℓ)* Ys / g = 1-phosphate glucose concentration (g / l) / starch concentration (g / l)

기질농도가 높아질수록 1-인산 포도당(G1P) 생산량이 증가하는 경향을 나타내었다. 또한 생산성을 고려하면 저농도에서의 반응이 효율적이나 전분 가격대비 G1P 가격을 고려하면 적정선의 기질농도는 가변적이라 할 수 있다.As substrate concentration increased, 1-phosphate glucose (G1P) production tended to increase. In addition, considering the productivity, the reaction at low concentrations is efficient, but considering the G1P price ratio of the starch price, the substrate concentration of the titration line is variable.

다음으로 G1P의 대량생산을 위해 500ℓ반응기에서 200ℓ규모의 반응이 수행되었다. 1.2% 용해성 전분과 200mM의 인산나트륨완충액(sodium phosphate buffer, pH 7.0)을 기질로 이용하여 70℃에서 16시간 반응 결과 생산된 G1P는 1.253Kg으로 대략 초기 전분 양의 50%가 생전환되었음을 알 수 있었다. 또한 반응액에 플루란아제(pullulanase)를 추가로 첨가하면 초기 G1P 수율이 10∼50% 이상 증가되는 것을 관찰할 수 있었다.Next, a 200 L scale reaction was performed in a 500 L reactor for mass production of G1P. G1P produced as a result of 16 hours of reaction at 70 ° C using 1.2% soluble starch and 200mM sodium phosphate buffer (pH 7.0) as substrate was found to be 1.253Kg, approximately 50% of the initial starch amount was bioconverted. there was. In addition, the addition of pullulanase to the reaction solution was observed to increase the initial G1P yield by more than 10 to 50%.

[실시예 3] 1-인산 포도당의 분리, 정제Example 3 Isolation and Purification of 1-Phosphate Glucose

생성된 인산 포도당은 이온교환수지 및 결정화 등 주지의 방법(JACS 66:560-563(1944))을 본 발명의 상황에 맞게 변형하여 분리, 정제 공정을 수행하였다. 실 시예 2에서 얻어진 1-인산 포도당(G1P) 반응물은 전분, 인산완충용액, 단백질 등 기타 불순물들을 포함하고 있다. 이를 강산성 양이온 교환수지와 약염기성 음이온 교환수지 컬럼에 순차적으로 적용하여 수행하였다. 강산성 양이온 교환수지 컬럼은 4% HCl로 수세 및 전처리하였고, 초순수로 용출시켰으며, G1P가 포함된 분획을 모았다. 이어 약염기 음이온 교환수지 컬럼에 적용시킨 후 4% 암모니아수로 용출시켜 G1P 분획을 회수하였다. 결정화시킨 후 1-인산 포도당의 수율은 80% 이상, 순도는 95% 이상이었다. 최종 생성물의 색도를 증가시키기 위해 활성탄 등의 부가적인 컬럼 조작을 수행할 수 있다.The resulting glucose phosphate was subjected to separation and purification by modifying well-known methods such as ion exchange resins and crystallization (JACS 66: 560-563 (1944)) according to the situation of the present invention. The 1-phosphate glucose (G1P) reactant obtained in Example 2 contains other impurities such as starch, phosphate buffer solution, and protein. This was done by sequentially applying strong acid cation exchange resin and weakly basic anion exchange resin column. The strongly acidic cation exchange resin column was washed and pretreated with 4% HCl, eluted with ultrapure water, and the fractions containing G1P were collected. Subsequently, the G1P fraction was recovered by applying the weak base anion exchange resin column and eluting with 4% ammonia water. After crystallization, the yield of 1-phosphate glucose was at least 80% and the purity was at least 95%. Additional column manipulations, such as activated carbon, can be performed to increase the chromaticity of the final product.

[실시예 4] 1-인산 포도당으로부터 6-인산과당의 제조Example 4 Preparation of 6-phosphate fructose from 1-phosphate glucose

실시예 3에서 제조된 순수 1-인산 포도당(G1P)은 6-인산과당(F6P) 생산을 위한 기질로 이용된다. 본 실시예에서 사용되는 효소는 더머스 속(Thermus sp.) 유래의 단일 분자량 61kDa의 재조합 자리옮김효소(phosphoglucomutase, EC 5.4.2.2.)와 46kDa의 이성질화효소(phosphoglucose isomerase, EC 5.3.1.9.)이다. 본 효소들은 더머스 속 유래의 재조합 효소들로써 반응온도뿐만 아니라 여러 반응 조건들이 같아 한 단계로 두 가지 효소반응을 동시에 실시할 수 있다. 25g/ℓ 1-인산포도당(G1P), 2mM MgCl2, 두 가지 효소 즉, 더머스 속(Thermus sp.) 유래의 재조합 인산포도당 자리옮김효소(phosphoglucomutase)와 인산포도당 이성질화효소(phosphoglucose isomerase)가 포함된 반응물을 70℃에서 72시간동안 반응기에서 정치하거나 또는 약하게 진탕배양하였다. 반응 후 최대 6-인산과당(F6P) 생산은 배양 44시간 후 수율 21%였으며, 그 후 6-인산과당의 양이 줄면서 6-인산포도당양이 증가되고 결국 평형을 이루었다(도 4).Pure mono-phosphate glucose (G1P) prepared in Example 3 is used as a substrate for 6-phosphate fructose (F6P) production. The enzymes used in this example were a single molecular weight of 61 kDa recombinant phosphoglucomutase (EC 5.4.2.2.) Derived from the genus Thermus sp. And a 46 kDa phosphoglucose isomerase (EC 5.3.1.9). )to be. These enzymes are recombinant enzymes from the genus Dermouth, and the reaction conditions as well as the reaction temperature are the same, and can simultaneously perform two enzyme reactions in one step. 25 g / L 1-glucose phosphate (G1P), 2 mM MgCl 2 , two enzymes: recombinant phosphoglucomutase and phosphoglucose isomerase from Thermus sp. Reactions included were left in the reactor at 70 ° C. for 72 hours or lightly shaken. The maximum 6-phosphate fructose (F6P) production after the reaction was yield 21% after 44 hours of culture, after which the amount of 6-phosphate glucose increased and eventually equilibrated as the amount of 6-phosphate fructose decreased.

반응을 저해하는 물질의 영향을 확인하기 위하여 4mM 1-인산포도당과 2mM MgCl2, 저해제로서 전분 또는 인산완충액을 다양한 농도로 조절한 것, 더머스 속(Thermus sp.) 유래의 재조합 자리옮김효소(phosphoglucomutase)와 이성질화효소 (phosphoglucose isomerase)를 첨가한 반응물을 70℃에서 21시간 교반하면서 반응을 수행하였다. 6-인산과당을 생산을 하는데 있어 주요한 저해제인 전분과 인산완충액의 저해결과를 다음 표 3, 표 4에 나타내었다.4mM 1-glucose and 2mM MgCl 2 , starch or phosphate buffers at various concentrations as inhibitors, recombinant transferase from Thermus sp. The reaction was added to the reaction mixture of phosphoglucomutase and phosphoglucose isomerase at 70 ° C. for 21 hours. Inhibition results of starch and phosphate buffer, which are the major inhibitors in producing 6-phosphate fructose, are shown in Table 3 and Table 4 below.

수용성전분 (g/ℓ)Water Soluble Starch (g / ℓ) 전환율(%)% Conversion G1PG1P G6PG6P F6PF6P 55 10.610.6 82.782.7 6.76.7 1One 8.98.9 82.382.3 8.88.8 0.50.5 7.97.9 81.481.4 10.710.7 0.10.1 8.38.3 81.981.9 9.89.8

인산완충액 (mM)Phosphate Buffer (mM) 전환율(%)% Conversion G1PG1P G6PG6P F6PF6P 5050 2626 7474 n.d.*n.d. * 2525 19.919.9 71.571.5 8.68.6 1010 99 8282 99 55 8.18.1 77.877.8 14.114.1

*n.d.: not determined* n.d .: not determined

위 결과 표 3, 표 4를 보면 전분과 인산완충액은 최종 산물인 6-인산과당을 생산하는데 모두 저해 작용을 하고 있음을 볼 수 있다. 따라서 전분으로부터 6-인산과당을 효율적으로 생산하기 위해서는 두 물질 사이의 최적농도비가 존재함을 알 수 있다.In Table 3 and Table 4 above, starch and phosphate buffer solution both show an inhibitory effect on the production of 6-phosphate fructose, the final product. Therefore, in order to efficiently produce 6-phosphate fructose from starch, it can be seen that there is an optimal concentration ratio between the two substances.

[실시예 5] 통계적 기법을 사용한 6-인산과당 생산 최적화Example 5 6-Phosphate Fructose Production Optimization Using Statistical Techniques

본 실시예에서는 6-인산과당의 생산에 있어 좀더 효율적인 반응 조건을 조사하기 위해 통계적 기법을 사용하였다. 반응물은 10mM 1-인산포도당, 2mM MgCl2, 20mM 완충액을 이용하고, 반응조건 변수로는 온도, pH, 효소비율(투입된 자리옮김 효소와 이성화효소의 활성 비율)이며, 최종 산물 6-인산과당 생산량을 기준으로 평가하여 표 5와 같은 결과를 얻었다.In this example, statistical techniques were used to investigate more efficient reaction conditions in the production of 6-phosphate fructose. The reaction was performed using 10 mM 1-glucose glucose, 2 mM MgCl 2 , 20 mM buffer, and the reaction condition variables were temperature, pH, enzyme ratio (activity ratio of introduced relocation enzyme and isomerase), and final product 6-phosphate fructose yield. Evaluation based on the results obtained as shown in Table 5.

실험번호Experiment number 효소비율 (GM:GI)Enzyme Ratio (GM: GI) 온도 (℃)Temperature (℃) pHpH 실제 F6P 수율(g/l)Actual F6P yield (g / l) 이론적 F6P 수율(g/l)Theoretical F6P Yield (g / l) 1One 1:21: 2 7070 55 1.6521440671.652144067 1.596841751.59684175 22 1:21: 2 7070 99 0.1383008330.138300833 0.084432140.08443214 33 1:21: 2 5050 77 1.1678861.167886 1.482211691.48221169 44 1.5:1.51.5: 1.5 7070 77 1.2295711.229571 1.212233711.21223371 55 1:21: 2 3030 99 0.1253685330.125368533 0.053714150.05371415 66 2:12: 1 3030 99 0.1547828330.154782833 0.170761950.17076195 77 1.5:1.51.5: 1.5 5050 77 1.3823170671.382317067 1.25098591.2509859 88 2:12: 1 7070 99 0.3143211330.314321133 0.408498240.40849824 99 2:12: 1 7070 55 1.9195746671.919574667 1.951905851.95190585 1010 1.5:1.51.5: 1.5 5050 77 1.4342403331.434240333 1.25098591.2509859 1111 2:12: 1 3030 55 0.10712890.1071289 0.121674390.12167439 1212 1.5:1.51.5: 1.5 5050 55 0.92382250.9238225 1.065748441.06574844 1313 2:12: 1 5050 77 1.8753005331.875300533 1.718267641.71826764 1414 1.5:1.51.5: 1.5 3030 77 0.10712890.1071289 0.281758980.28175898 1515 1:21: 2 3030 55 0.10712890.1071289 -0.0263714-0.0263714 1616 1.5:1.51.5: 1.5 5050 99 0.3187205670.318720567 0.334087420.33408742

R=0.964, R2=0.911R = 0.964, R 2 = 0.911

본 실시예에서 보는 바와 같이 실험적 데이타와 이론적 데이타 사이의 상관관계는 R값이 0.96, R2값이 0.91로 실험값과 이론값이 일치함을 알 수 있었다. 본 반응표면분석(response surface analysis) 결과에 따르면 효소의 비율은 GM:GI = 1:1.23, 온도 63.5℃, pH 6.85로서 이 조건이 최적 반응조건으로 결정되었다. 생산된 6-인산과당은 실시예 3에서 언급된 분리방법과 실리카 컬럼을 이용한 분리방법을 사용하여 수율 50% 이상, 순도 95% 이상의 순수한 6-인산과당을 얻을 수 있었다.As shown in this example, the correlation between the experimental data and the theoretical data showed that the R value was 0.96 and the R 2 value was 0.91. According to the response surface analysis, the ratio of enzyme was GM: GI = 1: 1.23, temperature 63.5 ° C, pH 6.85, and this condition was determined as the optimum reaction condition. The produced 6-phosphate fructose was obtained by using the separation method mentioned in Example 3 and the separation method using a silica column to obtain a pure 6-phosphate fructose of more than 50% yield, 95% purity.

본 발명을 통하여 내열성 효소를 이용한 인산당의 제조방법, 보다 자세하게는 1-인산포도당, 6-인산포도당, 6-인산과당을 제조하는 생화학적 공정을 확립하였다. 특히 산업용 기질인 전분을 이용하여 고부가가치 잠재 의약품으로서 사용가능한 인산당을 제조할 수 있다는 것이 중요한 효과라고 할 수 있다.Through the present invention, a method for preparing phosphate sugar using a heat resistant enzyme, and more specifically, a biochemical process for preparing 1-glucose phosphate, 6-glucose phosphate, and 6-phosphate fructose was established. In particular, it is an important effect that phosphate sugar can be used as a high value-added potential drug using starch, which is an industrial substrate.

Claims (6)

더머스 속(Thermus sp.) 유래 내열성의 전분인산화효소(starch phosphorylase), 인산포도당 자리옮김효소(phosphoglucomutase), 6-인산포도당 이성질화효소(glucose 6-phosphate isomerase)를 이용하여 반응 온도 40∼80℃에서 수용성 또는 불용성 전분으로부터 6-인산과당을 제조하는 방법.Reaction temperature 40 ~ 80 using heat resistant starch phosphorylase, phosphoglucomutase, and 6-glucose 6-phosphate isomerase from Thermus sp. A process for producing 6-phosphate fructose from water soluble or insoluble starch at < RTI ID = 0.0 > 제1항에 있어서, 더머스 속(Thermus sp.) 유래 플룰란아제(pullulanase)를 부가하여 전분으로부터 6-인산과당을 제조하는 방법.The method of claim 1, wherein the fructose derived from Thermus sp. Is added to produce 6-phosphate fructose from starch. 제1항에 있어서, 상기 인산포도당 자리옮김효소: 6-인산포도당 이성질화 효소는 그 비율이 1:1∼1:1.5인 것을 특징으로 하는, 전분으로부터 6-인산과당을 제조하는 방법.The method of claim 1, wherein the glucose phosphate transferase: 6-phosphate isomerase is in a ratio of 1: 1 to 1: 1.5. 제1항에 있어서, 상기 반응 온도는 60∼70℃인 것을 특징으로 하는, 전분으로부터 6-인산과당을 제조하는 방법.A process for producing 6-phosphate fructose from starch according to claim 1, wherein the reaction temperature is 60 to 70 ° C. 제1항에 있어서, 상기 불용성 전분은 농도 0.01g/ℓ∼20g/ℓ인 것을 특징으로 하는, 전분으로부터 6-인산과당을 제조하는 방법.The method of claim 1, wherein the insoluble starch has a concentration of 0.01 g / l to 20 g / l. 제1항에 있어서, 상기 6-인산과당 제조공정 후 분리, 정제공정을 부가하는 것을 특징으로 하는, 내열성 효소를 이용하여 전분으로부터 6-인산과당을 제조하는 방법.The method for producing 6-phosphate fructose from starch by using a heat-resistant enzyme according to claim 1, wherein after the 6-phosphate fructose production process, a separation and purification process are added.
KR1020040098757A 2004-11-29 2004-11-29 A producing method of fructose-6-phosphate using thermostable enzymes KR20060059622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040098757A KR20060059622A (en) 2004-11-29 2004-11-29 A producing method of fructose-6-phosphate using thermostable enzymes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040098757A KR20060059622A (en) 2004-11-29 2004-11-29 A producing method of fructose-6-phosphate using thermostable enzymes

Publications (1)

Publication Number Publication Date
KR20060059622A true KR20060059622A (en) 2006-06-02

Family

ID=37156784

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040098757A KR20060059622A (en) 2004-11-29 2004-11-29 A producing method of fructose-6-phosphate using thermostable enzymes

Country Status (1)

Country Link
KR (1) KR20060059622A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066822A1 (en) * 2007-11-21 2009-05-28 Korea Research Institute Of Bioscience And Biotechnology A method of producing sedoheptulose using thermostable enzymes
CN105505909A (en) * 2015-12-31 2016-04-20 安徽丰原发酵技术工程研究有限公司 Method for enhancing enzyme activity of maleate cis-trans isomerase by using fucose
WO2018129275A1 (en) 2017-01-06 2018-07-12 Greenlight Biosciences, Inc. Cell-free production of sugars
US10138506B2 (en) 2015-10-02 2018-11-27 Bonumose Llc Enzymatic production of D-tagatose
US10421953B2 (en) 2013-08-05 2019-09-24 Greenlight Biosciences, Inc. Engineered proteins with a protease cleavage site
US10745683B2 (en) 2017-03-13 2020-08-18 Bonumose Llc Enzymatic production of hexoses
US11078506B2 (en) 2016-12-14 2021-08-03 Bonumose, Inc. Enzymatic production of D-allulose

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912277B1 (en) * 2007-11-21 2009-08-17 한국생명공학연구원 A method of producing sedoheptulose using thermostable enzymes
WO2009066822A1 (en) * 2007-11-21 2009-05-28 Korea Research Institute Of Bioscience And Biotechnology A method of producing sedoheptulose using thermostable enzymes
US10421953B2 (en) 2013-08-05 2019-09-24 Greenlight Biosciences, Inc. Engineered proteins with a protease cleavage site
US10533202B2 (en) 2015-10-02 2020-01-14 Bonumose Llc Enzymatic production of D-tagatose
US11034988B2 (en) 2015-10-02 2021-06-15 Bonumose, Inc. Enzymatic production of D-tagatose
US10138506B2 (en) 2015-10-02 2018-11-27 Bonumose Llc Enzymatic production of D-tagatose
RU2749811C1 (en) * 2015-10-02 2021-06-17 Бонамоуз, Инк. Enzymatic production of d-tagatose
CN105505909B (en) * 2015-12-31 2018-12-14 安徽丰原发酵技术工程研究有限公司 A method of maleic acid cis-trans isomerase enzyme activity is improved using fucose
CN105505909A (en) * 2015-12-31 2016-04-20 安徽丰原发酵技术工程研究有限公司 Method for enhancing enzyme activity of maleate cis-trans isomerase by using fucose
US11078506B2 (en) 2016-12-14 2021-08-03 Bonumose, Inc. Enzymatic production of D-allulose
CN110300800A (en) * 2017-01-06 2019-10-01 绿光生物科技股份有限公司 The cell-free production of sugar
EP3565892A4 (en) * 2017-01-06 2020-10-07 Greenlight Biosciences, Inc. Cell-free production of sugars
US10704067B2 (en) 2017-01-06 2020-07-07 Greenlight Biosciences, Inc. Cell-free production of sugars
US10577635B2 (en) 2017-01-06 2020-03-03 Greenlight Biosciences, Inc. Cell-free production of sugars
WO2018129275A1 (en) 2017-01-06 2018-07-12 Greenlight Biosciences, Inc. Cell-free production of sugars
US10745683B2 (en) 2017-03-13 2020-08-18 Bonumose Llc Enzymatic production of hexoses
US11236320B2 (en) * 2017-03-13 2022-02-01 Bonumose, Inc. Enzymatic production of hexoses

Similar Documents

Publication Publication Date Title
TWI567200B (en) Large scale enzymatic synthesis of oligosaccharides
JP4915917B2 (en) Method for producing lacto-N-biose I and galacto-N-biose
US20160186162A1 (en) Aldolase, aldolase mutant, and method and composition for producing tagatose by using same
JP2015529461A5 (en)
US20220127653A1 (en) Enzymatic production of mannose
CN104561195B (en) A kind of preparation method of uridine diphosphoglucose
Iqbal et al. A review on selective L-fucose/D-arabinose isomerases for biocatalytic production of L-fuculose/D-ribulose
CN111394292A (en) Multi-way composite neuraminic acid-producing bacillus subtilis and application thereof
CN112961890A (en) Enzymatic synthesis method of nicotinamide mononucleotide
KR20060059622A (en) A producing method of fructose-6-phosphate using thermostable enzymes
US20200347424A1 (en) Saccharose phosphorylase
CN114874964A (en) Construction method and application of recombinant escherichia coli for high yield of 2' -fucosyllactose
Yoshida et al. Production of trehalose by a dual enzyme system of immobilized maltose phosphorylase and trehalose phosphorylase
JPH0630599B2 (en) Process for producing fructose-1,6-diphosphate
Kotani et al. Purification and characterization of UDP-arabinopyranose mutase from Chlamydomonas reinhardtii
CN110819667A (en) Method for preparing laminaribiose by starch conversion
Bae et al. Facile synthesis of glucose-1-phosphate from starch by Thermus caldophilus GK24 α-glucan phosphorylase
KR101765684B1 (en) Composition for producing phosphorylated tagatose from phosphorylated fructose derivative comprising Fructose 1,6-bisphosphate aldolase from Caldicellulosiruptor sp. as effective component
CN115404226A (en) Sucrose synthase and application thereof in catalytic glycosylation reaction
Tiwari et al. Starch phosphorylase: Biochemical and biotechnological perspectives
US20080070285A1 (en) Process for Producing Cmp-N-Acetylneuraminic Acid
CN113366112A (en) Enzyme method production of tagatose
KR101826835B1 (en) Composition for producing phosphorylated tagatose from phosphorylated fructose derivative comprising Fructose 1,6-bisphosphate aldolase from Caldicellulosiruptor sp. as effective component
CN116925993B (en) Genetically engineered strains and methods for enzyme-catalyzed production of cytidine acids
CN114317477B (en) Sucrose phosphorylase and glucose-1-phosphoric acid production process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee