KR20060035432A - Marker proteins for the diagnosis of exposure to dioxin and the diagnosis method using the same - Google Patents

Marker proteins for the diagnosis of exposure to dioxin and the diagnosis method using the same Download PDF

Info

Publication number
KR20060035432A
KR20060035432A KR1020040084928A KR20040084928A KR20060035432A KR 20060035432 A KR20060035432 A KR 20060035432A KR 1020040084928 A KR1020040084928 A KR 1020040084928A KR 20040084928 A KR20040084928 A KR 20040084928A KR 20060035432 A KR20060035432 A KR 20060035432A
Authority
KR
South Korea
Prior art keywords
dioxin
protein
exposure
sugar chain
tcdd
Prior art date
Application number
KR1020040084928A
Other languages
Korean (ko)
Other versions
KR100667039B1 (en
Inventor
이상철
고정헌
인유정
김지혜
김진호
강태혁
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020040084928A priority Critical patent/KR100667039B1/en
Publication of KR20060035432A publication Critical patent/KR20060035432A/en
Application granted granted Critical
Publication of KR100667039B1 publication Critical patent/KR100667039B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/583Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with non-fluorescent dye label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • G01N2430/40Dioxins

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 환경 호르몬의 일종인 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, 이하 ‘TCDD’라 약칭함)의 노출 여부 진단용 마커 단백질 및 이를 이용하여 다이옥신 노출을 확인하는 방법에 관한 것으로서, 구체적으로 다이옥신 노출시 당쇄가 증가하거나 감소하는 마커 단백질을 찾아내어 동정하고 상기 마커 단백질의 당쇄변화를 이용하여 다이옥신 노출을 확인하는 방법에 관한 것이다. 본 발명의 다이옥신 노출 여부 진단용 마커 단백질 및 이를 이용하여 다이옥신 노출을 확인하는 방법은 다이옥신 독성 진단에 유용하게 사용될 수 있다.The present invention is a marker protein for diagnosing the exposure of tetrachlorodibenzodioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin, hereinafter abbreviated as 'TCDD') and a dioxin exposure using the same. In particular, the present invention relates to a method for identifying and identifying marker proteins in which a sugar chain increases or decreases upon dioxin exposure, and confirms dioxin exposure using a sugar chain change of the marker protein. Marker protein for diagnosing dioxin exposure of the present invention and a method for confirming dioxin exposure using the same can be usefully used for diagnosing dioxin toxicity.

다이옥신, 글리코믹스, 당쇄 변화, TCDDDioxin, glycomix, sugar chain change, TCDD

Description

다이옥신 노출 여부 진단용 마커 단백질 및 이를 이용하여 다이옥신 노출을 확인하는 방법{Marker proteins for the diagnosis of exposure to dioxin and the diagnosis method using the same} Marker proteins for the diagnosis of exposure to dioxin and the diagnosis method using the same}             

도 1은 N-연결형 당쇄와 각각에 특이적으로 결합하는 렉틴(lectin)을 나타내는 모식도이고, 1 is a schematic diagram showing a lectin that specifically binds to each of the N-linked sugar chains,

도 2는 LCA(Lens culinaris agglutinin) 렉틴 친화성 크로마토그래피(lectin affinity chromatography)를 수행한 후, 2 차원 전기영동을 실시하여 질량 분석기로 분석하는 일련의 실험을 나타내는 모식도이고, FIG. 2 is a schematic diagram illustrating a series of experiments performed by performing mass spectrometry after performing LCA (Lens culinaris agglutinin) lectin affinity chromatography and performing two-dimensional electrophoresis.

도 3은 DMSO를 처리한 대조군과 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, 이하 ‘TCDD’라 약칭함)을 처리한 창(Chang) 세포주 내에서 당쇄의 발현이 증가하거나 감소하는 단백질을 찾아내기 위하여 실시한 2 차원 전기영동(pH 3-10 스트립) 사진이고, Figure 3 shows the expression of sugar chains in Chang cell line treated with DMSO treated control and tetrachlorodibenzodioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin, hereinafter abbreviated as 'TCDD'). These are two-dimensional electrophoresis (pH 3-10 strips) photographs taken to find increasing or decreasing proteins,

도 4는 DMSO를 처리한 대조군과 TCDD를 처리한 창(Chang) 세포주 내에서 당쇄의 발현이 증가하거나 감소하는 단백질을 찾아내기 위하여 실시한 2차원 전기영동(pH 4-7 스트립) 사진이다. FIG. 4 is a two-dimensional electrophoresis (pH 4-7 strip) photograph performed to find a protein having increased or decreased expression of sugar chains in a DMSO-treated control group and a TCDD-treated Chang cell line.

본 발명은 환경 호르몬의 일종인 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, 이하 ‘TCDD’라 약칭함)의 노출 여부 진단용 마커 단백질 및 이를 이용하여 다이옥신 노출을 확인하는 방법에 관한 것으로서, 보다 상세하게는 인간의 간세포주인 창(Chang) 세포에 TCDD를 처리했을 때 당쇄가 증가하거나 감소하는 단백질을 동정하여 찾아낸 다이옥신 노출 여부 진단용 마커 단백질 및 이를 이용하여 다이옥신 노출을 확인하는 방법에 관한 것이다. The present invention is a marker protein for diagnosing the exposure of tetrachlorodibenzodioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin, hereinafter abbreviated as 'TCDD') and a dioxin exposure using the same. In more detail, the present invention relates to a dioxin-exposed diagnostic marker protein and a dioxin-exposed method, which are identified by identifying proteins that increase or decrease sugar chains when TCDD is applied to human hepatocyte cell Chang cells. It is about how to.

대표적인 환경 호르몬으로는 다이옥신, PCB, DDT, 유기염소 농약, 중금속, 플라스틱 가소제 등이 있는데, 이 중에서 다이옥신은 인류가 만들어낸 환경 호르몬 중 독성 및 위험성이 가장 강한 환경오염물질 또는 독성화합물로 여겨지고 있다. 보통 다이옥신(dioxin)이라 하면, 폴리클로리네이티드 디벤조파라다이옥신류(polychlorinaged dibenzo-p-dioxins, 이하 ‘PCDDs'로 약칭함)와 폴리클로리네이티드 디벤조퓨란류(polychlorinated dibenzofuran, 이하 ‘PCDFs’로 약칭함) 계열을 통칭하는데, 지금까지 PCDD는 약 75종, PCDF는 약 135종의 이성체(isomer)가 밝혀져 있다. Representative environmental hormones include dioxins, PCBs, DDT, organochlorine pesticides, heavy metals, and plastic plasticizers. Among them, dioxins are considered to be the most toxic and dangerous environmental pollutants or toxic compounds. Average dioxin (dioxin) as if, polyclonal rineyi suited dibenzo p-dioxin (polychlorinaged dibenzo- p -dioxins, hereinafter abbreviated to 'PCDDs') and polyclonal rineyi suited dibenzofuran acids (polychlorinated dibenzofuran, hereinafter 'PCDFs' Family is known to date, so far about 75 species of PCDD and about 135 species of isomers have been identified.

다이옥신은 화학적으로 분해 되지 않는 안정된 물질이며 먼지, 재, 토양 등과 같은 입자상의 물질 표면에 쉽게 흡착하고 한번 결합하면 쉽게 분리되지 않는 특성을 지녀, 환경오염을 증가시키고 동식물에 축적된다. 다이옥신은 도금, 제강 등과 같은 산업제조공정, 농약과 같은 화학물질 제조공정, 생활쓰레기 및 산업폐기물의 소각과정, 종이와 펄프공장의 염소표백 과정에서 발생하며 자동차 배기가스, 담배연기 중에 포함되어 있어 공기 중에 희석되거나 흙, 식물, 물 속으로 스며든다. 성인의 다이옥신 노출 경로는 고기, 생선, 우유, 지방 등과 같은 음식물 섭취가 주요인으로 전체의 95 % 이상을 차지하고 호흡이나 토양과의 접촉을 통해서도 노출된다. 수유기 아이들의 경우에는 모유 수유를 통해서도 다이옥신에 노출된다. Dioxins are stable substances that are not chemically decomposed and are easily adsorbed on the surface of particulate matter such as dust, ash, soil, etc., and once combined, they do not easily separate, which increases environmental pollution and accumulates in animals and plants. Dioxins come from industrial manufacturing processes such as plating and steelmaking, chemical manufacturing processes such as pesticides, incineration of household waste and industrial wastes, and chlorine bleaching processes of paper and pulp mills. Dilute or soak into soil, plants, or water. Dioxin exposure pathways in adults account for over 95% of all food intake, including meat, fish, milk and fat, and are also exposed through breathing and contact with soil. Breastfeeding children are also exposed to dioxin through breastfeeding.

체내에 유입된 다이옥신 분자는 세포 조직 내에 존재하는 특이적인 수용체 부위(Aryl Hydrocarbon Receptor, AhR)에 결합하여 세포에 호르몬처럼 작용하거나, 다이옥신으로 인해 정상적으로 결합하여야 할 호르몬이나 체내 조절물질이 수용체에 결합하지 못하므로 세포 기능이 제대로 수행되지 못한다. 다이옥신이 인체에 축적되면 생식기능(자궁 출혈과 통증, 불임, 정자 감소)과 면역기능 이상을 가져오며, 간장 및 신장 파손, 피부의 염소좌창, 선천적인 기형아 출산(성기 이상, 무뇌아, 척추 이분증), 말초 및 중추신경 발달장애 등을 일으키는 것으로 알려져 있다. Dioxin molecules introduced into the body bind to specific receptor sites (Aryl Hydrocarbon Receptor, AhR) in the cell tissue, acting like hormones to the cells, or hormones or regulators that normally bind due to dioxin do not bind to the receptors. As a result, cellular functions do not work properly. Accumulation of dioxin in the human body leads to reproductive function (uterine bleeding and pain, infertility, sperm reduction) and immune function abnormalities. ), Peripheral and central nervous system developmental disorders are known to cause.

다이옥신을 비롯한 독성물질에 대한 연구는 활발히 진행되어 왔으나, 최근에 이르도록 high-resolution gas chromatography/mass spectrometry(HRGC/HRMS)가 유일한 다이옥신 검출 방법이었다(C. Rappe et al. Envrion Sci Technol. 21:964, 1987). 그러나 지난 10년간 생명공학이 빠르게 발달함에 따라 생체 외 분석법(in vitro assay) 및 리간드 결합 분석법(ligand binding assay)이 개발되었고 현재까 지 EROD-bioassay, AHH bioassay, Enzyme immunoassay(EIA), CALUX assay, GRAB assay 등 다양한 방법이 개발되었다(P.A. Bechisch et al. Environment International. 27:413, 2001). 이러한 방법들은 대부분 다기능 산화제(mixed-function oxidase)라 불리는 CYP450 1A1 단백질을 주로 이용하고 있는데, CYP450 1A1은 다이옥신에 노출되었을 때 가장 먼저 발현되는 단백질로 다이옥신 노출 및 독성 검사에 적합한 물질이다. 그러나 다이옥신류 이외의 다른 독성물질에서도 발현이 보고되고 있어 다이옥신에 특이적이지 못하다는 단점이 있다.Although studies on toxic substances including dioxin have been actively conducted, recently, high-resolution gas chromatography / mass spectrometry (HRGC / HRMS) was the only dioxin detection method (C. Rappe et al. Envrion Sci Technol. 21: 964, 1987). However, with the rapid development of biotechnology over the last decade, in vitro assays and ligand binding assays have been developed, and EROD-bioassay, AHH bioassay, Enzyme immunoassay (EIA), CALUX assay, Various methods have been developed, including the GRAB assay (PA Bechisch et al. Environment International. 27: 413, 2001). Most of these methods use a CYP450 1A1 protein called mixed-function oxidase. CYP450 1A1 is the first protein to be exposed to dioxin and is suitable for dioxin exposure and toxicity testing. However, the expression of other toxic substances other than dioxins have been reported, which is not specific to dioxins.

한편, 단백질의 기능을 분석하기 위한 다양한 방법이 시도되어 왔는데 최근 들어 MALDI-TOF(Matrix-Assisted Laser Desorption Ionization)와 같은 질량 분석기기가 발달함에 따라, 단백질 기능 분석 방법으로 프로테오믹스(proteomics)가 각광받고 있다. 그러나 프로테오믹스는 다이내믹하게 움직이는 생체에 대하여 정지된 한 시점만을 선택적으로 분석하므로 복잡한 신호 전달의 전사 후 변형(post-translational modification)을 분석하는데는 부적합하다. 이를 해결하기 위하여 렉틴(lectin)을 이용하는 방법이 있는데, 렉틴(lectin)은 단당 혹은 올리고당과 특이적으로 결합하는 탄수화물 결합 단백질을 일컫는 것으로 생체 내에서는 당지질이나 당단백질의 당쇄에 결합하는 경향이 있다. 프로테오믹스에 렉틴의 당쇄 결합을 이용한 분석을 접목시킨 것을 글리코믹스(glycomics)라 하며, 이는 번역 후나 변형 중에 있는 단백질의 당질화를 추적하는 것으로, 프로테오믹스의 분석상의 어려움을 극복한 한 단계 진전된 분석방법으로 여겨지고 있다. Meanwhile, various methods for analyzing the function of proteins have been tried. Recently, as mass spectrometers such as Matrix-Assisted Laser Desorption Ionization (MALDI-TOF) have been developed, proteomics has come into the spotlight as a method of protein function analysis. have. However, proteomics is not suitable for analyzing post-translational modifications of complex signal transduction because it selectively analyzes only one stationary time point for a dynamically moving organism. In order to solve this problem, there is a method using lectin, which refers to a carbohydrate-binding protein that specifically binds to a monosaccharide or oligosaccharide, and has a tendency to bind to a glycolipid or glycoprotein sugar chain in vivo. Glycomics, which combines the analysis of lectins with sugar chain binding to the proteomics, is called glycomics, which tracks the glycosylation of proteins after translation or during modification, and takes it one step further by overcoming proteomic difficulties. Is considered.

단백질의 당질화를 이용한 질병 진단의 예로써 α-페토프로테인의 경우를 들 수 있다. 만성 간질환이 발생한 세포나 간암 조직 및 그 주변의 조직에서는 흔히 N-아세틸-β-글루코사미나이드-α1,6-푸코실트랜스퍼라제(N-acetyl-β-glucosaminide α1,6-fucosyltransferase, 이하 ‘α1,6-FucT’로 약칭함)가 발현되는데 이는 GDP-푸코오스(fucose)를 N-말단 당단백질에 붙이는 과정을 촉매하는 효소이다. 상기 α1,6-FucT에 의해 α-페토프로테인(α-fetoprotein)에 α1,6 푸코실레이션(α1,6 fucosylation)이 일어나 α1,6-푸코실레이티드 α-페토프로테인(1,6-fucosylated α-fetoprotein, 이하 ‘AFP’로 약함)이 생성되는데 이러한 AFP의 당쇄 변화를 관찰함으로써 초기 간암을 진단하는데 이용하고 있다(Naoyuki Taniguchi et al. Biochimica et Biophysica Acta, 1473: 9-20, 1998). Examples of disease diagnosis using glycosylation of proteins include the case of α-fetoprotein. N -acetyl-β-glucosaminide α1,6-fucosyltransferase ( N- acetyl-β-glucosaminide α1,6-fucosyltransferase, abbreviated α1,6-FucT '), an enzyme that catalyzes the attachment of GDP-fucose to the N-terminal glycoprotein. Α1,6 fucosylation occurs in α-fetoprotein by α1,6-FucT, resulting in α1,6-fucosylated α-fetoprotein (1,6-fucosylated). α-fetoprotein, hereinafter abbreviated as 'AFP', is produced and used to diagnose early liver cancer by observing the sugar chain changes of AFP (Naoyuki Taniguchi et al . Biochimica et Biophysica Acta, 1473: 9-20, 1998).

이에, 본 발명에서는 α-페토프로테인과 같이 TCDD에 노출된 간세포에서도 α1,6 푸코오스 당쇄가지가 첨가되거나 제거되는 단백질이 존재함을 확인하고 이를 다이옥신 검출 마커로 사용하는 방법을 연구하였다. 먼저 기존에 사용되던 프로테오믹스법에서 한 단계 나아간 글라이코믹스를 이용하여 다이옥신 노출시 당쇄변화를 일으키는 당백질을 동정하였다. 상기 방법을 이용하여 동정한 단백질은 세포의 표면에 있거나 분비되어 나오는 형태이므로, 혈액이나 소변 등의 체액의 진단을 통해서 TCDD 노출 여부의 진단을 가능하게 한다.In the present invention, it was confirmed that there is a protein to which α1,6 fucose sugar chain branches are added or removed even in hepatocytes exposed to TCDD such as α-fetoprotein, and a method of using the same as a dioxin detection marker was studied. First, the glycoproteins that cause the sugar chain change upon dioxin exposure were identified by using glycomixes that have been taken one step from the existing proteomics method. Since the protein identified using the above method is on the surface of the cell or secreted form, it is possible to diagnose TCDD exposure through the diagnosis of body fluids such as blood or urine.

본 발명자들은 창(Chang) 세포주에 TCDD를 처리하여 당쇄 변화가 증가 및 감 소하는 단백질을 발견하고, 상기 단백질의 당쇄변화를 측정하여 TCDD 노출 여부를 진단할 수 있음을 확인하여 본 발명을 완성하였다.The present inventors completed the present invention by confirming that TCDD was treated to Chang cell line to find a protein having an increase and a decrease in sugar chain change, and to determine whether TCDD was exposed by measuring the sugar chain change of the protein. .

본 발명의 목적은 다이옥신에 노출되었을 때 간세포에서 당쇄변화를 일으키는 단백질을 동정하고 이를 이용하여 다이옥신 노출 여부를 확인하는 방법을 제공하는 것이다.
It is an object of the present invention to provide a method for identifying proteins that cause sugar chain changes in hepatocytes when exposed to dioxin and identifying dioxin exposure using the same.

상기 목적을 달성하기 위하여, 본 발명은 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, 이하 ‘TCDD’라 약칭함) 노출 여부 진단용 마커 단백질을 제공한다.In order to achieve the above object, the present invention provides a marker protein for diagnosing whether or not tetrachlorodibenzodioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin, hereinafter abbreviated as 'TCDD').

또한, 본 발명은 상기 마커 단백질의 당쇄 변화를 측정하여 TCDD에의 노출 여부를 확인하는 방법을 제공한다. In addition, the present invention provides a method for determining the exposure to TCDD by measuring the sugar chain change of the marker protein.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachloro dibenzo-p-dioxin, 이하 ‘TCDD’라 약칭함) 노출 여부 진단용 마커 단백질을 제공한다.The present invention whether or not (hereinafter referred to 2,3,7,8-tetrachloro dibenzo- p -dioxin, hereinafter 'TCDD') tetrachloro-dibenzo dioxin exposure provides a diagnostic marker protein.

본 발명의 바람직한 실시예에서는 다이옥신 마커로 사용될 수 있는 단백질을 찾아내기 위하여, 신체기관 중 독성물질이 축적되는 장소인 간(liver) 세포를 택 하여 단백질 동정 실험을 실시하였다.In a preferred embodiment of the present invention, in order to find a protein that can be used as a dioxin marker, a protein identification experiment was performed by selecting liver cells, which are places where toxic substances accumulate in body organs.

구체적으로 인간의 간(liver) 세포인 창(Chang) 세포주에 TCDD를 처리한 실험군과 DMSO를 처리한 대조군의 무혈청 배지(serum free media) 를 준비하였다. 이를 α1,6-푸코오스 당쇄가지에 결합하는 렉틴의 일종인 LCA(Lens Culinaris agglutinin)로 패킹된 컬럼(column)에 로딩(loading)함으로써, TCDD 노출로 인하여 α1,6-푸코오스 당쇄가지에 변화가 일어난 단백질을 1차로 선별하였다. 상기 단백질 시료를 용출한 후, 드라이스트립(drystrip)에 로딩(loading)하여 일차원 전기영동(Isoelectrofocusing, IEF)을 실시하고 일차원 전기영동이 끝난 스트립에 다시 이차원 전기영동(SDS-PAGE)을 실시하였다. 전기영동으로 얻어진 젤은 염색, 스캐닝 과정을 거쳐 젤 분석 전용 프로그램인 PDQuestTM으로 단백질 발현의 차이를 분석하였다.Specifically, serum-free media of the experimental group treated with TCDD and DMSO-treated control cells were prepared in Chang cell lines, which are human liver cells. By loading this in a column packed with LCA (Lens Culinaris agglutinin), a type of lectin that binds to the α1,6-fucose sugar chain branch, changes in the α1,6-fucose sugar chain branch due to TCDD exposure The proteins that occurred were selected first. After the protein sample was eluted, one-dimensional electrophoresis (IEF) was performed by loading on a dry strip and two-dimensional electrophoresis (SDS-PAGE) was performed on the strip after the one-dimensional electrophoresis. Gels obtained by electrophoresis were subjected to staining and scanning to analyze the difference in protein expression using PDQuestTM, a gel analysis program.

본 발명자들은 이미지 분석 프로그램으로부터 발현 차이를 나타내는스팟(spot)을 찾아내고 이에 해당하는 단백질의 질량을 질량분석기(Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry, MALDI-TOF-TOF MS)로 알아내었다. 이를 바탕으로 NCBI 데이터베이스에서 상기 펩타이드를 동정하였다(도 2 참조). The inventors have found a spot indicating the difference in expression from an image analysis program and the mass of the corresponding protein is known by a mass spectrometer (Matrix-Assisted Laser Desorption / Ionization Time of Flight Mass Spectrometry, MALDI-TOF-TOF MS). Came out. Based on this, the peptide was identified in the NCBI database (see FIG. 2 ).

그 결과, TCDD를 처리하였을 때, 당쇄변화가 증가하거나 감소함을 보이는 단백질들은 다음과 같았다(도 3 도 4 참조). As a result, the proteins showing an increase or decrease in sugar chain change when TCDD was treated were as follows (see FIGS . 3 and 4 ).

먼저, 알파 1,6-푸코오스(α1,6-fucose) 당쇄가지가 증가하는 단백질로 약 50 kDa의 분자량 및 약 6.1의 pI를 갖는 ‘알데하이드 탈수소화효소(Aldehyde dehydrogenase)’, 약 38 kDa의 분자량 및 약 5.9의 pI를 갖는 ‘카뎁신 B(Cathepsin B)’, 약 25 kDa의 분자량 및 약 5.9의 pI를 갖는 ‘콜라겐 알파Ⅰ체인 전구체(Collagen alphaⅠchain precursor)’, 약 16 kDa의 분자량 및 약 9.4의 pI를 갖는 ‘라이소자임 A(Lysozyme A)’ 및 약 52 kDa의 분자량 및 약 5.35의 pI를 갖는 ‘FK-506 결합 단백질 4’를 동정하였다.First of all, a protein having an increased alpha 1,6-fucose sugar chain branch, an aldehyde dehydrogenase having a molecular weight of about 50 kDa and a pi of about 6.1, of about 38 kDa 'Cathepsin B' having a molecular weight and a pi of about 5.9, 'Collagen alpha I chain precursor' having a molecular weight of about 25 kDa and a pi of about 5.9, a molecular weight of about 16 kDa and about Lysozyme A with a pI of 9.4 and FK-506 binding protein 4 with a molecular weight of about 52 kDa and a pi of about 5.35 were identified.

다음으로, 알파 1,6-푸코오스(α1,6-fucose) 당쇄가지가 감소하는 단백질로 약 57 kDa의 분자량 및 약 4.8의 pI를 갖는 ‘단백질 이황화 이성질체화 효소(Protien disulfide isomerase)’, 약 16 kDa의 분자량 및 약 9.4의 pI를 갖는 ‘라이소자임 C 전구체(Lysozyme C precursor)’, 약 14 kDa의 분자량 및 약 5.0의 pI를 갖는 ‘면역글로불린 헤비 체인(Immunoglobulin heavy chain) 단백질’을 동정하였다. Next, a protein having a reduced alpha 1,6-fucose sugar chain branch is a 'Protien disulfide isomerase' having a molecular weight of about 57 kDa and a pi of about 4.8. A 'lysozyme C precursor' having a molecular weight of 16 kDa and a pi of about 9.4, an 'Immunoglobulin heavy chain protein' having a molecular weight of about 14 kDa and a pi of about 5.0 was identified.

상기에서 밝혀낸 당쇄변화를 나타내는 당단백질들은 세포의 표면에 있거나 세포 외로 분비되어 나오기 때문에, 혈액이나 소변 등의 체액만으로도 상기 단백질의 당쇄변화를 확인하여 TCDD 노출 여부를 간편하게 진단할 수 있다.Since the glycoproteins exhibiting the sugar chain changes revealed above are secreted to the surface of the cells or secreted out of the cells, it is possible to easily diagnose the TCDD exposure by checking the sugar chain changes of the protein even with body fluids such as blood or urine.

또한, 본 발명은 상기 마커 단백질의 당쇄 변화를 측정하여 TCDD에의 노출 여부를 확인하는 방법을 제공한다. 즉, 정상세포와 비교하여 다이옥신에 노출된 세포에서 α1,6 푸코오스(fucose) 당쇄가지 변화를 나타내는 단백질의 당쇄가지 변 화를 측정하는 것이다.In addition, the present invention provides a method for determining the exposure to TCDD by measuring the sugar chain change of the marker protein. That is, the change in sugar chain branch of a protein showing a change in α1,6 fucose sugar chain branch in cells exposed to dioxin compared to normal cells.

일반적으로 간암의 경우 α-페토프로테인(α-fetoprotein)에 α1,6 푸코오스(fucose)가 결합되는 당쇄 변화로 초기 간암을 진단하고 있는데, 본 발명에서는 다이옥신의 일종인 TCDD에 노출되었을때 α1,6 푸코오스 당쇄가지가 변화하는 단백질을 동정함으로써 단백질의 당쇄변화만으로 TCDD에의 노출 여부를 판별할 수 있음을 확인하였다. In general, liver cancer is diagnosed as an early liver cancer by a sugar chain change in which α1,6 fucose is bound to α-fetoprotein, and in the present invention, α1, By identifying proteins with 6 fucose sugar chain branches, it was confirmed that exposure to TCDD can be determined by only changing the sugar chains of the protein.

이하, 본 발명을 실시예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1> 시료준비(sample preparation)Example 1 Sample Preparation

본 발명자들은 인간의 간세포에 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, 이하 ‘TCDD’라 약칭함)을 처리하여 전기영동을 실시하기 위한 시료를 준비하였다. The present inventors prepared samples for electrophoresis by treating tetrahedral dibenzodioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin, hereinafter abbreviated as 'TCDD') to human hepatocytes.

구체적으로 인간의 간세포인 창(Chang) 세포주에 50 nM의 TCDD를 72 시간 동안 처리한 실험군과 DMSO를 72 시간 동안 처리한 대조군의 무혈청 배지(serum free media) 1000 ml를 회수하고 이를 LCA(Lens Culinaris agglutinin) 수지(resin)로 패킹(packing)된 컬럼(column)(Sigma, #L-0511)에 로딩(loading)하였다. 다시 컬럼에 0.4 M 메틸-알파-D-만노피라노사이드(methyl α-D-manopyranoside)와 50 mM Tris-Cl를 가하여 수지에 붙어있는 당단백질들을 용출시켰다. Ultrafree-4 centrifugal filter device(Millipore사)를 이용하여 용출된 당단백질 중 10 kDa이하의 단백질은 제거하고 2 ㎖로 농축한 후 아세톤에 녹인 20% TCA를 첨가하고 -20℃에서 1시간동안 침전시켜 단백질을 회수하였다. 이로써 TCDD 처리 후, 당쇄 변화를 일으킨 단백질 시료를 확보하였다(도 2). Specifically, 1000 ml of serum-free media of the experimental group treated with 50 nM TCDD for 72 hours and the control group treated with DMSO for 72 hours were collected on a Chang cell line, which is a human hepatocyte, and the LCA (Lens) was collected. A column (Sigma, # L-0511) packed with Culinaris agglutinin resin was loaded. 0.4 M methyl-alpha-D-manopyranoside and 50 mM Tris-Cl were added to the column to elute the glycoproteins attached to the resin. Proteins below 10 kDa were removed from the glycoprotein eluted using Ultrafree-4 centrifugal filter device (Millipore), concentrated to 2 ml, 20% TCA dissolved in acetone was added and precipitated at -20 ° C for 1 hour. The protein was recovered. This secured a protein sample that caused the sugar chain change after TCDD treatment ( FIG. 2 ).

<실시예 2> 이차원 전기영동Example 2 Two-Dimensional Electrophoresis

<2-1> 일차원 전기영동<2-1> One-Dimensional Electrophoresis

본 발명자들은 <실시예 1>에서 준비한 시료로 일차원 전기영동(Isoelectrofocusing, IEF)을 실시하였다. 구체적으로, <실시예 1>에서 침전시킨 단백질을 재수화(rehydration) 완충용액(7 M Urea, 2M Thiourea, 4% CHAPS, 1% DTT, 0.5% IPG buffer)에 넣어 2 시간 동안 녹인 후 12000 rpm으로 15분 동안 원심분리하여 상층액을 수거하였다. 16 시간 동안 드라이스트립(drystrip)을 수화시킨 뒤, 원심분리 후 수거한 상층액을 로딩(loading)하여 300V에서 1분, 3500V에서 1시간 30분, 3500V에서 13시간으로 Multiphor Ⅱ(Pharmacia Biotech사)로 일차원 전기영동을 수행하였다.The present inventors performed one-dimensional electrophoresis (IEF) with the sample prepared in <Example 1> . Specifically, the protein precipitated in Example 1 was dissolved in a rehydration buffer (7 M Urea, 2M Thiourea, 4% CHAPS, 1% DTT, 0.5% IPG buffer) for 2 hours, and then dissolved at 12000 rpm. The supernatant was collected by centrifugation for 15 minutes. After hydration of the drystrip for 16 hours, the supernatant collected after centrifugation was loaded for 1 minute at 300V, 1 hour 30 minutes at 3500V, and 13 hours at 3500V Multiphor II (Pharmacia Biotech). One-dimensional electrophoresis was performed with.

<2-1> 이차원 전기영동<2-1> two-dimensional electrophoresis

본 발명자들은 일차원 전기영동이 끝난 스트립(strip)으로 이차원 전기영동(SDS-PAGE)을 실시하였다. 구체적으로 실시예 <2-1>에서 제조한 스트립을 평형화 용액(6M Urea, 1.5 M Tris-Cl(pH 8.8), 30% Glycerol, 2% SDS, 5% β-Mercaptoethanol, Bromophenol blue 약간) 5 ㎖에 넣어 15 분 동안 반응시킨 후, 11% 폴리아크릴아마이드(polyacrylamide) 젤(14×15 ㎝) 위에 올려놓았다. HoferTM SE600(Pharmacia Biotech사)에 전기영동 완충액(24 mM Tris, 250 mM glycine, 0.1% SDS)을 넣고 1장 당 15 mA 1시간, 30 mA 5시간으로 총 6 시간 동안 2차원 전기영동을 실시하였다(도 2). The inventors performed two-dimensional electrophoresis (SDS-PAGE) with a strip of one-dimensional electrophoresis. Specifically, the strip prepared in Example <2-1> 5 ml of an equilibration solution (6M Urea, 1.5M Tris-Cl (pH 8.8), 30% Glycerol, 2% SDS, 5% β-Mercaptoethanol, Bromophenol blue slightly) After reacting for 15 minutes, it was placed on 11% polyacrylamide gel (14 × 15 cm). Electrophoresis buffer (24 mM Tris, 250 mM glycine, 0.1% SDS) was added to HoferTM SE600 (Pharmacia Biotech) and subjected to two-dimensional electrophoresis for 6 hours at 15 mA 1 hour and 30 mA 5 hours per sheet. ( FIG. 2 ).

<2-3> 염색 및 이미지 분석(Image Analysis)<2-3> Dyeing and Image Analysis

본 발명자들은 이차원 전기영동을 실시한 젤을 염색하고, 젤 분석 프로그램으로 젤 상의 스팟(spot)을 분석하였다. We stained gels subjected to two-dimensional electrophoresis and analyzed the spots on the gel with a gel analysis program.

구체적으로 젤을 유리판에서 분리한 뒤 3차 증류수로 15 분씩 3 번 세척하고, 염색제인 Bio-SafeTM coomassie(Bio-Rad사)를 넣어 교반하면서 12 시간 동안 반응시켰다. 반응이 끝난 젤은 다시 3차 증류수로 세척하고 스캐닝(scanning)한 후, 이차원 전기영동 젤 분석 전용 프로그램인 PDQuestTM(Bio-rad사)으로 단백질 차이를 분석하였다(도 3도 4).Specifically, the gel was separated from the glass plate, washed three times with 15 minutes of distilled water, and reacted for 12 hours while adding a dye Bio-SafeTM coomassie (Bio-Rad). After completion of the reaction, the gel was again washed with distilled water and scanned (scanning), the protein difference was analyzed by PDQuestTM (Bio-rad), a two-dimensional electrophoretic gel analysis program ( Fig. 3 and 4 ).

<실시예 3> 질량분석(Mass Analysis)Example 3 Mass Analysis

<3-1> 질량분석을 위한 시료준비<3-1> Sample Preparation for Mass Spectrometry

본 발명자들은 이미지 분석 프로그램으로부터 얻어진 스팟(spot)에 해당하는 단백질들을 동정하였다. We identified proteins that correspond to spots obtained from image analysis programs.

구체적으로 이차원 전기영동이 끝난 젤로부터 해당 스팟(spot)을 오려낸 뒤, 30% 메탄올을 처리한 후, 50% 아세토니트릴(acetonitrile)에 10 mM 암모늄 바이카보네이트(ammonium bicarbonate)가 포함된 용액 100 ㎕를 재차 처리하여 염색제를 완전히 제거하였다. 100% 아세토니트릴 100㎕로 젤을 탈수시킨 후 진공 원심분리기(Speed-vac)에서 남아있는 용액을 완전히 제거하였다. 트립신(trypsin) 10 ng/㎕를 탈수된 젤에 처리하고 37℃에서 16시간 반응시켜 젤 안의 단백질들을 펩타이드 상태로 잘랐다. 여기에 50 mM 암모늄 바이카보네이트 100 ㎕를 첨가하여 37℃에서 1시간 반응시킨 후 펩타이드 용액을 수거하고, 다시 젤에 50% 아세토니트릴과 5% 트리플로로아세트산(trifluoroacetic acid, TFA) 100 ㎕ 첨가하여 37℃에서 1시간 반응시킨 후 펩타이드 용액을 수거함으로써 젤로부터 펩타이드를 추출하였다. 추출한 펩타이드는 진공 원심분리기에 넣어 완전히 건조시켰다.Specifically, the spot was cut from the gel after two-dimensional electrophoresis, treated with 30% methanol, and 100 μl of a solution containing 10 mM ammonium bicarbonate in 50% acetonitrile. Was treated again to completely remove the dye. After the gel was dehydrated with 100 μl of 100% acetonitrile, the remaining solution was completely removed in a vacuum centrifuge (Speed-vac). 10 ng / μl of trypsin was treated to the dehydrated gel and reacted at 37 ° C. for 16 hours to cut proteins in the gel into peptides. 100 μl of 50 mM ammonium bicarbonate was added thereto and reacted at 37 ° C. for 1 hour, and then the peptide solution was collected. Then, 100 μl of 50% acetonitrile and 5% trifluoroacetic acid (TFA) were added to the gel. After reacting for 1 hour at 37 ° C., the peptide solution was collected to extract the peptide from the gel. The extracted peptide was completely dried in a vacuum centrifuge.

질량 분석을 하기 전 시료의 염을 제거하기 위하여, 미리 100% ACN으로 10 ㎕씩 3회, 50% ACN과 0.1% TFA 10 ㎕로 3회, 0.1% TFA로 3회 세척한 Zip-Tip(Millipore사)을 증류수 10 ㎕에 용해시킨 시료에 결합시켰다. 이를 0.1% TFA로 10 ㎕씩 3회 세척한 후 다시 50% ACN과 0.1% TFA 10 ㎕를 가하여 Zip-Tip으로부터 다시 펩타이드를 용출하고 이로써 펩타이드부터 염을 완전히 제거하였다. 이로써 질량분석을 위한 펩타이드 시료를 준비하였다.Zip-Tip (Millipore) washed three times with 10 μl with 100% ACN, three times with 10 μl of 50% ACN and 0.1% TFA, and three times with 0.1% TFA to remove salt from the sample prior to mass spectrometry. G) was bound to a sample dissolved in 10 µl of distilled water. This was washed three times with 10 μl of 0.1% TFA three times, and then 50 μl ACN and 10 μl of 0.1% TFA were added again to elute the peptide from the Zip-Tip, thereby completely removing the salt from the peptide. This prepared a peptide sample for mass spectrometry.

<3-2> 질량분석<3-2> mass spectrometry

본 발명자들은 질량분석기(Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry, MALDI-TOF-TOF MS)에 실시예 <3-1>에서 준비한 시료를 넣고 질량분석을 실시하였다. The inventors put the sample prepared in Example <3-1> into a mass spectrometer (Matrix-Assisted Laser Desorption / Ionization Time of Flight Mass Spectrometry, MALDI-TOF-TOF MS) and performed mass spectrometry.

구체적으로, 매트릭스(Matrix)로 사용되는 알파-시아노-4-하이드록시사이남 산(α-cyano-4-hydroxycinnamic acid, CHCA)을 50% ACN, 0.1% TFA로 녹인 후 원심분리하여 상층액만 수거하였다. 매트릭스는 주로 자외선을 강하게 흡수하는 유기물질을 사용하는데, 시료분자 각각을 분리시키는 역할과 그것을 안정하게 연성이온화(soft ionization)시키는 역할을 한다. 매트릭스에 내부 보정(internal calibration)을 위한 표준 용액을 1/4000 정도로 희석시켜 그 중 1 ㎕를 시료에 넣고 녹인 후 상기 시료를 분석용 판에 떨어뜨려 시료가 완전히 말랐을 때 질량분석기에 판을 넣어 분석을 실시하였다. 질량분석기는 Voyager DE-STR Mass spectrometer(Applied Biosystems사)를 사용하였다. 질량분석기로 얻어진 펩타이드의 질량을 마스코트(MASCOT, http://www.matrixscience.com)에서 분석한 후 NCBI 데이터베이스에서 해당 펩타이드를 동정하였다. Specifically, alpha-cyano-4-hydroxycinnamic acid (CHCA) used as a matrix is dissolved in 50% ACN and 0.1% TFA, followed by centrifugation, and the supernatant. Only collected. The matrix mainly uses organic material that absorbs ultraviolet rays strongly, and serves to separate each sample molecule and to stably soft ionize it. Dilute the standard solution for internal calibration to 1/4000 in the matrix, add 1 μl of the solution to the sample, dissolve it, and drop the sample onto the analytical plate. Was carried out. The mass spectrometer used a Voyager DE-STR Mass spectrometer (Applied Biosystems). The mass of the peptide obtained by mass spectrometry was analyzed in Mascot ( http://www.matrixscience.com ), and the peptide was identified in the NCBI database.

그 결과, 도 3 도 4와 같이 당쇄변화가 증가 또는 감소하는 단백질들이 동정되었다. 당쇄변화를 나타내는 단백질은 다음과 같다.As a result, proteins with increasing or decreasing sugar chain changes were identified as shown in FIGS . 3 and 4 . Proteins exhibiting sugar chain changes are as follows.

1. 알파,1,6-푸코오스(α1,6-fucose) 당쇄가지가 첨가되는 단백질1. Protein to which alpha, 1,6-fucose sugar chain branch is added

point 분자량(kDa/pI)Molecular Weight (kDa / pI) 단백질  protein 44 57/4.857 / 4.8 Protein disulfide isomerase  Protein disulfide isomerase 5,65,6 16/9.416 / 9.4 Lysozyme C precursor  Lysozyme C precursor 99 14/5.014 / 5.0 Immunoglobulin heavy chain  Immunoglobulin heavy chain

2. 알파,1,6-푸코오스(α1,6-fucose) 당쇄가지가 감소하는 단백질2. Proteins with reduced alpha, 1,6-fucose sugar chains

point 분자량(kDa/pI)Molecular Weight (kDa / pI) 단백질  protein 1One 50/6.150 / 6.1 Aldehyde dehydrogenase  Aldehyde dehydrogenase 2,32,3 38/5.938 / 5.9 Cathepsin B  Cathepsin b 77 25/5.925 / 5.9 Collagen alpha 1(Ⅰ) chain precursor  Collagen alpha 1 (Ⅰ) chain precursor 88 16/9.416 / 9.4 Lysozyme A  Lysozyme A 1010 52/5.3552 / 5.35 FK-506 binding protein 4  FK-506 binding protein 4

상기에서 동정한 단백질의 당쇄변화를 측정하여 TCDD 노출 여부를 진단할 수 있다. The sugar chain change of the protein identified above can be measured to diagnose the exposure of TCDD.

상기에서 살펴본 바와 같이, 단백질의 당쇄 변화를 이용하여 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) 노출여부를 진단하는 방법 및 노출여부를 진단하는 마커 단백질은 다이옥신 노출을 진단하기 위하여 사용될 뿐 아니라, 상기 마커 단백질을 기초로 제조된 단일클론항체는 면역반응을 이용한 단백질 칩 및 진단키트 개발에 유용하게 사용될 수 있다.



As described above, a method for diagnosing whether or not tetrachlorodibenzodioxine (2,3,7,8-tetrachlorodibenzo- p -dioxin, TCDD) is exposed using a sugar chain change of the protein and a marker protein for diagnosing the exposure are as follows. In addition to being used to diagnose dioxin exposure, monoclonal antibodies prepared based on the marker protein may be useful for developing protein chips and diagnostic kits using immune responses.



Claims (4)

테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, 이하 ‘TCDD’라 약칭함) 노출 여부 진단용 마커 단백질.Tetrachlorodibenzodioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin, hereinafter abbreviated as 'TCDD'). 제 1항에 있어서, 마커 단백질은 ‘알데하이드 탈수소화효소(Aldehyde dehydrogenase)’, ‘카뎁신 B(Cathepsin B)’, ‘콜라겐 알파Ⅰ체인 전구체(Collagen alphaⅠchain precursor)’, ‘라이소자임 A(Lysozyme A)’, ‘FK-506 결합 단백질 4’, ‘단백질 이황화 이성질체화 효소(Protien disulfide isomerase)’, ‘라이소자임 C 전구체(Lysozyme C precursor)’ 및 ‘면역글로불린 헤비 체인(Immunoglobulin heavy chain) 단백질’로 구성된 군으로부터 선택되는 단백질인 것을 특징으로 하는 방법.The method of claim 1, wherein the marker protein is 'aldehyde dehydrogenase', 'Cathepsin B', 'Collagen alpha I chain precursor', 'Lysozyme A' ',' FK-506 binding protein 4 ',' Protien disulfide isomerase ',' Lysozyme C precursor 'and' Immunoglobulin heavy chain protein ' And a protein selected from. 제 1항의 마커 단백질의 당쇄 변화를 측정하여 테트라클로로다이벤조다이옥신(2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD)에의 노출 여부를 확인하는 방법. A method for determining the exposure to tetrachlorodibenzodioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin, TCDD) by measuring the sugar chain change of the marker protein of claim 1. 제 3항에 있어서, 상기 당쇄변화는 α1,6-푸코오스(fucose) 당쇄가지가 첨가 되거나 감소되는 변화인 것을 특징으로 하는 방법.4. The method of claim 3, wherein the sugar chain change is a change in which α1,6-fucose sugar chain branches are added or reduced.
KR1020040084928A 2004-10-22 2004-10-22 Marker for the diagnosis of exposure to dioxin and the diagnosis method using the same KR100667039B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040084928A KR100667039B1 (en) 2004-10-22 2004-10-22 Marker for the diagnosis of exposure to dioxin and the diagnosis method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040084928A KR100667039B1 (en) 2004-10-22 2004-10-22 Marker for the diagnosis of exposure to dioxin and the diagnosis method using the same

Publications (2)

Publication Number Publication Date
KR20060035432A true KR20060035432A (en) 2006-04-26
KR100667039B1 KR100667039B1 (en) 2007-01-12

Family

ID=37143996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040084928A KR100667039B1 (en) 2004-10-22 2004-10-22 Marker for the diagnosis of exposure to dioxin and the diagnosis method using the same

Country Status (1)

Country Link
KR (1) KR100667039B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182172A1 (en) * 2017-03-30 2018-10-04 (주)케어젠 Peptide having cytoprotective effect against environmental pollutant and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930353A (en) * 1995-07-20 1997-02-04 Toyota Motor Corp Air bag device
JP3620998B2 (en) * 1999-06-08 2005-02-16 株式会社ニレコ End detection device for conductive object
SG99872A1 (en) * 1999-10-26 2003-11-27 Mitsubishi Heavy Ind Ltd Method and apparatus for laser analysis of dioxins
JP4212749B2 (en) * 2000-02-08 2009-01-21 日機装株式会社 Dioxin measurement method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182172A1 (en) * 2017-03-30 2018-10-04 (주)케어젠 Peptide having cytoprotective effect against environmental pollutant and use thereof
US11104704B2 (en) 2017-03-30 2021-08-31 Caregen Co., Ltd. Peptide having cytoprotective effect against environmental pollutant and use thereof
US11597748B2 (en) 2017-03-30 2023-03-07 Caregen Co., Ltd. Peptide having cytoprotective effect against environmental pollutant and use thereof
US11859016B2 (en) 2017-03-30 2024-01-02 Caregen Co., Ltd. Peptide having cytoprotective effect against environmental pollutant and use thereof

Also Published As

Publication number Publication date
KR100667039B1 (en) 2007-01-12

Similar Documents

Publication Publication Date Title
Kolarich et al. Determination of site-specific glycan heterogeneity on glycoproteins
Mikhailov et al. Identification of ATP-synthase as a novel intracellular target for microcystin-LR
Törnqvist et al. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications
Badock et al. Prefractionation of protein samples for proteome analysis using reversed‐phase high‐performance liquid chromatography
US10151759B2 (en) Method for the purification of a glycan and/or a glycoconjugate by chromatography using a stationary phase comprising cotton
Yazdanparast et al. Assignment of disulfide bonds in proteins by fast atom bombardment mass spectrometry.
Paschinger et al. Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5
Guerrier et al. Contribution of solid-phase hexapeptide ligand libraries to the repertoire of human bile proteins
Baussant et al. Effective depletion of albumin using a new peptide‐based affinity medium
KR20150061816A (en) Polypeptide markers for cancer diagnosis derived from blood sample and methods for the diagnosis of cancers using the same
US20070134731A1 (en) Proteomics based method for toxicology testing
Camperi et al. Monitoring multiple quality attributes of a complex Fc-fusion protein during cell culture production processes by mD-LC-MS peptide mapping
WO2005019831B1 (en) Methods for reducing complexity of a sample using small epitope antibodies
KR20050075134A (en) Biomarker proteins for diagnosing the exposure to pah
KR100667039B1 (en) Marker for the diagnosis of exposure to dioxin and the diagnosis method using the same
JPWO2011010372A1 (en) Evaluation method and evaluation kit for substance, screening method for substance, and determination method and determination kit for presence / absence or future occurrence of diabetic nephropathy
Abebe et al. Identification and quantification of histidine-rich glycoprotein (HRG) in the blood plasma of six marine bivalves
Scaloni Analysis of post-translational modifications in soluble proteins involved in chemical communication from mammals and insects
Canas et al. Covalent attachment of peptides to membranes for dot-blot analysis of glycosylation sites and epitopes
Liefländer et al. Structural elements of anaphylatoxin obtained by contact activation of hog serum
Zachara et al. Identification of glycosylation sites in mucin peptides by Edman degradation
Hoshiyama et al. Identification of plasma binding proteins for glucose-dependent insulinotropic polypeptide
JP5717331B2 (en) Evaluation method and evaluation kit of visceral fat increase inhibitory effect, screening method for substance, and use as marker
KR100538004B1 (en) Biomarker proteins for diagnosing the exposure to dioxin
Deepak et al. Purification and characterization of proline/hydroxyproline-rich glycoprotein from pearl millet coleoptiles infected with downy mildew pathogen Sclerospora graminicola

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150123

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161229

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 18