KR20060030391A - Noble metal nano particles coated electrode materials of lithium battery - Google Patents

Noble metal nano particles coated electrode materials of lithium battery Download PDF

Info

Publication number
KR20060030391A
KR20060030391A KR1020040079234A KR20040079234A KR20060030391A KR 20060030391 A KR20060030391 A KR 20060030391A KR 1020040079234 A KR1020040079234 A KR 1020040079234A KR 20040079234 A KR20040079234 A KR 20040079234A KR 20060030391 A KR20060030391 A KR 20060030391A
Authority
KR
South Korea
Prior art keywords
lithium battery
electrode material
noble metal
platinum
coated
Prior art date
Application number
KR1020040079234A
Other languages
Korean (ko)
Inventor
윤의식
좌용호
김용상
김정득
백지은
이혁
Original Assignee
(주)나노클러스터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)나노클러스터 filed Critical (주)나노클러스터
Priority to KR1020040079234A priority Critical patent/KR20060030391A/en
Publication of KR20060030391A publication Critical patent/KR20060030391A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬전지에서 활물질의 비저항을 낮추고 전기화학반응의 활성화를 유도하기 위하여 금(Au), 백금(Pt) 나노입자가 코팅된 리튬전지용 전극재료에 관한 것이다. 금속 금 또는 백금에서 전기분해법으로 직접 백금 나노입자 콜로이드를 제조한 후 1-10 ㎛ 크기의 전극물질 입자와 혼합한 후, 건조하여 귀금속 나노입자가 코팅된 전극재료를 제조한다. 상기 귀금속은 전극의 전기화학반응에 대해 안정한 물질이며 전극물질 표면의 비저항을 감소시켜 전지의 충방전시 효과적인 전기화학반응에 유도한다. 따라서 전지의 수명, 충방전 용량, 안정성 증가를 꾀할 수 있다.       The present invention relates to a lithium battery electrode material coated with gold (Au), platinum (Pt) nanoparticles in order to lower the specific resistance of the active material in the lithium battery and induce the activation of the electrochemical reaction. A platinum nanoparticle colloid is prepared directly by electrolysis in metal gold or platinum, and then mixed with particles of electrode material having a size of 1-10 μm, followed by drying to prepare an electrode material coated with precious metal nanoparticles. The precious metal is a stable material against the electrochemical reaction of the electrode and reduces the resistivity of the surface of the electrode material to induce an effective electrochemical reaction during charging and discharging of the battery. Therefore, battery life, charge and discharge capacity, and stability can be increased.

귀금속 나노입자, 리튬전지, 전극재료Precious Metal Nanoparticles, Lithium Battery, Electrode Material

Description

귀금속 나노입자가 코팅된 리튬전지용 전극재료 {Noble metal nano particles coated electrode materials of lithium battery}Noble metal nano particles coated electrode materials of lithium battery

도 1은 본 발명의 실시예에 따라 제조된 금 나노입자가 코팅된 LiCoO2 분말의 주사전자현미경 사진이다. 1 is a scanning electron micrograph of a LiCoO2 powder coated with gold nanoparticles prepared according to an embodiment of the present invention.

본 발명은 리튬 전지의 전극재료에 높은 도전성을 부여하는 귀금속 나노입자가 코팅된 정극물질에 관한 것이다. 일반적으로 전극재료에는 LiCoO2, LiNiO2, LiMn2O4 와 같은 산화세라믹 재료가 사용된다. 상기 전극물질의 전기화학반응에 의해서 생성된 전하를 원활히 이동시키기 위해서는 도전 물질이 필요한데 카본블랙과 같은 재료가 사용된다. 카본블랙은 4.3V의 전위차에서 전기화학반응이 일어나지 않을 뿐만 아니라 10-3 Ωcm 의 비교적 낮은 비저항을 가지고 있다. 최근 휴대용 기기의 급속한 발전과 함께 경박단소하고 충방전용량이 향상된 리튬 전지를 요구하고 있다. 그러나 기존의 탄소재료의 비저항은 이를 만족하기에는 높은 실정이다. 일반금속은 탄소보다 비저항면에서 대략 1,000배 이상 낮지만, 4.3V 의 전위차에서 부식현상이 일어나기 때문에 사용할 수 없다. 금(Au) 또는 백금(Pt)는 귀금속으로서 탄소보다 전기화학적으로 안정하면서 비저항이 각각 2.01μΩcm, 10.4μΩcm 으로 탄소재료에 비해 매우 낮은 비저항특성을 갖는 물질이다. 따라서 전극물질의 표면에 상기 귀금속 입자들을 도포할 수 있다면 리튬 이차전지의 성능향상을 기대할 수 있다. 또한, 백금은 촉매로서, 전기화학반응을 활성화시켜 충방전용량의 증가와 전지의 안정성을 증가시킨다는 많은 보고가 있다. The present invention relates to a positive electrode material coated with noble metal nanoparticles that provides high conductivity to electrode materials of lithium batteries. In general, an oxide ceramic material such as LiCoO 2, LiNiO 2, LiMn 2 O 4 is used as the electrode material. In order to smoothly transfer the electric charge generated by the electrochemical reaction of the electrode material, a conductive material is required and a material such as carbon black is used. Carbon black not only does not undergo an electrochemical reaction at a potential difference of 4.3 V, but also has a relatively low resistivity of 10-3 Ωcm. Recently, with the rapid development of portable devices, there is a demand for a lithium battery having a light and simple and improved charge and discharge capacity. However, the specific resistance of the existing carbon material is high enough to satisfy this. Ordinary metals are approximately 1,000 times lower in resistivity than carbon, but they cannot be used because they cause corrosion at a potential difference of 4.3V. Gold (Au) or platinum (Pt) is a precious metal that is electrochemically more stable than carbon, and has a resistivity of 2.01 μm cm and 10.4 μm cm, respectively. Therefore, if the noble metal particles can be applied to the surface of the electrode material can be expected to improve the performance of the lithium secondary battery. In addition, there are many reports that platinum is a catalyst, which activates an electrochemical reaction, thereby increasing charge and discharge capacity and increasing battery stability.

본 발명의 목적은 금(Au) 또는 백금(Pt) 나노입자를 코팅된 리튬전지의 전극재료를 개발함으로서 표면 비저항 감소에 기인한 효과적인 전기화학반응을 유도하는 정극재료를 제공하는 것이다. An object of the present invention is to provide a positive electrode material that induces an effective electrochemical reaction due to the reduction of surface resistivity by developing electrode materials of lithium batteries coated with gold (Au) or platinum (Pt) nanoparticles.

본 발명에 사용되는 리튬 전지의 전극물질은 통상 사용되는 금속산화물이면 특별히 제한되지 아니하며, 그 예로는 LiCoO2, LiMn2O4, LiNiO2, LiNiCoO2 또는 이들의 혼합물이 사용되며, 입자크기는 1-10㎛ 인 것이 바람직하다. 상기 금속산화물 분말의 표면에 평균직경 1-500 nm 범위에 있는 금(Au), 백금(Pt) 나노입자를 각각 또는 혼합하여 코팅하는 것으로 본 발명은 구성된다. 금속산화물과 귀금속 나노입자의 혼합비율은 각각의 입자크기와 밀도에 따라서 달라질 수 있으며, 금속산화물에 대해 귀금속 나노입자가 0.1-5 중량% 로 코팅되는 것이 바람직하다. 전지의 충방전시 상기 금속산화물의 이온화 또는 환원시 발생하는 전자들은 표면에 코팅된 상기 귀금속 입자들에 의해 보다 원활하게 이동할 수 있다. The electrode material of the lithium battery used in the present invention is not particularly limited as long as it is a commonly used metal oxide, and examples thereof include LiCoO 2, LiMn 2 O 4, LiNiO 2, LiNiCoO 2 or a mixture thereof, and the particle size is preferably 1-10 μm. Do. The present invention is configured to coat gold or platinum (Pt) nanoparticles in an average diameter of 1-500 nm on the surface of the metal oxide powder, respectively or in combination. The mixing ratio of the metal oxide and the noble metal nanoparticles may vary depending on the particle size and density, and the metal oxide is preferably coated with 0.1-5% by weight of the noble metal nanoparticles. Electrons generated during ionization or reduction of the metal oxide during charge and discharge of the battery may be more smoothly moved by the precious metal particles coated on the surface.

귀금속 나노입자의 코팅방법은 일정농도로 분산된 나노입자 콜로이드를 상기 금속산화물과 혼합하는 단계와 이를 건조하는 단계로 이루어진다. 귀금속 나노입자 콜로이드는 전기분해법 또는 금속유기물을 환원하는 방법으로 제조되며, 물 또는 알콜계 용매에 나노입자가 분산되어 있는 형태이다. 귀금속 나노입자의 함량은 300ppm - 100,000ppm의 범위를 갖으며, 분산성을 유지하기 위해서 한 종류이상의 분산제가 첨가된다. 귀금속 나노입자 콜로이드를 혼합하는 단계는, 그 목적이 개개의 조대한 입자를 콜로이드로 적시는데 있기 때문에 여러 가지 방법이 사용될 수 있다. 초음파에 의한 혼합, 볼밀에 의한 혼합, impeller 에 의한 교반등이 있으며 어느 한 방법에 국한하지 않는다. 귀금속 나노입자 콜로이드와 혼합된 금속산화물은 용매가 증발될 수 있는 온도 50℃ 이상에서 건조단계를 거치면서 용매와 분산제는 제거되고 용매에 분산되어 있던 귀금속 나노입자는 금속산화물의 표면에 부착된다.The coating method of the noble metal nanoparticles comprises mixing the nanoparticle colloid dispersed in a certain concentration with the metal oxide and drying the same. Precious metal nanoparticle colloid is prepared by the electrolysis method or the method of reducing the metal organic matter, the nanoparticles are dispersed in water or alcohol solvent. The content of the noble metal nanoparticles is in the range of 300 ppm to 100,000 ppm, and at least one type of dispersant is added to maintain dispersibility. The step of mixing the noble metal nanoparticle colloid can be used in various ways because the purpose is to wet the individual coarse particles with the colloid. Ultrasonic mixing, ball mill mixing, impeller stirring, etc. are not limited to either method. The metal oxide mixed with the noble metal nanoparticle colloid undergoes a drying step at a temperature of 50 ° C. or higher at which the solvent can evaporate, and the solvent and the dispersant are removed, and the noble metal nanoparticles dispersed in the solvent adhere to the surface of the metal oxide.

(1) 실시예 1(1) Example 1

금(Au) 나노입자 콜로이드는 전기분해법으로 제조하며 100리터의 물에 환원제를 소량 첨가한 후 두개의 금판을 상기 환원제가 녹아있는 물에 담근 후 각각을 전압 220v와 초음파를 가하여 제조한다. 금판의 크기는 300×300×0.1(mm) 였으며 48시간 전압을 가하여 금 나노입자가 15,000ppm 분산된 콜로이드를 제조하였다. 금 입자가 15,000ppm 분산된 용액 100ml 에 LiCoO2 분말 100g을 넣고 교반하여 금 나노입자가 1.5 중량% 코팅된 분말을 제조한다. 교반은 회전수는 60rpm에서 10분간 행한다. 교반된 슬러지상태의 분말을 70℃에서 건조한다.Gold (Au) nanoparticle colloids are prepared by electrolysis and are prepared by adding a small amount of reducing agent to 100 liters of water, immersing two gold plates in water in which the reducing agent is dissolved, and applying a voltage of 220v and ultrasonic waves, respectively. The size of the gold plate was 300 × 300 × 0.1 (mm), and a colloid containing 15,000 ppm of gold nanoparticles was prepared by applying a voltage for 48 hours. 100 g of LiCoO 2 powder was added to 100 ml of a solution in which 15,000 ppm of gold particles were dispersed, and stirred to prepare a powder coated with 1.5 wt% of gold nanoparticles. Stirring is performed for 10 minutes at 60 rpm. The stirred sludge powder is dried at 70 ° C.

도 1은 본 발명의 실시예1에 따라 제조된 금 나노입자가 코팅된 LiCoO2 분말의 미세구조를 주사전자현미경(배율 50,000배)으로 관찰한 사진이다. 3 ㎛ 이하 크기의 구형 LiCoO2 입자 표면에 5-50 nm 크기의 금 나노입자가 코팅된 것을 볼 수 있다. FIG. 1 is a photograph of a microstructure of a LiCoO 2 powder coated with gold nanoparticles prepared according to Example 1 of the present invention with a scanning electron microscope (5x magnification). It can be seen that 5-50 nm size gold nanoparticles are coated on the surface of spherical LiCoO2 particles having a size of 3 μm or less.

(2) 실시예 2(2) Example 2

백금(Pt) 나노입자 콜로이드는 전기분해법으로 제조하며 100리터의 물에 환원제를 소량 첨가한 후 두개의 금판을 상기 환원제가 녹아있는 물에 담근 후 각각을 전압 220v와 초음파를 가하여 제조한다. 백금판의 크기는 300×300×0.1(mm) 였으며 72시간 전압을 가하여 백금 나노입자가 5,000ppm 분산된 콜로이드를 제조하였다. 백금 입자가 5,000ppm 분산된 용액 100ml 에 LiCoO2 분말 100g을 넣고 교반하여 백금 나노입자가 0.5 중량% 코팅된 분말을 제조한다. 교반은 회전수는 60rpm에서 10분간 행한다. 교반된 슬러지상태의 분말을 70℃에서 건조한다.Platinum (Pt) nanoparticle colloids are prepared by electrolysis, and a small amount of reducing agent is added to 100 liters of water, and two gold plates are immersed in the water in which the reducing agent is dissolved, and then, respectively, by applying voltage 220v and ultrasonic waves. The size of the platinum plate was 300 × 300 × 0.1 (mm), and a colloid containing 5,000 ppm of platinum nanoparticles was prepared by applying a voltage for 72 hours. 100 g of LiCoO 2 powder was added to 100 ml of a 5,000 ppm platinum dispersed solution, followed by stirring to prepare a powder coated with 0.5 wt% of platinum nanoparticles. Stirring is performed for 10 minutes at 60 rpm. The stirred sludge powder is dried at 70 ° C.

도 2는 본 발명의 실시예2에 따라 제조된 백금 나노입자가 코팅된 LiCoO2 분말의 미세구조를 주사전자현미경(배율 20,000배)으로 관찰한 사진이다. 3 ㎛ 이하 크기의 구형 LiCoO2 입자 표면에 5-50 nm 크기의 백금 나노입자가 코팅된 것을 볼 수 있다.Figure 2 is a photograph of the microstructure of the LiCoO2 powder coated with platinum nanoparticles prepared according to Example 2 of the present invention by scanning electron microscope (20,000 times magnification). It can be seen that 5-50 nm of platinum nanoparticles are coated on the surface of spherical LiCoO2 particles having a size of 3 μm or less.

리튬 전지에서 전극재료의 전기전도도를 증가시킴으로서 충방전 용량, 수명, 충방전 안정성등이 향상된 전지를 제조할 수 있다. 현재의 리튬 전지 보다 용량이 증가된 소형의 전지를 제조할 수 있다.  By increasing the electrical conductivity of the electrode material in the lithium battery can be produced a battery with improved charge and discharge capacity, life, charge and discharge stability. It is possible to manufacture a small battery having an increased capacity than the current lithium battery.

Claims (5)

통상의 리튬 전지용 전극물질에 귀금속 나노입자가 코팅된 것을 특징으로 하는 리튬 전지용 전극재료.Electrode material for a lithium battery, characterized in that the precious metal nanoparticles are coated on a conventional electrode material for lithium batteries. 제 1항에 있어서 활물질인 LiCoO2, LiMn2O4, LiNiO2, LiNiCoO2 또는 이들의 혼합물에 귀금속 나노입자가 코팅된 것이 특징인 리튬전지용 전극재료.The electrode material for a lithium battery according to claim 1, wherein the precious metal nanoparticles are coated on LiCoO 2, LiMn 2 O 4, LiNiO 2, LiNiCoO 2, or a mixture thereof. 제 2항에 있어서 활물질은 분말상태이며 그 크기가 1-10 ㎛ 범위를 갖는 것을 특징으로 하는 귀금속 나노입자가 코팅된 리튬전지용 전극재료.The electrode material for a lithium battery coated with the noble metal nanoparticles according to claim 2, wherein the active material is in powder form and has a size in the range of 1-10 μm. 제 1항에 있어서 사용되는 귀금속 나노입자는 금(Au) 또는 백금(Pt)중 한 종류 또는 두 종류가 혼합된 것을 특징으로하는 귀금속 나노입자가 코팅된 리튬전지용 전극재료.The electrode material for lithium battery coated noble metal nanoparticles according to claim 1, wherein the noble metal nanoparticles used are mixed with one or two of gold (Au) and platinum (Pt). 제 4항에 있어서 귀금속 나노입자는 1-500 nm 크기범위를 갖는 것을 특징으로하는 귀금속 나노입자가 코팅된 리튬전지용 전극재료.The electrode material for lithium battery coated with noble metal nanoparticles according to claim 4, wherein the noble metal nanoparticles have a size range of 1-500 nm.
KR1020040079234A 2004-10-05 2004-10-05 Noble metal nano particles coated electrode materials of lithium battery KR20060030391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040079234A KR20060030391A (en) 2004-10-05 2004-10-05 Noble metal nano particles coated electrode materials of lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040079234A KR20060030391A (en) 2004-10-05 2004-10-05 Noble metal nano particles coated electrode materials of lithium battery

Publications (1)

Publication Number Publication Date
KR20060030391A true KR20060030391A (en) 2006-04-10

Family

ID=37140433

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040079234A KR20060030391A (en) 2004-10-05 2004-10-05 Noble metal nano particles coated electrode materials of lithium battery

Country Status (1)

Country Link
KR (1) KR20060030391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483532B2 (en) 2012-08-07 2019-11-19 Cornell University Binder-free and carbon-free nanoparticle containing component, methods and applications
CN117317138A (en) * 2023-11-30 2023-12-29 中自环保科技股份有限公司 Low-temperature lithium ion battery and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483532B2 (en) 2012-08-07 2019-11-19 Cornell University Binder-free and carbon-free nanoparticle containing component, methods and applications
CN117317138A (en) * 2023-11-30 2023-12-29 中自环保科技股份有限公司 Low-temperature lithium ion battery and preparation method thereof
CN117317138B (en) * 2023-11-30 2024-02-09 中自环保科技股份有限公司 Low-temperature lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
US8188644B2 (en) Nanostructured composite electrode
JP2007080652A (en) Slurry for forming lithium ion battery electrode and lithium ion battery
US20180241042A1 (en) Functionalized metal oxide nanoparticles and lithium anode for lithium-sulfur battery including the same
US11289699B2 (en) Conductive coatings for active electrochemical materials
CN108933281B (en) Flexible ceramic/polymer composite solid electrolyte and preparation method thereof
JP2022066309A (en) Electrode material and process for preparation thereof
EP2282367A1 (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
CN106450234A (en) Spherical titania/graphene flexible composite material preparation method
CN204315663U (en) A kind of aluminium-sulfur battery Graphene coating negative pole
JP2011119207A (en) Particles for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particles for electrode
JP2001243951A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and battery using the same
JP4456448B2 (en) Battery positive electrode material containing sulfur and / or sulfur compound having S—S bond and method for producing the same
KR100753921B1 (en) Fabrication method of nano-sized active materials containing copper phase with improved cycle-ability for anode of lithium secondary battery
Lee et al. Aqueous processing of lithium-ion battery cathodes using hydrogen peroxide-treated vapor-grown carbon fibers for improvement of electrochemical properties
KR20030081778A (en) A Carbon-Sulfur composite for Lithium Sulfur Battery and the method thereof
JP4452595B2 (en) Composite material containing sulfur and / or sulfur compound and method for producing the same
KR20060030391A (en) Noble metal nano particles coated electrode materials of lithium battery
KR20050119705A (en) Pt nano particles coated al powder and manufacturing method thereof
CN103928684A (en) Modified lithium ion battery graphite negative material and preparation method thereof
KR200383388Y1 (en) Noble metal nano particles coated electrode materials of lithium battery
KR101693930B1 (en) Fabricating method of electrode for electrochemical device, electrode slurry, and electrode for electrochemical device fabricated thereby
JP2004179008A (en) Positive electrode material for lithium secondary battery and its manufacturing method
Meenakorn et al. Effects of carbon structure and mixing sequence in an expander on the capacity of negative electrodes in a traction battery
Park et al. Roles of metal nanoparticles on organosulfur‐conducting polymer composites for lithium battery with high energy density
JP2000331672A (en) Electrode for battery comprising carbon particles containing nano-size mixed substances and battery, and manufacture and electrolysis thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application