KR20060036572A - Process for the preparation of hydroxamate derivatives - Google Patents

Process for the preparation of hydroxamate derivatives Download PDF

Info

Publication number
KR20060036572A
KR20060036572A KR1020040085572A KR20040085572A KR20060036572A KR 20060036572 A KR20060036572 A KR 20060036572A KR 1020040085572 A KR1020040085572 A KR 1020040085572A KR 20040085572 A KR20040085572 A KR 20040085572A KR 20060036572 A KR20060036572 A KR 20060036572A
Authority
KR
South Korea
Prior art keywords
hydroxamate
derivative
derivatives
mmole
carboxylic acid
Prior art date
Application number
KR1020040085572A
Other languages
Korean (ko)
Inventor
한기종
이학영
김미수
Original Assignee
한기종
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한기종 filed Critical 한기종
Priority to KR1020040085572A priority Critical patent/KR20060036572A/en
Publication of KR20060036572A publication Critical patent/KR20060036572A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/08Amines; Quaternary ammonium compounds containing oxygen or sulfur
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/16Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds containing nitrogen-to-oxygen bonds
    • A01N33/24Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds containing nitrogen-to-oxygen bonds only one oxygen atom attached to the nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/40Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of hydroxylamino or oxyimino groups

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

본 발명은 의약품 및 농약에서 이용되는 정밀화학 물질의 중간체 또는 천연물질의 전합성 과정에서 중간체로 유용한 hydroxamate유도체의 새로운 제조방법으로, 카르복실산(carboxylic acid) 유도체를 triphosgene과 triphenylphosphine 존재 하에서 hydroxylamine유도체와 반응시키는 방법을 이용하여 카르복실산 유도체로부터 직접 hydroxamate유도체를 제조하는 새로운 방법이다.The present invention provides a novel method for preparing hydroxamate derivatives useful as intermediates in the preparation of intermediates or natural substances of fine chemicals used in pharmaceuticals and pesticides. It is a new method for preparing hydroxamate derivatives directly from carboxylic acid derivatives using a reaction method.

carboxylic acid, hydroxamate, hydroxylamine, triphosgene, triphenylphosphine carboxylic acid, hydroxamate, hydroxylamine, triphosgene, triphenylphosphine                  

Description

하이드록사메이트 제조법 {Process for the preparation of hydroxamate derivatives}  Process for the preparation of hydroxamate derivatives}

본 발명은 의약품 및 농약에서 이용되는 정밀화학 물질의 중간체 또는 천연물질의 전합성 과정에서 중간체로 유용한 일반식 ( I )으로 표시되는 hydroxamate유도체의 새로운 제조방법으로, 일반식 (II)의 카르복실산(carboxylic acid) 유도체를 triphosgene과 triphenylphosphine 존재 하에서 hydroxylamine유도체와 반응시키는 방법으로 카르복실산 유도체로부터 hydroxamate유도체를 직접 제조하는 새로운 방법이다. The present invention is a novel method for preparing a hydroxamate derivative represented by the general formula (I) useful as an intermediate in the intermediate of the fine chemicals used in pharmaceuticals and pesticides or in the presynthesis of natural substances, and the carboxylic acid of the general formula (II) The reaction of carboxylic acid derivatives with hydroxylamine derivatives in the presence of triphosgene and triphenylphosphine is a novel method for producing hydroxamate derivatives directly from carboxylic acid derivatives.

Figure 112004048921912-PAT00001
Figure 112004048921912-PAT00001

상기식에서 R은 수소, 탄소수 1 내지 20의 알킬 및 치환 알킬기, 또는 아릴 및 치환 아릴기를 나타내고, R1은 수소를 나타내고, R2는 각각 독립적으로 수소, 알킬, 치환알킬, 아릴, 치환아릴기를 나타낸다.Wherein R represents hydrogen, an alkyl and substituted alkyl group having 1 to 20 carbon atoms, or an aryl and substituted aryl group, R 1 represents hydrogen, R 2 each independently represents hydrogen, alkyl, substituted alkyl, aryl, or substituted aryl group.

본 발명은 지금까지 일반적으로 반응성이 현저하게 떨어지는 것으로 알려진 카르복실산으로 부터 직접 hydroxamate유도체를 얻는 새로운 방법에 관한 것이다. 이 방법은 전체 합성공정이 간단하고 상압, 실온 근처의 온화한 조건에서 반응시킬 수 있고 또한 지금까지의 다른 합성방법들에서 사용한 카르복실기를 활성화시키기 위해 반드시 필요했던 새로운 중간체의 합성, 분리가 필요 없다는 장점이 있을 뿐만 아니라 부산물도 거의 생성되지 않아 산업적으로 가치가 큰 hydroxamate유도체의 새로운 합성 방법을 제공하는데 그 목적이 있다. The present invention is directed to a new method for obtaining hydroxamate derivatives directly from carboxylic acids which are generally known to be significantly less reactive. This method has the advantage that the whole synthesis process is simple and can be reacted at atmospheric pressure and mild conditions near room temperature, and also does not require the synthesis and separation of new intermediates, which are necessary for activating the carboxyl groups used in other synthesis methods. In addition, it aims to provide a new method for the synthesis of hydroxamate derivatives that are of high industrial value because little by-products are produced.

유용한 화합물을 합성할 수 있는 중간체로서의 hydroxamate유도체 합성법은 여러 방법이 보고되어 있다. Wu등은 1991년 Tetrahedron Letters 32권 33호의 4137쪽에 발표한 논문에서 aldoxime과 chloroformate를 triethylsilane 존재 하에서 반응시켜서 hydroxamate유도체를 얻었다. 이 반응에서는 출발물질인 aldoxime을 aldehyde와 hydroxylamine의 반응으로부터 얻어야 하는 2단계 반응일 뿐만 아니라 불안정한 chloroformate 유도체를 이용하기 때문에 낮은 수율로 생성물이 얻어진다는 문제점이 있다. Grierson등은 1993년 Tetrahedron Letters 34권 46호의 7463쪽에서 N-alkylamine과 benzoyl peroxide의 반응을 통하여 amine에 benzoyloxy group을 도입한 후에 hydroxylamine유도체와 반응시켜 hydroxamate유도체를 얻었다. 그러나 이 반응에서는 폭발성이 있는 매우 위험한 peroxide를 다루어야 하는 문제가 있어서 실험실이나 산업현장에서 주의가 요구된다. Abdelaziz등은 1996년 Tetrahedron Letters 37권 2호의 179쪽에 발표한 논문에서 gem-dicyano epoxide와 o-methylhydoroxylamine을 반응시켜 hydroxamate유도체를 얻었다. 그러나 이 반응으로부터 생성물을 얻기 위해서는 높은 반응온도가 필요하고 또한 부산물이 생성되기 때문에 낮은 수율로 생성물이 얻어진다는 단점이 있다. Giacomelli등은 2001년 Journal of Organic Chemistry 66권 2534쪽에 발표한 논문에서 2-chloro-4,6-dimethoxy-[1,3,5]triazine을 사용하여 카르복실산 유도체를 활성화시킨 중간체를 얻은 후, 이것을 hydroxylamine유도체와 반응시켜 hydroxamate유도체를 얻는 2단계 반응으로부터 목적화합물을 얻었다. Fray등은 2001년 Bioorganic & Medicinal Chemistry Letters 11권 567쪽에서 카르복실산을 활성화를 시키기 위한 시약으로서 EDC와 HOBt를 사용하여 카르복실산 유도체와 hydroxylamine유도체를 N,N-dimethylformamide 용매 하에서 반응시켜 hydroxamate유도체를 얻었는데 이 경우는 반응시간이 길고 낮은 수율로 생성물이 얻어지는 문제점이 있다. Sibi등은 2002년 Organic Letters 4권 20호 3343쪽에서 samarium triflate와 같은 Lewis acid 존재 하에서 N-acyloxazolidinone유도체와 hydroxylamine유도체를 반응시켜 hydroxamate유도체를 합성하였지만 또한 이 반응에서도 낮은 수율로 생성물이 얻어진다는 단점이 있다. Devocelle등은 2003년 Org. Biomol. Chem. 1권 850쪽에 발표한 논문에서 카르복실산을 고분자 물질이 결합된 1-hydroxybenzotriazol을 이용하여 카르복실산을 active ester로 활성화시키고 여기에 다시 hydoroxylamine유도체와 반응시켜 hydroxamate유도체를 합성하였다. 그러나 이 반응은 2단계로 진행되는데 높은 반응온도에서 긴 시간 동안 가열해야 되고 낮은 수율로 생성물이 얻어진다는 문제점이 있다.Several methods have been reported for the synthesis of hydroxamate derivatives as intermediates to synthesize useful compounds. Wu et al. In a paper published in 1991 in Tetrahedron Letters 32, 33, page 4137 obtained a hydroxamate derivative by reacting aldoxime with chloroformate in the presence of triethylsilane. In this reaction, the starting material aldoxime is not only a two-step reaction that must be obtained from the reaction of aldehyde and hydroxylamine, but also has a problem in that a product is obtained in low yield because it uses an unstable chloroformate derivative. Grierson et al. Obtained hydroxamate derivatives by introducing benzoyloxy groups into amines through the reaction of N- alkylamine and benzoyl peroxide in Tetrahedron Letters 34, 46, 1993. However, this reaction requires the handling of highly dangerous peroxides, which are explosive, requiring attention in the laboratory or in the industry. Abdelaziz et al. Obtained a hydroxamate derivative by reacting gem-dicyano epoxide with o -methylhydoroxylamine in a 1996 paper published on page 179 of Tetrahedron Letters 37, no.2. However, there is a disadvantage in that a product is obtained in a low yield because a high reaction temperature is required to obtain a product from this reaction and also a byproduct is produced. Giacomelli et al. Obtained an intermediate in which a carboxylic acid derivative was activated using 2-chloro-4,6-dimethoxy- [1,3,5] triazine in a 2001 paper published in Journal of Organic Chemistry, Vol. 66, page 2534. The target compound was obtained from the two-step reaction of reacting this with hydroxylamine derivative to obtain a hydroxamate derivative. Fray et al., 2001, Bioorganic & Medicinal Chemistry Letters, Vol. 11, page 567, used to react carboxylic acid derivatives and hydroxylamine derivatives in N, N- dimethylformamide solvents using EDC and HOBt. In this case, there is a problem that the reaction time is long and the product is obtained in a low yield. Sibi et al. Synthesized hydroxamate derivatives by reacting N- acyloxazolidinone derivatives with hydroxylamine derivatives in the presence of Lewis acid such as samarium triflate in 2002, Organic Letters Vol. . Devocelle et al., 2003, Org. Biomol. Chem. In a paper published on Volume 1, page 850, hydroxamate derivatives were synthesized by carboxylic acid as an active ester using a 1-hydroxybenzotriazol conjugated with a polymeric material and then reacted with a hydoroxylamine derivative. However, this reaction proceeds in two stages, which requires heating at a high reaction temperature for a long time and has a problem in that a product is obtained in a low yield.

이와 같이 종래의 알려진 카르복실산유도체로부터 직접 hydroxamate유도체를 합성하는 방법은 반응성이 떨어지는 카르복실기를 활성화시키기 위해 격렬한 조건에서 또 다른 중간체를 합성하여 hydroxylamine유도체와 반응시키거나, 또는 카르복실기의 반응성을 높이기 위해 먼저 카르복실산을 활성화 시킨 중간체를 합성한 후 hydroxylamine유도체와 반응시켜 hydroxamate유도체를 합성하였다. 그러나 이러한 종래의 합성방법들에서는 목적하는 생성물 함께 생성되는 부산물을 효과적으로 분리하는 문제가 발생되며, 다단계 반응을 거쳐야 하기 때문에 제조공정 시간이 길어지고 전체수율도 낮아지는 등 산업적인 이용에는 한계가 있는 바람직하지 못한 방법들이다. 본 발명자들은 상기와 같은 문제점들을 예의 주시하면서 바람직한 제조법 확립을 위해 노력을 경주해온 결과, 간결한 1단계 반응이면서 상압, 실온근처의 온화한 조건에서 짧은 시간 내에 카르복실산 유도체를 직접 hydroxylamine유도체와 반응시켜 부산물 생성 없이 hydroxamate유도체를 합성할 수 있는 새로운 방법을 개발함으로써 본 발명을 완성하게 되었다.
As described above, a method of synthesizing a hydroxamate derivative directly from a known carboxylic acid derivative may be performed by synthesizing another intermediate under violent conditions to react with a hydroxylamine derivative or to increase the reactivity of the carboxyl group. After synthesis of carboxylic acid-activated intermediates, hydroxamate derivatives were synthesized by reacting with hydroxylamine derivatives. However, these conventional synthesis methods have a problem of effectively separating the by-products generated with the desired product, and because of the multi-step reaction, there is a limitation in industrial use such as a long manufacturing process and a low overall yield. Undesirable methods. The present inventors have made efforts to establish a preferable method while paying attention to the above problems, and as a result, a simple one-stage reaction is performed by reacting the carboxylic acid derivative directly with the hydroxylamine derivative in a short time under mild conditions near normal pressure and room temperature. The present invention was completed by developing a new method for synthesizing hydroxamate derivatives without formation.

본 발명은 의약품 및 농약에서 이용되는 정밀화학 물질의 중간체 또는 천연물질의 전합성 과정에서 중간체로 유용한 일반식 ( I )으로 표시되는 hydroxamate유도체의 새로운 제조방법으로, 일반식 (II)의 카르복실산(carboxylic acid) 유도체를 triphosgene과 triphenylphosphine 존재 하에서 hydroxylamine유도체와 반응시키는 방법으로 카르복실산 유도체로부터 hydroxamate유도체를 불필요한 다른 중간체 분리과정 없이 직접 제조하는 새로운 방법이다.The present invention is a novel method for preparing a hydroxamate derivative represented by the general formula (I) useful as an intermediate in the intermediate of the fine chemicals used in pharmaceuticals and pesticides or in the presynthesis of natural substances, and the carboxylic acid of the general formula (II) The reaction of carboxylic acid derivatives with hydroxylamine derivatives in the presence of triphosgene and triphenylphosphine is a new method for the direct preparation of hydroxamate derivatives from carboxylic acid derivatives without any unnecessary intermediate separation.

Figure 112004048921912-PAT00002
Figure 112004048921912-PAT00002

상기식에서 R은 수소, 탄소수 1 내지 20의 알킬 및 치환 알킬기, 또는 아릴 및 치환 아릴기를 나타내고, R1은 수소를 나타내고, R2는 각각 독립적으로 수소, 알킬, 치환알킬, 아릴, 치환아릴기를 나타낸다. Wherein R represents hydrogen, an alkyl and substituted alkyl group having 1 to 20 carbon atoms, or an aryl and substituted aryl group, R 1 represents hydrogen, and R 2 independently represents hydrogen, alkyl, substituted alkyl, aryl, substituted aryl group .

본 발명에서 사용하는 triphosgene과 triphenylphosphine은 반응성이 떨어지는 카르복실기를 활성화 시키는 역할을 하며, triphosgene은 일반식 ( II )의 카르복실산 유도체 대비 0.50몰배 내지 1.00몰배를 사용하고 triphenylphosphine은 일반식 ( II )의 카르복실산 유도체 대비 1.0 몰배 내지 1.2몰배를 사용한다. hydroxylamine유도체는 hydroxylamine과 o-protected hydroxylamine 모두가 사용 가능하며, 일반식 ( II )의 카르복실산 유도체 대비 1.0 내지 2.0 몰배, 바람직하게는 1.0 내지 1.2 몰배를 사용한다. 추정 메카니즘상 발생되는 HCl을 중화하기 위해 트리에틸아민과 같은 3차 아민을 사용하고, 반응 온도범위는 0 내지 45 oC이고, 바람직하게는 0 내지 25 oC에서 반응시킨다. 반응용매로는 클로로포름, 디클로로메탄, 톨루엔 등과 같은 일반적인 유기용매들이 모두 사용 가능하다. 본 발명을 구성하는 반응순서를 언급하면 다음과 같다.Triphosgene and triphenylphosphine used in the present invention activates a less reactive carboxyl group, and triphosgene uses 0.50 to 1.00 mole times compared to the carboxylic acid derivative of general formula (II) and triphenylphosphine is a carbohydrate of general formula (II) 1.0 mole to 1.2 mole times relative to the acid derivative is used. The hydroxylamine derivative can be used both hydroxylamine and o- protected hydroxylamine, 1.0 to 2.0 mole times, preferably 1.0 to 1.2 mole times compared to the carboxylic acid derivative of the general formula (II). A tertiary amine, such as triethylamine, is used to neutralize HCl generated on the presumed mechanism, and the reaction temperature range is from 0 to 45 ° C., preferably from 0 to 25 ° C. As the reaction solvent, all common organic solvents such as chloroform, dichloromethane and toluene can be used. Referring to the reaction sequence constituting the present invention is as follows.

0 내지 5 oC에서 디클로로메탄에 triphosgene과 triphenylphosphine을 첨가하여 5분정도 교반하여 PPh3Cl2를 생성한 후에 일반식 ( II )의 카르복실산 유도체와 triethylamine을 투입하고 교반하면 카르복실기의 반응성이 증가된 acid chloride형태의 중간체가 형성된다. 다음 hydroxylamine유도체를 투입하고 실온으로 자연 승온하면서 반응 혼합물을 교반해주면 결합전자들의 이동 및 재구성을 거쳐 목적하는 일반식 ( I )의 hydroxamate유도체를 얻을 수 있다.After adding triphosgene and triphenylphosphine to dichloromethane at 0 to 5 o C for 5 minutes to form PPh 3 Cl 2 , the carboxylic acid derivative and triethylamine of formula (II) are added and stirred to increase the reactivity of the carboxyl group. Acid chloride form intermediates are formed. Then, the hydroxylamine derivative is added and the reaction mixture is stirred while naturally warming to room temperature to obtain the desired hydroxamate derivative of the general formula (I) through the transfer and reconstitution of the bonding electrons.

본 발명에서 카르복실산의 활성화 시약으로 사용한 triphosgene은 Burk등이 1993년 Tetrahedron Letters 34권 3호의 395쪽에 발표한 바와 같이 1,3-cyclic diol로부터 cyclic carbonate합성 시약으로 사용 하거나, Runqiu등이 2000년 J. Organometallic Chem. 604권 287쪽에서 발표한 바와 ferrocene carboxylic acid로부터 ferrocenoyl chloride를 제조 하는 시약으로 사용되었고, 2003년에 Alkhathlan이 Tetrahedron 59권 8163쪽에 발표한 바와 같이 2-hydroxyacetophenone hydrazone으로부터 benzoxazinone유도체를 합성 시 탈수반응 및 고리화 반응에 주로 사용되던 시약으로, 카르복실산을 활성화시켜 ester유도체를 합성하는 시약으로는 본 발명자들에 의해 최초로 확인, 개발되었다. 이하 본 발명을 실시예에 의거 더욱 자세히 설명한다. 그러나 본 발명이 실시예에 제시된 방법들에만 국한 되는 것은 아니다.In the present invention, the triphosgene used as an activating reagent for carboxylic acid is used as a cyclic carbonate synthesis reagent from 1,3-cyclic diol or Burqi et al., Published on page 395 of Tetrahedron Letters 34, No. 3, 1993. J. Organometallic Chem. It was used as a reagent for the production of ferrocenoyl chloride from ferrocene carboxylic acid, as published on vol. 604, p. 287. As a reagent mainly used for the reaction, a reagent for synthesizing an ester derivative by activating a carboxylic acid was first identified and developed by the present inventors. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the methods presented in the Examples.

실시예 1.Example 1.

30 mL 플라스크에 질소 분위기 하에서 디클로로메탄 15mL을 넣고 ice-bath에서 0내지 5 oC로 냉각시키고 triphenylphosphine 524 mg(2.0 mmole), triphosgene 296 mg(1.0 mmole)을 투입하고 5분간 교반한다. 3-chlorobenzoic acid 314 mg(2.0 mmole)과 triethylamine 607 mg(6.0 mmole)을 투입하고 20분간 교반한 후, O-methylhydroxylamine hydrochloride 166 mg(2.0 mmole)을 투입한 후 ice-bath를 제거하여 실온으로 자연 승온시키면서 교반, 반응시키면 약 1시간 후 TLC로 acid가 완벽하게 hydroxamate로 전환된 것을 확인할 수 있다. 고체로 생성된 트리에틸아민 하이드로클로라이드를 short path 실리카겔 filter로 여과하여 제거하고 여액의 용매를 감압, 증류 제거하여 목적 화합물인 hydroxamate유도체를 362 mg 얻었다(수율 97.2%).15 mL of dichloromethane was added to a 30 mL flask under nitrogen atmosphere, cooled to 0-5 ° C in an ice bath, 524 mg (2.0 mmole) of triphenylphosphine and 296 mg (1.0 mmole) of triphosgene were added and stirred for 5 minutes. 314 mg (2.0 mmole) of 3-chlorobenzoic acid and 607 mg (6.0 mmole) of triethylamine were added thereto and stirred for 20 minutes. After adding 166 mg (2.0 mmole) of O -methylhydroxylamine hydrochloride, the ice-bath was removed and the mixture was cooled to room temperature. After stirring for 1 hour, the reaction was confirmed that the acid was completely converted to hydroxamate by TLC. Triethylamine hydrochloride produced as a solid was removed by filtration using a short path silica gel filter, and the solvent of the filtrate was distilled off under reduced pressure to obtain 362 mg of a hydroxamate derivative as a target compound (yield 97.2%).

실시예 2Example 2

30 mL 플라스크에 질소 분위기 하에서 디클로로메탄 15mL을 넣고 ice-bath에서 0내지 5 oC로 냉각시키고 triphenylphosphine 524 mg(2.0 mmole), triphosgene 296 mg(1.0 mmole)을 투입하고 5분간 교반한다. benzoic acid 244 mg(2.0 mmole)과 triethylamine 607 mg(6.0 mmole)을 투입하고 20분간 교반한 후, O-ethylhydroxylamine hydrochloride 194 mg(2.0 mmole)을 투입한 후 ice-bath를 제거하여 실온으로 자연 승온시키면서 교반, 반응시키면 약 1시간 후 TLC로 acid가 완벽하게 hydroxamate로 전환된 것을 확인할 수 있다. 고체로 생성된 트리에틸아민 하이드로클로라이드를 short path 실리카겔 filter로 여과하여 제거하고 여액의 용매를 감압, 증류 제거하여 목적 화합물인 hydroxamate유도체를 313 mg 얻었다(수율 94.8%).15 mL of dichloromethane was added to a 30 mL flask under nitrogen atmosphere, cooled to 0-5 ° C in an ice bath, 524 mg (2.0 mmole) of triphenylphosphine and 296 mg (1.0 mmole) of triphosgene were added and stirred for 5 minutes. 244 mg (2.0 mmole) of benzoic acid and 607 mg (6.0 mmole) of triethylamine were added thereto and stirred for 20 minutes. After adding 194 mg (2.0 mmole) of O -ethylhydroxylamine hydrochloride, the ice-bath was removed and the temperature was raised to room temperature. After stirring and reacting for about 1 hour, TLC showed that the acid was completely converted into hydroxamate. Triethylamine hydrochloride produced as a solid was removed by filtration using a short path silica gel filter, and the solvent of the filtrate was distilled off under reduced pressure to obtain 313 mg of a hydroxamate derivative as a target compound (yield 94.8%).

실시예3Example 3

30 mL 플라스크에 질소 분위기 하에서 디클로로메탄 15mL을 넣고 ice-bath에서 0내지 5 oC로 냉각시키고 triphenylphosphine 524 mg(2.0 mmole), triphosgene 296 mg(1.0 mmole)을 투입하고 5분간 교반한다. 4-toluic acid 272 mg(2.0 mmole)과 triethylamine 607 mg(6.0 mmole)을 투입하고 20분간 교반한 후, O-methylhydroxylamine hydrochloride 166 mg(2.0 mmole)을 투입한 후 ice-bath를 제거하여 실온으로 자연 승온시키면서 교반, 반응시키면 약 1시간 후 TLC로 acid가 완벽하게 hydroxamate로 전환된 것을 확인할 수 있다. 고체로 생성된 트리에틸아민 하이드로클로라이드를 short path 실리카겔 filter로 여과하여 제거하고 여액의 용매를 감압, 증류 제거하여 목적 화합물인 hydroxamate유도체를 310 mg 얻었다(수율 93.8%).15 mL of dichloromethane was added to a 30 mL flask under nitrogen atmosphere, cooled to 0-5 ° C in an ice bath, 524 mg (2.0 mmole) of triphenylphosphine and 296 mg (1.0 mmole) of triphosgene were added and stirred for 5 minutes. 272 mg (2.0 mmole) of 4-toluic acid and 607 mg (6.0 mmole) of triethylamine were added thereto, stirred for 20 minutes, and then 166 mg (2.0 mmole) of O -methylhydroxylamine hydrochloride was added. After stirring for 1 hour, the reaction was confirmed that the acid was completely converted to hydroxamate by TLC. Triethylamine hydrochloride produced as a solid was removed by filtration using a short path silica gel filter, and the solvent of the filtrate was distilled off under reduced pressure to obtain 310 mg of a hydroxamate derivative as a target compound (yield 93.8%).

실시예4Example 4

30 mL 플라스크에 질소 분위기 하에서 디클로로메탄 15mL을 넣고 ice-bath에서 0내지 5 oC로 냉각시키고 triphenylphosphine 524 mg(2.0 mmole), triphosgene 296 mg(1.0 mmole)을 투입하고 5분간 교반한다. trans-cinnamic acid 296 mg(2.0 mmole)과 triethylamine 607 mg(6.0 mmole)을 투입하고 20분간 교반한 후, O-benzylhydroxylamine hydrochloride 319 mg(2.0 mmole)을 투입한 후 ice-bath를 제거하여 실온으로 자연 승온시키면서 교반, 반응시키면 약 1시간 후 TLC로 acid가 완벽하게 hydroxamate로 전환된 것을 확인할 수 있다. 고체로 생성된 트리에틸아민 하이드로클로라이드를 short path 실리카겔 filter로 여과하여 제거하고 여액의 용매를 감압, 증류 제거하여 목적 화합물인 hydroxamate유도체를 474 mg 얻었다(수율 93.7%).15 mL of dichloromethane was added to a 30 mL flask under nitrogen atmosphere, cooled to 0-5 ° C in an ice bath, 524 mg (2.0 mmole) of triphenylphosphine and 296 mg (1.0 mmole) of triphosgene were added and stirred for 5 minutes. 296 mg (2.0 mmole) of trans- cinnamic acid and 607 mg (6.0 mmole) of triethylamine were added thereto, stirred for 20 minutes, and 319 mg (2.0 mmole) of O- benzylhydroxylamine hydrochloride was added. After stirring for 1 hour, the reaction was confirmed that the acid was completely converted to hydroxamate by TLC. Triethylamine hydrochloride produced as a solid was removed by filtration using a short path silica gel filter, and the solvent of the filtrate was distilled off under reduced pressure to obtain 474 mg of a hydroxamate derivative as a target compound (yield 93.7%).

실시예5Example 5

30 mL 플라스크에 질소 분위기 하에서 디클로로메탄 15mL을 넣고 ice-bath에서 0내지 5 oC로 냉각시키고 triphenylphosphine 524 mg(2.0 mmole), triphosgene 296 mg(1.0 mmole)을 투입하고 5분간 교반한다. benzoic acid 244 mg(2.0 mmole)과 triethylamine 607 mg(6.0 mmole)을 투입하고 20분간 교반한 후, O-allylhydroxylamine hydrochloride 218 mg(2.0 mmole)을 투입한 후 ice-bath를 제거하여 실온으로 자연 승온시키면서 교반, 반응시키면 약 1시간 후 TLC로 acid가 완벽하게 hydroxamate로 전환된 것을 확인할 수 있다. 고체로 생성된 트리에틸아민 하이드로클로라이드를 short path 실리카겔 filter로 여과하여 제거하고 여액의 용매를 감압, 증류 제거하여 목적 화합물인 hydroxamate유도체를 336 mg 얻었다(수율 95.0%).15 mL of dichloromethane was added to a 30 mL flask under nitrogen atmosphere, cooled to 0-5 ° C in an ice bath, 524 mg (2.0 mmole) of triphenylphosphine and 296 mg (1.0 mmole) of triphosgene were added and stirred for 5 minutes. 244 mg (2.0 mmole) of benzoic acid and 607 mg (6.0 mmole) of triethylamine were added thereto and stirred for 20 minutes. Then, 218 mg (2.0 mmole) of O -allylhydroxylamine hydrochloride was added and the ice-bath was removed. After stirring and reacting for about 1 hour, TLC showed that the acid was completely converted into hydroxamate. Triethylamine hydrochloride produced as a solid was removed by filtration using a short path silica gel filter, and the solvent of the filtrate was distilled off under reduced pressure to obtain 336 mg of a hydroxamate derivative as a target compound (yield 95.0%).

실시예 6 Example 6

30 mL 플라스크에 질소 분위기 하에서 디클로로메탄 15mL을 넣고 ice-bath에서 0내지 5 oC로 냉각시키고 triphenylphosphine 524 mg(2.0 mmole), triphosgene 296 mg(1.0 mmole)을 투입하고 5분간 교반한다. nicotinic acid 246 mg(2.0 mmole)과 triethylamine 607 mg(6.0 mmole)을 투입하고 20분간 교반한 후, O-ethylhydroxylamine hydrochloride 194 mg(2.0 mmole)을 투입한 후 ice-bath를 제거하여 실온으로 자연 승온시키면서 교반, 반응시키면 약 1시간 후 TLC로 acid가 완벽하게 hydroxamate로 전환된 것을 확인할 수 있다. 고체로 생성된 트리에틸아민 하이드로클로라이드를 short path 실리카겔 filter로 여과하여 제거하고 여액의 용매를 감압, 증류 제거하여 목적 화합물인 hydroxamate유도체를 301 mg 얻었다(수율 92.3%).15 mL of dichloromethane was added to a 30 mL flask under nitrogen atmosphere, cooled to 0-5 ° C in an ice bath, 524 mg (2.0 mmole) of triphenylphosphine and 296 mg (1.0 mmole) of triphosgene were added and stirred for 5 minutes. 246 mg (2.0 mmole) of nicotinic acid and 607 mg (6.0 mmole) of triethylamine were added thereto and stirred for 20 minutes. Then, 194 mg (2.0 mmole) of O -ethylhydroxylamine hydrochloride was added and the ice-bath was removed. After stirring and reacting for about 1 hour, TLC showed that the acid was completely converted into hydroxamate. Triethylamine hydrochloride produced as a solid was removed by filtration through a short path silica gel filter, and the solvent of the filtrate was distilled off under reduced pressure to obtain 301 mg of a hydroxamate derivative as a target compound (yield 92.3%).

카르복실산유도체로부터 직접 hydroxamate유도체를 합성하는 지금까지 알려진 다른 방법들은 반응성이 떨어지는 카르복실기를 활성화시키기 위해 격렬한 조건에서 또 다른 중간체를 합성하여 hydroxylamine유도체와 반응시키거나 또는 카르복실기의 반응성을 높이기 위해 먼저 카르복실산과 결합된 중간체를 합성한 후 이 중간체를 hydroxylamine유도체와 반응시켜 hydroxamate유도체를 합성하였다. 그러나 이러한 종래의 합성방법들에서는 목적하는 생성물과 함께 생성되는 부산물을 효과적으로 분리하는 문제가 발생되며, 다단계 반응을 거쳐야 하기 때문에 제조공정 시간이 길어지고 전체수율도 낮아지는 등 산업적인 이용에는 한계가 있는 바람직하지 못한 방법들이었다. 이에 비해 본 발명은 다단계 반응이 아닌 간결한 1단계 반응처럼 진행시킬 수 있으며 상압, 실온 근처의 온화한 조건에서 짧은 시간 내에 카르복실산 유도체를 직접 hydroxylamine유도체와 반응시켜 부산물 생성 없이 hydroxamate유도체를 합성할 수 있는 새로운 방법이다. 따라서 전체 합성공정이 간단하고 짧은 시간에 반응을 완결 시킬 수 있을 뿐만 아니라, 부산물도 거의 생성되지 않는 새로운 hydroxamate유도체의 합성 방법으로, 반응의 신뢰성 및 재현성이 우수한 합성 Process 이므로 산업화시 기존의 방법들에 비해 환경문제를 일으키지 않으면서 목적화합물의 분리, 정제 과정도 수월하여 경제성 제고에 크게 기여할 것으로 판단된다.Other known methods of synthesizing hydroxamate derivatives directly from carboxylic acid derivatives are known to synthesize another intermediate under vigorous conditions to activate a less reactive carboxyl group and react with hydroxylamine derivatives or to increase the reactivity of the carboxyl group. After synthesizing the intermediate with acid, the intermediate was reacted with hydroxylamine derivative to synthesize hydroxamate derivative. However, these conventional synthesis methods have a problem of effectively separating the by-products generated with the desired product, and because of the multi-step reaction, there is a limitation in industrial use such as a long manufacturing process and a low overall yield. It was an undesirable method. In contrast, the present invention can proceed like a simple one-step reaction, not a multi-step reaction, and can react hydrocarboxylic acid derivatives without generating by-products by directly reacting carboxylic acid derivatives with hydroxylamine derivatives in a short time under mild conditions near atmospheric pressure and room temperature. It's a new way. Therefore, the whole synthesis process is simple and can complete the reaction in a short time, and it is a synthesis method of a new hydroxamate derivative that generates little by-products, and it is a synthesis process with excellent reliability and reproducibility of reaction. In contrast, the process of separating and refining the target compound is easy, without causing any environmental problems, which will greatly contribute to economic efficiency.

Claims (3)

하기 일반식 (II)의 카르복실산(carboxylic acid) 유도체를 triphosgene과 triphenylphosphine 존재 하에서 hydroxylamine유도체와 반응시키는 것을 특징으로 하는 하기 일반식 ( I )의 hydroxamate유도체 제조방법.A method for producing a hydroxamate derivative of the general formula (I), characterized by reacting a carboxylic acid derivative of the general formula (II) with a hydroxylamine derivative in the presence of triphosgene and triphenylphosphine.
Figure 112004048921912-PAT00003
Figure 112004048921912-PAT00003
상기식에서 R은 수소, 탄소수 1 내지 20의 알킬 및 치환 알킬기, 또는 아릴 및 치환 아릴기를 나타내고, R1은 수소를 나타내고, R2는 각각 독립적으로 수소, 알킬, 치환알킬, 아릴, 치환아릴기를 나타낸다.Wherein R represents hydrogen, an alkyl and substituted alkyl group having 1 to 20 carbon atoms, or an aryl and substituted aryl group, R 1 represents hydrogen, R 2 each independently represents hydrogen, alkyl, substituted alkyl, aryl, or substituted aryl group.
제1항에서 triphosgene을 일반식 ( II )의 카르복실산 유도체 대비 0.50몰배 내지 1.00몰배를 사용하여 triphenylphosphine 존재 하에 반응시키는 것을 특징으로 하는 일반식 ( I )의 hydroxamate유도체 제조방법.The method for preparing a hydroxamate derivative of formula (I) according to claim 1, wherein the triphosgene is reacted in the presence of triphenylphosphine using 0.50 to 1.00 mol times of the carboxylic acid derivative of formula (II). 제1항에서 반응온도를 0 내지 45 oC로 하는 것을 특징으로 하는 일반식 ( I )의 hydroxamate유도체 제조방법.The method for producing a hydroxamate derivative of general formula (I) according to claim 1, wherein the reaction temperature is 0 to 45 ° C.
KR1020040085572A 2004-10-26 2004-10-26 Process for the preparation of hydroxamate derivatives KR20060036572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040085572A KR20060036572A (en) 2004-10-26 2004-10-26 Process for the preparation of hydroxamate derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040085572A KR20060036572A (en) 2004-10-26 2004-10-26 Process for the preparation of hydroxamate derivatives

Publications (1)

Publication Number Publication Date
KR20060036572A true KR20060036572A (en) 2006-05-02

Family

ID=37144693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040085572A KR20060036572A (en) 2004-10-26 2004-10-26 Process for the preparation of hydroxamate derivatives

Country Status (1)

Country Link
KR (1) KR20060036572A (en)

Similar Documents

Publication Publication Date Title
JPH09316072A (en) Production of paroxetine
KR20010031394A (en) Process for the preparation of (2r,3s)-3-amino-1,2-oxirane
KR20060036572A (en) Process for the preparation of hydroxamate derivatives
KR20060036569A (en) Process for the preparation of hydroxamate derivatives by using triphosgene
KR20060036568A (en) Process for the preparation of hydroxamate derivatives
KR20060036567A (en) Process for the preparation of hydroxamate derivatives by using diphosgene
US6028192A (en) Process for the preparation of diacylimides
KR100593629B1 (en) Method for preparing acid chloride using triphosgene
KR20050030753A (en) Novel process for the preparation of amide derivatives
KR20050071800A (en) Novel process for the preparation of amide derivatives
KR100415520B1 (en) Process for Producing 1-(2-Chlorophenyl)-5(4H)-Tetrazolinone
KR100619435B1 (en) New Manufacturing Method of Amide
KR100619439B1 (en) Method for preparing amine derivative introduced with formyl group
KR100619433B1 (en) How to prepare wine wrap amide
KR100619434B1 (en) New manufacturing method of wine lab amide
KR100593643B1 (en) Method for preparing acid chloride using diphosgene
KR100527624B1 (en) Process for the preparation of N-formylamine derivatives
KR100288404B1 (en) 2-Benzothiazolyl 4-amino-5-chloro-2-methoxythiobenzoate And Process For Preparing Cisapride Employing The Same
JP3850930B2 (en) 5-cyano-2-sulfonylpyridine and process for producing the same
KR100619436B1 (en) Amide Manufacturing Method Using Diphosgene
KR20050032135A (en) Novel process for the preparation of weinreb amide derivatives
JP2876929B2 (en) Production method of optically active 1,3-diol
KR100454090B1 (en) Process for preparing 3-chloro-2-(4-chloro-2-fluoro- 5-hydroxyphenyl)-4,5,6,7-tetrahydro-2H-indazole
EP0478803B1 (en) Process for producing (S)-gamma-acyloxy-methyl-alpha-beta-butenolide
KR100570472B1 (en) Method for preparing ester using triphosgene

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
WITB Written withdrawal of application